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Abstract

Chiral symmetry at finite temperature is studied using the Schwinger-Dyson equa-

tion. We calculate numerically the critical temperature using the Schwinger-Dyson

equation with the gauge parameter that depends on an external momentum. The crit-

ical temperature obtained by this method is similar to that with the Landau gauge

and wave function renormalization constant 1. Moreover, the gauge invariance in the

ladder approximation is examined using our method.
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§1. Introduction

In quantum chromodynamics (QCD), chiral symmetry is approximately realized at the

lagrangian level, and it is broken by the strong interaction at zero temperature. On the other

hand, at finite temperature and density, the broken symmetries are restored. Therefore, one

expects that finite temperature and density QCD have various phases. For example, the

quark-gluon plasma (QGP), where quarks and gluons are deconfined has been observed at

the Relativistic Heavy Ion Collider (RHIC).1) The QGP is examined at the Large Hadron

Collider (LHC).2)

To study the chiral symmetry breaking, we need a nonperturbative treatment due to the

strong interaction. As a theoretical approach to understand the phase structure of QCD,

the lattice QCD simulation is a powerful method.3) The QCD phase structure at finite

temperature is extensively studied by this method. The lattice QCD simulation derives the

results that are consistent with the experiment at RHIC.4)

Another theoretical approach is the Schwinger-Dyson equation (SDE) method.5) The

SDE is a valid method for both finite temperature and density. The lattice QCD for large

chemical potentials is still inadequate. Moreover, the numerical analysis of the SDE does

not require a large-scale computer like in the case of lattice simulation. When we solve the

SDE, we need appropriate approximations, because the SDE is a group of infinitely coupled

equations.

Although the ladder approximation is usually used to solve the SDE, the SDE with this

approximation depends on a gauge parameter. Owing to the gauge parameter dependence of

the SDE, observable quantities, which should essentially be gauge-parameter-independent,

depend on a gauge parameter. However, at zero temperature and density, the ladder ap-

proximation Ward-Takahashi identity (WTI) is guaranteed by choosing the Landau gauge.

Thus, the Landau gauge is used at zero temperature and density.6)

By contrast, at finite temperature and/or density, the ladder approximation WTI is not

guaranteed trivially.7) For this reason, there are no gauge parameters that have a clear

advantage at finite temperature and/or density. The Landau gauge is adopted from the

analogy of zero temperature8), 9) . On the other hand, the Feynman gauge is adopted for

convenience.7)

The purpose of this paper is to perform the numerical calculation of the ladder approxima-

tion SDE to satisfy the WTI at finite temperature. For this purpose, we employ the method

with a gauge parameter that depends on an external momentum. In this method, the WTI

is satisfied using this functional gauge parameter. Such an idea, in which a gauge parameter

is treated as a function, was studied at zero temperature10) and was used in QED with real
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time formalism at finite temperature.11) (The formulation at finite temperature is shown,

e.g., in Ref. 12).) However, the numerical calculation of the SDE in real time formalism

uses further approximation (IE approximation13)) in addition to the ladder approximation.

Moreover, the results obtained with real time formalism using IE approximation at the zero-

temperature limit do not correspond to zero temperature.14) Thus, the present SDE in real

time formalism is insufficient. Hence, in this paper, we use the method with the functional

gauge parameter in QCD with imaginary time formalism. Since the numerical calculation

of the SDE in imaginary time formalism need not use other approximations, this formalism

is more reliable.

The paper is organized as follows. In §2, we review the zero-temperature and finite-

temperature SDE. In §3, we provide numerical results with the functional gauge parameter.

The numerical method for solving the SDE is iteration. Then, we calculate the critical

temperature. A summary and discussion are found in §4.

§2. Schwinger-Dyson equation

2.1. Zero-temperature SDE

The SDE is derived using the CJT effective potential.15) The SDE for quark is given by

G−1(p) = S−1(p)− ig2C2

∫

d4q

(2π)4
γµD

µν(p− q)G(q)Γν(p, q), (2.1)

where C2 is the Casimir operator, S(p) is the free quark propagator, Dµν is the exact gluon

propagator, Γν is the exact quark-gluon-quark vertex, and G(p) is the exact quark propaga-

tor,

G(p) =
1

A(p)γµpµ − B(p)
. (2.2)

We use the chiral limit for the free quark propagator. In the ladder approximation,5) the

SDE is written as

G−1(p) = S−1(p)− ig2C2

∫

d4q

(2π)4
γµD

µν
0 (p− q)G(q)γν, (2.3)

where Dµν
0 is the free gluon propagator,

Dµν
0 (k) =

−gµν + kµkν/k2

k2
− ξ

kµkν

k4
.
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Here, ξ is a gauge parameter. From this equation, the SDE is divided into coupled equations

for scalar functions A(p) and B(p).

