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Let Qk,n be the set of the connected k-uniform weighted hypergraphs with n

vertices, where k, n ≥ 3. For a hypergraph G ∈ Qk,n, let A(G), L(G) and Q(G) be its

adjacency tensor, Laplacian tensor and signless Laplacian tensor, respectively. The

spectral radii of A(G) and Q(G) are investigated. Some basic properties of the H-

eigenvalue, the H+-eigenvalue and the H++-eigenvalue of A(G), L(G) and Q(G) are

presented. Several lower and upper bounds of the H-eigenvalue, the H+-eigenvalue

and the H++-eigenvalue for A(G), L(G) and Q(G) are established. The largest

H+-eigenvalue of L(G) and the smallest H+-eigenvalue of Q(G) are characterized.

A relationship among the H-eigenvalues of L(G), Q(G) and A(G) is also given.
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1. INTRODUCTION

Weighted hypergraphs are a natural extension of hypergraphs. They are of interest

in real life and have many applications in graph theory. For example, the circuit is

mathematically modeled by a weighted hypergraph and weighted hypergraphs are closely

related to the specific application of circuit division [1].

A weighted hypergraph is obtained from a hypergraph G△ = (V (G△), E(G△)) by

assigning a weight (namely, nonzero real number) to each edge of G△. We denote such a

weighted hypergraph by G = (V (G), E(G),W (G)), where V (G) = V (G△) = {v1, · · · , vn},

E(G) = E(G△) = {e1, e2, · · · , em}, and W (G) = {wG(e) ∈ R : e ∈ E(G)} are the vertex

set, the edge set, and the weight set of G, respectively. Here wG(e) is the weight on the

edge e of G and R is the set of real numbers. A weighted hypergraph is simple if it has

no loops or multiple edges. In this paper, we consider the weighted hypergraph which is

simple and connected and satisfies that the weight of each edge is a positive real number.

A simple weighted hypergraph G is k-uniform if each edge of G has k vertices, where

k ≥ 2. If k = 2, then G is a simple weighted graph. A hypergraph G is called linear if any

two edges in G intersect on at most one common vertex. A hypergraph G is connected

if there exists a path between every pair of vertices in V (G). Here a path of length p

(p ≥ 1) between v1 and vp+1 is denoted by P = (v1, e1, v2, . . . , vp, ep, vp+1), where all vi

and all ei are distinct, and vi, vi+1 ∈ ei for 1 ≤ i ≤ p.

Let G be a weighted hypergraph and u, v ∈ V (G). A vertex v is said to be incident

with an edge e ∈ E(G) if v ∈ e. If {u, v} ⊆ e ∈ E(G), then we say that u and v are

adjacent. Let EG(v) be the set of all the edges incident with v of G, i.e., EG(v) = {e ∈

E(G) : v ∈ e}. The degree of v is denoted by dG(v). Namely dG(v) = |EG(v)|. If each

vertex of G has degree r (r ≥ 1), then we say that G is r-regular. We use NG(u) to

denote the set of vertices which are adjacent with u, where u ∈ V (G). For simplicity, let

△ = max
v∈V (G)

|EG(v)| and W0 = max
e∈E(G)

wG(e). Hereinafter, if each edge of G has the same

weight, then we denote the weight by W0. For vi ∈ V (G), let wvi =
∑

e∈EG(vi)

wG(e) and we

call wvi the weight of vertex vi of G, where i = 1, . . . , n. Let α = max{wvi : i ∈ [n]} and

δ = min{wvi : i ∈ [n]}, where [n] = {1, 2, · · · , n}.

A real tensor (or hypermatrix) A = (ai1i2···ik) of order k and dimension n is a

multi-dimensional array with entries ai1i2···ik , where ai1i2···ik ∈ R with i1, i2, · · · , ik ∈ [n].
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The concept of tensor eigenvalues and the spectra of tensors were introduced by Qi

[2] and Lim [3] in 2005 independently. Let C be the set of complex numbers and

x = (x1, x2, . . . , xn)
T ∈ Cn an n-dimensional complex column vector. Let x

[k] =

(xk
1, x

k
2, · · · , x

k
n)

T, where k is a positive integer. Then Ax is a vector in Cn whose i-

th component is given by

(Ax)i =

n
∑

i2,...,ik=1

aii2···ikxi2 · · ·xik , for each i ∈ [n]. (1)

Furthermore, we have

x
T(Ax) =

n
∑

i1,i2,...,ik=1

ai1i2...ikxi1 · · ·xik . (2)

Let Tk,n be the set of tensors of order k and dimension n, where k, n ≥ 3.

Definition 1.1 Let A ∈ Tk,n, where k, n ≥ 3. If for any vector x ∈ Rn, we have

x
T(Ax) =

n
∑

i1,i2,...,ik=1

ai1i2...ikxi1xi2 · · ·xik ≥ 0,

then A is called a positive semi-definite tensor. If for any vector x ∈ Rn and x 6= 0, we

have x
T(Ax) > 0, then A is said to be a positive definite tensor.

For λ ∈ C and x ∈ Cn, if they satisfy Ax = λx[k−1], namely, (Ax)i = λxk−1
i for any

i ∈ [n], then λ is called an eigenvalue of A and x an eigenvector of A corresponding to λ.

The largest modulus of the eigenvalues of A is called the spectral radius of A. If x is a

real eigenvector of A, then λ is also real and is referred to as an H-eigenvalue and x an H-

eigenvector. Let Rn
+ = {x ∈ Rn : xi ≥ 0, i ∈ [n]} and Rn

++ = {x ∈ Rn : xi > 0, i ∈ [n]}.

