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ABSTRACT 
Using a mobile device in a social context should not cause 
embarrassment and disruption to the immediate 
environment. Interaction with mobile and wearable devices 
needs to be subtle, discreet and unobtrusive. Therefore, we 
promote the idea of “intimate interfaces”: discrete 
interfaces that allow control of mobile devices through 
subtle gestures in order to gain social acceptance. To 
achieve this goal, we present an electromyogram (EMG) 
based wearable input device which recognizes isometric 
muscular activity: activity related to very subtle or no 
movement at all. In the online experiment reported, the 
EMG device, worn on an armband around the bicep, was 
able to reliably recognize a motionless gesture without 
calibration or training across users with different muscle 
volumes. Hence, EMG-based input devices can provide an 
effective solution for designing mobile interfaces that are 
subtle and intimate, and therefore socially acceptable. 
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INTRODUCTION  
The computational power of contemporary mobile and 
wearable devices is advancing rapidly, however their 
interfaces continue to mimic those of desktop computers. 
Yet the conditions of use at the desk are very different from 
those in a mobile context. Consequently, mobile interfaces 
recently received much attention from the CHI community 
[1, 22, 25]. Important issues of the mobile context include: 

the amount of attention a user can devote to the interface, 
the type of input that can be performed on the move, the 
limited size of graphical displays, and the social acceptance 
of devices and interaction techniques. Furthermore, it has 
been suggested that wearable input devices should be “as 
natural and (conceptually) unnoticeable as possible” if they 
are meant to be adopted in everyday and public situations 
[27].  

Our research extends this concept: we believe that not only 
the devices should be unnoticeable and natural, but also the 
interaction with them needs to be subtle, discreet and 
unobtrusive. Therefore, we promote the idea of “intimate 
interfaces”: discrete interfaces that allow control of mobile 
devices through subtle gestures in order to gain social 
acceptance.  

Most of the interaction with mobile devices takes place 
when surrounded by other people, such as on buses and 
trains. The design of interaction techniques has to take into 
account the social context where the interaction will occur. 
In some situations speech recognition or interfaces based 
on evident gesturing could be inappropriate, if not even 
unpractical (e.g. in a crowded underground train). Using a 
mobile device in a social context should not cause 
embarrassment and disruption to the immediate 
environment. The replacement of ring-tones with vibrating 
alerts in mobile phones constitutes an example of a 
widespread subtle interface to improve social acceptance. 
Unfortunately, this idea has not yet been generalized to 
other parts of the interface.  

Current commercial devices such as PDAs and mobile 
phones provide high computational power and wide 
bandwidth connectivity – both remotely (e.g. Internet) and 
locally (personal and body area networks). In fact, this type 
of device is converging with wearable computers being 
designed and developed in universities; the latest version of 
MIThril [5] for example is based on a commercial PDA. 

Recent technological developments in eyeglass displays 
[17, 18, 19] make them interesting candidates for the next 
generation of mobile devices. The display technology is 
integrated in standard eyeglass frames and lenses and it is 
barely noticeable to observers. Unlike head mounted 
displays, eyeglass displays are unobtrusive and do not 
occupy the wearer’s entire field of view, preserving 
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awareness of the environment [9]. Eyeglass displays create 
a virtual semitransparent screen in front of the user, with 
resolution between 320x240 and 640x480 pixels allowing 
the display of around 20 lines of text. This virtual screen is 
“physically decoupled” from the mobile device it is 
connected to (e.g. the PDA). This characteristic allows the 
big advantage of the screen size not being constrained by 
the device dimensions (e.g. big display and very small 
device/PDA/phone).  

However, the decoupling of device and display reduces the 
effectiveness of interaction techniques that associates the 
manipulation and display of information. Examples include 
touch-screen displays often embedded in PDAs, tilt-based 
interfaces to navigate content in handheld devices [10, 15, 
23, 25, 28], and tangible interfaces where interaction with 
digital content is performed through manipulation of 
physical icons virtually linked to it [8, 19]. Therefore, 
eyeglass displays require a new interaction paradigm that is 
not so strongly relying on physically manipulating the 
mobile device. An alternative to display-centric interfaces 
is an interface centred on the user’s body. Gestural 
interaction has been proposed as an interaction technique 
for mobile devices, and it appears a suitable way of 
interaction with systems based on the eyeglass displays. 
The user performs gestures to issue commands, and the 
results are displayed on the virtual screen.  