In QCD, we use the improved ladder approximation16) in which a coupling constant is

replaced by the running coupling constant g(p2, q2). The running coupling is included in a

momentum integral.

After performing angular integral,16), 17)

A(l) = 1 +
g2(l)C2ξ

16π2l2

∫ l

0

ds
s2A(s)

A2(s)s+B2(s)
+

C2ξ

16π2

∫

∞

l

ds
g2(s)A(s)

A2(s)s+B2(s)
, (2.4a)

B(l) =
g2(l)C2(3 + ξ)

16π2l

∫ l

0

ds
sB(s)

A2(s)s+B2(s)
+

C2(3 + ξ)

16π2

∫

∞

l

ds
g2(s)B(s)

A2(s)s+B2(s)
. (2.4b)

where l = p2E and s = q2E , the index E shows four vectors in Euclidean space. In the

ladder approximation, the wave function renormalization constant must be unity to satisfy

the WTI, that is, A(l) = 1. This equation for A(l) shows that A(l) = 1 if the Landau gauge

ξ = 0 is adopted. Thus, the WTI is satisfied using the Landau gauge at zero temperature.

Although the WTI is extended to the Slavnov-Taylor identities in QCD, the Slavnov-

Taylor identities become the WTI type to omit ghost-quark scattering kernel.18) Since the

ladder approximation corresponds to this situation, we use QCD with the WTI type.

2.2. Finite-temperature SDE

The Feynman rules in imaginary time formalism are summarized as follows:

free quark propagator : S(p) =
−1

γµpµ −m

(

p0 = iωn = 2πiT
(

n+
1

2

))

free gluon propagator : Dµν
0 (k) =

gµν − kµkν/k2

k2
+ ξ

kµkν

k4
(k0 = iωl = 2πiT l)

(2π)4δ4(p+ · · · ) ⇒ −
i

T
(2π)3δn,···δ

3(p+ · · · ),

∫

d4p

(2π)4
⇒ iT

∑

n

∫

d3p

(2π)3
.

Here, ωn is the Matsubara frequency. By this replacement, the improved ladder approxima-

tion SDE for quark in imaginary time formalism is given by

G−1(p) = S−1(p)− C2T
∑

m

∫

d3q

(2π)3
g2(−p2,−q2)γµD

µν
0 (p− q)G(q)γν, (2.5)
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where pµ = (2iπT (n + 1/2), pi) and qµ = (2iπT (m + 1/2), qi). If we use the exact quark

propagator form, Eq. (2.2), the coupled equations for A′

n(x) and Bn(x) are written as∗)

A′

n(x) = 1−
C2T

p2
1

8π2x

∑

m

∫

∞

0

dyg2(−p2,−q2)
yA′

m(y)[L1 + L2 + ξ(L1 − L2)]

A′2
m(y)q

2 −B2
m(y)

, (2.6a)

Bn(x) = −C2T
(3 + ξ)

8π2x

∑

m

∫ Λ

0

dy
g2(−p2,−q2)yBm(y)

A′2
m(y)q

2 − B2
m(y)

log
(p0 − q0)

2 − (x+ y)2

(p0 − q0)2 − (x− y)2
, (2.6b)

where, x = |p| and y = |q|. Alternatively, if we use the general form of the quark propagator

at finite temperature,

Gn(x) =
−1

Cn(x)γ0p0 + An(x)γipi − Bn(x)
, (2.7)

the coupled equations for An(x), Bn(x), and Cn(x) are

Cn(x) = 1 +
C2T

8π2p0x

∑

m

∫

∞

0

dyg2(−p2,−q2)y

×
−Cm(y)(I1 + I2)− Am(y)I3 + ξ(Cm(y)I2 + Am(y)I3)

C2
m(y)q

2
0 −A2

m(y)y
2 −B2

m(y)
,

(2.8a)

An(x) = 1−
C2T

8π2x3

∑

m

∫

∞

0

dyg2(−p2,−q2)y

×
−Cm(y)H1 + Am(y)(H2 −H3) + ξ(Cm(y)H1 + Am(y)H3)

C2
m(y)q

2
0 − A2

m(y)y
2 − B2

m(y)
,

(2.8b)

Bn(x) = −C2T
3 + ξ

8π2x

∑

m

∫

∞

0

dy
g2(−p2,−q2)yBm(y)

C2
m(y)q

2
0 −A2

m(y)y
2 −B2

m(y)

× log
(p0 − q0)

2 − (x+ y)2

(p0 − q0)2 − (x− y)2
.