If x ∈ Rn
+, then λ is an H+-eigenvalue of A. If x ∈ Rn

++, then λ is an H++-eigenvalue of

A.

The adjacency tensor of a k-uniform weighted hypergraph G is defined as follows.

Definition 1.2 Let G be a k-uniform weighted hypergraph with n vertices. The adjacency

tensor of G is the k-ordered and n-dimensional adjacency tensor A(G) = (ai1i2···ik) whose

(i1i2 · · · ik)-entry is

ai1i2···ik =











wG(e)

(k − 1)!
, if e = {i1, i2, · · · , ik} ∈ E(G),

0, otherwise,

(3)

where each ij runs from 1 to n for j ∈ [k].
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In Definition 1.2, if wG(e) = 1 for each edge of G, then A(G) is just the tensor

defined by Cooper and Dutle [4] in 2012 for a k-uniform hypergraph with n vertices. For

a real tensor A = (ai1i2···ik), if ai1i2···ik is invariant under any permutation of the indices

i1, i2, . . . , ik, then A is said to be symmetric. A tensor is called nonnegative if all its entries

are nonnegative. Let G be a k-uniform weighted hypergraph. Obviously, the adjacency

tensor A(G) of G is always nonnegative and symmetric. The spectral radius of A(G),

denoted by ρ(G), is called the spectral radius of G.

Inspired by the definitions of the Laplacian tensor and the signless Laplacian ten-

sor of a k-uniform hypergraph which were introduced by Qi [5], in this paper, we in-

troduce the definitions of the Laplacian tensor and the signless Laplacian tensor for a

k-uniform weighted hypergraph. Let Qk,n be the set of the connected k-uniform weighted

hypergraphs with n vertices, where k, n ≥ 3. Let G ∈ Qk,n, where k, n ≥ 3. We

use D(G) = (di1i2···ik) to denote a diagonal tensor of order k and dimension n, where

k, n ≥ 3, di...i = wvi for i ∈ [n] and di1,...ik = 0 otherwise. Let L(G) = D(G)− A(G) and

Q(G) = D(G) + A(G). We call L(G) and Q(G) the Laplacian tensor and the signless

Laplacian tensor of G, respectively.

The research on the spectral radius of the adjacency tensor, the Laplacian tensor

and the signless Laplacian tensor for hypergraphs has attracted a lot of interests. For the

three tensors of hypergraphs, many interesting results about the characterization of the

hypergraph with extremal spectral radius are derived, and some properties and bounds for

the extremal spectral radii have been obtained. Interested readers can find Refs. [5–24].

Xie and Chang [25] obtained some bounds on the smallest and the largest Z-

eigenvalues of the adjacency tensor for uniform hypergraphs. Xie and Chang [18, 26]

introduced the signless Laplacian tensor for even uniform hypergraphs, and derived sev-

eral properties of the smallest and the largest H-eigenvalues and Z-eigenvalues of the

signless Laplacian tensor for an even uniform hypergraph. Qi [5] defined the Laplacian

and the signless Laplacian tensors of a uniform hypergraph for the study on their H+-

eigenvalues and H++-eigenvalues, and established some bounds for the largest signless

Laplacian H+-eigenvalue. Hu et al. [19] obtained a tight lower bound for the largest

Laplacian H-eigenvalue of a k-uniform hypergraph and derived the tight lower and upper

bounds for the largest signless Laplacian H-eigenvalue of a connected hypergraph. Yue et
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al. [21] obtained the upper bounds of the largest Laplacian H-eigenvalue for a k-uniform

loose path with a length not less than 3. All the results are related with the unweighted

hypergraph.

Inspired by the above results, in this paper, we investigate the H-eigenvalue, the

H+-eigenvalue and the H++-eigenvalue of adjacency tensor, Laplacian tensor and signless

Laplacian tensor for the k-uniform weighted hypergraph G. This article is organized

as follows. In Section 2, some notations and necessary lemmas which are useful for

subsequent proofs are introduced and some basic properties of the eigenvalues of A(G),

L(G), and Q(G) are presented. In Section 3, we study the lower and upper bounds of

the H-eigenvalue, the H+-eigenvalue and the H++-eigenvalue for L(G). The largest H+-

eigenvalue of L(G) is characterized. A relationship among the H-eigenvalues of L(G),

Q(G) and A(G) is also given. In Section 4, we consider the lower and upper bounds

of the H-eigenvalue, the H+-eigenvalue and the spectral radius of Q(G). The smallest

H+-eigenvalue of Q(G) is characterized. A property of the H+-eigenvalue of Q(G) is

derived. Finally, the lower and upper bounds of the H-eigenvalue, the H+-eigenvalue and

the spectral radius of A(G) are derived in Section 5. A property of the H+-eigenvalue for

A(G) is also deduced.

2. PRELIMINARY

In this section, we first define some notations and introduce necessary lemmas. Then

we derive some fundamental properties about the eigenvalues of A(G), L(G), and Q(G)

for a k-uniform weighted hypergraph G.

Let x = (x1, · · · , xn)
T be an n-dimensional eigenvector of A(G) (L(G) and Q(G))

and xi the component of x which corresponds to vertex vi (i = 1, . . . , n) of G, where

G ∈ Qk,n with k, n ≥ 3. Let U be a subset of [n]. Let

xU =
∏

i∈U

xi.

