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Abstract

We give a complex two-dimensional noncommutative locally symmetric Kéhler manifold via a defor-
mation quantization with separation of variables. We present an explicit formula of its star product by
solving the system of recurrence relations given by Hara-Sako. In the two-dimensional case, this system
of recurrence relations gives two types of equations corresponding to the two coordinates. From the
two types of recurrence relations, symmetrized and antisymmetrized recurrence relations are obtained.
The symmetrized one gives the solution of the recurrence relation. From the antisymmetrized one, the
identities satisfied by the solution are obtained. The star products for C? and CP? are constructed by
the method obtained in this study, and we verify that these star products satisfy the identities.

1 Introduction

Deformation quantization is one of the quantization method based on a deformation for a Poisson
algebra and is known as a method of constructing noncommutative differentiable manifolds. There are
two types of this, “formal deformation quantization” proposed by Bayen et al. [4], and “strict deformation
quantization”, based on C*-algebra proposed by Rieffel [50]. In this paper, we study formal deformation
quantization, and in the following, “deformation quantization” is used in the sense of “formal deformation
quantization”.

Definition 1.1. Let M be a Poisson manifold, C* (M) be a set of C* functions on M, {-,-} : C* (M) x
C> (M) — C> (M) be a Poisson bracket, and C> (M) [A] = {f|f =3 fh*, fr € C>° (M)} be the
ring of formal power series over C* (M), where £ is a formal parameter. Let a product * on C* (M) [A] ,
called the star product, be a product denoted by
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frg=> Ci(fg)h*

k=0
satisfying the following conditions:

1. * is associative, i.e. for any f,g,h € C*° (M) [h] , f*(g*h) = (f xg) * h.
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2. Each Ci (-,-) : C® (M) [h] x C>*° (M) [h] — C> (M) [Ar] is a bi-differential operator, i.e. for any
frge C>®(M)[h], Ck (f,g) can be written as

Cr (f,9) =Y _arsd" fd'g,

1,J

where I, J are multi-indices.
3. For any f,g € C* (M) ,

OO(fvg):fgv
Cl(fvg)_cl(g7f):{f7g}

4. Forany f € C*(M)[h] , fx1=1xf=f.
The pair (C* (M) [R] , *) is called a deformation quantization for M.

For a more detailed review of deformation quantization, see e.g. [2I]. The construction method of
deformation quantization for symplectic manifolds has been known by de Wilde-Lecomte [16], Omori-
Maeda-Yoshioka [44] and Fedosov [19]. After these works, a method for Poisson manifolds was proposed
by Kontsevich [35]. For any Kéhler manifold, Karabegov studied a construction method of deformation
quantization with separation of variables [30] B1].

Definition 1.2. Let M be a Kéahler manifold. A star product % on M is the separation of variables if
the following two conditions are satisfied for any open set U of M and f € C* (U) :

1. For a holomorphic function a on U, a * f = af.
2. For an anti-holomorphic function b on U, f * b = fb.

Furthermore, inspired by Karabegov’s idea, a construction method for a locally symmetric Kéhler man-
ifold, i.e. a Kahler manifold such that VaERABCD =0 for A,B,C,D,E € {1,--- ,N,1,--- ,N}, was
later proposed by Sako-Suzuki-Umetsu [54] 55] and Hara-Sako [22] 23]. Some notations in this paper are
explained in more detail in Appendix [Al

In this paper, we propose an explicit formula that gives a deformation quantization with separation of
variables for a complex two-dimensional locally symmetric Kéhler manifold. This main result that is given
in Theorem in Section [ gives the explicit star product which is expanded in differential operators
whose coefficients consist of covariantly constant. Each coefficient is explicitly determined by some ma-
trix multiplications, and it contains the Riemann curvature tensor. This theorem is shown by solving the
recurrence relations given by Hara-Sako [22, 23]. To explain our main result, we must introduce several
definitions. So we shall not state our main theorem concretely, here.

This paper is organized mainly into four Sections and three Appendices. In Section 2 we review the pre-
vious works by Karabegov [30, BI] and Hara-Sako [22, 23], as the background concerning a deformation
quantization with separation of variables for Kéhler manifolds. In Section Bl we show our main results
which are the explicit formula to give the star product and the identities. In Section @l we construct
concrete examples for C2 and CP? and they reproduce the previous results. In Section [ we state future
works related to our main results from both mathematical and physical perspectives. In each Appendices
[AHCl we describe the properties and detailed calculations used in this paper. In Appendix [Al we sum-
marize some properties of Kihler manifolds used in this paper. In Appendix [Bl we calculate in detail the
identity (31]) in Subsection for the 2nd order. In Appendix[C| the Hermiteness of the coefficients of a
star product is shown.



2 Review of Noncommutative Kahler manifolds

The Quantization of Kéhler manifolds was studied by Berezin [5, 6], Moreno [40, 4], Cahen-Gutt-
Rawnsley [11], [12], 13| 14], Karabegov [30, [31], Omori-Maeda-Miyazaki-Yoshioka [46], Schlichenmaier [60L
611, [62], 631 [64. [65], [66], Karabegov-Schlichenmaier [32], Sako-Suzuki-Umetsu [54], [55] and Hara-Sako [22] 23].
In particular, Karabegov’s method was proposed as a way to give noncommutative Kahler manifolds via
a deformation quantization with separation of variables. After that, Sako-Suzuki-Umetsu and Hara-Sako
methods were proposed for a locally symmetric case, inspired by this method. In addition, Sako-Suzuki-
Umetsu was mentioned the Fock representations of noncommutative CP™ and CHY. Moreover, these
previous results were generalized for any noncommutative Kéhler manifolds by Sako-Umetsu [57, 58, [59].
In Section 211 we review the methods by Karabegov as the background of this paper, and in Section
221 we review the method by Hara-Sako since our result is obtained from the recurrence relations in this
method.

2.1 Noncommutative Kahler manifolds

Berezin proposed a general definition of quantization and constructed the quantization of Kéhler mani-
folds in the case of phase space via symbol algebras [5] [6]. The coherent states of Kéhler manifolds arising
from the geometric quantization of Kostant [36] and Souriau [67] have also been studied by Rawnsley [49].
It is known that this coherent state is related to Berezin quantization. See [48] for more detail. After
that, the deformation quantization of Kahler manifolds have been provided by Moreno [40}, 41] and Omori-
Maeda-Miyazaki-Yoshioka [46]. The relations between deformation quantization and Berezin quantization
have been studied by Cahen-Gutt-Rawnsley [11], 12} 13 [14]. It has also studied the quantization of Kéhler
manifolds via Toeplitz quantization by Bordemann et al. [8]. Furthermore, Karabegov and Schlichenmaier
have provided Berezin-Toeplitz quantization in the case of compact Kéhler ones [60] [61] [62] 63, 64 [66].
These previous works related to Berezin-Toeplitz quantizations for Kéhler manifolds were reviewed by
Schlichenmaier [65]. From the other angle of the quantization, the construction method of noncommu-
tative Kéahler manifolds was studied via the deformation quantization with separation of variables by
Karabegov [30, BI]. Moreover, for any noncommutative Kéhler manifolds obtained by Karabegov’s con-
struction, Sako-Umetsu constructed Fock representations of them [57, [58]. In this subsection, we review
Karabegov’s method and Fock representations of noncommutative Kahler manifolds by Sako-Umetsu.