(2.8c)

The explicit expressions of L, I, and H are given in Appendix A. Equations (2.8a)–(2.8c)

are the general coupled equations derived from the ladder approximation SDE at finite

temperature. Those four scalar functions have the relation for n, e.g., Bn(x) = B−n−1(x).

∗) Since a propagator at finite temperature is Euclidean, Eq.(2.2) is replaced by Gn(x) =

−1/(A′

n
(x)pµγ

µ −Bn(x)).
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In this paper, we use the following form for the running coupling:19)

g2(−p2,−q2) =
48π2

11Nc − 2Nf

×















1
t

, tF < t,
1
tF

+ (tF−tC)2−(t−tC )2

2t2
F
(tF−tC)

, tC < t < tF ,
1
tF

+ tF−tC
2t2

F

, t < tC ,

(2.9)

where t = log[(−p2 − q2)/Λ2
qcd], tC = −2, tF = 0.5, Λqcd = 592(MeV), and Nc and Nf are

the numbers of colors and flavors respectively. Here, we use Nc = 3 and Nf = 2. Bn(x)

depends on the regularization parameter tF . For parameters in running coupling, we use the

parameters in Ref. 8) (see §3.2).

§3. Results of numerical calculation

3.1. Functional gauge parameter

The WTI is satisfied by taking the Landau gauge at zero temperature, as shown in §2.1.

By contrast, the WTI is not satisfied using a constant gauge parameter at finite temperature.

In fact, A′

n(x), Cn(x), and An(x) are not unity at finite temperature even if one takes the

Landau gauge (see Figs. 3 and 4). Hence, we assume that the gauge parameter is a function

depending on the external momentum.

We divide Eqs. (2.6a), (2.8a), and (2.8b) into the gauge parameter term and no gauge

parameter term, e.g.,

Cn(x) = 1 + ξXn(x) + Yn(x). (3.1)

In this equation, we treat ξ as a function dependent on the external momentum ωn, x.

Since a gauge parameter exists in the gluon propagator, it should fundamentally depend on

a momentum of gluon (see Eq. (2.3)). However, for simplicity, we use the functional gauge

parameter that depends on only the external momentum. (Although we do not write in

terms, ξn(x) clearly depends on temperature.) From this assumption, we configured that

the gauge parameter must satisfy ξn(x)Xn(x) + Yn(x) = 0. By this method, we can perform

numerical calculation satisfying the WTI.

Note that there is a problem for Eqs. (2.8a) and (2.8b). It is the fact that the temperature

dependences of Cn(x) and An(x) are different. Owing to this property, it is difficult to make

Cn(x) = 1 and An(x) = 1 at the same time. However, Cn(x) and An(x) have near values

at around the critical temperature. Hence, in this important region, we can simultaneously

make Cn(x) ≃ 1 and An(x) ≃ 1. We operate Cn(x) and An(x) so that those may approach

1 as much as possible.
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3.2. Numerical calculation

Although an effective potential is needed to study the phase transition, Bn(x) = 0 directry

denotes a critical point at finite temperature.9) Thus, we focus our attention on the critical

point at Bn(x) = 0.

Note that our numerical calculation has an error due to the number of flavors in the

running coupling. In Ref. 8), the running coupling with Nf = 3 was used. However, we

took Nf = 2. This difference in Nf in the running coupling with the same Λqcd results in

the difference of about 2 (MeV) for the pion decay constant. However, in this paper, we

are designed to search for the existence of a solution satisfying the WTI and the shift of

the critical temperature. Thus, this difference in the pion decay constant is not important

for that purpose of the study. (In addition, this difference might be within the range of

numerical error.) The critical temperature has the error range of about ±3 (MeV) at least

by ignoring this.

