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Abstract

Recently, we proposed a unified mass matrix model for quarks and leptons, in which,

mass ratios and mixings of the quarks and neutrinos are described by using only the ob-

served charged lepton mass values as family-number-dependent parameters and only six

family-number-independent free parameters. In spite of quite few parameters, the model

gives remarkable agreement with observed data (i.e. CKM mixing, PMNS mixing and mass

ratios). Taking this phenomenological success seriously, we give a formulation of the so-

called Yukawaon model in details from a theoretical aspect, especially for the construction

of superpotentials and R charge assignments of fields. The model is considerably modified

from the previous one, while the phenomenological success is kept unchanged.

PCAC numbers: 11.30.Hv, 12.15.Ff, 14.60.Pq, 12.60.-i,

1 Introduction

It is a big concern in the flavor physics to investigate the origin of the observed hierarchical

structures of masses and mixings of quarks and leptons. Recently, a unified mass matrix model

for quarks and leptons was proposed [1]: In the model, mass ratios and mixings of the quarks

and neutrinos are described by using only the observed charged lepton mass values as “family-

number-dependent” parameters and only six “family-number-independent” free parameters. In

spite of quite few parameters, the model gives remarkable coincidence with observed all data,

i.e. Cabibbo-Kobayashi-Maskawa (CKM) mixing [2, 3] in quark sector and Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) [4, 5] mixing in lepton sector, and quark and lepton mass ratios.

Besides, the model gives very interesting predictions for leptonic CP violation parameter δℓCP ≃
−70◦ ≃ −δqCP and effective Majorana neutrino mass 〈m〉 ≃ 21 meV. We list those numerical

results in Table 1, which was quoted from Ref.[1].

The previous paper has focused on only phenomenological aspect of the model and shown

the phenomenological success which should be taken seriously. However, discussions on the

theoretical aspect of the model was somewhat not sufficient. So, in this paper, we shall give a

formulation of a new Yukawaon model from the theoretical aspect.

1

http://arxiv.org/abs/1512.08386v3


Table 1: Predicted values vs. observed values. [Quoted from [1]]. The predicted values are

obtained only from inputs of the six family-number-independent parameters bu = −1.011, bd =

−3.3522, βd = 17.7◦, (φ̃1, φ̃2) = (−176.05◦,−167.91◦), and ξR = 2039.6. The observed values

were quoted from Ref.[6].

|Vus| |Vcb| |Vub| |Vtd| δqCP (
◦) ru12 ru23 rd12 rd23

Predicted 0.2257 0.03996 0.00370 0.00917 81.0 0.061 0.060 0.049 0.027

Observed 0.22536 0.0414 0.00355 0.00886 69.4 0.045 0.060 0.053 0.019

±0.00061 ±0.0012 ±0.00015 +0.00033
−0.00032 ±3.4 +0.013

−0.010 ±0.005 +0.005
−0.003

+0.006
−0.006

sin2 2θ12 sin2 2θ23 sin2 2θ13 Rν (10−2) δℓCP (
◦) mν1 (eV) mν2 (eV) mν3 (eV) 〈m〉 (eV)

Predicted 0.8254 0.9967 0.1007 3.118 −68.1 0.038 0.039 0.063 0.021

Observed 0.846 0.999 0.093 3.09 no data no data no data no data < O(10−1)

±0.021 +0.001
−0.018 ±0.008 ±0.15

In the so-called Yukawaon model [7, 8, 9, 10, 11, 12, 13, 14, 15, 16], we regard Yukawa

coupling constants (Yf )ij (f = u, d, ν, e) as effective quantities (Y eff
f )ij which are given by

vacuum expectation values (VEVs) of scalares Yf as (Y eff
f )ij = yf 〈(Yf )〉ij/Λ. The model is a

sort of flavon model [17, 18]. (For recent works, for instance, see [19, 20].) The model is based on

family symmetries U(3)×U(3)′. The U(3)×U(3)′ symmetries are broken at µ = Λ and µ = Λ′.

