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1. Introduction 

The effects of a cold wall in the propagation of 
flames in tubes has a long history, beginning with 
experiments carried out by Sir Humphrey Davy, 
early in the XIX century, at the Royal Institution; 
he showed that flame propagation was not possible 
for pipe diameters below a critical size. Flashback, 
or propagation of flame in tubes against the flow of 
the reactive mixture is more difficult, particularly 
if the mean velocity is larger than the velocity of 
propagation SL of a planar flame front. 

A renewed interest in flashback has arisen re- 
cently, in connection with the development of new 
modes of combustion to reduce the levels of NO, 
emissions from gas turbine engines. One of the most 
promising schemes corresponds to the LP (Lean 
premixed) or LPP (Lean premixed pre-vaporized) 
combustors, where combustion takes place with lean 
premixed flames, in contrast with the traditional 
turbojet combustors based on diffusion controlled 
combustion; which leads to higher flame tempera- 
ture and, thus, to higher NO, production. In LP 

or LPP burners, a lean mixture is generated, with- 
out combustion, in a premixing tube. The reaction 
should only take place, downstream, in the combus- 
tion chamber. These burners are prone to combus- 
tion instabilities in the combustion chamber, and 
also - due to the high temperature of reacting mix- 
ture associated with the high compression ratios - 
to self-ignition in the premixing tube and also to 
flashback, or upstream propagation of the flame in 
this tube, which must be prevented from occurring. 

The mean flow velocity in the premixing tube 
is large compared with SL, so that flame flashback 
can only occur in t,wo forms: first, when there is flow 
reversal in the tube, resulting from strong pressure 
oscillations in the combustion chamber due to com- 
bustion instabilities, see [Thibaut & Candel, 19981. 
Second, with flame propagating along the low ve- 
locity region, characterized by the velocity gradient 
A, of the boundary layer near the wall; there, the 
flame is strongly curved in the frame front region 
to become nearly parallel to the wall downstream. 
With an adiabatic wall the flame can reach the wall 
without quenching. However, in the more realistic 
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Our aim is to determine, first, the conditions for 
a constant flame front propagation velocity U rela­
tive to the wall, which when positive will indicate 
upstream propagation or flashback; when negative 
the front will be swept downstream by the flow. 
As we shall see below, steady flame front propa­
gation will be encountered for fuels with realistic 
values of the Lewis number larger than unity; but 
not too large to encounter a pulsating mode of flame 
propagation. For lighter fuels, with a Lewis num­
ber close to unity or smaller than unity, we shall 
find multiplicity of steady solutions of the conser­
vation equations for a range of values of the nondi-
mensional velocity gradient, or Karlovitz number 
K = Aa/S2

L. 

In all cases the solution corresponding to flash­
back only exists for K < Kc. However, for Le < 
1, we shall also find unsteady solutions, typically 
chaotic, of the conservation equations with a value 
U of the front velocity variable with time. The 
resulting values of U can be significantly large com­
pared with SL if K, which is equal to the ra­
tio 8L/IF, is small compared with unity, when the 
effects of flame curvature are small. 

It is a pleasure to contribute to this issue of 
Int. J. Bifurcation and Chaos, honoring Manuel 
G. Velarde, with an analysis of a problem of great 
technical relevance in which the key ingredients of 
nonlinearity play an important role; being respon­
sible for the existence and possible multiplicity of 
traveling front solutions and their bifurcation to 
chaotic behavior. The senior author, A. Lihan, is 
indebted to Manuel for educating him very early in 
the importance and beauty of the subject. 