We calculated the following four cases:

(I): coupled equations, A′

n(x) and Bn(x) with the Landau gauge,

(II): coupled equations, Cn(x), An(x) and Bn(x) with the Landau gauge,

(Ia): coupled equations, A′

n(x) and Bn(x) with the functional gauge parameter ξ′n(x), and

(IIa): coupled equations, Cn(x), An(x) and Bn(x) with the functional gauge parameter ξn(x).

To solve the SDE, we employed the iteration method. It starts as a constant or a trial

function, and repeats until a value is converged. First, we tried the trial function like zero

temperature (see, e.g., Refs. 17) and 19)). The trial function has the zero temperature form

for x at n = 0, −1; others are small constant values. However, there is no difference between

a constant and the trial function except the convergence. Thus, we used a constant.

The range of summation m = −10 ∼ 9 is sufficiently large as a truncation point for

summation in the case of A′

n(x) = 1. In contrast, in (I) and (II), since the range of −10 ∼ 9

is insufficient (especially in the calculation of the critical temperature), the summation is

necessary to take above m = −40 ∼ 39.

Since Cn(x) and An(x) simultaneously do not make Cn(x), An(x) ≃ 1 below the critical

temperature, (IIa) is used only for determining the critical temperature. Then, we fix the

lowest value of Cn(x) as 0.94 and the highest value as 1, because it is possible to limit the

difference from 1 to about 0.05 at around the critical temperature.
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If one fixes Cn(x) = 1 exactly at all regions, An(x) is further away from 1, compared

with the case of Cn(x) = 0.94 ∼ 1. Thus, we do not fix Cn(x) = 1 exactly even around the

critical temperature. We fix A′

n(x) = 1 for (Ia) and limit Cn(x) = 0.94 ∼ 1 for (IIa).

On the other hand, we assume that Cn(x) = An(x) = 1 in (IIa) has a problem, because

C(p) 6= A(p) (p0 is continuous) in real time generates plasminos for fermion.20) From this

viewpoint, Cn(x) ≃ An(x) ≃ 1 might be valid as an approximation (see also §4).

The convergence for B0(0), C0(0) and A0(0) in (II) is shown in Figs. 1 and 2. The conver-

gence is worse around the critical temperature. Other cases also have the same convergence.

3.3. Results of (I) and (II)

The typical x and n dependences of A′

n(x) and Cn(x), An(x) are shown in Figs. 3 and

4. (Figure 3 shows only the case of A′

n(0). The behavior for Cn(0), An(0) is much the

same.) The temperature dependences of A′

0(0) and C0(0), A0(0) are also shown in Fig. 5.

Those results actually show A′

n(x) 6= 1 and Cn(x) 6= 1, An(x) 6= 1. In particular, A′

0(0) and

C0(0), A0(0) shift from 1 mostly in the vicinity of the critical temperature. (The critical

temperature is shown in Fig. 12.) Thus, A′

n(x) and Cn(x), An(x) strongly contribute to the

critical temperature. The effect of A′

n(x) or Cn(x), An(x) on the critical temperature with

A′

n(x) = 1 is estimated at about 30 (MeV).

3.4. Results of (Ia) and (IIa)

In (Ia), A′

n(x) is unity at all regions. In (IIa), the behaviors of Cn(x) and An(x) with

the functional gauge parameter are shown in Figs. 6 and 7. The dependence of x for n 6= 0

is also a similar form. Owing to forcibly making the situation Cn ≃ 1, n and x dependences

of An(x) change from the case of (II). Nevertheless, since n and x dependences of Bn(x) are

unchanged in the result of numerical calculation (Bn(x) is shown, e.g., Refs. 8) and 9)), we

expect that the properties of Bn(x) are not lost.

Fig. 1. Convergence of B0(0) at T = 0.1, 0.13

(GeV).

Fig. 2. Convergence of C0(0), A0(0) at T = 0.1,

0.13 (GeV).
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Fig. 3. Behavior of A′

n(0) for n at T = 0.1,

0.12, 0.2 (GeV).

Fig. 4. x dependences of A′

0(x) and C0(x), A0(x)

at T = 0.12 (GeV).

Fig. 5. Temperature dependences of A′

0(0) and C0(0), A0(0). Those have a peak around the

critical temperature.

Cn(x) and An(x) have values that are closer to 1 than the result with the Landau gauge,

e.g., C0(0) = 1.264 and A0(0) = 1.368 in (II), C0(0) = 0.943 and A0(0) = 1.139 in (IIa) at

T = 0.12 (GeV). Moreover, Cn(x) and An(x) approach 1 simultaneously above the critical

temperature. (C0(0) and A0(0) are shown Fig. 8. Other cases also have this feature). How-

ever, as mentioned in §3.1, this method cannot achieve Cn ≃ 1 and An ≃ 1 simultaneously

at low temperature.