(We assume Λ ≪ Λ′.) The symmetry U(3)′ is broken into S3 at an energy scale Λ′ through

the vacuum expectation values (VEVs) of flavons (Sf )
β
α which take a form “unit matrix 1 plus

democratic matrix X3”, 〈Sf 〉 = vSf (1+bfX3). Here, f is sector names f = u, d, ν, e, and indices

i, j and α, β are those in U(3) and U(3)′, respectively. (For the details, see Eq.(2.7) later. )

The flavons Sf play an essential role as we discuss in Eq.(2.3). The parameters bf are typical

“family-number independent parameters” in the Yukawaon model, and they determine not only

mass spectrum of the fermion f but also mixing among fi. On the other hand, the U(3) family

symmetry is completely broken by VEV of a flavon Φ0 at µ = Λ as we discuss in Eq.(2.10) later.

We do not consider any subgroups of U(3). Instead, from the practical point of view, we use

the observed charged lepton masses for inputs of the VEV 〈Φ0〉 ≡ v0diag(z1, z2, z3), which are

only “family-number dependent parameters” in the Yukawaon model. We do not ask the origin

of the values of zi in this paper. This is future task in our investigation. Furthermore, the last

basic hypothesis in the Yukawaon model is that the VEV forms of flavons are diagonal except

for 〈Sf 〉 which take the S3 invariant forms. The details are discussed in the next section.

The VEV relations in the model are derived from superpotentials which are invariant under

the U(3)×U(3)′ and constructed by using suitable R charge assignments. Once we give super-

potential form invariant under U(3)×U(3)′ with R charge conservation, we can uniquely obtain

our desirable VEV relation as seen in Sec.3. Therefore, the R charge assignment is crucial for

the phenomenological success. However, the explicit forms of superpotentials and R charge as-
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signments were not presented in the previous paper [1]. The purpose of the present paper is to

give explicit superpotential forms and R charge assignments in details. In this paper, we obtain

more natural R charge assignment than that in the previous model [1]. The new R charges

assignment is given in Table 2. This assignment causes a change of the formulation given in the

previous paper, including a new relation among the phase parameters in VEV of a flavon P and

the observed charged lepton masses.

A flavon Pu presented later in (2.13) with VEV of phase matrix type 〈P 〉 = diag(eiφ1 , eiφ2 , eiφ3)

plays an essential role in the Yukawaon model and the phases (φ1, φ2, φ3) are described in term

of charged lepton mass values [21]. In the the previous model, we did not discuss the explicit

mechanism but referred to a mechanism given in Ref. [21], which cannot be straightforwardly

applied to the model [1] because the R charge assignment in the model [1] is different from that

in the model [21]. The new R charge assignment in the Table 2 is also different from [21] and [1],

so that we are led to a new relation among the phase parameters and the observed charged lepton

masses. As a result, we obtain different parameter values (φ1, φ2, φ3) ≡ (φ̃1 + φ0, φ̃2 + φ0, φ0),

while, as far as the values (φ̃1, φ̃2) are concerned, we can obtain the same values as those in

the previous paper [1]. (However, this does not mean that present model is identical with the

previous one [1]. Note that, in the CKM fitting, only the values (φ̃1, φ̃2) are observable and φ0

is not observable, while the parameter φ0 is observable in the U(3) family model. ) The details

are given in Sec.4.

The present paper is arranged as follows: In Sec.2, the basic postulation in the Yukawaon

model [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]and the VEV relations in the previous paper [1] are

reviewed without showing the explicit superpotentials. In Sec.3, we will discuss superpotentials

which give special VEV forms playing an essential role in the phenomenological investigation.

In Sec.4, we will discuss the relation of phase parameters defined by Eq.(2.13) to the charged

lepton masses. Finally, Sec.5 is devoted to summary and concluding remarks.