Let M be an N-dimensional Kéahler manifold and U C M be a holomorphic coordinate neighborhood of

M. We choose a local holomorphic coordinates by (zl, v, 2N ) For a Kéhler manifolds, a Kéhler 2-form
w and a Kéhler metric g can be locally expressed by using a Kahler potential ® as follows:
0*®

. k =l
w = ngidz VAN dZ s 9l = m

Note that we use the Einstein summation convention on the above. We also denote the inverse matrix of
(gEl) by <gkl>. Here we introduce the differential operators D¥, D* defined by

DF = g’fza;, DE = gElﬁl.

We define the set of differential operators

5e {A

A:ZCLQDQ, aq € C (U)},
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_\ o1 _\ an
where a@ = (aq,...,ay) is a multi-index, i.e. D% := (Dl) <DN) . We can construct the left

star-multiplication operator Ly for f € C* (U) such that Lyg := f * g:

Theorem 2.1 (Karabegov[30]). Let M be an N-dimensional K&hler manifold, U be a holomorphic
coordinate neighborhood on M, and w be a Kéhler form on M. Then, there is the left star-multiplication
operator

Ly=> WA,  feC™(U),
n=0

where A,, 1= a,  (f) D* € S are differential operators whose coefficients a,, o (f) € C*° (U) depend on f.
Ly is determined by the following conditions:

1. [Lf, R&l@} — 0, where Ryp = 0, + hd,
2. Lil=fx1=Ff,
3. For any g,h € C* (U), the left star-multiplication operator is associative, i.e.

Ly(Lgh) = fx(gxh)=(f*g)*h=Lggh

By using the definition of the separation of variables and the commutation relations of the star-multiplication
operators, we obtain the following commutation relations concerning 2*, z*, 9;® and 6:.

[%8,@, Zj:| = (5,']', [Zi,Zj]* = O, [8,(1),8]@]* =0 (1)

*

[EZ, 53;‘13] = dij> 7], =0, {a?q), 8J—<I>L =0 @

*

Note that the commutator [, -], is defined by [A, B], := A x B — B % A. Here, we introduce the creation
and annihilation operators as follows:

. 1 . 1
al =2, a; = ﬁ&@, a; = 2", Q;-r = EE}Z@ (t=1,---,N). (3)
Then, the commutation relations () and (2]) can be rewritten as

[Qwaﬂ L ijs [aj,aﬂ . 0, [Qw@']* =0 (4)

[aiygjﬂ . = 52]7 [aiv aj]* = 07 [QI)Q:” =0. (5)

Since [ai,a;{] #+ 0, [Qi,gﬂ # 0 in general, these relations are slightly different from the ordinary

canonical commutation relation. From the above operators, the (twisted) Fock space is defined by a
vector space spanned by the basis

)= e = == (o) e (k) < 0, (©)



where a vacuum [0) = [0, - ,0) is the vector such that
a;#[0) =0,  (i=1,- N), (7)

and 71! = ny!---ny!. Note that (A)! is the product of multiplying n by the star product *, i.e. (A4)) :=

Ax .- x A Similarly, the dual basis for |77} is defined by
—_—

n times by *

*

(il = (ma - ] = (0] % (@)™ * - * (an)™ ——, (8)

3

where (0| is the (dual) vector for a vacuum |0) such that
<6|*aj:07 (Z:L’N)7 (9)
and m! =my!---my!. Note that (17| does not imply Hermitian conjugate of |m), i.e. (17| # )T

Definition 2.2. Let M be a Kéahler manifold and U be a holomorphic coordinate neighborhood on M.
Then, the (local) twisted Fock algebra (representation) Fy is defined by

Aim Aﬁm eC,. (10)
1=

Fy is defined as the algebra which is given by the creation and annihilation operators in (3] and star-
multiplication between each element of Fi;. Moreover, we can concretely express the coefficient functions
A which are the elements of Fy;. We expand a function exp <I>(z Z)/h as a power series,

<I>(zz h ZH (11)

where (2)7 = ()™ ... (V)™ and ()" = (') ... (zV)"~¥. The creation and annihilation operators

a;f, a; act on the bases as follows,

af # M) (7] = Vimi + 1w+ &) (A, ;i) (] = malm — &) (i, (12)
) (7] * af = ralm) (i — &, W) (] * a; = Vg + Lm) (7 + &, (13)

where € is a unit vector, (€;); = d;;. The action of a; and Q;-[ is derived by the Hermitian conjugation

of the above equations. The results of the twisted Fock representation of the noncommutative Kéahler
manifolds are summarized as the dictionary in the Table [It

Table 1: Functions - Fock operators Dictionary

Functions ‘ Fock operators
e " 10){0]
Zi CL;r
1
ﬁ(‘)i(I)
z ai = Z I mk k+ezﬁm>@
1 1o =
0,0 Z\/ k: +1)H HE;|m>@




For physics, it is difficult to interpret formal power series. So this Fock representation is useful to
construct physics theories like field theories on noncommutative Kéahler manifolds. We will discuss this
point in Section

2.2 Deformation quantization with separation of variables for locally symmetric
Kahler manifold

Let M be a complex N-dimensional locally symmetric Kahler manifold, U be a holomorphic coordinate
neighborhood of M. For any f,g € C*°(U), we assume the following form for a star product with
separation of variables on M by Sako-Suzuki-Umetsu [54} [55] and Hara-Sako [22] 23] :

frg=1Lpg= Z Z T (Do‘"f) (Dﬁ_fg> . (14)

n=0 — 3¢
Qn,

rre
Here Ly is a left star-multiplication operator with respect to f, and DO‘—g, DPn are differential operators
defined by

Dk — ngal_, DE — gElal’
D% = Dot ... DOk DOt = (Dk>a;;

Dﬁ_f .— DB = DPFT...DBN, DR = (DE)BZ

N
> = n}
k=1

_)
Oé—fivﬁn € {(7?7 77]?7) GZN

respectively, where {(7{‘, ) ez ‘EkN e = n} is a N-dimensional module such that a sum of all
components is a non-negative integer n. If there exists at least one negative o) ¢ Z>q for k € {1,--- , N},

then we define D% := 0. We define Dﬁn := 0 in the same way when 5_*? has negative components. Note
that (I4)) is not a power series in the formal parameter i, but a power series in the differential operators
D* and DF. Since M is locally symmetric, the coefficients of the star product T’ n, 7 can be assumed

nsMn

to be covariantly constants. If &, ¢ Z2 3o Or Bn ¢ 7Y%, then we define T", 5= 0 as well as D¥ and

N nysMn
DPn. In the following discussion, we shall omit * when ﬂ is expressed in explicit form. For example, if
ﬂ_ﬁ = (1,2,3)", then we denote (1,2,3)" = (1,2,3). It is known that the coefficient T, _, for the zeroth

an, n

and first orders in f * g are given below.

Proposition 2.3 (Hara-Sako[22] 23]). For a star product with separation of variables % on U,

where ¢ = (014, OnNi) -

In other words, Proposition 23] states that for any complex N-dimensional locally symmetric Kahler
manifold, the zeroth and first orders are completely determined.