By (1) and (3), for i ∈ [n], we get

(A(G)x)i =
∑

e∈EG(vi)

wG(e)x
e\{vi}. (4)
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Furthermore, we have

(Q(G)x)i = wvix
k−1
i +

∑

e∈EG(vi)

wG(e)x
e\{vi}, (5)

(L(G)x)i = wvix
k−1
i −

∑

e∈EG(vi)

wG(e)x
e\{vi}. (6)

Friedland et al. [27] defined the nonnegative weakly irreducible tensor and Yang et

al. [28] restated it as follows.

Definition 2.1 [28] Let A = (ai1i2···ik) be a nonnegative tensor of order k and dimension

n. If for any nonempty proper index subset I ⊂ [n], there is at least an entry ai1i2···ik > 0,

where i1 ∈ I and at least an ij ∈ [n] \ I for j = 2, 3, . . . , k, then A is called a nonnegative

weakly irreducible tensor.

Lemma 2.1 [27, 29] Let A be a nonnegative tensor of order k and dimension n, where

k ≥ 2. Then we have the following statements.

(i). ρ(A) is an eigenvalue of A with a nonnegative eigenvector x ∈ Rn
+ corresponding

to it.

(ii). If A is weakly irreducible, then ρ(A) is the only eigenvalue of A with a positive

eigenvector x ∈ Rn
++, up to a positive scaling coefficient.

Let Sk,n be the set of real symmetric tensors of order k and dimension n, where

k, n ≥ 3.

Lemma 2.2 [2] We have the following conclusions on the eigenvalues of A ∈ Sk,n, where

k, n ≥ 3.

(i). A number λ ∈ C is an eigenvalue of A if and only if it is a root of the charac-

teristic polynomial φ(λ) = det(A− λI), where I is the unit tensor.

(ii). The number of eigenvalues of A is n(k−1)n−1. Their product is equal to det(A).

(iii). The sum of all the eigenvalues of A is (k − 1)n−1tr(A).

Lemma 2.3 [2] Let A = (ai1i2...ik) ∈ Sk,n, where k, n ≥ 3. The following conclusions

hold for A.

(i). Assume that k is even. A always has H-eigenvalues. A is positive definite

(positive semi-definite) if and only if all of its H-eigenvalues are positive (nonnegative).
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(ii). The eigenvalues of A lie in the union of n disks in C. These n disks have the

diagonal elements ai,...,i of the supersymmetric tensor as their centers, and the sums of the

absolute values of the off-diagonal elements
n
∑

i2,...,ik=1;{i2,...,ik}6={i,...,i}

|aii2...ik | as their radii,

where i ∈ [n].

Let A = (ai1i2...ik) ∈ Rn×···×n be a nonnegative tensor of order k and dimension

n. Based on A, we define a directed graph ΓA as follows. The vertex set of ΓA is

V (ΓA) = {1, . . . , n} and the arc set of ΓA is

E(ΓA) = {(i, j) : aii2...ik > 0, j ∈ {i2 . . . ik}}. (7)

A graph is strongly connected if it contains a directed path from i to j and a directed

path from j to i for every pair of vertices i and j. A tensor A is called weakly irreducible

if ΓA is strongly connected [27, 30, 31].

According to the definitions of the weakly irreducible tensor and the adjacency tensor

of weighted hypergraph, we have Theorem 2.1 as follows.

Theorem 2.1 Let G ∈ Qk,n, where k, n ≥ 3. Any two of the three conclusions are

equivalent.

(i). G is connected.

(ii). A(G) is weakly irreducible.

(iii). Q(G) is weakly irreducible.

Proof. Let G ∈ Qk,n, where k, n ≥ 3. Let the directed graph associated with G

be ΓA(G) = (V (ΓA(G)), E(ΓA(G))), where V (ΓA(G)) = {1, 2, . . . , n} and E(ΓA(G)) =

{(i, j) : e = {vi, vj , vj3, . . . , vjk} ∈ E(G), j3, . . . , jk ∈ [n]\{i, j}} (by (3) and (7)).

Let i and j be any two different vertices in V (ΓA(G)). By the definition of E(ΓA(G)),

for i, j ∈ [n] and i 6= j, we obtain

(i, j), (j, i) ∈ E(ΓA(G)) ⇔ vi, vj ∈ e ∈ E(G). (8)

Since G is connected, by (8), we can get that ΓA(G) is strongly connected. Namely, A(G)

is weakly irreducible.

If ΓA(G) is strongly connected, then for any two different vertices i and j in V (ΓA(G)),

there exist j1, . . . , jt ∈ V (ΓA(G)) such that (i, j1), (j1, j2), . . . , (jt, j), (j, jt), . . . , (j2, j1), (j1,



8

i) ∈ E(ΓA(G)), where t ≥ 0. It follows from (8) that there exist e1, e2, . . . , et+1 ∈ E(G)

such that vi, vj1 ∈ e1, vj1 , vj2 ∈ e2, . . . , vjt, vj ∈ et+1, where t ≥ 0. Namely, for

vi, vj ∈ V (G), there exists a path in G connecting vi and vj . Thus, we get that G is

connected.

Therefore, we have (i) ⇔ (ii). Similarly, we can get (i) ⇔ (iii). Thus, we have

Theorem 2.1. �

Theorem 2.2 Let G ∈ Qk,n, where k, n ≥ 3. ρ(A(G)) (ρ(Q(G))) is the only eigenvalue

of A(G) (Q(G)) with a unique positive eigenvector x ∈ Rn
++, up to a positive scaling

coefficient.