2 Basic assumptions in the Yukawaon model and its VEV relations

We investigate flavor physics from the point of view of family symmetry. It is unnatural that

the Yukawa coupling constants Yf explicitly break the family symmetry. Therefore, in order that

the Hamiltonian is invariant under the symmetry, we must consider that Yf are effective coupling

constants Y eff
f which are given by vacuum expectation values (VEVs) of scalars (“Yukawaons”

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16]) Yf with 3× 3 components for each sector f :

(Y eff
f ) j

i =
yf
Λ
〈Yf 〉 j

i (f = u, d, ν, e), (2.1)

where Λ is an energy scale of the effective theory. All the flavons in the Yukawaon model are

expressed by 3× 3 components. Would-be Yukawa interactions are given by

HY =
yν
Λ
(ℓ̄L)

i(Ŷν)
j
i (νR)jHu +

ye
Λ
(ℓ̄L)

i(Ŷe)
j
i (eR)jHd + yR(ν̄R)

i(YR)ij(ν
c
R)

j
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Table 2: Transformation properties and R charges of flavons, quarks, leptons, and Higgs scalars

in the present model. In the table, we omit row on U(3)′ for quarks, leptons and Higgs scalars,

since it is obvious that those are singlets of U(3)′. Also, we omit row on SU(2) for other

flavons, because it is obvious that those are SU(2) singlets. We always consider a flavon Ā

correspondingly to a flavon A.

quark, lepton, Higgs ℓ νc ec q uc dc Hu Hd

SU(2) 2 1 1 2 1 1 2 2

U(3) 3 3∗ 3∗ 3 3∗ 3∗ 1 1

R charge 5
4 −1

4 −1
4 0 1

2 +3
2 0 0

flavon Ŷe Ŷν Ŷd Ŷu Φ0e Φ0ν Φ0d Φ0u Pe Pν Pd Pu

U(3) 8+ 1 8+ 1 8+ 1 8+ 1 3 3 3 3 3 3 3 3

U(3)′ 1 1 1 1 3∗ 3∗ 3∗ 3∗ 3 3 3 3

R charge 1 1 1
2

3
2 1 1 1

2
3
2

1
2

1
2 0 1

Ŝe Ŝν Ŝd Ŝu Θ0e Θ0ν Θ0d Θ0u Φ0 E ȲR ΘR Θ̂φ

1 1 1 1 3 3 3 3 6 6 6∗ 6 8+ 1

8+ 1 8+ 1 8+ 1 8+ 1 3∗ 3∗ 3∗ 3∗ 1 1 1 1 1

1 1 1
2

3
2 1 1 3

2
1
2

1
2

1
2

5
2 −1

2 1

+
yu
Λ
(q̄L)

i(Ŷu)
j
i (uR)jHu +

yd
Λ
(q̄L)

i(Ŷd)
j
i (dR)jHd, (2.2)

where we have assumed a U(3) family symmetry, and ℓL = (νL, eL) and qL = (uL, dL) are SU(2)L

doublets. Hu and Hd are two Higgs doublets. Those Yukawaons Ŷf are distinguished from each

other by R charges. Hereafter, for convenience, we use notations Â, A, and Ā for fields with

8+1, 6, and 6∗ of U(3), respectively. In addition, another types of flavons A α
i and Aiα appear

in the present U(3)×U(3)′ model. Since we pay attention only to the index of U(3), we denote

anti-flavons of those as Āi
α and Āiα, respectively.

In the present model, we have flavons (Ŷf )
j
i , (Φ0f )

α
i , (Pf )

α
i , (Sf )

β
α , and (Θ0f )

α
i . We

assume that VEV matrices of those flavons take diagonal forms (except for (Sf )
β
α which take

S3 invariant forms) at our basic flavor basis as we discuss later. In addition to those flavons, we

consider other flavons (Φ0)ij , (ȲR)
ij , (ΘR)ij , Eij, Ê

j
i , and Θ̂φ. The transformation properties

and the R charges of those flavons are listed in Table 2. A role of each flavon will be discussed

step by step below.