Theorem 2.4 (Hara-Sako[22] 23]). For f,g € C>° (M), there exists a star product with separation of
variables * such that

(e e]

Lygi=f+g=> > T0 o (D) (Dﬁ_ﬁg), (f.g € C™ (M),

—
OC’!Lan
n=0— 7%
Qn, Py

where the coefficient T, _, satisfies the following recurrence relation :

Qn,On
N
—1
d=1
g NS BB = 8 = 8+ ) (B = Oy = Ok +2) 1
~ma +kzl§:1 2 e e
= p:
N-1N—k N -
ik
' k=1 I=1 z:1 R(BE = Onp = it 1) (Bt = kst = it + 1) Rﬁ ET%,E—EEJre_iJrekT?—e_?
= = p:

These recurrence relations in Theorem 24 are equivalent to the equations (6.9) in [54]. Hence, from
Theorem 4] a star product with separation of variables on any complex N-dimensional locally symmetric
Kahler manifold is obtained. However, finding a general term 7", _; that satisfies this system of recurrence

nHHn

relations is not easy, except in the one-dimensional case.

Proposition 2.5 (Hara-Sako[22] 23]). Let M be a one-dimensional locally symmetric Kahler manifold,
and U be an open set of M. For f,g € C* (U), the star product f x g is given by

frg= f: [(911)" {kli[l T h;(z Y R} {<911%>nf} { <g”%>n9}] :

n=0

where R = 2RTﬁT is the scalar curvature on M.

Note that Proposition is corrected some errata for the one-dimensional formula in [22] 23]. This
proposition can be shown by direct calculations since the recurrence relation is a simple expression in the
one-dimensional case.

On the other hand, 7", _, were only obtained for n = 0, 1 and 2 for the two-dimensional case. The

Qn,Pp

following proposition is shown by directly solving the recurrence relation in Theorem 2.4] for n = 2.

Proposition 2.6 (Hara-Sako[22] 23]). Let M be a complex two-dimensional locally symmetric Kéhler

manifold. Then the coefficients T2, _, are given by
2,09

(T7) = P A2 X5 T,
where

2 . m2
Tij = T(5-4i-1),(3—4,j—1)"

7



2 2
(911) 911921 (921)

Ay = 29119122 912921 + 911923 29219222 ;
(912) 921922 (922)
11 11 11

We have reviewed the previous works. In general, solving recurrence relations is not easy. In particular,
when we attempt to obtain the general term using a matrix representation, we need a square matrix of
order n+1. In addition, the matrix size increases with increasing order. Therefore, it had been considered
difficult to obtain the general term. In this paper, we find that the expression of the general term does
not become unlimitedly complex, and succeed in getting the general term by using this fact. We shall
see that in the following sections. In Section [B] we are going to describe the coefficients 7", _, for any

Qn, Py,

n e ZZO‘

3 Star product with separation of variables for a complex
two-dimensional locally symmetric Kahler manifold

In this section, we construct the formula that explicitly determines a star product with separation of
variables for a complex two-dimensional locally symmetric Kahler manifold. In other words, we construct
the solution of the recurrence relations in Theorem [2.4] for the two-dimensional case in this section.

3.1 Complex two-dimensional formula

The explicit formula for the coefficient 1", _, for any order n € Zxg is obtained by not dealing with the

Qn, Pp
recurrence relations independently but attributing them to one recurrence relation.

Theorem 3.1. Let M be a complex two-dimensional locally symmetric Kahler manifold, U be an open
set of M, and * be a star product with separation of variables on U such that

Fe=3 X o (%) ()
22

Qn, Pp
n=0 —
Qn, Pp

S n 1\n—i+1 oyi—1 T n—j+1 5 j—1
-5 Syt wn () (7)o}
for f,g € C*° (U). Then,
T,X, = hA’m (15)
where
Ty = (T}}) € Myyr (C[H]),

n . m
T35 = Tn—it1,i-1),(n—j+1,-1)"



2
A;L - <A;?> - Z I 1= 5210 —or, | € M1 (C[R])
k=1

and X,, € M,,+1 (C[h]) is a pentadiagonal matrix such that these components are given as follows
oy = ("T)RRy Y,
" =23 RN + (n— j +2) (j — 2) hRy ™,
X7 =n+("" ]H)hR 111 + (] 1)hR2222 +2(n—j+1)(j— 1) Ry,
Fe1g = 2()ARs™ +j (n — ) AR,
J+2 J (JH) hity 22'
Xie=0 (7 -kl >2),

where (7;:) is a binomial coefficient.

ﬁ
Proof. Note that, a;, = (of,af) and B, = (B7,5Y) satisfy of + aff = B + 5 = n. All possible
combinations of T", _, are (n + 1)2 ways :

Qn,Op
0,0 " Tio)0m)
n ... n
T(0.0),(n.0) T{om),0m)°
The recurrence relations for these T, _, satisfies
an7 n
1
Z hgiaTs,” eBi-e
2 2
h(BE — Oke — Ok + 1) (B — Ore — 0i +2) &k
n mn mn
=BTt >y M 2 BT B —arsom—a
k=1 c=1
2 —_
+ Zl BB = b1e = O +1) (85 = 0o =0 + VRGTL o (16)
c=

from Theorem 2.4] and two types of them for ¢ = 1,2 exist. Both sides of these recurrence relations are
linear combinations of some T, _,. So we now make one new recurrence relation below by summing over

an7 n

the index 7 on both sides of them.

Z hngn 1—> -
d7 n— €
i,d=1
RS ~ B(BE = ke — B+ 1) (B = Bk — 0k +2) 1, T gm
- Z omﬂn + ) Z 2 I o?%ﬁ—f—e_@rze_k’—e_f
i=1 i,k,c=1
2
+ D BB =i =G+ 1) (B — e — b + ) RINTE o (17)
ie=1 e '



Using the fact o + o5 = n and Sf + 85 = n, we can redefine the coefficients T_, = as

nHEn

13" ::To’j_>j, ii=ay+1, j:=065 4+ 1.

nH-n

Then the recurrence relation (I7)) is rewritten as

2
-1
WY g T s = X Tl + XJ T+ XPT0 4+ X Ty + X T, (18)
k,l=1

where each X7 is given as
2 = ()RR,
Xjy = 20" )RRy Y+ (0 +2) (- 2) hRyY,
Xj=nt (AR + ()RR +2(n - +1) (G - D AR,
1 = 2()hR™ + 5 (n = j) bRy,
o = (5HAR,

respectively. We put that X7" := 0 when j < 0 or j > n+ 1. Here, introducing each X,’;,j for k =
17'” 7j7"' 77’L+1 by

T
(0 -+ 0 XPo; X7y, X7 XPy; Xjip; 0 -0 0)
T

then the right-hand side of the recurrence relation (I8) can be written as

(r.h.s.):(ﬂfﬁ T’ir,bn—f—l)(o e 0 X]n—lj xn

T
n n n .
ity Xi Xy Xiha; O 0) .