Proof. Let G ∈ Qk,n, where k, n ≥ 3. Since G is connected, by Theorem 2.1, A(G) and

Q(G) are weakly irreducible. Furthermore, by Lemma 2.1(ii), we get Theorem 2.2. �

By Lemmas 2.2 and 2.3, we obtain some basic properties of the eigenvalues of A(G),

L(G), and Q(G), where G ∈ Qk,n, which are shown in Theorem 2.3.

Theorem 2.3 Let G ∈ Qk,n, where k, n ≥ 3. We have the five conclusions as follows.

(i). A number λ ∈ C is an eigenvalue of A(G) (L(G) and Q(G)) if and only if it is

a root of the characteristic polynomial φ(A(G)) (φ(L(G)) and φ(Q(G))).

(ii). The number of the eigenvalues of A(G) (L(G) and Q(G)) is n(k−1)n−1. Their

product is equal to det(A(G)) (det(L(G)) and det(Q(G))).

(iii). The sum of all the eigenvalues of A(G) is zero and the sum of all the eigenvalues

of L(G) and Q(G) is (k − 1)n−1
n
∑

i=1

wvi = k(k − 1)n−1
∑

e∈E(G)

wG(e).

(iv). All the eigenvalues of A(G) lie in the disks {λ : |λ| ≤ W0△} and all the

eigenvalues of L(G) and Q(G) lie in the disks {λ : |λ−W0 △ | ≤ W0△}.

(v). When k is even, L(G) and Q(G) are positive semi-definite tensors.

Proof. (i). The proof of Theorem 2.3(i)–(iii).

By Lemma 2.2(i)–(iii) and the definition of the tensor of the weighted hypergraph,

we can directly get Theorem 2.3(i)–(iii), respectively.

(ii). The proof of Theorem 2.3(iv).

By (3), for i ∈ [n], we have

n
∑

i2,...,ik=1;{i2,...,ik}6={i,...,i}

aii2...ik =
∑

e∈EG(vi)

wG(e) = wvi.
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Let λ be an arbitrary eigenvalue of A(G). Let ©i = {λ : |λ| ≤ wvi} be a disk, where

i = 1, . . . , n. By Lemma 2.3(ii), we obtain λ ∈
⋃n

i=1©i. Let e be an arbitrary edge in

E(G). Since wG(e) ≤ W0 and |EG(vi)| ≤ △ for i = 1, . . . , n, we get

|λ| ≤ wvi =
∑

e∈EG(vi)

wG(e) ≤ W0

∑

e∈EG(vi)

1 = W0|EG(vi)| ≤ W0 △ . (9)

Let µ be an arbitrary eigenvalue of L(G) (Q(G)). Let ⊙i = {µ : |µ − wvi| ≤ wvi}

be a disk, where i = 1, . . . , n. By Lemma 2.3(ii), we get µ ∈
⋃n

i=1⊙i. Since wvi =
∑

e∈EG(vi)

wG(e) ≤ W0△, we have µ ∈
⋃n

i=1⊙i ⊆ {µ : |µ−W0 △ | ≤ W0△}.

(iii). The proof of Theorem 2.3(v).

When k is even, by Theorem 2.3(iv) and Lemma 2.3(i), we obtain that L(G) and

Q(G) are positive semi-definite tensors. �

3. THE EIGENVALUES OF L(G)

In this section, we study the eigenvalues of L(G), where G ∈ Qk,n with k, n ≥ 3. We

obtain the upper and lower bounds of the H-eigenvalue and the H+-eigenvalue of L(G),

which are shown in Theorems 3.1 and 3.2, respectively. The largest H+-eigenvalue of

L(G) is given in Theorem 3.4. Two results of the H+-eigenvalue and the H++-eigenvalue

of L(G) are derived in Theorems 3.3 and 3.5, respectively. A relationship among the

H-eigenvalues of L(G), Q(G) and A(G) is shown in Theorem 3.6.

Theorem 3.1 (The bounds for the H-eigenvalue of L(G)) Let G ∈ Qk,n, where

k, n ≥ 3. Then L(G) has an H-eigenvalue λ and 0 ≤ λ ≤ 2W0△.

Proof. By (6) and (L(G)x)i = λxk−1
i (i = 1, . . . , n), we get

(L(G)1)i = wvi −
∑

e∈EG(vi)

wG(e) = 0 = 0 · [1]i. (10)

By (10), zero is anH++-eigenvalue of L(G) and 1 is the eigenvector of L(G) corresponding

to zero. Thus, L(G) has H-eigenvalues. Let λ be an H-eigenvalue of L(G). By Theorem

2.3(iv), 0 ≤ λ ≤ 2W0△. Therefore, we obtain Theorem 3.1. �

Theorem 3.2 (The bounds for the H+-eigenvalue of L(G)) Let G ∈ Qk,n, where

k, n ≥ 3. Then L(G) has an H+-eigenvalue λ and 0 ≤ λ ≤ α.
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Proof. Let G ∈ Qk,n, where k, n ≥ 3. Since L(G) has an H++-eigenvalue zero (by (10)),

L(G) has H+-eigenvalues. Let λ be an H+-eigenvalue of L(G). By Theorem 3.1, λ ≥ 0.

Let x be an H+-eigenvector of L(G) corresponding to λ. Then x ∈ Rn
+. Thus, the largest

component of x is positive. Without loss of generality, we assume the largest component

of x is 1. Let u ∈ V (G) and xu = 1. Therefore, by (6) and (L(G)x)u = λxk−1
u , we have

wu − λ =
∑

e∈EG(u)

wG(e)x
e\{u}.