In previous research, gestures are typically sensed by 
accelerometers [23], capacitive techniques [27] or 
proximity sensors worn on different parts of the body [12]. 
These techniques require the users to noticeably move their 
limbs, which can be inconvenient and socially 
unacceptable. On the contrary, electromyographic (EMG) 
signals can convey information about isometric muscular 
activity: activity related to very subtle or no movement at 
all. Hence it allows the definition of a class of “subtle” or 
“motionless gestures” that can be used to design discreet, 
intimate mobile interfaces.  

In mobile computing biosignals have been used for context 
awareness [5] and inference of the user affective state [13]. 
In contrast, in this paper, we focus on explicit control of the 
interface. EMG is a biosignal related to muscle contraction 
[3]. Studies on the use of EMG for gesture recognition have 
been reported, but none of them takes explicit advantage of 
its subtlety, the fact that commands can be issued without 
the generation of observable movements.  

This paper describes the design of a novel controller for 
mobile devices based on EMG. Previous research on the 
use of EMG for human-computer interfaces is reviewed in 
the “Related Work” section. In the “Motivation” section we 
present a rationale for our approach and how it differs from 
prior art. We discuss our iterative design process, focussing 
on pilot studies and how those impacted on the system we 
developed in the “Design Process” section. Subsequently 
we describe a user study that we performed and we discuss 
the results. 

RELATED WORK 
The electromyogram (EMG) is an electrical signal 
generated by muscle contraction. It can be recorded non-
invasively using surface electrodes in differential pairs, 
each pair constituting a channel. Methods for effective 
recording and computer aided analysis of EMG signals 
have been the object of study in the field of biomedical 
engineering for the last three decades [3]. The typical 
biomedical analysis for diagnosis applications involves 
envelope detection, energy measurement (directly related to 
the force) and frequency characterization [4].  

Control applications generally involve signal acquisition 
from a number of differential electrodes, feature extraction 
and real-time pattern classification. The first examples of 
EMG based real-time control systems can be found in the 
field of prosthesis control and functional neuromuscular 
stimulation. Hefftner et al. [14], for example, report 
successful results for a system that can recognise two 
gestures generated from the shoulder and upper arm. The 
system must be specifically calibrated for each subject and 
uses EMG signals from two channels.  

A number of studies focused on the use of EMG for 
computer interfaces targeted at users with physical 
disabilities. Putnam and Knapp [26] developed a 
reconfigurable system to control generic graphical user 
interfaces. The system incorporates a “continuous control” 
mode where the amplitude of the contraction is mapped to a 
parameter swing (sliders, scrollbars) and a “gesture 
recognition” mode that discriminates between two gestures 
and can be used for discrete selections. The gesture 
recognition is performed on a dedicated digital signal 
processing (DSP) board and it is based on neural networks. 
It requires training for each user of the system. Barreto et 
al. [2] propose a system to control a mouse-like “point and 
click” interface using facial muscles. Spectral features of 
EMG signals are analysed, in addition to the amplitude, to 
increase performance. The system is not reported to require 
individual calibration for each user and it is implemented 
on a DSP board. 

Other examples of EMG based CHI include a number of 
interfaces for musical expression. For this type of 
application the signal is used in a continuous fashion 
(rather than performing gesture recognition), the amplitude 
is mapped to a variety of sound synthesis parameters. The 
systems presented in this context are often wearable and 
allow movement of the performer on stage, yet they are not 
(explicitly) designed for the mobile (everyday) context. 
Knapp and Lusted [21] present a generic battery powered 
platform to interface EMG signals to MIDI systems. 
Tanaka and Knapp [30] complement EMG data with 
inertial sensor information, so that both isometric (muscle 
tension resulting in no motion) and isotonic (motion with 
constant muscle tension) activity can be monitored. Dubost 
and Tanaka [6] developed a wearable wireless musical 
controller supporting pre-processing of the EMG signals 
and output interfacing with different standards (MIDI, 



RS232 and Ethernet). Their system requires calibration for 
every user. 