Let us list VEV relations which are our goal: The following (i)-(v) are used in the previous

model [1], while (vi) is revised from the previous paper. We will derive these relations from

superpotentials presented in Sec.3 in this paper.
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(i) The VEV of the Yukawaons 〈Ŷf 〉 are given by the following relations:

〈Ŷf 〉 j
i = kf 〈Φ0f 〉 α

i 〈(Sf )
−1〉 β

α 〈Φ̄T
0f 〉 j

β (f = u, d, ν, e). (2.3)

The factor S−1
f in Eq.(2.3) comes from a seesaw-like scenario by assuming new heavy fermions

Fα and considering the following 6× 6 mass matrix model:

(f̄ i
L F̄α

L )

(

(Ŷf )
j
i (Φ0f )

β
i

(Φ̄T
0f )

j
α −(Sf )

β
α

)(

fRj

FRβ

)

. (2.4)

Here fL(R) and FL(R) are, respectively, left (right) handed light and heavy fermions fields.

Exactly speaking, we have to read f̄L in Eq.(2.4) as f̄LHu/d/Λ. However, for convenience, we

have denoted those as f̄L simply. Such a seesaw-like scenario with the democratic form of Sf

has been proposed by Fusaoka and one of the authors (YK) [22] in order to understand the

observed fact

mt ∼ Λweak, mu ∼ md ∼ me. (2.5)

In the Yukawaon model, when we consider |Ŷf | ≪ |Φ0f | ≪ |Sf | (i.e. Λ ≪ Λ′), we obtain a mass

matrix for f̄ ′
L and f ′

R,

Mf ≃ Ŷf +Φ0fS
−1
f Φ̄0f , (2.6)

after the block diagonalization of Eq.(2.4). Regrettably, this relation (2.6) is not one we want,

because the first term Ŷf in Eq.(2.6) is independent of the second term Φ0fS
−1
f Φ̄0f . Therefore,

in the previous paper [1], we have put some phenomenological assumptions in order to obtain

the relation (2.3). We are still not satisfied with the scenario given in the previous paper [1], and

we think that the scenario should be improved. However, for simplicity, in the present paper,

we still denote Dirac mass matrices Mf as Eq.(2.3).

(ii) The VEV form of 〈Sf 〉, which is due to the symmetry breaking U(3)′ →S3, is given by

〈Ŝf 〉 = vSf (1+ bfX3), (2.7)

where 1 and X3 are defined as

1 =







1 0 0

0 1 0

0 0 1






, X3 =

1

3







1 1 1

1 1 1

1 1 1






. (2.8)

The parameters bf in Eq. (2.7) are typical examples of “family-number-independent” parameters.

However, we will be obliged to take be = 0 and bν = 0 in the lepton sector f = e and f = ν

as seen in Eq.(3.1) later. Therefore, the Dirac mass matrices Me and Mν take diagonal forms
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without bf parameters (except for parameters in 〈Φ0〉 (see Eq.(2.10)), and quark mass matrices

Mu and Md are described only by parameters bu and bd, respectively.

Although we have used the discrete symmetry S3, our aim in the Yukawaon model is to

understand all mass spectra and mixing on the basis of U(3)×U(3)′ symmetries without intro-

ducing any additional subgroups, e.g. S2, A4, SU(2), and so on. If we adopt such symmetries,

we will be obliged to accept unwelcome family-number dependent parameters. This is against

with the aim of Yukawaon model. Instead, from the practical point of view, we use only the

observed charged lepton masses mei as a result of U(3) symmetry breaking as seen in Eq.(2.10).

(iii) Motivated by the relation given below in (2.11), we assume that the VEV forms 〈Φ0f 〉
are diagonal in the flavor basis in which 〈Sf 〉 take the forms (2.7), and are given by

〈Φ0f 〉 α
i = k0f 〈Φ0〉ik〈P̄f 〉kα. (2.9)

The VEV of a flavon Φ0, 〈Φ0〉 was defined by

〈Φ0〉 = v0 diag (z1, z2, z3) ∝ diag (
√
me,

√
mµ,

√
mτ ), (2.10)

where zi is normalized as z21 +z22+z23 = 1. The 〈Φ0〉 plays a crucial role in the phenomenological

investigation of the Yukawaon model. The existence of such the VEV matrix 〈Φ0〉 was suggested
by a phenomenological success of the charged lepton mass relation [23, 24, 25]. (For a recent

work, for see [26].)

