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Explicit formula of deformation quantization

with separation of variables for complex

two-dimensional locally symmetric Kähler manifold

Taika Okuda ∗ Akifumi Sako †

Abstract

We give a complex two-dimensional noncommutative locally symmetric Kähler manifold via a defor-
mation quantization with separation of variables. We present an explicit formula of its star product by
solving the system of recurrence relations given by Hara-Sako. In the two-dimensional case, this system
of recurrence relations gives two types of equations corresponding to the two coordinates. From the
two types of recurrence relations, symmetrized and antisymmetrized recurrence relations are obtained.
The symmetrized one gives the solution of the recurrence relation. From the antisymmetrized one, the
identities satisfied by the solution are obtained. The star products for C2 and CP 2 are constructed by
the method obtained in this study, and we verify that these star products satisfy the identities.

1 Introduction

Deformation quantization is one of the quantization method based on a deformation for a Poisson
algebra and is known as a method of constructing noncommutative differentiable manifolds. There are
two types of this, “formal deformation quantization” proposed by Bayen et al. [4], and “strict deformation
quantization”, based on C⋆-algebra proposed by Rieffel [50]. In this paper, we study formal deformation
quantization, and in the following, “deformation quantization” is used in the sense of “formal deformation
quantization”.

Definition 1.1. Let M be a Poisson manifold, C∞ (M) be a set of C∞ functions on M , {·, ·} : C∞ (M)×
C∞ (M) → C∞ (M) be a Poisson bracket, and C∞ (M) [[~]] :=

{
f
∣
∣f =

∑

k fk~
k, fk ∈ C∞ (M)

}
be the

ring of formal power series over C∞ (M) , where ~ is a formal parameter. Let a product ∗ on C∞ (M) [[~]] ,
called the star product, be a product denoted by

f ∗ g =
∞∑

k=0

Ck (f, g) ~k

satisfying the following conditions:

1. ∗ is associative, i.e. for any f, g, h ∈ C∞ (M) [[~]] , f ∗ (g ∗ h) = (f ∗ g) ∗ h.
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2. Each Ck (·, ·) : C∞ (M) [[~]] × C∞ (M) [[~]] → C∞ (M) [[~]] is a bi-differential operator, i.e. for any
f, g ∈ C∞ (M) [[~]] , Ck (f, g) can be written as

Ck (f, g) =
∑

I,J

aI,J∂
If∂Jg,

where I, J are multi-indices.

3. For any f, g ∈ C∞ (M) ,

C0 (f, g) = fg,

C1 (f, g)− C1 (g, f) = {f, g} .

4. For any f ∈ C∞ (M) [[~]] , f ∗ 1 = 1 ∗ f = f.

The pair (C∞ (M) [[~]] , ∗) is called a deformation quantization for M.

For a more detailed review of deformation quantization, see e.g. [21]. The construction method of
deformation quantization for symplectic manifolds has been known by de Wilde-Lecomte [16], Omori-
Maeda-Yoshioka [44] and Fedosov [19]. After these works, a method for Poisson manifolds was proposed
by Kontsevich [35]. For any Kähler manifold, Karabegov studied a construction method of deformation
quantization with separation of variables [30, 31].

Definition 1.2. Let M be a Kähler manifold. A star product ∗ on M is the separation of variables if
the following two conditions are satisfied for any open set U of M and f ∈ C∞ (U) :

1. For a holomorphic function a on U, a ∗ f = af.

2. For an anti-holomorphic function b on U, f ∗ b = fb.

Furthermore, inspired by Karabegov’s idea, a construction method for a locally symmetric Kähler man-
ifold, i.e. a Kähler manifold such that ∇∂ER

D
ABC = 0 for A,B,C,D,E ∈

{
1, · · · , N, 1, · · · , N

}
, was

later proposed by Sako-Suzuki-Umetsu [54, 55] and Hara-Sako [22, 23]. Some notations in this paper are
explained in more detail in Appendix A.

In this paper, we propose an explicit formula that gives a deformation quantization with separation of
variables for a complex two-dimensional locally symmetric Kähler manifold. This main result that is given
in Theorem 3.3 in Section 3 gives the explicit star product which is expanded in differential operators
whose coefficients consist of covariantly constant. Each coefficient is explicitly determined by some ma-
trix multiplications, and it contains the Riemann curvature tensor. This theorem is shown by solving the
recurrence relations given by Hara-Sako [22, 23]. To explain our main result, we must introduce several
definitions. So we shall not state our main theorem concretely, here.

This paper is organized mainly into four Sections and three Appendices. In Section 2, we review the pre-
vious works by Karabegov [30, 31] and Hara-Sako [22, 23], as the background concerning a deformation
quantization with separation of variables for Kähler manifolds. In Section 3, we show our main results
which are the explicit formula to give the star product and the identities. In Section 4, we construct
concrete examples for C

2 and CP 2 and they reproduce the previous results. In Section 5, we state future
works related to our main results from both mathematical and physical perspectives. In each Appendices
A–C, we describe the properties and detailed calculations used in this paper. In Appendix A, we sum-
marize some properties of Kähler manifolds used in this paper. In Appendix B, we calculate in detail the
identity (31) in Subsection 3.2 for the 2nd order. In Appendix C, the Hermiteness of the coefficients of a
star product is shown.
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2 Review of Noncommutative Kähler manifolds

The Quantization of Kähler manifolds was studied by Berezin [5, 6], Moreno [40, 41], Cahen-Gutt-
Rawnsley [11, 12, 13, 14], Karabegov [30, 31], Omori-Maeda-Miyazaki-Yoshioka [46], Schlichenmaier [60,
61, 62, 63, 64, 65, 66], Karabegov-Schlichenmaier [32], Sako-Suzuki-Umetsu [54, 55] and Hara-Sako [22, 23].
In particular, Karabegov’s method was proposed as a way to give noncommutative Kähler manifolds via
a deformation quantization with separation of variables. After that, Sako-Suzuki-Umetsu and Hara-Sako
methods were proposed for a locally symmetric case, inspired by this method. In addition, Sako-Suzuki-
Umetsu was mentioned the Fock representations of noncommutative CPN and CHN . Moreover, these
previous results were generalized for any noncommutative Kähler manifolds by Sako-Umetsu [57, 58, 59].
In Section 2.1, we review the methods by Karabegov as the background of this paper, and in Section
2.2, we review the method by Hara-Sako since our result is obtained from the recurrence relations in this
method.