Since x ∈ Rn
+ and wG(e) > 0 for any edge e in E(G), we have wu − λ ≥ 0. Namely,

λ ≤ wu. Since wu ≤ α, we get 0 ≤ λ ≤ α. �

Let e(i) be an n-dimensional vector satisfying e
(i)
j = 1 if j = i and e

(i)
j = 0 if j 6= i,

where i, j = 1, 2, . . . , n.

Theorem 3.3 (H+-eigenvalue of L(G)) Let G ∈ Qk,n, where k, n ≥ 3. Then for

any i ∈ [n], wvi is an H+-eigenvalue of L(G) and e
(i) is an H+-eigenvector of L(G)

corresponding to wvi.

Proof. Let i, j ∈ [n]. If j = i, since e
(i)
j = 1, we get

(

L(G)e(i)
)

j
=

(

D(G)e(i)
)

j
−

(

A(G)e(i)
)

j

=
n

∑

j2,...,jk=1

djj2...jke
(i)
j2
· · · e

(i)
jk

−
n

∑

j2,...,jk=1

ajj2...jke
(i)
j2

· · · e
(i)
jk

= djj...je
(i)
j · · · e

(i)
j

= dii...i = wvi = wvie
(i)
j .

If j 6= i, since e
(i)
j = 0, we obtain

(

L(G)e(i)
)

j
=

(

D(G)e(i)
)

j
−

(

A(G)e(i)
)

j

=

n
∑

j2,...,jk=1

djj2...jke
(i)
j2
· · · e

(i)
jk

−
n

∑

j2,...,jk=1

ajj2...jke
(i)
j2

· · · e
(i)
jk

= djj...je
(i)
j · · · e

(i)
j

= 0 = wvie
(i)
j .

Therefore, we get Theorem 3.3. �

Theorem 3.4 (The largest H+-eigenvalue of L(G)) Let G ∈ Qk,n, where k, n ≥ 3.

Then α is the largest H+-eigenvalue of L(G).
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Proof. By Theorem 3.2, L(G) has H+-eigenvalues. Let λ be an H+-eigenvalue of L(G).

It follows from Theorem 3.2 that λ ≤ α. Let λ0 be the largest H+-eigenvalue of L(G).

Then, we have λ0 ≤ α. By Theorem 3.3, α is an H+-eigenvalue of L(G). Therefore,

α ≤ λ0. Thus, we obtain λ0 = α. �

Theorem 3.5 (H++-eigenvalue of L(G)) Let G ∈ Qk,n, where k, n ≥ 3. Then zero is

the unique H++-eigenvalue of L(G).

Proof. By (10), zero is an H++-eigenvalue of L(G). Thus, L(G) has H++-eigenvalues.

Let λ be an H++-eigenvalue of L(G). Next, we prove λ = 0.

Let x be an H++-eigenvector of L(G) corresponding to λ. Then x ∈ Rn
++. Without

loss of generality, we assume that the smallest component of x is 1. Let v ∈ V (G) and

xv = 1. Therefore, by (6) and (L(G)x)v = λxk−1
v , we have

λ = wv −
∑

e∈EG(v)

wG(e)x
e\{v} ≤ wv −

∑

e∈EG(v)

wG(e) = 0. (11)

It is noted that (11) holds since xv′ ≥ 1 for any v′ ∈ V (G) and wG(e) > 0 for any edge

e ∈ E(G). Therefore, we obtain λ ≤ 0. Furthermore, by Theorem 3.1, λ ≥ 0. Therefore,

we get λ = 0. Namely, zero is the unique H++-eigenvalue of L(G). �

Let G△ be a k-uniform hypergraph. It is interesting that Qi [5] used the methods of

optimization theory to obtain a result about the largest H+-eigenvalue of L(G△) (namely,

Theorem 5.1 in [5]) which is similar to Theorem 3.4, and obtained some results about

the H+-eigenvalue and the unique H++-eigenvalue of L(G△) (namely, Theorem 3.2 in [5])

which are similar to Theorems 3.3 and 3.5.

For G ∈ Qk,n with k, n ≥ 3, we obtain a relationship of the H-eigenvalues of A(G),

L(G) and Q(G), which is shown in Theorem 3.6. We can prove Theorem 3.6 by using

the relationship among the tensors of A(G), L(G) and Q(G). However, to enrich the

diversity of proof, we prove it by using different methods.

Theorem 3.6 (The relationship among the H-eigenvalues of A(G), L(G) and

Q(G)) Let G ∈ Qk,n, where k, n ≥ 3. Furthermore, we suppose that G is r-regular (r ≥ 1)

and each edge of G has the same weight W0. If λ is an H-eigenvalue of L(G), then

(i). 2W0r − λ is an H-eigenvalue of Q(G).

(ii). W0r − λ is an H-eigenvalue of A(G).
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Proof. Let G be as described in Theorem 3.6. By Theorem 3.1, L(G) has H-eigenvalues.

Let λ be an H-eigenvalue of L(G) and x be an H-eigenvector of L(G) corresponding to

λ. Thus, we have x ∈ Rn. For any i ∈ [n], by (6) and (L(G)x)i = λxk−1
i , we get

λxk−1
i = wvix

k−1
i −

∑

e∈EG(vi)

wG(e)x
e\{vi}

= W0 · r · x
k−1
i −W0

∑

e∈EG(vi)

xe\{vi}. (12)

It it noted that (12) holds since wvi =
∑

e∈EG(vi)

wG(e), G is r-regular, and each edge of G

has weight W0.

For any i ∈ [n], we have

(2W0r − λ)xk−1
i = 2W0 · r · x

k−1
i − λxk−1

i

= W0 · r · x
k−1
i +W0

∑

e∈EG(vi)

xe\{vi} (13)

= wvix
k−1
i +

∑

e∈EG(vi)

wG(e)x
e\{vi} (14)

= (Q(G)x)i .