Recent studies focus on the use of EMG for the recognition 
of an alphabet of “discrete” gestures. Fistre and Tanaka [7] 
propose a system that can recognise six different hand 
gestures using two EMG channels on the forearm. The 
device is designed to control consumer electronics and is 
described as portable. Testing in a mobile context has not 
been reported. Wheeler and Jorgensen [32] report the 
development and successful testing of a “neuroelectric 
joystick” and a “neuroelectric keypad”. Using EMG signals 
collected from four and eight channels on the forearm they 
successfully recognise the movement corresponding to the 
use of a virtual joystick and virtual numeric keypad. 
Gestures mimicking the use of physical devices are 
successfully recognised using hidden Markov models. The 
system is proposed as an interface for mobile and wearable 
devices, but an embedded implementation is not reported, 
nor is testing in a mobile context. 

In a different fashion, but still in the context of CHI, EMG 
signals have been used in conjunction with other 
physiological signals (skin conductivity, blood pressure and 
respiration) to detect the affective state of the user [13]. 

MOTIVATION 
Social acceptance is a key factor for mobile devices. 
Rekimoto [27] points out that any mobile technology needs 
to be as unnoticeable and natural as possible to be 
considered usable in everyday situations. Lumsden and 
Brewster [22] question the social acceptance of speech-
based and gesture-based interaction. We believe that not 
only the technology itself should be unnoticeable and 
natural, but also the user interaction with the mobile device 
needs to be subtle, discreet and unobtrusive. Speech 
recognition has been criticised as an interaction technique 
for mobile devices because verbal communication is the 
most common form of interpersonal communication, so in 
many situations it would be awkward and inappropriate to 
start “talking” to a computer. Hand and body gestures are 
also important part of human to human communication. 
Therefore, the same criticism moved to speech applies to 
interfaces based on evident gestures. 

We believe that EMG’s greatest potential for mobile 
interfaces is its ability to sense muscular activity not related 
to movement. This characteristic allows the definition of a 
class of “subtle” or “motionless gestures” that can be used 
to design discreet, intimate mobile interfaces. Yet previous 
studies on the use of EMG for human computer interaction 
(mobile or not) do not explicitly consider subtlety, leading 
to a different approach. Tanaka and Knapp [30] report as a 
limitation the fact that in EMG signals muscular activity 
and movement are not always related. They remedy this by 
complementing EMG with inertial sensor (gyros) data in a 
multimodal fashion. Fistre and Tanaka [7] and Wheeler and 
Jorgensen [32] propose the use of EMG for hand gesture 

recognition as an alternative to accelerometers or 
mechanical sensors for movement, but not for subtle 
gestures. 

The system we propose is a small wireless armband 
controller, with a form factor in the tradition of Body-
media [16], which can be worn under clothes to make it 
unnoticeable. The armband device is completely self-
contained; it senses, amplifies and analyzes the EMG 
signals from the bicep. If a gesture is recognised the device 
transmits via Bluetooth an appropriate message containing 
the device ID and the parameters describing the gesture (if 
any). When the device senses muscular activity not 
corresponding to the defined gestures it remains “silent”; 
i.e. it will not trigger commands while the user performs 
everyday movement. The Bluetooth message can be 
received by devices compliant to this standard, such as 
many commercially available PDAs and mobile phones, 
and easily mapped to an interface. The armband device is 
designed to potentially fit any user, it does not require 
calibration or training to the muscles of individual people.  

Compared to other EMG based systems [7, 26, 32] the 
approach we propose is to trade resolution in terms of 
variety of gestures being recognised for: 

• minimizing computational complexity 

• robustness against false positives  

• use of only one input channel  

• avoiding calibration or system training on each 
user  

Minimal computational complexity is essential to 
implement the processing in a low power embedded device, 
such as an ARM7 microcontroller.  

The EMG controller does not occupy the user’s hands, and 
does not require them to operate it, hence it is “hands free”. 
When combined with eyeglass displays, and/or audio 
output, it forms a closed loop “hands free” system. This can 
be highly advantageous in a number of everyday situations: 
for example when the user is carrying objects. It can also be 
useful in specific fields, such as maintenance, where the 
user’s hand are needed to perform a principal task, and uses 
the mobile computing system for assistance. If augmented 
with tactile actuators, the armband device can form an 
integrated multimodal i/o system. 

When compared to other types of sensing EMG presents a 
number of difficulties due to the need for contact electrodes 
and their placement [27]. However, its advantages provided 
related to subtlety make it worth studying. Moreover, solid 
gel and dry electrodes can be used in place of wet 
electrodes. Recent studies on non-contact sensing for EMG 
[31] are even more encouraging. 