The functional gauge parameters ξ′n(x) and ξn(x) are shown in Figs. 9 and 10. ξ′0,−1(x)

(ξ0,−1(x)) has the most different value from the Landau gauge ξ = 0.

ξ′n(x) and ξn(x) have similar values at around the critical temperature, because A′

n(x)

resembles Cn(x) to some degree (see Figs. 4 and 5). However, there is a different behavior

above x = 1 (GeV) (Fig. 9). This difference is understood from Eq. (3.1) and Fig. 4. In Eq.

(3.1), if Cn(x) with the Landau gauge is below 1 (Yn(x) is negative) and Xn(x) is positive,

ξn(x) is positive. Similarly, if Cn(x) with the Landau gauge is above 1 and Xn(x) is positive,
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Fig. 6. x dependence of C0(x), A0(x) with

the functional gauge parameter at T

= 0.15 (GeV).

Fig. 7. n dependence of Cn(0), An(0) with the

functional gauge parameter at T = 0.15

(GeV).

Fig. 8. Temperature dependence of C0(0), A0(0) with the functional gauge parameter.

ξn(x) is negative etc. Therefore, the difference above x = 1 (GeV) in Fig. 9 results from a

sign of Xn(x), Cn(x)− 1 and A′

n(x)− 1.

For large |n|, ξ′n(x) and ξn(x) have large values. For small |n|, they have large values at

large x. Since A′

n(x) and Cn(x), An(x) with the Landau gauge are about unity at that re-

gion, a gauge parameter does not contribute to A′

n(x) and Cn(x), An(x) if a gauge parameter

is not large. Hence, the large values of ξ′n(x) and ξn(x) at that region are not meaningful.

Moreover, since A′

n(x) and Cn(x), An(x) at that region are about unity, there is no problem

in the use of the Landau gauge at that region. For this reason, it is possible to choose a

gauge parameter as a step function depending on the external momentum. For example:

ξn(x) = α(T )δn,λ ×

{

1 x < Λqcd

0 x > Λqcd

, λ = −2,−1, 0, 1,

where α(T ) is a function that has appropriate values for each temperature.
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Fig. 9. x dependence of ξ0(x) at T = 0.15 (

GeV)

Fig. 10. n dependence of ξn(0) at T = 0.15

(GeV)

Fig. 11. Temperature dependence of ξ0(0), ξ′0(0). ξ0(0) and ξ′0(0) have the downward peak corre-

sponding to the largest values of C0(0) and A′

0(0) (see Fig. 5).

3.5. Critical temperature

The temperature dependence of B0(0) is shown in Fig. 12. (I) and (II) have similar

temperature dependence and critical temperature. Their critical temperature is 141 (MeV).

As the result, one finds that the difference in (I) and (II) hardly affects Bn(x).

In Ref. 21), the case of A′

n(x) = 1 with Landau gauge and (II) was calculated with a

different running coupling constant (Higashijima-Miransky type). This paper also showed

that (II) has a lower critical temperature than in the case of A′

n(x) = 1 with Landau gauge.

The difference in the running coupling constant is the method of infrared cutoff and, perhaps,

the maximum value. These differences do not strongly affect the behavior of Bn(x). Thus,

the temperature dependence of Bn(x) for these two cases is similar to this paper.

The critical temperature of (Ia) is 160 (MeV), (IIa) is 161 (MeV). Those also have almost

the same value. The critical values of (Ia) and (IIa) are about 10 (MeV) lower than the result
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0.8

0.6

0.4

0.2

0.0

B
0(

0)
(G

eV
)

0.160.150.140.130.120.110.10

T(GeV)

 (I)
 (Ia)
 (II)
 (IIa)
 Landau, A'=1

Fig. 12. Temperature dependence of B0(0) in the cases of (I), (II), (Ia), (IIa), and the Landau

gauge with A′

n(x) = 1.

of the Landau gauge with A′

n(x) = 1.

On the other hand, since the choice of Cn(x) contributes to Bn(x), the critical temper-

ature is also affected to some degree. If we fix Cn(x) = 1, the critical temperature is 159

(MeV). The result in Fig. 12 is the case in which Cn(x) and An(x) are simultaneously near

1 within 10−3 order.