Furthermore, to summarize the recurrence relation (I8]) by a matrix representation, we introduce A;g‘ for
the left-hand side and X for the right-hand side as

2
A’n L Tn—l
(/A Z Ir1ti—651,j—b01
k=1

Xj::(O - 0 X7 X7

n n
iy Xty Xiy X

n
iy X

T
Frag 0 07,

respectively. Thus, by summarizing the recurrence relation (I8]) for each i and using a matrix represen-
tation, we have

hA! =T, X,

for the coefficient T7"; = 2—> 3 where T}, := (TZ;) , Al = (A;;L) € Mp+1 (C[h]), and

nsMPn

Xn - (X17 T 7Xn+1)

10



nOXp Xp 00 0
X5 X X X§ 0
X5 Xpy XpoX3 Xk
0 Xy X X X
0 0 X& XI X2

erLL—3,n—3 erLL—3,n—2 XTTLL—?),n—l 0 0
XZLL—2,n—3 X —2,n—2 X:LL—2,n—1 g—2,n 0
erLL—l,n—?) X —1,n—2 XTTLL—l,n—l rrLL—l,n Xg—l,n—i—l
0 rrLL,n—2 ﬁ,n—l XrTLL,n erLL,n—l—l
O 0 0 X’:LL+1,TL—1 Xn+1,n X:LL+1,n+1

This proof was completed.m

Here, we note the fact with respect to X} that each X; !, the inverse matrix of each X}, is determined
by a formal power series with respect to a matrix Hy € M1 (C). Here Hy is a pentadiagonal matrix
such that each component depends on Riemann curvature tensors on M. We decompose X}, into the two
matrices:

X = kldgyq1 + hHg,

where Hy is given as follows :

Hk 9= (k ]+3)

R,
Hk L= 2(k j+2) iﬁ (k?—j—l—Q) (] _2) R2212,
HE = (IR + (RS +2(k—5+1) (5 — 1) Ry,
Hf+1j - 2( )R 2 ( )Rizlia

HJ+2 i (]—51)R1221,

Then, X, Lis given by

— (=n)”
—1
X :Z Ep+1 (Hr)” . (19)
p=0
Note that, since a power of a pentadiagonal matrix is not a pentadiagonal matrix in general, X} is

pentadiagonal but X~ 1'is not always pentadiagonal.

For each n € Z>o, T, € My11 (C[A]), () is also a square matrix of order n + 1. These matrices are
not a unified expression, as the size of matrices depends on n, then it is inconvenient to solve the general
term. This problem can be solved by embedding “finite-dimensional” matrices into “infinite-dimensional”

11



matrices, and such a procedure provides a unified expression for n > 2. For matrices A € M,, (C[A]) the
embedding of A is carried out so that the component whose row or column is greater than n is 0. That
is, the embedding is

aip -+ Qip

0

Y AP :<%%>. 0

ap1  ++  Gpp O O

In the following calculations, we use Id,,, Id (00), Fy,, Fy(00) Fp.p, and F,. (c0) given by

1 0 1 0
Id, = , Id(cc)=| 0 1 , (21)
0 1 ’
0 0
1 0 1 0
Fin= , Fy(00) = 1 0 : (22)
1 0
Fr,n:Fg:na FT’(OO):Fd(OO)T (23)

Remark 3.2. Note that multiplying Fj,, from the left corresponds to “shifting the components of the
matrix downward by one position, with zeros appearing in the top row”. And multiplying F,,, from
the right corresponds to “shifting the components of the matrix rightward by one position, with zeros
appearing in the first column”. Fj; (o) and F, (00) correspond to their infinite-dimensional versions.

From Proposition 23] the embeddings of T (c0) and T} (o) are

1 0
To | 0
Toz(l)n—>To(oo)::< 00 0>: 0 0 7
gii g1z 0 -
Hi %3 T 0) 921 923 0
Ty =h — 11 (o0) := =h )
' <921 922> o) (0 0 o0

respectively. Similarly, (IT) in Theorem Bl is embedded as
T (00) = A}, (00) X, (00) (24)

n

where A’ (c0) and X! (c0) are

12



Note that X, ! (c0) is not the inverse matrix of X,, (c0). As we saw in Theorem Bl A/, € M, 1 (C[A])
is expressed as

2

/

A, = ngz i 5214 Sok <911ng + 91,17 1g + 91} Y+ 9T 1] 1)
k=1

Recall that 1}73-_1 =0ifi<0,i>n—1, j <0or j>n—1 by definition. By a matrix representation
<911Tn Y+ 912171—_1,13' + 9175 L+ 9T 11] 1)
Tn—l On—l ) < On—l 0 ) < On—l Tn—l ) < 0 Oz;_l )
= + + +
I < On—l 0 912 Tn—l On—l 21 0 On—l 922 On—l Tn—l

with 7},_1 which is the square matrix of order n, where 0,,_1 is an n — 1 dimensional zero vector. Since
these matrices can be expressed as

(% On()_l ) =ldni ( gz:i 0n0_1 >Idn+17
(FEottors) =fue (%) oo
(3 e (5 e
< 07?—1 gfj > =Finn < OTZj Ono_l >FT’,7L+17

using Id, 41, Fgnt1 and Fr 41, respectively, then we have

Tp-1]0n1 ) < ol .| o ) < 01| Tha > < 0 |ol, >
+ & + + 93 !
I < On—l 0 912 Tn—l On—l 21 0 On—l 922 On—l Tn—l

Tn—l On—l Tn—l On—l
=gp1d +1< Idyt1 + g1 Fans1 Idnt1
Hen On—l 0 ! 12 " On—l 0 !
Tho1|0,_ Th-1|0,—
+ g5 ldns1 ( o i 5 ! >Fr,n+1 + 9oaFant ( o : 5 : ) Frnt1
n—1 n—1

By introducing some functions ©7,07 € C* (U) (p € {1,---,4}) such that gz, = 0,07, A, can be
expressed as

Tn—l 0,1

4
= Z (@€Idn+l + @ng,n+1) < 0 0 > (@Ifldn-i-l + @gFr,n—i-l) .
p=1

n—1

These @f—L and ©F play a similar role of “a vierbein”, but not a vierbein because they are not necessarily
to be orthonormal. Furthermore, by introducing the new matrices Fy, Bl € M, (C[h]) as

Ff; = @Il)IdrH_l + @ngm-‘rlv B?L = @?Idn_l,_l + @gFr,n—l—l
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respectively, A/ is expressed as
. T,.1]0
—1 -1
A;L:ZF,?(O" "0 >Bg,
p=1 n—1

so A! (00), that is, the embedding matrix for A/, is expressed as

4
A, (00) = 37 FE (00) Ty (00) B, (o).
p=1

Here, F}y and B}, were replaced by Fj, (c0) and Bl (00), where
FP (00) := O71d (00) + ©5F; (00) , Bl (00) := ©1d (c0) 4+ OLF; (00) . (25)

Therefore, T}, (00) is obtained as
4
T, (00) = Y FF (00) T, (00) B (00) X, (0).
p=1

By using recursively the above procedure, we obtain the following main theorem.

Theorem 3.3 (Main result). Let M be a complex two-dimensional locally symmetric Kédhler manifold, U
be an open set of M, and * be a star product with separation of variables on M. For f,g € C* (U), fx*g
is given by

co n+l

n—i i 1\ Itl 5\ J-1
f*g:ZZE?{(Dl) +1(D2) 1f}{<D1) J <D2>J g}.
n=01,7=1
Here each of the coefficient 77} is
T, (Oo)ij = {Tij (1< Ljé nt1) )
0 (otherwise)
and T, (c0) is determined by

4
Tu(oo)=h" Y Fi"(c0)-- F{" (00) Ty (00) (BY* (00) X1t (00)) -+ (Bh" (00) Xt (0)),  (26)

n
P1,,pn=1

where each F* (c0), B (c0) and X, ! (00) are given as above.