K ≡ me +mµ +mτ

(
√
me +

√
mµ +

√
mτ )2

=
2

3
, (2.11)

which is excellently satisfied by the observed charged lepton masses (pole masses) as K =

(2/3) × (0.999989 ± 0.000014). If we accept the flavon Φ0 with its VEV (2.10), the charged

lepton relation (2.11) is simply expressed as

K =
Tr[〈Φ0〉〈Φ0]

(Tr[〈Φ0〉])2
. (2.12)

However, the purpose of the Yukawaon model is not to understand the relation (2.11). Therefore,

in the Yukawaon model, we do not ask the origin of the charged lepton mass spectrum. It is a

future task to understand the origin of the mass values (me,mµ,mτ ). In this paper we accept

the observed charged lepton mass values as fundamental family-dependent parameters, and we

give a unified description of quark and lepton mass matrices.

On the other hand, we know that there exist the CKMmixing in quark sector and the PMNS

mixing in lepton sector. Therefore, true regularity in the mass spectra ought to be disturbed by

such mixings. The relation (2.11) is a specific case only for the charged leptons. We consider

that a fundamental flavor basis in flavor physics is a basis in which the charged lepton mass
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matrix is diagonal. Moreover, we speculate that all masses and mixings of quarks and leptons

might be described by inputting the observed charged lepton mass values. Under this idea, the

Yukawaon model has been introduced and investigated [7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

(iv) The VEV form 〈Pf 〉 are defined as

〈Pu〉 = vP diag(eiφ1 , eiφ2 , eiφ3), 〈Pd〉 = vP1, 〈Pν〉 = vP1, 〈Pe〉 = vP1. (2.13)

As we show 〈Pf 〉〈P̄f 〉 = 1 in Sec.3, the special choices (2.13) are obviously ansatzes. (Also

see a comment below Eq.(3.10) later.) The parameters (φ1, φ2, φ3) in Eq. (2.13) are typical

examples of “family-number-dependent” parameters. However, in Sec.4, we will show that the

parameters (φ1, φ2, φ3) are described by the charged lepton masses (me,mµ.mτ ) with help of

two family-number-independent parameters. The origin of these VEV forms will be discussed

in Sec.3.

(v) A neutrino mass matrix is given as

(MMajorana
ν )ij = 〈Ŷν〉 k

i 〈Ȳ −1
R 〉kl〈Ŷ T

ν 〉l j , (2.14)

by adopting the conventional seesaw mechanism [27, 28, 29, 30]. Here in this paper, differently

from the previous paper [1], we assume the following VEV structure of the YR (the Majorana

mass matrix of the right-handed neutrinos νR):

〈ȲR〉ij = kR

[(

〈Φ̄0〉ik〈Ê〉 l
k 〈Ŷu〉 j

l + 〈Ŷ T
u 〉ik〈ÊT 〉kl〈Φ̄0〉lj

)

+ ξR〈Ŷ T
ν 〉ik〈Ē〉kl〈Ŷν〉 j

l

]

, (2.15)

where 〈Ê〉 = 〈Ē〉 = vE1. The form of the first term in Eq.(2.15), Φ̄0Ŷu, was first introduced in

Ref.[31]. The new form (2.15) for 〈ȲR〉 has been adopted in this paper in order for the R charge

assignment to be more natural.

Since we deal with mass ratios and mixings only, the common coefficients kf , vSf , and so

on does not affect the numerical results, so that hereafter we omit such coefficients even if those

have dimensions.

3 R charges and superpotentials

In this section, we demonstrate how to derive the VEV relations presented in Sec.2 from su-

perpotentials given bellow. Hereafter, for convenience, we have sometimes dropped the notations

“〈” and “〉”.
Superpotentials for flavons are determied under U(3)×U(3)′ symmetries and R charge con-

servation. Once we fix R charge assignment, our superpotentials are uniquely determined with-

out ambiguity.