It is noted that (13) follows from (12), and (14) holds since wvi =
∑

e∈EG(vi)

wG(e), G is

r-regular and each edge of G has the same weight W0.

Therefore, we obtain that 2W0r − λ is an H-eigenvalue of Q(G). Namely, we get

Theorem 3.6(i). By the methods similar to those for theorem 3.6(i), we get Theorem

3.6(ii). �

4. THE EIGENVALUES OF Q(G)

In this section, we investigate the eigenvalues of Q(G), where G ∈ Qk,n with k, n ≥ 3.

The upper and lower bounds for the H-eigenvalue, the H+-eigenvalue and the spectral

radius of Q(G) are shown in Theorems 4.1–4.3, respectively. The weighted hypergraph

with the largest H-eigenvalue of Q(G) is also characterized in Theorem 4.1. A property

of the H+-eigenvalue of Q(G) is given in Theorem 4.4. The smallest H+-eigenvalue of

Q(G) is obtained in Theorem 4.5.

Theorem 4.1 (The bounds for the H-eigenvalue of Q(G)) Let G ∈ Qk,n, where

k, n ≥ 3. Then (i) Q(G) has an H-eigenvalue λ and 0 ≤ λ ≤ 2W0△; (ii) 2W0△ is an
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H-eigenvalue of Q(G) if and only if G is △-regular and each edge of G has the same

weight W0.

Proof. Let G ∈ Qk,n, where k, n ≥ 3. Since G is connected, by Theorem 2.2, ρ(Q(G)) is

an H++-eigenvalue of Q(G). Thus, Q(G) has H-eigenvalues. Let λ be an H-eigenvalue

of Q(G). By Theorem 2.3(iv), 0 ≤ λ ≤ 2W0△. Thus, we get Theorem 4.4(i).

Next, we prove Theorem 4.1(ii).

If G is △-regular and each edge of G has the same weight W0, by (5), for i ∈ [n], we

get

(Q(G)1)i = wvi +
∑

e∈EG(vi)

wG(e) = 2
∑

e∈EG(vi)

wG(e) = 2W0△ = 2W0 △ ·[1]i.

Thus, 2W0△ is an H-eigenvalue of Q(G) and 1 is the eigenvector of Q(G) corresponding

to 2W0△.

We assume that 2W0△ is an H-eigenvalue of Q(G). Next, we prove that G is △-

regular and each edge of G has the same weight W0. Let x = (x1, · · · , xn)
T ∈ Rn be the

eigenvector ofQ(G) corresponding to 2W0△ with
n
∑

i=1

xk
i = 1. Without loss of generality, let

|xj| = max
1≤i≤n

|xi|, where j ∈ [n]. Obviously, |xj | > 0. By (5) and (Q(G)x)j = 2W0 △ xk−1
j ,

we have

wvjx
k−1
j +

∑

e={vj ,vj2 ,...,vjk}∈E(G)

wG(e)xj2 · · ·xjk = 2W0 △ xk−1
j . (15)

Since wvj =
∑

e∈EG(vj )

wG(e), we have wvj < 2W0△. Thus, we get

2W0 △−wvj = |
∑

e={vj ,vj2 ,...,vjk}∈E(G)

wG(e)
xj2

xj

· · ·
xjk

xj

| (16)

≤
∑

e={vj ,vj2 ,...,vjk}∈E(G)

wG(e)|
xj2

xj

| · · · |
xjk

xj

| (17)

≤
∑

e∈EG(vj)

wG(e) = wvj . (18)

It is noted that (16) is obtained from (15) by first subtracting wvjx
k−1
j from both sides of

(15), then dividing xk−1
j at the same time, and finally taking the modulus on both sides

to get (16). (17) follows from the property of absolute value inequality and (18) follows

from |xj | = max
1≤i≤n

|xi|. Thus, we get W0△ ≤ wvj =
∑

e∈EG(vj)

wG(e).
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For a fixed j ∈ [n] with |xj| = max
1≤i≤n

|xi|, if |EG(vj)| < △ holds or there exists

one e ∈ EG(vj) such that wG(e) < W0, then wvj < W0△. Obviously, this contradicts

W0△ ≤ wvj . Therefore, we have |EG(vj)| = △ for a fixed j ∈ [n] with |xj| = max
1≤i≤n

|xi|

and wG(e) = W0 for any e ∈ EG(vj). Thus, the two equalities in (17) and (18) hold

simultaneously. Namely, |xv| = |xj | = max
1≤i≤n

|xi| for any v ∈ NG(vj), and xe1\{vj} and

xe2\{vj} have the same symbol, where e1, e2 ∈ EG(vj). Since G is connected, there exists

a path between every pair of vertices in V (G). By repeatedly using the same analysis

as above, we get that wG(e) = W0 for any e ∈ E(G) and |EG(vi)| = △ for i = 1, . . . , n.

Therefore, if G is connected and 2W0△ is an H-eigenvalue of Q(G), then G is △-regular

and each edge of G has the same weight W0. Namely, Theorem 4.1(ii) holds. �

Theorem 4.2 (The bounds for the H+-eigenvalue of Q(G)) Let G ∈ Qk,n, where

k, n ≥ 3. Then Q(G) has an H+-eigenvalue λ and δ ≤ λ ≤ 2α.