2. M a t h e m a t i c a l Formulat ion 

As indicated before, the analysis will be based on 
the thermal-diffusive approximation, with the val­
ues of the density p, thermal diffusivity a, constant 
pressure specific heat cp and diffusion coefficient D, 
assumed to be constant. The reaction is modeled 
by an irreversible overall reaction of the form 

F^P + Q, 

where F denotes the fuel, P the products, and Q 
the heat released per unit mass of fuel. The reac­
tion rate Q, defined as the mass of fuel consumed 
per unit volume and unit time, is assumed to follow 
an Arrhenius law of the form: 

Q = pBY exp (-E/RT) , 

where B, Y, T and E/R represent, respectively, 
the pre-exponential factor, mass fraction of the 
fuel, and the local and activation temperatures, 
respectively. 

By neglecting the variations in density and 
viscosity of the gas, the velocity field is no longer 
affected by the temperature variation due to the re­
lease of heat. In the base of the laminar boundary 
layer, near the wall, the velocity of the fluid relative 
to the wall is given by u = Ay, v = 0; where x and 
y are distances along and normal to the wall, and 
A is the constant velocity gradient at the wall. 

It is convenient to formulate the problem in 
nondimensional form using scales derived from the 
well known structure of the steady planar laminar 
flame. See, for example [Williams, 1985]. In these 
flames SL is the flame velocity, given below, and 
Te = To + QYo/cp, where To and YQ are the ini­
tial temperature and concentration of fuel in the 
fresh mixture, is the so-called adiabatic flame tem­
perature. The corresponding thickness 8L of the 
preheated zone is of the order of 8L = OL/SL-

To formulate the problem in a nondimensional 
form, we shall use 8L and 8L/SL as scales for the 
length and time. Introducing the no-dimensional 
temperature, 9 = (T — To)/(Te — To), and using 
the initial value YQ for normalization of the fuel 
mass fraction, the governing equations, written for 
a reference frame moving upstream with a speed 
U(t) = SLV{t) relative to the wall, take the form 

90 ,Tr, N „ N d9 
- + (V{t)+Ky)- d2e d2e 

dx2 dy2 

dY ,Tr, . „ . dY 1 (d2Y d2Ys 

- + (Y(t)+Ky)- = - l ^ + w 

where UJ = Q8L/SLPYQ is given by 
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In this paper we consider the limiting case when 
the temperature of the wall is fixed equal to that of 
the unburned mixture, To. Thus, the wall boundary 
conditions are 

9 = 0, and dY/dy = 0 at y = 0. (4) 

Far upstream and away from the wall 

9 = 0, Y = 1 at -oo or at y —> oo. 
(5) 



Downstream of the flame front we require 

89/dx —> 0, dY/dx —> 0 at x —> oo , (6) 

which are satisfied by a downstream asymptotic 
structure, for x » 1, that can be described using 
the boundary layer approximation. 

The following nondimensional parameters re­
main: the Lewis number Le = a/D, the Zeldovich 
number Ze = E(Te — To)/RT2, assumed to be large 
compared with unity, the heat release parameter 
7 = (Te — To)/Te, and the Karlovitz number, de­
fined as K = 8LA/SL- The last one measures the 
stretching of the flame by the flow with the veloc­
ity gradient A. In what follows, anticipating that 
in the region where the chemical reaction term is 
important Ze{9 — 1) is of order unity, the factor 
{1 + 7(0 — 1)} in (3) will be replaced by 1, thus 
reducing the remaining nondimensional parameters 
to K, Le and Ze. 

Note that the factor up = Si/Sa arises in the 
nondimensional reaction rate (3) if we take the pla­
nar burning velocity, SL, scale for the velocity, 
while Sa = V2BLeZe-2a exp (-E/2RTe) is the 
asymptotic value of the velocity of the planar flame 
calculated in the limit Ze » 1 [Zeldovich et al, 
1985]. For large but finite values of Ze, the accurate 
calculation of the factor up = Si/Sa requires the so­
lution of a one-dimensional eigenvalue problem. For 
large Ze the eigenvalue up is, according to [Bush & 
Fendell 1970], of the form 

SL/SO, =up(Ze,Le,'j) 

= l + A1(Le,1)/Ze + ... (7) 

Nevertheless, in this study, instead of using this 
asymptotic formula, the factor up was calculated 
numerically by a shooting method. 