From Theorem B3] we obtain a deformation quantization with separation of variables for complex two-
dimensional locally symmetric Kédhler manifold is realized by this star product.
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3.2 Another formula

The formula (26]) was obtained by summation with respect to the index i of the complex coordinate in
the recurrence relation (I@l). In Subsection 3.1l we made one recurrence relation by adding two recurrence
relations and determined the solution using only that recurrence relation. On the other hand, we have
not yet considered another recurrence relation. In this subsection, we consider another formula obtained
by “subtracting” for ¢ = 1,2 rather than “adding” two recurrence relations for ¢ = 1,2 as we did in
Subsection B11

Theorem 3.4. Let M be a locally symmetric Kéhler manifold, U be an open set of M, and f,g €
C>(U), = be a star product with separation of variables on U such that

Fro=3 S mp (o ) H{(0) 7 () ).
n=0i,j=1

Then

T,Y, = hC", 2
or equivalently

YiT, = hCf, (28)
where

2
Cy = <C;j") = g:l 1) g T 52[73 o) € M

and Y,, € M, (C[A]) is a pentadiagonal matrix such that its components are given as follows :

Yty =—("" ’+3)th”2,
ity j==(n—3j+2) (-
b2 (- 03,
J+1j j ( ) hR Qi 1
Ty = (3R,

Vi =0 (|7 -kl >2).

Proof. This is shown in the same way as in Theorem B3l g

Note that equation (27]) is also expressed as an embedding version
T, (00) Yy, (00) = hCy, (00) (29)

or equivalently



where the embedding Y;, (c0) for Y}, is as in the way of (@) in Subsection BIl Here we use T}, = T}l. Its
derivation is in Appendix

It is known from Karabegov’s result that there is always a star product with separation of variables on
a Kéahler manifold [30, BI]. A star product with separation of variables on a locally symmetric Kéhler
manifold is determined by (26) in Theorem B3l Therefore, T, (c0) given by (26) should satisfy (29)).
To ensure that the result obtained by Theorem [B.3] does not contradict Theorem [B.4, we consider the
following equation:

viT, X, = hCli X, (31)

Here, ([B1)) is obtained by multiplying ([28) by X,, from the right. This is merely a change to a form that
allows direct substitution of the result of Theorem B3l The reason for using (28]) rather than ([27) is that
X1 appears if we try to check ([27) directly, and it is difficult to calculate because it is an infinite power
series matrix. In this discussion, we shall simply show only the cases n = 1 and 2.

Case: n=1

Since Proposition and

XL X! >
X, = 11 12 :Id,
= (5 ) -
— Ylll Y112 _ 1 0
n=(5d 0 )=(0 ).

it follows that

YlTTle — h( 91 921 > ,
~912 Y923

T
C1TX1:<9T1 _9§1> :< N1 91 >
912 Y22 912 922
Therefore YlTTle = hC{ X, , equivalently YlT (00) T3 (00) X (00) = hC (00) X7 (00) .

Case: n =2

Calculations for both sides of ([B1l) yields

; ) 2+ KR ", AR hR, %, (9T1)2 297195 (951)2
Yy 1o Xo =h 0 I 0 . 0 ” 2911922 2 (911932 + 912971) 29519522 (32)
—hRy"y  —hRy*y —2—NhRy™, (912) 2979999 (932)
and
(91> 20m9m  (9m)’ 2+hRY 2hRyY  RRy'Y
hCY Xy = Ii? 0 0 0 AR 24 2hRPL ARy, (33)
—(91)° —201293 — (93)° hR: %% 2hR,*% 2+ hRy>,
respectively. Here we use
) (911)2 291199 (951)2
15Xy = hAy = 29T19T22 2 (971952 + 912971) 29519522 . (34)
(912) 2979952 (932)
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Furthermore, each component of both sides of ([31]) coincides with each other from the calculations (57])—
(7)) in Appendix [Bl Hence, it is shown that (3I) for n = 2 holds.

4 Examples

In this section, we describe the deformation quantization with separation of variables for C?> and CP? as
concrete examples realized from Theorem The deformation quantizations were already given by the
other methods as we will see in the next subsection. To compare our results with them, we can check if
Theorem works well. Moreover, we show that the concrete examples satisfy the identities in Theorem

B4

4.1 Previous results for C? and CP?

It is known that noncommutative R*V is the most trivial noncommutative manifold. We can say that the
quantization map from R?" to noncommutative R?V is introduced by Dirac [I7] because the canonical
quantization is the quantization of phase space R2V. In the strict deformation quantization case, the
noncommutative plane has also been proposed by Rieffel from the perspective of C*-algebra [51]. On the
other hand, the deformation quantization of R?" is also the most trivial example in the formal deformation
quantization case. In particular, the Moyal product [42] and the Voros product [68] are well-known
examples of star products on R?Y. Here, a noncommutative R?" can be regarded as a noncommutative
CN. For noncommutative CV, the concrete construction is provided by using the deformation quantization
with separation of variables by Karabegov as an example [30]. As another concrete example, we shall
consider here a deformation quantization with separation of variables for CP?. Previous works related to
noncommutative CPY are known from deformation quantizations and fuzzy geometry. Noncommutative
CPN via a deformation quantizations had constructed by Omori-Maeda-Yoshioka [45], Bordemann et al.
[7], Sako-Suzuki-Umetsu [54] [55], and Hara-Sako [22] 23]. In addition, the (twisted) Fock representation
of noncommutative CPY was given by Sako-Suzuki-Umetsu [54] 55] and Sako-Umetsu [57, 58, 59]. It is
known that this representation is essentially equivalent to ordinary Fock representation. On the other
hand, in fuzzy physics, noncommutative CPY | called fuzzy CP", had constructed via a matrix algebra.
The construction methods of fuzzy S?, i.e. fuzzy CP!, had proposed by Hoppe [29] and Madore [37].
Hayasaka-Nakayama-Takaya constructed a star product on S? from their fuzzy S? [24]. Furthermore,
more general works were proposed by Grosse-Strohmaier [20], Alexanian et al. [I] for fuzzy CP?, and
by Balachandran et al. [3], Carow-Watamura-Steinacker-Watamura [I5] for CPY. See [38] for other
references. In particular, the Fock representation on fuzzy CPY was also discussed by Alexanian-Pinzul-
Stern [2] and Carow-Watamura-Steinacker-Watamura [I5]. In this subsection, we introduce the results
of noncommutative C? by Karabegov and Voros, and noncommutative CP? by Sako-Suzuki-Umetsu to
compare them with results given by Theorem in the following sections.

Theorem 4.1 (Karabegov[31]). For any f,g € C* (C?), the star product with separation of variables
on C? is locally given by

frg = fexpy (00,1 +020.2) g. (35)

It is known as the star product which is called “Voros product” [68] and isomorphic to Moyal product
[42]. A simple proof for the isomorphism of them is given by, for example, Section 2.2 in [2]. The star
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product (B3] is sometimes called the “Wick product” [7, [, 10]. For CP", the noncommutative one had
been constructed by several previous works. In Section €3], we compare the star product on CP? obtained
by Theorem B3] with the previous work by Sako-Suzuki-Umetsu. So we denote the result for CP? by
them.

Theorem 4.2 (Sako-Suzuki-Umetsu[54] 55]). For any f,g € C* ((CPQ), the star product with separation
of variables on CP? is locally given by

T (1= n+ 1) g - g o
frg= b I I (v p*n f) (DT D) (36)
nz::o n!F(l—F%) ( )

Here pg, v = 1,2. Note that we use the Einstein summation convention in Theorem In [541 B3], it
is confirmed that the star product on CPY coincides with one obtained by Bordemann et al. [7]. See

[54, (5] for more detail.