First, let us show guidelines on the assignment of R charges:

(i) In the Yukawaon model, it is required that all flavons take R charges with R ≥ 0 except

for special flavons Θ which always take 〈Θ〉 = 0. In the conventional models, a U(1) charge Q
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is usually assumed, and thereby, only terms with Q = 0 are allowed in the Hamiltonian. When

there are terms A and B whose R charges are QA = 0 and QB = 0, the combined term A ·B is

also allowed in the Hamiltonian. We do not want such the situation. Therefore, we require that

all flavons take R ≥ 0, and thereby, it is forbidden that a term which already has R = 2 makes

an unwelcome higher-dimensional term combined with another flavon (or term).

(ii) We require that R charges are conserved even under the mixing between fL and FL

(and also between fR and FR) in Eq.(2.4). Therefore, flavons given in Eq.(2.4) have to satisfy

the following relations:

R(fL) = R(FL) ≡ rfL, R(fR) = R(FR) ≡ rfR, (3.1)

R(Sf ) = R(Φf ) = R(Φ̄f ) = R(Ŷf ) ≡ rf . (3.2)

(Eq.(3.2) does not mean rfL = rfR.) Correspondingly to Eq.(3.1), we require

R(Ā) = R(A), (3.3)

for any flavons A and anit-flavons Ā. Here R(A) denotes R charge of flavon A, and so on.

(iii) Values of R charges should be as possible as simple, by taking the basic VEV relations

into consideration. According to the conventional SUSY models, we assign zero for the Higgs

scalar doublets Hu and Hd, e.g. R(Hu) = R(Hd) = 0. Our R charge assignment is shown in

Table 2.

Next, let us discuss a simple case which gives be = bν = 0 by considering the following

superpotential:

WS =
∑

f=e,ν

{

λ1f [(Sf )
β
α (Pf )βk(P̄f )

kα] + λ2f [(Sf )
α
α ][(Pf )βk(P̄f )

kβ]
}

, (3.4)

where we have taken R charges of Sf and Pf as

R(Sf ) + 2R(Pf ) = 2 (f = e, ν). (3.5)

The form (3.4) is newly adopted in this paper. (Eq.(3.4) is somewhat improved from the previous

paper [1].) The vacuum condition for the superpotential (3.4) leads to

Sf = 1, Pf P̄f = 1. (f = e, ν) (3.6)

The result Sf = 1 means bf = 0, so that

Ŷe ∝ Ŷν ∝ Φ0Φ̄0. (3.7)

On the other hand, from the relation (2.9), we obtain

R(Pf ) = rf − r0, (3.8)
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where r0 ≡ R(Φ0), so that, from the R charge relation (3.5), we obtain

re = rν =
2

3
(r0 + 1). (3.9)

However, (3.6) and (3.9) do not mean that Ŷe and Ŷν are an identical flavon.

We take a specific VEV form

Pf = diag(eiφ
f
1 , eiφ

f
2 , eiφ

f
3 ), (3.10)

from the general form Pf P̄f = 1 in (3.6) by assuming 〈P̄f 〉 = 〈Pf 〉† and by assuming that

the VEV matrix is diagonal. Since the VEV matrix form of Se (and also Sν) is diagonal, the

VEV matrix Pe is commutable with Se, so that the phase parameters φe
i in Pe cannot play any

physical role in P̄e(S
−1
e )Pe. Therefore, we have simply put Pf = 1 for f = e, ν in Eq.(2.14) with

Eqs.(2.9) and (2.3).

For f = u, d, we assume the following superpotential:

WPq =
1

Λ

{

λ1PTr[PuP̄uPdP̄d] + λ2PTr[PuP̄u]Tr[PdP̄d]
}

, (3.11)

where we take

R(Pu) +R(Pd) = 1. (3.12)

The SUSY vacuum condition leads to PuP̄u = 1 and PdP̄d = 1.