In Eqs. (1) and (2) the velocity of the frame 
of reference V = U/SL could be chosen arbitrar­
ily. However, in order to prevent the flame from 
leaving the computational domain, it is convenient 
to attach the frame of reference to some point that 
moves with the flame. The nondimensional velocity 
V(t) of the flame relative to the solid wall was de­
termined, as in [Kurdyumov et al, 2000], by posing 
a constant temperature, equal to a value 9* < 1, at 
a fixed point (ir*,y*) of the reference frame: 

6{x*,y*) = 6*. (8) 

The velocity V(t) thus obtained determines the 
upstream motion of the frame of reference, and 

thereby of the flame front, relative to the wall. Or, 
more precisely, the motion of the point of the flame 
at a distance y = y* from the wall, where 9 reaches 
first a given value 9*. In cases of unsteady flame 
propagation V(t) will be an important feature of 
the time-dependent flame behavior. If, after an 
initial transient period, the flame propagates with 
a constant velocity, the temperature distribution 
becomes steady in the frame of reference attached 
to the front. 

There is some freedom for our choice of the ref­
erence point, ir*,y*, where 9 = 9*; for example, we 
can always choose ir* = 0; however, the value of 
y* should be chosen out of the quench layer, whose 
size may be expected to scale with 5L, but not too 
large to be away from the flame front region. The 
introduction of the exact value of up in (3) leads to 
V = 1 for the steady propagation of planar flames, 
when A = 0. 

3. Numer ica l M e t h o d 

Equations (1) and (2) were discretized using finite 
difference second-order, three-point approximations 
for space derivatives. A time marching, explicit, 
procedure using first- or second-order (predictor-
corrector) discretization was adopted. Due to the 
strong variation of the reaction rate term, the time 
step was chosen sufficiently small as to ensure nu­
merical stability. No significant differences were 
found in the numerical results when comparing the 
results obtained from first-order or second-order 
time discretization. 

Taking into account that the temperature in 
the reference point is constant, the finite difference 
temperature equation written for this point, when a 
first-order approximation is used in time, becomes 

(x*,y*): (V+Ky*)Mxd = Mxx9+Myy9+co(9*,Y*), 
(9) 

where Y* is the fuel concentration in the reference 
point; Mx9, Mxx9 and Myy9 are the finite-difference 
representations of the space derivatives, where six 
points around (x*,y*) are involved. In this study, 
the finite difference condition (9) applied for every 
time step was used in two different ways. 

In the first one, V was calculated using (9) for 
a fixed value of K. Then, the resulting value of V 
was used to compute explicitly the variables for the 
rest of the grid points at the next time level. Since 
V(t) represents the velocity of the frame of refer­
ence chosen in the above mentioned manner, the 



frame of reference remains attached to a point of 
the flame with 9 = 9*. This procedure gives the real 
time-dependent evolution of the flame motion, with 
the distribution at each time level having a physi­
cal meaning as long as a point exists when 9 = 9* 
at (x*,y*) and dd/dx\^Xai>y^ 7̂  0. If the problem 
has steady multiple solutions, only the stable ones 
can be obtained in such a way, since the unstable 
ones will evolve in time to either a stable or to an 
unsteady one. 

In the second method, the finite difference 
condition (9) was applied to calculate K for a given 
value of V. Then, the value K was used to cal­
culate the variables for the rest of the grid points 
at the next time level. This procedure, essen­
tially iterative, required a much smaller time step, 
which now plays the role of an iterative parameter. 
Only terminal, steady, distributions have a physical 
sense. As shown below, when this method is used 
steady unstable solutions are obtained, which are 
unreachable using the first method. 