4.2 Example of C?

We shall construct a deformation quantization with separation of variables for C2, the simplest concrete
example via Theorem 3.3} and show that it also reproduces the star product with separation of variables
by Karabegov [31]. Since C? is flat, i.e. R p-” =0, each X}, (00) is a constant multiple of the identity
matrix, and 7}, (00) can be obtained easily.

Proposition 4.3. The formula for determining a star product with separation of variables on C? is given
by

® 0

)= (4) 4 o - (37)

2

Proof. We now take the canonical coordinates z! = z! +iy', 22 = 22 +iy? as the local coordinates. Since

(gaB), the component matrix of the Kihler metric on C?, is

g11 912 911 Y13 9x121 92122 Gyizt gp1z2 0 0 % (1)
(gAB) _ 921 922 Go7 Yo _ 92221 Gx2;2  §h2z1 232 _ (1) 0 0 2

g 912 911 913 g gz gmm Goi 2 00 0]

921 Y922 931 Y323 Fz221 9z2.2 9z270 97272 03 00

so the inverse matrix (gAB ) is
T 5 1.1 1.2 1=x1 152

gll gl2 gli glf 922z1 gz2z2 gz2: g:iQ 00 2 0
(gAB) _ gfl 932 gfi gfi _ gzlz1 gzlz2 gzlz1 gz122 _ 00 0 2

gl g gl gl R

g21 g22 921 922 A g7z 02 00



Since gap, ¢*P are constant matrices, F’éo =0 (A,B, C=1,1, 2,5) , therefore RABCD = 0. Thus each
Xk € M1 (C[h]) (k=1,---,n) is obtained as X = kldxy1, and especially Xk_1 = %Idk+1. Next, we

must determine F, ,i’“ and B,ZC’“. Since the choice of the functions @%“ and ©% is not unique, there are many

possible F; ,z’“ and B,i’“. So we shall now simply choose @L’f = @fj’“ = %5“‘# here. We can confirm that these

4 i~ . .
©4 O} So in this case

ik i o
©7 and O3 recover gz, = >

i L /g i i L /g i
B = 5 (041 0% Fapn ), B = 5 (0% der + 0% Fagrn )
By Xk_1 = %Idk, we obtain
4 . . . .
T, (00) =l 3 Fir (o) F (00) Ty (o) (B (00) X7 (o)) -+ (B (00) X7 ()
i in=1
il 1 2n 4 . . . .
== (ﬁ) > (1 (00) + 8 Fu (00) ) -+ (8741d (00) + 87 Fy (00) ) T (o)

i1, in=1

: (5"111d (00) + 6, F, (oo)) - (5%11(1 (00) + 6™ F, (oo)> :

Api1 |0 X0\ [ Apga |0 X.'o
0 |0 0o jo) \ 0 |0 0 |B

for any A1 € My (C[A]) and B € My, (C[Ah]). The above equation can be written as

By using

n 2
e @ 3 uzgzl B Oy (B (00))™) Ty (00) (£ (00))0")

n 2
~(5) m X (Rt T o) (00 ).
' K1y pn=1

where 7 (+) : {1,2}" — Z>¢ is defined by

(1) = 2 [4] = X e
k=1

k=1

for multi-indices p™ = (p1,-+ , un), and [] : R — Z is Gauss symbol. We define v (#™)) in the same
way. In other words, v () : {1,2}" — Z>¢ gives the number of each uj (or vy ) that is 2. We can rewrite

(E)"i 22: <Fd<oo>>V<“<">>To<oo><Fr<oo>>”<“(")>=<§)n 1273(7) (Fi (00)) Tb (00) (Fy ()Y’

n!
=0\
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since there are (?) combinations of each py such that (,u(")) = j. After summing over j € {1,--- ,n},
this is concretely expressed as

® 0

by matrix representations. This proof was completed.nm

By Theorem 3] the coefficients T, 7 (or T7% ) is determined as

YR
. I (z—l) (Z — ])
T =T =4 2n. ) , (38)
o 0 (i # j)

where afy =i — 1 and 85 = j — 1. Hence, the star product with separation of variables on C? is obtained
as follows :

[e.9]

Fr=3 X 7 (%5) (%)

=0

oo n+1

=SS {0 ) {(DT) T (o) g} . (39)

n=0 1=1

Substituting (B8]) into the right-hand side of (39,

X e wy H{e) " () )
=23 (5) () {6 ) { () () )

=1
B () (570)

J
where we rewrite i — 1 as j in the last line in (40]). Here, using the left (right) differential operator

FOn = 0.af, Ooag=0,ag (A€ {1,21,2}),

we obtain the star product on C? as

rea= 3 CF 3 () (m70Ls) (2%0)

n=0 7=0
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-SAr{S0) G Gy fa @

n -
Jj=0

Let us compare the previous result ([B3]) to verify that Theorem works well. By using the binomial
theorem for the left and right differential operators in (A1), we have

B 5 () () () =3 B (i S22

— fexp2h @ a1 + Ea_zz)) g. (42)

n=0 j=0

z z

— —
Here, if we put the formal parameter v as v := 2k, we obtain f *x g = fexpv (&@1 + &Z?Zz) g, which is
the star product with separation of variables by Karabegov (B5)).

We stated in Subsection Bl that T;, (c0) given in (26]) solved via Theorem satisfies the formula (29])
in Theorem B4l So we shall directly verify that 7}, (co0) obtained via Theorem [B3] actually satisfies the
formula (29) in Theorem B4 in the case of C2. By Theorem 4] Y,, is obtained as

n 0

~(n—2)

On the other hand, iC;, (c0) is calculated as

hC., (c0) =h <1Tn_1 (00) — %Fd (00) T_1 (00) F, (oo)) .

2

We substitute B7) for n — 1, ([22]), and (23]) into the the right-hand side of the above. Then,
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Hence, for any n € Zxq, the matrix T}, (co0) for C? satisfies (B0).

4.3 Example of CP?

In this subsection, we confirm that the deformation quantization with separation of variables for CP?
obtained via our main result (Theorem [B.3)) satisfies the identities in Theorem B:4] or equivalently ([29) in
Subsection

Proposition 4.4. The formula for determining a star product with separation of variables on CP? is
given by

r(1-n+1 2 " .
T““’):ﬂ S g g Fa ) ) Ty (o) (B (0 ) (4

M1V, s n =1

where each g, is Fubini-Study metric and ~ (+) : {1,2}" — Z>¢ is defined by
2 2 2 2
v <,u(”)) = Z [%] = Z5ﬂk2’ vy (I/(n)> = Z [%} = Z&,kz (44)
k=1 k=1 k=1 k=1

for multi-indices p(™ = (11, 5 fn) v = (v1,-+ ,vp).

We can prove this proposition by direct calculations of (26 in Theorem See [47] for detailed proof
of it. By Proposition [£4] the star product with separation of variables on CP? is obtained by

frg= I (DM DY f) (DFY - Dl g) (45)
2 a+h (

Detailed calculations for deriving equation ([43]) from (@3] are also given in [47]. This star product coincides
with ([B6]) by Sako-Suzuki-Umetsu . This result implies that Theorem B3] works well.
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As in the case of C2, we shall see that ([@3) satisfies (Z9) in Theorem B4l By Theorem [3:4] the components
of Y,, for CP? are calculated as

v _ =26 -0} —n+3) (i=))
Yo (i#7)

Y, (00) is written as

Yn(oo):h<1—n—|——> —(n—2) . (46)

To calculate T;, (00) Y;, (00) we use the following proposition.