From Eq.(3.12), we obtain an R charge relation

ru + rd = 1 + 2r0. (3.13)

On the other hand, we obtain

ru + rd = rν + re =
4

3
(r0 + 1), (3.14)

from the superpotential Wφ given in (4.1). Eqs.(3.13) and (3.14) fix the value of r0 as

r0 =
1

2
, ⇒ re = rν = 1. (3.15)

For the VEV relations (2.9) and (2.15), we consider somewhat tricky prescription: We

assume existence of Θ fields which always take VEV values 〈Θ〉 = 0. For example, in order to

obtain the VEV relation (2.9), we assume the following superptential

W0 = µ0f (Φ0f )
α
i (Θ̄0f )

i
α + λ0f (Φ0)ik(P̄f )

kα(Θ̄0f )
i
α . (3.16)

9



From ∂W0/∂Θ̄0f = 0, we obtain VEV relation (2.9). On the other hand, a derivative of W0 with

respective to other flavon, for example, Φ0 leads to ∂W0/∂Φ0 = λ0f P̄fΘ0f = 0. However, the

result always includes Θ0f , so that the condition does not lead to any new VEV relations. This

prescription is very useful when one flavon appears in the different (two or more) superpotentials.

(For example, instead of W = (µA + λBC)Θ, we may consider W = (µA + λBC)(µA +

λBC)†. However, then we have an R charge constraint R(A) = R(B) + R(C) = 1 addition to

R(A) = R(B)+R(C). Beside, the SUSY vacuum condition ∂W/∂A = 0 will lead to unwelcome

relation if there is another potential term which includes the flavon A.) Of course, such Θ flavon

prescription is a big ansatz in the Yukawaon model. We have to search for more reasonable

prescription in future.

Similarly, for the VEV relation (2.15), we assume the following new superpotential presented

in this paper,

WR =

{

µR(ȲR)
ij +

λR

Λ

(

(Φ̄0ν)
i
α(P̄d)

αk(Ŷu)
j
k + (Ŷ T

u )ik(P̄
T
d )kα(Φ̄0ν)

j
α + ξR(Ŷ

T
ν )ikĒ

kl(Ŷν)
j
l

)

}

(ΘR)ji,

(3.17)

together with

WE =
λE1

Λ
[(E)ik(Ē)kl(E)lm(Ē)mi] + λE2[(E)ik(Ē)ki] [(E)jl(Ē)lj ], (3.18)

where we have taken

R(E) = R(Ē) =
1

2
. (3.19)

Moreover, the form of WR, Eq.(3.17) requires a relation

ru + r0 + rE = 2rν + rE, (3.20)

so that we obtain ru and rd as follows:

ru =
3

2
, rd =

1

2
. (3.21)

Thus, in this section, we have derive the R charges of flavons from the desirable superpo-

tential forms. In other words, this means that if we start from the R charge assignment given

in Table 2, we can uniquely reach to the desirable superpotential forms.

4 Relation between (φ1, φ2, φ3) and (me, mµ, mτ )

In this section, we give a relation which connects the phase parameters (φ1, φ2, φ3) (φi =

φu
i − φd

i ) with the family-number-dependent input parameters (z1, z2, z3). Although the basic

idea has already given in Ref.[21], the explicit relation is renewed in the present paper as follows:

We consider the following superpotential in this paper.

Wφ =
{

λ1

[

(Pu)iα(P̄d)
αj + (Pd)iα(P̄u)

αj
]

+ λ2

[

(Pν)iα(P̄e)
αj + (Pe)iα(P̄ν)

αj
]

+ λ3(Φ0)ik(Φ̄0)
kj
}

(Θ̂φ)
i
j .