There are some considerations that must be 
taken into account in order to properly select 9* 
and y*. Evidently, 9* in (8) must be less than 
the maximum flame temperature and greater than 
the minimum, fresh mixture, temperature. The 
value 9* = 0.5 was used, and results checked to 
ensure that d9/dx\^Xt>y^ 7̂  0. We also checked that 
the chosen reference point is out of the quench layer 
near the wall. We found that, specially in unsteady 
cases, it is better to choose a point near the forefront 
of the flame. The oscillations will be smaller and 
the instantaneous flame velocity will remain close 
to the time average velocity. 

In cases of stable steady solutions, the first and 
second procedures lead to the same results, which 
satisfy the finite difference equations, for definite 
values of V or K. The calculations were carried out 
for a finite computational domain and the reference 
point, ir*, can be chosen so that ir* = 0. The crite­
rion for a steady distribution was m.?ootjj,\9 — 9\/T < 
10~5, where 9 and 9 are the values of the temper­
ature at current and previous time levels, respec­
tively, and r is the time step. 

4. Results 

The main remaining parameters in the problem of 
Eqs. (l)-(6) are K, the Karlovitz number, Le, the 
Lewis number of the fuel, and Ze, the nondimen-
sional activation energy, which are large compared 

with unity. This fact is taken into account in 
the planar flame stability analyses, see for exam­
ple [Clavin, 1985], to show that Le and Ze appear 
coupled as le = ZeiLe — 1). However, we shall 
not analyze in this paper the distinguished limit 
Ze —> 00 with le finite, when the flame reaction 
layer shrinks to a surface, but solve numerically the 
problem for various Le and a finite value of Ze, 
typically Ze = 15. 

We shall begin with the description of the 
stationary solutions of the problem (l)-(6), which 
provide, if the solution is stable, the constant flame 
front velocity and flame front structure, in terms of 
K for various values of Le and a fixed large value 
of Ze. The unsteady solutions will be described in 
Sec. 4.2. 

We should notice that K, when small com­
pared with unity, represents the ratio of the thick­
ness, 8L = OL/SL, of the planar flame and the size, 
IF = SL/A, of the flame front region. Thus if 
K <c 1, the weakly curved flames are, therefore, 
prone to instabilities, when le = ZeiLe — 1) lies out 
of the interval, — 2 < le < 10.5, of planar flame sta­
bility [Barenblatt et al., 1962]. Within this interval 
of le, we can expect V —> 1 in the limit K —> 0. 
The effects of flame curvature become strong in the 
flame front region for values of K of order unity, 
when 8L and lp are of the same order, and may 
stabilize the front there, but not downstream where 
the stretch effects are weak. 

4.1. Stationary solutions for the 
flame front 

We give the results of the numerical description of 
the stationary, or time independent, solutions of 
the problem of the structure of the flame in the 
flame front region. A typical structure is shown in 
Fig. 1, calculated for Le = 1 and K = 0.067 — 
leading toV = 0.052 — corresponding to the onset 
of flashback, or to the critical value of the Karlovitz 
number, below which we have flashback. In the 
figure we show, with solid lines, the iso-reaction 
rate contours, and with dashed lines, the isotherms; 
in this case, for Le = 1, the temperature rises 
monotonously from its upstream value, 9 = 0, to 
the asymptotic value, the adiabatic flame temper­
ature 9 = 1, downstream from the flame and away 
from the wall. 

We also show in Figs. 2 and 3 the flame front 
structure at the onset of flashback for Le = 0.8 
and Le = 1.2. In the first case, the temperature 
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Fig. 2. Isotherms (dashed lines: 9 at intervals 0.2, 0.4, 0.6, 
0.8, 1, 1.005 and 1.001) and reaction rate contours (solid lines: 
UJ = 0.01, 0.1, 1 and 2) calculated at the onset of the flash­
back, U/SL = 0.092, Le = 0.8 and Ze = 15. The calculated 
value of the Karlovitz number is K = 0.094. 
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Fig. 4. Nondimensional steady flame front velocity (solid 
lines) as a function of Karlovitz number for various Le and 
Ze = 15. Circles — critical points for flashback. 
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Fig. 3. Isotherms (dashed lines: 9 at intervals 0.2, 0.4, 0.6, 
0.8) and reaction rate contours (solid lines: UJ = 0.01, 0.1, 1 
and 2) calculated at the onset of the flashback, U/SL = 0, 
Le = 1.2 and Ze = 15. The calculated value of the Karlovitz 
number is K = 0.043. 