DESIGN PROCESS 
The system design was carried out as an iterative process 
centred on users. A number of exploratory informal user 
studies were performed to insure that the system would be 
natural and easy to use.  Figure 1 summarizes the process. 

From the hardware point of view the system is quite 
straightforward and not very different from other EMG 
controllers described in the literature. The device includes 
an high input impedance amplifier connected to electrodes, 
an anti-aliasing filter, a microcontroller to sample and 
process the EMG signal and a Bluetooth communication 
module to transmit the processing results. All of the 
processing takes place in the microcontroller: when a 
gesture is recognised, an appropriate message is transmitted 
via Bluetooth. For the preliminary experiments, however, 
the wearable device streamed the amplified sampled signal 
via Bluetooth, and the processing took place on a standard 
Windows PC. 

The design of the recognition algorithm and the definition 
of the gesture were carried out in parallel to satisfy two 
requirements: the gesture should be (1) natural for people 
to perform, and (2) different enough from “normal” muscle 
activity to avoid misclassification (“false positives”). 

The process started with a pilot study to select one muscle 
and subtle isometric contractions that could serve the 
definition of “motionless gesture”. The subjects for this 
pilot were chosen so that a range of different muscle 
volumes were tested. Initial candidates for the muscle 
selection were: the temporalis, the bicep, the triceps, the 
forearm, the abdominals and the calf. Factors considered 
for the decision included: ease of electrodes placement, 
quality of the acquired signal and the type of activity that 

each muscle contributes during normal movement such as 
walking. The test revealed the bicep as the best candidate 
because it lies superficially making the signal fairly 
immune to activity generated by other muscles, and it is 
well defined even in non-athletes. The gesture was defined 
as a brief contraction, such that it could be performed 
without being noticed, while the arm is unfolded, parallel to 
the body while the user is standing.  

A second informal study was conducted to refine the 
definition of the subtle gesture and create a model and 
algorithm for its detection. New subjects participated in the 
study and were chosen for a variety of muscle volumes. 
EMG signals were recorded from subjects performing the 
selected contraction and compared with the signals 
generated by other types of muscle activity, such as moving 
in an indoor space, lifting objects of various weights and 
gesticulating while talking.  

The subjects were informed that the purpose of the study 
was to define a subtle gesture that could be used to control 
mobile devices. The gesture was described to them in a not 
detailed way (just as a “brief contraction of the bicep, i.e. 
the upper arm, that would not be very evident”) so that they 
had some freedom in the way they performed it. With this 
procedure we wanted to see whether such a definition of 
“brief contraction” would be consistent across individuals, 
and to ensure that the gesture definition would be, to a 
certain extent, natural to perform, rather than defining a 
gesture a priori and ask/force the users to learn it.  

The model resulting from the second study, depicted in 
Figure 2, is based on the standard deviation of the EMG 
signal, calculated with a sliding window of duration 0.2s 
overlapping for 75% of its duration. The standard deviation 
was chosen to smooth the data and emphasize 
discontinuities in the energy of the electromyogram. The 
window size was selected to be the longest possible without 
filtering out interesting features. A mathematical model and 
a recognition algorithm for the brief contraction were then 
created heuristically from the observation of the data. A 

Figure 1 Design process outline. 

Figure 2 Peak model and example peak the algorithm detects. 



brief contraction was observed to correspond to a peak in 
the standard deviation of the signal. Given the noise-like 
characteristics of the EMG signal [3], standard peak-
detection techniques could not be employed. Such peaks 
were rather modelled as follows: an interval “beginning” of 
duration TB of low activity (silence) followed by an interval 
“middle” of high activity of duration TM and then again low 
activity for an interval “end” of duration TE. High activity 
and low activity were defined respectively as the standard 
deviation of the signal being above a threshold H and 
below a threshold L. To allow some tolerance in the model, 
the condition on the history is imposed on the average of its 
values. The condition on the middle needs to be satisfied by 
50% of the samples, and the condition on the end by 70% 
of the samples.  

The model definition is stricter on the duration of the 
contraction rather than its intensity. This is because the 
preliminary study showed that the duration was more 
consistent than the intensity across users, despite the fact 
that no specific indication was given about either. One 
disadvantage of this model is that it requires the gesture to 
be completed before the recognition can take place. The 
recognition could be made faster by removing the “end 
condition” for the closure of the gesture; however, this 
would cause an increase in the number of false positives. 