(4.1)
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In order to get Eq.(4.1), it is essential that the VEVs of the flavons satisfy the following R charge

relation

R(Pu) +R(Pd) = R(Pν) +R(Pe) = 2R(Φ0). (4.2)

The first term in Eq.(4.1) gives a VEV relation

[

(Pu)iα(P̄d)
αj + (Pd)iα(P̄u)

αj
]

∝ cosφi, (4.3)

where φi = φu
i − φd

i . On the other hand, VEVs of the second and third terms are proportional

to 1 and z2i , respectively. Therefore, we obtain a relation

cosφi = a+ bz2i , (4.4)

where the parameters a and b are family-number-independent parameters.

Note that observable parameters in the three phase parameters (φ1, φ2, φ3) are only two.

When we denote

φ1 = φ0 + φ̃1, φ2 = φ0 + φ̃2, φ3 = φ0, (4.5)

the parameter φ0 is not observable. Therefore, we can always choose arbitrary value of φ0, so

that the relation (4.4) is satisfied by choosing two family-number-independent parameters a and

b suitably. (Note that although the parameter φ0 is not observable in the framework of the

standard model (SM), the parameter Φ0 in the Yukawaon is observable because we consider

U(3)×U(3)′ which are gauged. The value φ0 will be confirmed by future experiments.)

Explicitly, we can obtain numerical results as follows: By eliminating the parameter a, we

obtain a relation

cosφ1 − b z21 = cosφ2 − b z22 = cosφ3 − b z23 . (4.6)

Then, we can obtain a relation for the parameter φ0:

b =
cosφ3 − cosφ1

z23 − z21
=

cosφ3 − cosφ2

z23 − z22
. (4.7)

Since we have obtained the parameter values [1]

(φ̃1, φ̃2) = (−176.05◦,−169.91◦), (4.8)

from fitting of the observed CKMmixing data, we obtain family-number-independent parameters

(a, b)

(a, b) = (1.71573,−0.790018), (4.9)

together with a value φ0 = 33.905◦. Note that the value φ0 = 33.905◦ is observable if we

consider U(3) family gauge bosons, although it is not observable in the CKM parameter fitting.

We predict the phase parameters (φ1, φ2, φ3) as follows:

(φ1, φ2, φ3) = (−142.14◦,−136.00◦ , 33.91◦). (4.10)
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In future, those values will be confirmed by family gauge boson experiments.

5 Concluding remarks

In conclusion, we have given formulation of a new Yukawaon model on the basis of seesaw

type mass matrix model by presenting U(3)×U(3)′ assignments, R charges of flavons, superpo-

tential forms, and so on. In spite of a model with quite few parameters, the model can give

a remarkable agreement with the observed quark and lepton mixings and mass ratios. Those

phenomenological (numerical) results of the model have already been reported in the previous

paper [1]. We emphasize that the phenomenological success highly depends on whether we can

assign the R charges reasonably and consistently or not. It is in the present paper that the

explicit R charge assignment is completed.

The phenomenological success of the present model seems to suggest the following points:

(a) The observed quark and lepton masses and mixings are caused by a common origin.

(b) Flavor physics should be investigated on a flavor basis in which charged lepton mass matrix

is diagonal. (Mass matrix of family gauge bosons is also diagonal in this basis, so that, family

gauge bosons will not cause flavor violation in the charged lepton sector [32] .)

(c) Masses and mixings in the quark sector are given by the parameters bu and bd in the form

of Sf as shown in Eq.(2.7). This mechanism is very interesting.

On the other hand, for the theoretical aspect, the model has still many problems which

should be improved in future. For example, in the present paper, we did not discuss explicit scales

of Λ and Λ′, although we have tacitly assumed that 〈Aij〉 ∼ Λ, 〈Aαβ〉 ∼ Λ′ and 〈Aiα〉 ∼
√
ΛΛ′.

The choice is highly correlated in the tininess of neutrino masses. Since we have discussed masses

and mixings only, we have neglected the common coefficients and VEV values in the sectors, for

example, kf in Eq.(2.3) vSf in Eq.(2.7), v0 in Eq.(2.10), kR in Eq.(2.15), and so on. Those are

our future task.

We believe that the present model can give fruitful suggestions for the study of flavor

physics.
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