The stationary values of the flame front veloc­
ity are shown in Fig. 4 function of K for various 
values of Le; the calculated values are mainly shown 
for the cases V > 0 when there is flashback. Ob­
serve that some curves, including the curve calcu­
lated for Le = 1, are double valued. The points 
for onset of flashback are shown in this figure with 
circles; no solutions exist with V > 0 for values of 
K > Kc. The stable solutions correspond to the 
points above the circles; the branches of unstable 
solutions, below the circles, were calculated using 
the second method described in the previous sec­
tion. Even without rigorous stability analysis, some 
numerical tests indicate that the solutions corre­
sponding to the lower branches are unstable; start­
ing time dependent calculations from any point of 
this branch the upper branch was obtained, after 
a transient response. The stabilization of the solu­
tions shown in Fig. 4, when they are stable, is due 
to the strong stretch of the flame associated with 
the velocity gradient in the flame front region. 

9 rises, due to curvature and nonunity Lewis num­
ber effects, to values above 9 = 1 in the flame front; 
while in the second case the temperature behind the 
flame in the flame front region is significantly lower 
than 9 = 1. 

4.2. Unsteady flame front behavior 

In spite of the stabilization due to stretching of 
the flame by the velocity gradient, when the Lewis 
number is below the planar flame stability value 
Le = 1 — 2/Ze, the flame tail downstream of 
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Fig. 5. Time evolution of the nondimensional flame front 
velocity for Le = 0.35, Ze = 15 and different Karlovitz 
numbers. 
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Fig. 6. Isotherms 6 = 0.5 at different instants calculated for 
K = 0.1, Ze = 15 and Le = 0.35. Reference point is shown 
by circle. 

the flame front region, where the effective flame 
stretch becomes small, loses stability and becomes 
unsteady. If the loss of stability occurs away from 
the front region it does not lead to significant time 
variation in the front velocity and flame front struc­
ture. However, this is not the case for small enough 
values of the Lewis number, when the flame front 
structure is no longer steady. 

The results of the unsteady calculations shown 
in Fig. 5 give the time evolution of the flame front 
velocity, for Le = 0.35 and several values of K. No­
tice, first, the moderately large values of V(t) for the 
smaller values of K, due to the nonunity Lewis num­

ber effects associated with flame curvature. Notice, 
also, that for small values of K the time variations 
in front velocity are small, because the oscillations 
will travel downstream along the curved flame be­
fore reaching high amplitudes. At large values of 
K the heat losses to the wall decrease the flame 
front speed, in spite of the strong curvature effects. 
The resulting front dynamics loses again its chaotic 
behavior. 

When the flame becomes entirely unstable, it 
does not move as a whole unchanging structure. 
Fig. 6 shows the isotherm 9 = 0.5 at different in­
stants calculated for K = 0.1 and Le = 0.35. The 
reference point is shown in this figure with a circle. 
Notice that the velocity of this point with respect to 
the wall is not constant, as shown in Fig. 5. One can 
see that amplitude of the oscillations of the flame in­
creases downstream, but near the flame front region 
the flame looks more rigid; the flame front structure 
has a pulsating motion. This is further illustrated in 
Fig. 7 where the position of the points with 9 = 0.5 
are shown at three different distances from the cold 
wall. These figures show that, to facilitate the de­
scription of the flame front dynamics, the point of 
attachment of the frame of reference must lie in the 
flame front region. 