Proposition 4.5.

n—2
(Fa (00))* Ty (0) (F (0)) C—(-2)
0 “n
0
= (n—21) (Fy (00))" Ty (00) (Fy (0))',  (k,1=0,--- ,n).
Proof. Since the properties of F; (00) and F, (00) in Remark B.2]
(Fa (00 T (00) (F () = (2L, (a7)

where (8;10;1) € My41 (C[A]) is the square matrix of order n + 1 such that the (k,1) component is 1 and
the others are 0. And note that the indices k and [ are fixed. Then we get the equation. m

By Proposition 5] T;, (00) Y, (00) is calculated as

T, (00) Y, (00)
_h(l-n+#)T(1-n+3) 2
— nll (1+ 1) Wh.%ﬁyﬂﬂ Griv1 " Ymvn
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n—2
- (Fy (OO))'y(V(”)) Tp (c0) (Fr (OO))-y(u(n)) .. _(n )
0 _n
0
n— l ) )
B m;n(— 1)('F : h Z g G (1 N %'Y (“(n))> (Fa(00))" ") Ty (00) (F (00))7 ™).

/1/17 7u7l—1
Vi, 7Vn—1

(48)

Next, we calculate the right-hand side of ([29). By Theorem B.4]

hC, (00) =h (911 Tn-1(00) + giaFa (00) Tn1 (00) = g31T1 (00) Fy (00) = g3p Fa (00) Tru1 (00) F- (00))

A1 (n-1)+ 1) & 2 o .
RRCES ) Z Zg— Gt (04714 (00) + ©F" Fy (00))
- (Fa (00)) ) Ty (00) (B (00070 ) (08714 (00) — O8" F, (00)) - (49)

nge @f—f, Ok € O (U) are the C* functions such that gz, = kazl @f—f@ﬁ@. We can choose @f—f and
Ok concretely [47], but we do not have to. This is because we can carry out the following calculations
without using concrete expressions. The right-hand side of [@3]) can be rewritten as

4
3 (0871d (50) + O Fy (00)) (Fa (00)) " ™) Ty (00) (F (00))(H ™) (€271d (o0) — ©2" F, (o))

pn=1

2
n n—1[Vk vn n—1[HKk Hn
= Z (l -2 [%}) Iiivm (Fy (oo))(zkzl[ Qk])+[ 2 ] To (00) (FT, (oo))(zkzl [sz])"‘[‘é ] , (50)
M'm’/n:l
where we use v (,u("_l)) = Z;% [Ek], v (l/("_l)) = Z;% [%:] and also introduce a new indices i, and

Up. (1 -2 [“7"]) in the right-hand side of (B0) is sign 41 using the Gauss symbol and —1 when p, = 2.
Then we obtain

p o (== +1) T & B B
hCh (0) = (n—1)IT(1+1) (1 2 { 2 D m’yh_;;myn:lg“l”l " Gpmvn
Yk v P

(Fy (0o ZRm (FDHE] 13 (00) (. (00)) Zimr (D]

Using
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we have

2
o
Z <1 B 2 [?n:|) gm’/l e -g/»‘nfll’nfl-gﬂinl’n

_ (n—1)+ l) Ihn ) o
RS (E) Z: (1=2[5]) giwn -+ g (Fa () T3 (00) (B (0007
_M(--N+i) g 2 i

) (n_l)'r (1+%)h U17V17zﬂn I/n_l <1_ E " {7]>%Vlgﬂ_nl/n

KWL, s, Vn =1
2 2 1 2 [ (n) (n)
= > B B e (R0 ) T (00) (B (o) )
KWL s, Vn=1
2 2 11 2 1 (n) (n)
= <1 “alzl--a [ﬂ) g~ G, (Fa (00)) ") Ty (00) (- (00)) ).
KWL s, Vn=1
(52)
Substituting (52]) into (BIl), we have
AL (1—(n—1)+ %) 2 2 fn
: =2 () e g
(n—1I'(1+ %) Z _< n "2 >g’”1 tinvn
H1,V15 0 s hn  Un=

R (1-(n—1)+4) 2 2 1y 2 i

~Sooorary, 2 (R R B
- (Fa (00))"") Ty (00) (F (00))70")

A (1-(n-1)+3) & 2 [

B (n - 1)!F (1 + %)h M17u17.~,zu:n,un:1 <1 - E’Y (:“ )> g G

- (Fy (00))" ™) Ty (00) (B (00))7H).

—1)+4 2 .
(n— DT (11+;)ﬁ) 2 (1 - %’Y (’“‘( ))> Gpivr " Gpmvn



- (Fu (00))" ") Ty (00) (B (00)) 0™ (53)

From (@8] and (53)) it is shown that (@3]) satisfies (29) in Subsection 3.2 for the CP? case.

5 Discussions

In this paper, we obtained the explicit star products with separation of variables for two-dimensional
locally symmetric K&hler manifolds by solving the recurrence relations in [22] 23]. By using Theorem B3]
we can construct a deformation quantization with separation of variables for any complex two-dimensional
locally symmetric Kihler manifold. Furthermore, we gave the noncommutative C? and CP? as concrete
examples. We verified these noncommutative C? and CP? coincide with the previous results by Karabegov
[30] and Sako-Suzuki-Umetsu [54] [55], respectively.

In this section, we discuss what can be done in the future using the theorems obtained in this paper. We
give an example of a two-dimensional symmetric Kéhler manifold to which Theorem [B.3]is applicable and
for which deformation quantization has not yet been obtained. The concrete example of two dimensional
locally symmetric Kéhler manifold is a quadric surface Q2 (C) = SO(4)/ (SO(2) x U(1)). However, the
deformation quantization for Q? (C) have not yet been constructed. It is known that the Kihler potential
of Q?(C) is given by

2 2
1 _
Dgecy =log [ 1+ :]zk]2+z PNCARCOE N (54)
k=1 k,l=1

See [I8] 26 43| for more detail. Since Kéhler metric and curvature are expressed by using a Kéhler
potential, it is possible to explicitly construct the noncommutative @2 (C) by using Theorem B3] explic-
itly. Supersymmetric nonlinear sigma models whose target spaces are Kahler manifolds are studied by
Higashijima-Nitta [26] 27 28], Higashijima-Kimura-Nitta [25] and Kondo-Takahashi [34]. Some models of
them are defined on CP" and Q2 (C) as the target spaces. It should be possible to extend the nonlinear
sigma models to ones on noncommutative CPY and Q? (C), naively.

We can expect to develop the physics on noncommutative locally symmetric Kahler manifolds from our
result. For example, the constructions of some field theories and gauge theories on noncommutative
ones are expected. Someone might think that in contrast to strict deformation quantization, formal de-
formation quantization is difficult to interpret some physics. However, it is possible to construct Fock
representations from the formal deformation quantization in our cases. In fact, (twisted) Fock represen-
tations can be constructed by using a deformation quantization with separation of variables as discussed
in Section 2l See [54] [55] 57, 58 [59] for more detailed discussions. Recalling that field theories can be
described by using Fock representations, we can expect to propose the field theories on noncommutative
Kaéahler manifold. In addition, it is expected to clarify the relationship between fuzzy manifolds and de-
formation quantization, since Fock representations can be interpreted by using a matrix representation.
Furthermore, we can concretely construct gauge theories by using (twisted) Fock representations. They
have been already studied by Maeda-Sako-Suzuki-Umetsu [39] and Sako-Suzuki-Umetsu [56] on noncom-
mutative homogeneous Kéhler manifolds. See [53] for the review of these facts. For example, if the
noncommutative Q2 (C) are given by Theorem B3] we can propose gauge theories on noncommutative

Q*(C).
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As described above, it is expected that various physical theories on complex two-dimensional noncommu-
tative locally symmetric K&hler manifold can be obtained by using the Theorem They are left for
future work.