Consequently, Cn(x) = An(x) in the general form of the exact quark propagator is a

reasonable approximation. Moreover, if (IIa) is more correct from the viewpoint of gauge

invariance, the SDE with the Landau gauge and A′

n(x) = 1 is the simplest, reasonable

approximation in the framework of the ladder approximation.

§4. Summary and discussion

The improved ladder approximation SDE at finite temperature has a gauge choice prob-

lem. For this problem, we calculated the SDE with the gauge parameter depending on an

external momentum. By this method, the WTI is satisfied. Then, we used two cases for the

exact quark propagator form, that is, Cn(x) = An(x) and Cn(x) 6= An(x).

The result with the Landau gauge for the critical temperature shows that Cn(x) = An(x)

is a reasonable approximation for the general form Cn(x) 6= An(x). Thus, when one studies

the critical temperature using the SDE, Cn(x) = An(x) is the valid method.

To solve the SDE with the functional gauge parameter, we found that the functional

gauge parameter has essentially large values for, e.g., n = −2 ∼ 1 and small x(< Λqcd).

Thus, we expect that it is valid to choose the functional gauge parameter as a step function

depending on the external momentum.
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In the case with the functional gauge parameter, the critical temperature is nearly the

Landau gauge with A′

n(x) = 1. For this reason, we found that the Landau gauge with

A′

n(x) = 1 is a reasonable approximation from the viewpoint of the WTI.

Finally, we point out the uncertain part with respect to thermal effects in our calculational

procedure. Cn(x) and An(x) include thermal effects. In particular, for real time, C(p) 6= A(p)

(p0 is continuous) has a physical meaning. This generates characteristic collective modes,

plasminos (for fermion). Thus, rigorous C(p) = A(p) = 1 might have a problem. Therefore,

for real time, it is difficult to satisfy the ladder approximation WTI fully. In view of this,

Cn(x) ≃ An(x) by numerical method in our calculation might be valid as an approximation.

On the other hand, we assume that this problem might not be critical in our calculational

procedure with imaginary time, because the analytic continuation is necessary to change from

imaginary time to real time, after performing the summation. Moreover, the relation between

imaginary time and real time is not simple. For example, as shown in Ref. 7), there is an

extra term in the SDE with real time. Hence, our calculational procedure with imaginary

time should not provide correct results in real time. If we can make Cn(x) = An(x) = 1

from our calculational procedure, it should become C(p) = A(p) = 1 after the analytic

continuation. However, we do not know whether this should be meaningful in real time. At

least, we must study the existence of a solution corresponding to C(p) = A(p) = 1 after the

analytic continuation. In addition, since the functional gauge parameter that we used here

depends on an external momentum, we must modify the functional gauge parameter in some

way in real time. Therefore, we hypothesize that our method does not affect the existence

of plasminos directly.

To understand the exact details, we should study the relation between real time and

imaginary time by the same method used in Ref. 7).

Appendix A

L, I and H in the SDE

We show explicit expressions of L, I, and H in Eqs. (2.6a), (2.8a), and (2.8b).

a+ = (p0 − q0)
2 − (x+ y)2 , a− = (p0 − q0)

2 − (x− y)2.

• A′

n(x)

L1 = −
x2 + y2 − p20 − q20

2
log

a+
a−

+ 2xy,

L2 = 2xy −
(p20 − q20 − x2 + y2)2

2

( 1

a+
−

1

a−

)

.

13



• Cn(x)

I1 = 2q0 log
a+
a−

, I2 = q0

(

− 2(p0 − q0)
2
( 1

a+
−

1

a−

)

− log
a+
a−

)

,

I3 = −(p0 − q0)
[

log
a+
a−

−
(

− (p0 − q0)
2 + x2 − y2)

( 1

a+
−

1

a−

)]

.

• An(x)

H1 = (p0 − q0)q0

[

(x2 − y2 + (p0 − q0)
2)
( 1

a+
−

1

a−

)

+ log
a+
a−

]

,

H2 = −4xy + (x2 + y2 − (p0 − q0)
2) log

a+
a−

,

H3 =
(

x2 + y2−
x2 + y2 − (p0 − q0)

2

2

)

log
a+
a−

−
((x2 − y2)2 − (p0 − q0)

4

2

)( 1

a+
−

1

a−

)

.
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