The tuning of the five parameters of the model required a 
third informal study. New and returning users were 
informally asked to test the system. The testing was 
conducted to stress the system to produce false positives 
and false negatives. The iterations recurred until the 
number of false positives approached zero and the system 
recognised contractions performed by any user.  

Once the recognition worked robustly on one gesture, the 
possibility of creating a gesture alphabet of two gestures 
was explored. The gestures were defined as two short 
subtle contractions of different durations. This 
corresponded to varying the value of TM in the model 
together with its tolerance. The results obtained at this point 
were then validated with the formal user studies reported in 
the next section. 

FORMAL USABILITY EXPERIMENT  
An experiment was conducted to assess the usability of 
EMG as a subtle interaction technique for mobile devices. 
The experiment evaluated the system usability in a mobile 
context. The study was conducted using a setup similar to 
the one successfully employed by Pirhonen et al. [24], 
which provided a reasonably realistic environment to test 
the system while the user was mobile and still maintain 
enough experimental control to measure performance.   

Experimental Design 
Participants were 10 adults: 5 women and 5 men, ages 23 to 
34, all were colleagues who volunteered for the study. 
Subject 8 participated in a pilot study; all others were 
naive.  Using the wireless EMG device, the participants 

performed five walking tasks, one without contracting (to 
determine the devices misclassification rate), and four 
while making contractions of different durations.  Each of 
the four contraction tasks was preceded by a short 
familiarization session.  While walking, participants 
navigated 24 meter laps around obstacles setup in a 
regularly trafficked walkway in Media Lab Europe, see 
Figure 3. This setup was similar to the one reported by 
Pirhonen et al.[24] who noted this mobile context allows us 
to “take measurements of the usage of the device whilst the 
users were mobile but was not as formally controlled as a 
laboratory study, which would lack realism and ecological 
validity."  

Participants were given written instructions that informed 
them the study was assessing EMG as a subtle interface for 
mobile devices and they would control the system using 
their bicep while walking using a subtle contraction that 
could be performed with their arm relaxed at their side.  
Participants were also instructed the contraction recognised 
has a minimum and maximum duration and a minimum 
strength requirement.  No further instructions were given 
for the subtleness of the contractions, thus it was subjective 
to the participant to define subtly.  

We refer to the four contraction tasks the participants 
performed as ‘generic’, ‘short’, ‘long’, and ‘mixed' 
contractions. During these tasks participants were prompted 
to contract with an audio stimulus in the form of a MIDI 
piano tone delivered through wireless headphones. In the 
generic task participants attempted to consistently make 
contractions that the system would recognise.  In the short 
task they attempted to consistently make the shortest 
contraction the system would still recognise. In the long 
task they attempted to consistently make the longest 
contraction the system would recognise. In the mixed task 
they attempted to make both long and short contractions 
when given corresponding stimuli. Each task was preceded 
by a short familiarization session.  

During the familiarization sessions participants stood and 
only heard an auditory feedback when the system 
recognised a contraction. No coaching or further feedback 
as to the amplitude or duration of the contraction was given 
to the participants, so they were unaware of why the 
algorithm was or was not recognizing the contraction. They 
were only aware if the contraction was recognised. This 
was also true for the walking tasks.  

In all contraction tasks the same real-time detection 
algorithm was used across participants without calibration 
or modification, and it recognised contractions of duration 

Figure 3 Route walked by participants. 



between 0.3 and 0.8 seconds. If the system detected a 
muscle contraction participants were given auditory 
feedback in the form of a MIDI trumpet tone delivered 
through wireless headphones. No further feedback was 
given, thus when performing contractions participants were 
quantitatively unaware of the contraction's duration.  This 
minimal feedback was given to establish if the users could 
learn to use the feedback without specific training.  

Subjective workload was measured with the NASA TLX 
[11] scales after each walking contraction task to assess 
demands imposed by the EMG controller and the different 
contraction types.  Workload is important because in a 
mobile environment users have less attention to spend on 
the interface and interaction technique because they are 
monitoring and navigating their surroundings [24], an 
additional complexity is introduced when the interaction 
technique uses the same body parts used while mobile. 
Therefore, an interface and interaction technique with a 
lower workload will be more successful in a mobile context 
[24].  