Proof. Let G ∈ Qk,n, where k, n ≥ 3. By Theorem 2.2, ρ(Q(G)) is an H++-eigenvalue of

Q(G). Thus, Q(G) has H+-eigenvalues. Let λ be an H+-eigenvalue of Q(G). Let x be an

H+-eigenvector of Q(G) corresponding to λ. Then, x ∈ Rn
+. Thus, the largest component

of x is positive. Without loss of generality, we assume that the largest component of x is

1. Let u ∈ V (G) and xu = 1. By (5) and (Q(G)x)u = λxk−1
u , we get

wu +
∑

e∈EG(u)

wG(e)x
e\{u} = λ. (19)

Since x ∈ Rn
+, wG(e) > 0 for any e ∈ E(G), and 0 ≤ xv ≤ 1 for any v ∈ V (G), we obtain

0 ≤ λ− wu =
∑

e∈EG(u)

wG(e)x
e\{u} ≤

∑

e∈EG(u)

wG(e) = wu. (20)

Thus, we get wu ≤ λ ≤ 2wu. Since δ ≤ wu ≤ α, we obtain δ ≤ λ ≤ 2α. �

Theorem 4.3 (The bounds for the spectral radius of Q(G)) Let G ∈ Qk,n, where

k, n ≥ 3. Then 2δ ≤ ρ(Q(G)) ≤ 2α.

Proof. Let G ∈ Qk,n, where k, n ≥ 3. Since G is connected, by Theorem 2.2, ρ(Q(G)) is

the only H++-eigenvalue of Q(G). Let x be the H++-eigenvector of Q(G) corresponding

to ρ(Q(G)). We have x ∈ Rn
++. Let v ∈ V (G) and xv be the smallest component of x.

By (5) and (Q(G)x)v = ρ(Q(G))xk−1
v , we get

wvx
k−1
v +

∑

e∈EG(v)

wG(e)x
e\{v} = ρ(Q(G))xk−1

v .
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Since x ∈ Rn
++, we have xv > 0. Thus, we obtain

ρ(Q(G)) = wv +
∑

e∈EG(v)

wG(e)
xe\{v}

xk−1
v

.

Since 0 < xv ≤ xv′ for any v′ ∈ V (G) and wG(e) > 0 for any e ∈ E(G), we obtain

ρ(Q(G)) ≥ wv+
∑

e∈EG(v)

wG(e) ≥ 2δ. Furthermore, by Theorem 4.2, we get ρ(Q(G)) ≤ 2α.

Thus, we obtain Theorem 4.3. �

By using the methods similar to those for Theorem 3.3, we get Theorem 4.4.

Theorem 4.4 (H+-eigenvalue of Q(G)) Let G ∈ Qk,n, where k, n ≥ 3. Then for

any i ∈ [n], wvi is an H+-eigenvalue of Q(G) and e
(i) is an H+-eigenvector of Q(G)

corresponding to wvi.

In Theorem 4.5, we obtain the smallest H+-eigenvalue of Q(G). The proof of Theo-

rem 4.5 is omitted since we can apply Theorems 4.2 and 4.4 and use the same methods

similar to those for Theorem 3.4 to get it.

Theorem 4.5 (The smallest H+-eigenvalue of Q(G)) Let G ∈ Qk,n, where k, n ≥ 3.

Then δ is the smallest H+-eigenvalue of Q(G).

It is interesting that Qi [5] used the methods of optimization theory to obtain a

result about the smallest H+-eigenvalue of the signless Laplacian tensor of a k-uniform

hypergraph (shown in Theorem 7.1 in [5]) which is similar to Theorem 4.5.

5. THE EIGENVALUES OF A(G)

In this section, we study the eigenvalues of A(G), where G ∈ Qk,n with k, n ≥ 3.

The upper and lower bounds for the H-eigenvalue, the H+-eigenvalue and the spectral

radius of A(G) are derived in Theorems 5.1–5.3, respectively. The weighted hypergraph

with the largest H-eigenvalue of A(G) is also presented in Theorem 5.1. We find that

zero is an H+-eigenvalue of A(G) and e
(i) is an H+-eigenvector of A(G) corresponding

to zero, where i ∈ [n], which is shown in Theorem 5.4.

Theorem 5.1 (The bound for the H-eigenvalue of A(G)) Let G ∈ Qk,n, where

k, n ≥ 3. Then (i) A(G) has an H-eigenvalue λ and |λ| ≤ W0△; (ii) W0△ is an H-

eigenvalue of A(G) if and only if G is △-regular and each edge of G has the same weight

W0.
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Proof. Let G ∈ Qk,n, where k, n ≥ 3. Since G is connected, by Theorem 2.2, A(G)

has an H++-eigenvalue ρ(G). Thus, A(G) has an H-eigenvalue λ. By Theorem 2.3(iv),

|λ| ≤ W0△. Therefore, we get Theorem 5.1(i). By the methods similar to those for

Theorem 4.1, we obtain Theorem 5.1(ii). �

Let G ∈ Qk,n, where k, n ≥ 3. Let X be a non-empty subset of V (G). We use Et(X)

to denote the set of edges of G which share t common vertices with X , where t ≥ 1.

Namely, Et(X) = {e : e ∈ E(G) and |e ∩ X| = t}. Furthermore, let Ev
t (X) = {e : e ∈

E(G), v ∈ e and |e ∩X| = t}. We define eG(u, v) as the number of the edges of G which

contain u and v, where u, v ∈ V (G).