Acknowledgement

A.S. was supported by JSPS KAKENHI Grant Number 21K03258. The authors are grateful to Yasufumi
Nitta, Shunsuke Saito, and Yohei Ito for useful advice. The authors appreciate the referees of [JJGMMP
for their thoughtful feedback.

A Some properties from Kahler geometry

We review some properties for Kéahler manifolds that we use in this paper. See Kobayashi-Nomizu for
more details [33]. Let M be a complex N-dimensional Kéhler manifold, U be a holomorphic coordinate
neighborhood of M, and V be the Levi-Civita connection on M. For dg,0c € I' (T'M |;;) , the Christoffel
symbol F e 1s defined by V. 00 = FBCE?A, where A, B,C € {1 -, N,1,--- ,N}, da = and

2t =7 fori € {l1,---, N}. In particular, FBC is given by

9
OzA

1
I3 = §9AD (OBgpC + OcgpB — OpgBC)

by using the components of the Kahler metric g. Since M is Kahler, the non-trivial Christoffel symbols
are Ffj and I‘%, where 4,7,k € {1,--- ,N}. Furthermore, the covariant derivative for (k,![)-tensor field

Yé{::g’“@Al ® @04, ®dPr @ @dP € T(TM)®F @ (T"M)®!) is given by using the Christoffel
symbol as follows :

Vo (Yg{;;gkaAl ® R4, 0dP @ ® dzBl>

_ R R Aq Aq-1DAg1Ag Aq Ay,
o acyul VTR +ZF Y Bl ZFCBQY +“Bg—1DBgy1:-By

q=1
><8A1®~'®3Ak®d231®~'®dzB’,

where Aq,--- , Ay, B1,--- ,B;,C,D € {1’... JN, T, - 7W}
Next, we define the Riemann curvature tensor RY : T'(TM) x ' (TM) x T'(TM) — T (T M) on M for the
vector fields X,Y € I'(T'M) and its component RV (04,05) Oc by

RY(X,Y):=VxVy—VyVx - Vixy]
v (8A, 83) 80 = RABCDaD,

respectively. Note that the notation R, BCD used in this paper can be expressed by the relation

D D
Rapc” =NR"can (55)
using the notation

RY (04,0B) 0c = R 450D
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by Kobayashi-Nomizu [33]. In this paper, we fix the position of the indices of the components of the
Riemann curvature tensor in the above equation. The components R , BCD are also given by

D D D E 1D E 1D
Rypc” = 0al'pe — 08l + Tpclap —Udcl'BE
by using the Christoffel symbols, and their non-trivial ones are
1 _ !
Rﬁk - _&jri’f’

I l

For Rapcp = gpelRy4 BCE , it is also confirmed that the non-trivial components are Rﬁk[ and Riﬁl, which
are given by

R = 0,07 = 0050000 + g (3:070,0) (9,050,0) ,
Ry = 95007 = 050,0:0,® — 77 (80,052 (8,0,0,9)
respectively, where @ is the Kéhler potential, i.e. ® is a function on M such that 95 = ai(%ﬁl).

Here we consider R; HE = ngngR;pqE which often appears in this paper. We refer to R; H@ simply as

“curvature”. This curvature R; klé has the following symmetries concerning the indices 4,¢, k, and [ :

RM —pH _ R _plk (56)

7
This property plays an important role in this paper.

We now turn our attention to a locally symmetric Kahler manifold : the fact that M is locally symmetric
is equivalent to the fact that VaERABCD =0, for A,B,C,D,E € {1, o ,N,1.--- ,N}.

B Calculations for both sides of (3I]) in Subsection

We show that (BI]) for n = 2 holds in Subsection B2l In this appendix, we denote the detailed calculations
for each component of both sides of ([BI]) in Subsection They can be enumerated as follows.

The left-hand side

(1,1) = n? {(2 +hRM) (911)% + 28R, Y 911975 + R, P (9T2)2}

= 12 {2(gn)? + hByri } (57)
(1,2) = 207 { (2 + AR, 'Yy) gry951 + BBy (97095 + 972951) + DRy 1070935 }

= 21 {g1951 + iRam1 } (58)
(1,3) = n? {(2 + thnl) (951)2 + 21 Ry * g1 935 + WP (952)2}

=12 {2(93,)” + Ry } (59)
(2,1) =0, (60)
(2,2) =0, (61)
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(27 3) = 07 (62)
(3,1) = —i? {thnz (911)° + 2hRy* 397, 915 + (24 hRy*%) (9T2)2}

= 12 {2 (gr,)” + hBoira } (63)
(3,2) = —21% {hiRy "y g7, 931 + MRy (97195 + 912931) + (2 + hRy™) 91993 }

= —21% {297,095, + Rpa1a} (64)
(3,3) = -1 {thllz (951)° + 2hRy ™ 595193, + (2 + IRy %) (952)2}

= —12{2(9)" + R | - (65)

The right-hand side

(1,1) = B? {(2 + ﬁRﬁ-) (911)° + 2hR; 91195, + Ry (951)2}

=1’ { (91 2+ hR1111} (66)
(1,2) = 2K {hR‘ll )’ (2 + %R ) 911931 T hRQQQI (951)2}
= 20% {91,991 + hRiz11 } (67)

(1,3) = 1? {ﬁRzllz (911)” + 2R3 37,91 + (2 + hRi22§> (951)2}

= 1?{2(gg)) + hR321 } (68)
(2,1) =0, (69)
(2,2) =0, (70)
(2,3) =0, (71)
(3,1) = 1 { (2 + hRiﬁi) (972)° + 20R; 1 gra0m, + DRy (952)2}

= 12 {2 (gr,)" + RByira } (72)
(3,2) = —2n® {hRiﬁi (972)° + <2 + ZHRQﬁi) 91293 + W™ (952)2}

= —2h° {2¢7593, + hRys1a} | (73)
(3,3) = 1 {hRilli (952)" + 20Ry " 597595 + (2 + hR§22§) (952)2}

= 12 {2 (g3,)" + Nz } (74)

Note that we denote each (7, j) component of both sides simply as (7, j). Hence, the calculations (&)—(74)
show that (BI]) in Subsection B2 for n = 2 holds.

C Hermiteness of 7,

In Subsection B.2] we use the fact that T, is Hermitian conjugate, i.e. T, = Tyi. So we shall derive this
property of T;, in this appendix.
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Lemma C.1 (Sako-Umetsu[57]). The coefficients 77", 7 satisfy

QAn, P

or equivalently

Proof. From Proposition 3.1. in [57],

frg=g=f. (76)

Substituting (I4]) into the left-hand side of (76]), we have

Fra=Y S T (o) (0T o) 0]
n=0 a—n>7jn o
-3 X T (%) (07

Here we rewrote the dummy indices in the last equation. On the other hand, since
> — I
7= 3 T 5 (079) (P77)
n=0 Oﬁ,ﬁﬁn
by the assumption for the star product with separation of variables, we obtain

T,  =T%
— - —
O"!Lvﬁ'fz Brua;l

by comparing the coefficients on both sides of (@). The above equation can be expressed as an equivalent
equation 1), = Tﬂ;..
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