For the system setup, the participant’s skin was first 
prepared with an abrasive gel to ensure signal quality.  In 
pilot studies, it was found the pre-gelled electrodes did not 
require skin abrasion unless users used skin creams or 
lotions earlier in the day.  For consistency, all participants 
were abraded in this formal study. 

After abrasion, disposable, sold-gel, self adhering, 
Ag/AgCl 9mm disc surface electromyogram (SEMG) 
electrodes were applied in three positions around the upper 
arm of the subject's dominant hand such that the input 
electrode was centred on the bicep brachii, reference was 
on the inside middle of the upper arm below the bicep, and 
ground was placed on the middle outside of the upper arm 
see Figure 4. The electrodes were placed around the upper 
arm to test the feasibility of embedding them in an 

armband. For participants 1, 2, and 4 the reference and 
ground positions were swapped because the inner reference 
pressed against their bodies while walking causing 
deflection artefact.   

After the electrodes were applied, the wireless EMG device 
was mounted to the upper arm with an elastic band between 
the electrodes and elbow. The wireless EMG device 
streamed 10 bit values at 80 Hz over serial Bluetooth to a 2 
GHz Pentium 4 PC running Windows XP. The BCI2000 
software framework [29], running on the PC, was used for 
signal processing and stimulus presentation.  While the 
contraction detection algorithm was simple enough to run 
on the device's micro-controller, it was implemented under 
BCI2000 to allow real-time monitoring of the EMG signal 
and classification output for the experiment.  

Tasks 
All subjects participated in all tasks: within-subjects design. 
The tasks proceeded in order as follows, however, the short 
and long contraction tasks were performed in 
counterbalanced order, such that a participant randomly 
performed short or long first. The tasks in detail are: 

1. Walking, No Contractions  

While wearing the wireless EMG device participants were 
instructed to walk ten laps at their preferred walking speed.  

2. Standing, Familiarization, Generic Contractions 

Participants were given the wireless headphones, and told 
to briefly contract their bicep freely in order to familiarize 
themselves with the system. The familiarization ended 
when either the participant was confident interacting with 
the system or a fifteen minute time limit was reached.  If 
participants could not confidently use the system after the 
time limit they were verbally given feedback as to why 
their contractions were not controlling the system. This was 
only necessary for participants 2, 9, and 10; who were only 
told once to shorten their contractions, and then they were 
quickly able to control the system.  

3. Walking, Stimulus-Response, Generic Contractions 

Subject's walked the obstacle course and attempted to 
contract when they heard an audio stimulus through the 
wireless headphones. Participants were randomly presented 
15 (SD=5) stimuli. 

4. Standing, Familiarization, Short Contractions 

Similarly to generic contraction familiarization, participants 
stood and only heard an auditory feedback when the system 
recognised the contraction. The system recognised the same 
contraction duration as in the first two tasks; it was 
subjectively up to the participant to define the short 
contraction. Participants were again instructed the system 
recognised a contraction of certain duration and they should 
explore the limits of the system. When they were 
comfortable making the shortest contraction they thought 

Figure 4 Electrode positions on upper arm. Input is on the 
bicep, ground is on the outside of the arm, reference is on 

inside of the arm. 



the system would still recognise the experiment continued 
with the next task. 

5. Walking, Stimulus-Response, Short Contractions 

Participants walked the obstacle course again and 
attempted their short contraction when they heard an audio 
stimulus through wireless headphones. Participants were 
randomly presented 15 (SD=5) stimuli.   

6. Standing, Familiarization, Long Contractions 

Participants stood and only heard an auditory feedback 
when the system recognised the contraction. The system 
recognised the same contraction as in the previous tasks, it 
was subjectively up to the participants to define the long 
contraction.  When they were comfortable making the 
longest contraction they thought the system would still 
recognise the experiment continued with the next task.  

7. Walking, Stimulus-Response, Long Contractions 

Participants walked the obstacle course again and 
attempted their longest contraction when they heard an 
audio stimulus through the headphones. Participants were 
randomly presented 14 (SD=3) stimuli.  

8. Walking, Stimulus-Response, Mixed Long and Short 
Contractions 

Finally, participants were instructed to walk the obstacle 
course again and make both short and long contractions 
when they heard either a high pitched MIDI piano tone 
(short contraction) or low pitched MIDI piano tone (long 
contraction) stimulus. Participants were randomly 
presented 23 (SD=5) total stimuli: 12 (SD=3) short and 11 
(SD=3) long. 