Theorem 5.2 (The bounds for the H+-eigenvalue of A(G)) Let G ∈ Qk,n, where

k, n ≥ 3. Then A(G) has an H+-eigenvalue λ and

0 ≤ λ ≤

√

√

√

√

W 2
0

k − 1

k
∑

t=1

∑

e∈Et(NG(u))

∑

v∈(e∩NG(u))

eG(u, v),

where u is the vertex of G which has the largest component of the principal eigenvector

corresponding to λ.

Proof. Let G ∈ Qk,n, where k, n ≥ 3. By Theorem 2.2, ρ(G) is an H++-eigenvalue of

A(G). Thus, A(G) has H+-eigenvalues. Let λ be an H+-eigenvalue of A(G) and x be an

H+-eigenvector of A(G) corresponding to λ. Thus, x ∈ Rn
+. For all i ∈ [n], by (4) and

(A(G)x)i = λxk−1
i , we get

λxk−1
i =

∑

e={vi,vi2 ,...,vik}∈E(G)

wG(e)xi2 · · ·xik . (21)

Since x ∈ Rn
+, the largest component of x is positive. Without loss of generality, we

assume the largest component of x is 1. Let u ∈ V (G) and xu = 1. In (21), let i = u.

Since x ∈ Rn
+ and wG(e) > 0 for any e ∈ E(G), by (21), we obtain

0 ≤ λ =
∑

e={u,vi2 ,...,vik}∈E(G)

wG(e)xi2 · · ·xik (22)

≤
1

k − 1

∑

e={u,vi2 ,...,vik}∈E(G)

wG(e)
(

xk−1
i2

+ · · ·+ xk−1
ik

)

, (23)

where (23) follows from the AM-GM equality.
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Multiplying both sides of (23) by λ and bearing (21) in mind, we have

λ2 ≤
1

k − 1

∑

e={u,vi2 ,...,vik}∈E(G)

wG(e) ×





∑

f2∈EG(vi2 )

wG(f2)x
f2\{vi2} + · · ·+

∑

fk∈EG(vik )

wG(fk)x
fk\{vik}



 . (24)

Since 0 ≤ xv ≤ 1 for any v ∈ V (G) and wG(e) ≥ 0 for any e ∈ E(G), by (24), we get

λ2 ≤
1

k − 1

∑

e={u,vi2 ,...,vik}∈E(G)

wG(e)





∑

f2∈EG(vi2 )

wG(f2) + · · ·+
∑

fk∈EG(vik )

wG(fk)



 .

For any fs ∈ EG(vis), since vis ∈ NG(u), we have 1 ≤ |fs∩NG(u)| ≤ k, where s = 2, . . . , k.

Thus, EG(vis) =
k
⋃

t=1

E
vis
t (NG(u)). Therefore, we obtain

λ2 ≤
1

k − 1

∑

e={u,vi2 ,...,vik}∈E(G)

wG(e) ×







k
∑

t=1







∑

f2∈E
vi2
t (NG(u))

wG(f2) + · · ·+
∑

fk∈E
vik
t (NG(u))

wG(fk)












. (25)

Since 0 < wG(e) ≤ W0 for any e ∈ E(G), we have

λ2 ≤
W 2

0

k − 1

∑

e={u,vi2 ,...,vik}∈E(G)







k
∑

t=1







∑

f2∈E
vi2
t (NG(u))

1 + · · ·+
∑

fk∈E
vik
t (NG(u))

1












.

Obviously, the upper bound of λ2 is related with these edges which contain at least one

vertex in NG(u). Let f = {vj1, vj2 , . . . , vjk} ∈ E(G) with f ∩NG(u) 6= ∅. Without loss of

generality, we suppose f ∩ NG(u) = {vj1, vj2, . . . , vjt}, where 1 ≤ t ≤ k. Then f appears

eG(u, vj1) + eG(u, vj2) + · · ·+ eG(u, vjt) times. Therefore, we obtain

λ2 ≤
W 2

0

k − 1





∑

e∈E1(NG(u))

∑

v∈(e∩NG(u))

eG(u, v) + · · ·+
∑

e∈Ek(NG(u))

∑

v∈(e∩NG(u))

eG(u, v)





(26)

=
W 2

0

k − 1

k
∑

t=1

∑

e∈Et(NG(u))

∑

v∈(e∩NG(u))

eG(u, v).

Thus, we get Theorem 5.2. �

It is noted that Theorem 5.2 is a generalization of Lemma 1 in [32] obtained by Hou

et al. In Theorem 5.2, if W0 = 1, then Theorem 5.2 is Lemma 1 in [32].
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We get the upper and lower bounds for the spectral radius of A(G) in Theorem 5.3,

where G ∈ Qk,n with k, n ≥ 3. Since the proofs for Theorem 5.3 are similar to those for

Theorem 4.3, we omit it here.

Theorem 5.3 (The bounds for the spectral radius of A(G)) Let G ∈ Qk,n, where

k, n ≥ 3. Then δ ≤ ρ(G) ≤ α.

Theorem 5.4 (H+-eigenvalue of A(G)) Let G ∈ Qk,n, where k, n ≥ 3. Then zero is

an H+-eigenvalue of A(G) and e
(i) is an H+-eigenvector of A(G) corresponding to zero,

where i ∈ [n].

Proof. For any i, j ∈ [n], we get

(

A(G)e(i)
)

j
=

n
∑

j2,...,jk=1

ajj2...jke
(i)
j2

· · · e(i)jk

= aii...ie
(i)
i · · · e

(i)
i = 0 = 0 · e

(i)
j . (27)

It is noted that (27) follows from (3). Thus, zero is an H+-eigenvalue of A(G) and

e
(1), . . . , e(n) are the H+-eigenvectors of A(G) corresponding to zero. �
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