Shown in Fig. 8 are the isotherms and reaction 
rate iso-contours, plotted for a given time, calcu­
lated for Le = 0.32, Ze = 15 and K = 0.1. One can 
see that the flame has a very pronounced cellular 
structure with zones where the flame appears to 
be quenched. The oscillation of the velocity prop­
agation, for these conditions, shown in Fig. 9, are 
chaotic; the time-average flame propagation veloc­
ity exceeds significantly the planar flame velocity. 
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Fig. 7. Time evolution of the points of the flame, x = Xf, 
located in the intersection of the isotherm 9 = 0.5 and lines 
with y = 8, 10 and 12. 
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Fig. 8. Typical unsteady cellular flame structure calculated for Le = 0.32, Ze = 15 and K = 0.1. (a) Isotherms (solid lines: 
9 at intervals 0.2, #min = 0.2, #max = 1; dashed lines: 9 = 1.04, 1.08 and 1.12); (b) reaction rate contours (w = 0.25, 1, 5 
and 8). 
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Fig. 9. Time evolution of the nondimensional flame front 
velocity calculated for Le = 0.32, Ze = 15 and K = 0.1. 

5. Conc luding R e m a r k s 

We have presented some of the results of the numer­
ical solution of the problem of Eqs. (l)-(6). These 
have been carried out to describe the flame struc­
ture of a reaction front propagating, against the flow 

of a reactive mixture, along the layer, near a cold 
wall, where the flow velocities are of the order of 
SL, the speed of propagation of the planar flame. 

The analysis is applicable to the description of 
the conditions that lead to flashback, or upstream 
flame propagation relative to the wall, when, as it 
is the case of the flow in the premixing tube of LP 
or LPP burners, the flow velocity is large compared 
with SL- In this case the flame front encounters 
a flow field of constant shear A, corresponding to 
the base of the boundary layer. The structure of 
the flame front region determines the propagation 
speed of the front. 

In our analysis we have accounted for impor­
tant effects of the Lewis number of the fuel, which 
are enhanced by the curvature of the flame due to 
the velocity gradient, and also to the heat losses to 
the wall. We have not taken into account effects of 
the variations with temperature of the diffusivities 
and of the density changes. Although these effects 
may have a significant influence on the results, we 
should notice that in LP and LPP burners the ratio 
of the flame and initial temperatures is limited to 
values below 2.5. 

With the thermal-diffusive approximation, used 
here, the front propagation speed U, measured with 
SL is a function, U/SL = V(K, Le), of the Karlovitz 
number, K = AajS\, and the Lewis number Le. 



We may expect the ratio U/SL to be weakly depen­
dent on the nondimensional activation energy Ze, 
for realistic values, Ze » 1. See [Kurdyumov et al, 
2000]. In addition, we may expect the results not 
to be strongly dependent on the kinetics, when the 
planar flame velocity SL is used as a scale for U and 
Si J a is used as a scale for A. 

One important result of the calculations is that 
flashback, which corresponds to positive values of 
U, is not possible for values of the Karlovitz num­
ber K above a critical value Kc(Le), which increases 
with decreasing values of Le; the resulting values of 
Kc are not of order unity, as suggested by Lewis 
and von Elbe [1951], but roughly of order 1/Ze. Of 
the two branches of the curve V(K, Le), formed for 
values of K < Kc, the one with lower values of V 
is unstable; even though, we have not carried out a 
linear stability analysis of the stationary solutions 
of the problem, which is not an easy task. The sta­
bility analysis carried out for the planar flame, see 
[Barenblatt et al, 1962] or [Clavin, 1985], indicate 
that the domain of instability lies outside the inter­
val - 2 < le < 10.5. 

The numerical computations, which we have 
carried out for the unsteady evolution of the flame 
front, show that for values of the Lewis numbers Le 
such that le < —2 the time-varying front propaga­
tion velocity, which may reach values significantly 
large compared with SL, has a chaotic behavior if K 
is neither very small compared with Kc nor close to 
Kc. This chaotic behavior appears to evolve from 
solutions which show an apparently periodic V(t), 
with a trailing flame showing a traveling chaotic 
structure. 
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