RESULTS 
No false positives were detected while online during the 
first walking task. In addition, the online recognition rates 
for the four contraction walking tasks were: generic 96%, 
short 97%, long 94%, and mixed 87%. 

In the first familiarisation task, participants were able to 
control the system in an average of 3.75 minutes 
(SD=2.17), excluding the three participants who reached 
the fifteen minute time limit and required additional 
feedback. The participants given feedback (2, 9 and 10), all 
had the same difficulty that their contractions were too 
long. They were told once to make their contractions 
shorter and then they were able to control the system in 
11.75, 1.78 and 5.48 minutes respectively.  

As mentioned in the Design Process, offline analysis was 
performed on the data from the short and long contraction 
walking tasks to determine if short and long contractions 
are separable into two gestures for control. Figure 5 shows 
the mean and standard deviations for the short and long 
contraction durations. From the data, a duration boundary 
of 0.5 seconds was used to create a new recognition 
algorithm that recognised long and short contractions 

separately. As with the original algorithm, only the first 
recognition was counted, any additional recognition was 
ignored until the next stimuli. Applying this new short-long 
detection algorithm to the mixed contraction data resulted 
in an overall accuracy of 51%, with 55% shorts recognised 
and 47% longs recognised. The misclassification rate for 
shorts as longs was 33%, and the misclassification rate for 
longs as shorts was 11%.  

DISCUSSION 
Users were able to control the system consistently with 
only the feedback that a contraction was recognised. The 
generic contraction’s accuracy of 96% indicates EMG can 
be used successfully as a controller.  

The recognition of short and long contractions offline using 
the mixed data set was fairly low. This may have occurred 
because the online algorithm recognised a small range of 
contraction durations; therefore the longs may not have 
been sufficiently different from the shorts for the 
participants to accurately produce them. The range of 
contraction durations was set from pilot studies which 
indicated most false positives occur from very long muscle 
contractions, therefore a trade-off between reproducibility 
of long and short contractions and increased false positives 
may occur if the range is widened.  

It is important to note the durations of the short and long 
contractions are subjective because the participants were 
not given feedback to their actual durations. Therefore the 
participants trained themselves on what they considered 
were long and short contractions. If the participants were 
given feedback for their contraction durations, they may 
learn to consistently make different long and short 
contractions. 

There were no significant differences in the subjective 
workload tests between contraction tasks (one-way 
ANOVA F4,45=0.39,p<0.82). Though not reflected in the 
workload score, after the experiments some participants 

Figure 5 Mean and standard deviation error bars for long and 
short contraction durations. Closed circles indicate means for 

short and open circles indicate means for long. 



stated they felt longs were more difficult than shorts. In 
addition, we noticed the three participants that required 
feedback in the first familiarization task became frustrated 
when they could not make the system recognise their 
contractions; however, at the end of the experiment they 
were comfortable using the system.  

CONCLUSION AND FUTURE WORK 
This paper has shown that an EMG based wearable input 
device can be effectively employed in a mobile context for 
subtle and intimate interaction. The system presented is 
able to reliably recognize a motionless gesture without 
calibration or training across users with different muscle 
volumes. 

During the experiment we observed that the participants 
performed the gesture subtly and inconspicuously, which 
indicates motionless EMG gestures can be utilized as a 
socially acceptable alternative for mobile device 
interaction. As proposed, in combination with eyeglass 
displays and/or audio output, an EMG controller forms a 
closed loop “hands free” system that is advantageous in 
situations where the principal task occupies the hands or 
environments where obtrusive interaction techniques would 
be annoying to surrounding people.   

Further user studies should test the system in more complex 
“real world” scenarios, such as lifting objects or interacting 
socially, and have viewers rate the subtlety from the social 
perspective. The simplicity of the gesture recognition 
algorithm illustrates that it is possible to obtain interesting 
results even without calibration. Further development 
should include the use of more advanced analysis 
techniques, such as autoregressive modelling, which has 
been reported to be successful in some EMG literature [14]. 

We are working on expanding the EMG gesture alphabet 
for increased levels of control. While, further work on the 
signal processing may make it possible to recognize 
multiple subtle gestures from a single muscle, it appears 
more practical to define a more extended interface using 
different controllers on various muscles (e.g. on both arms).  

In general, this studied showed EMG based input devices 
can be effectively used to design mobile interfaces that are 
subtle and intimate. 
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