2.1 Noncommutative Kähler manifolds

Berezin proposed a general definition of quantization and constructed the quantization of Kähler mani-
folds in the case of phase space via symbol algebras [5, 6]. The coherent states of Kähler manifolds arising
from the geometric quantization of Kostant [36] and Souriau [67] have also been studied by Rawnsley [49].
It is known that this coherent state is related to Berezin quantization. See [48] for more detail. After
that, the deformation quantization of Kähler manifolds have been provided by Moreno [40, 41] and Omori-
Maeda-Miyazaki-Yoshioka [46]. The relations between deformation quantization and Berezin quantization
have been studied by Cahen-Gutt-Rawnsley [11, 12, 13, 14]. It has also studied the quantization of Kähler
manifolds via Toeplitz quantization by Bordemann et al. [8]. Furthermore, Karabegov and Schlichenmaier
have provided Berezin-Toeplitz quantization in the case of compact Kähler ones [60, 61, 62, 63, 64, 66].
These previous works related to Berezin-Toeplitz quantizations for Kähler manifolds were reviewed by
Schlichenmaier [65]. From the other angle of the quantization, the construction method of noncommu-
tative Kähler manifolds was studied via the deformation quantization with separation of variables by
Karabegov [30, 31]. Moreover, for any noncommutative Kähler manifolds obtained by Karabegov’s con-
struction, Sako-Umetsu constructed Fock representations of them [57, 58]. In this subsection, we review
Karabegov’s method and Fock representations of noncommutative Kähler manifolds by Sako-Umetsu.

Let M be an N -dimensional Kähler manifold and U ⊂M be a holomorphic coordinate neighborhood of
M . We choose a local holomorphic coordinates by

(
z1, · · · , zN

)
. For a Kähler manifolds, a Kähler 2-form

ω and a Kähler metric g can be locally expressed by using a Kähler potential Φ as follows:

ω = igkl̄dz
k ∧ dz̄l, gkl̄ =

∂2Φ

∂zk∂z̄l
.

Note that we use the Einstein summation convention on the above. We also denote the inverse matrix of
(
gkl
)

by
(

gkl
)

. Here we introduce the differential operators Dk,Dk defined by

Dk := gkl∂l, Dk := gkl∂l.

We define the set of differential operators

S :=

{

A

∣
∣
∣
∣
∣
A =

∑

α

aαD
α, aα ∈ C∞ (U)

}

,
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where α = (α1, . . . , αN ) is a multi-index, i.e. Dα :=
(

D1̄
)α1

· · ·
(

DN̄
)αN

. We can construct the left

star-multiplication operator Lf for f ∈ C∞ (U) such that Lfg := f ∗ g:

Theorem 2.1 (Karabegov[30]). Let M be an N -dimensional Kähler manifold, U be a holomorphic
coordinate neighborhood on M , and ω be a Kähler form on M . Then, there is the left star-multiplication
operator

Lf =

∞∑

n=0

~
nAn, f ∈ C∞ (U) ,

where An := an,α (f)Dα ∈ S are differential operators whose coefficients an,α (f) ∈ C∞ (U) depend on f .
Lf is determined by the following conditions:

1.
[

Lf , R∂
l
Φ

]

= 0, where R∂
l
Φ = ∂lΦ + ~∂l,

2. Lf1 = f ∗ 1 = f ,

3. For any g, h ∈ C∞ (U), the left star-multiplication operator is associative, i.e.

Lf (Lgh) = f ∗ (g ∗ h) = (f ∗ g) ∗ h = LLf gh.

By using the definition of the separation of variables and the commutation relations of the star-multiplication
operators, we obtain the following commutation relations concerning zi, zi, ∂iΦ and ∂iΦ.

[
1

~
∂iΦ, zj

]

∗
= δij ,

[
zi, zj

]

∗ = 0, [∂iΦ, ∂jΦ]∗ = 0 (1)

[

zi,
1

~
∂jΦ

]

∗
= δij ,

[
zi, zj

]

∗ = 0,
[

∂iΦ, ∂jΦ
]

∗
= 0. (2)

Note that the commutator [·, ·]∗ is defined by [A,B]∗ := A ∗B −B ∗ A. Here, we introduce the creation
and annihilation operators as follows:

a†i = zi, ai =
1

~
∂iΦ, ai = z̄i, a†i =

1

~
∂īΦ (i = 1, · · · , N) . (3)

Then, the commutation relations (1) and (2) can be rewritten as

[

ai, a
†
j

]

∗
= δij ,

[

a†i , a
†
j

]

∗
= 0,

[
ai, aj

]

∗ = 0 (4)
[

ai, a
†
j

]

∗
= δij , [ai, aj ]∗ = 0,

[

a†i , a
†
j

]

∗
= 0. (5)

Since
[

ai, a
†
i

]

∗
6= 0,

[

ai, a
†
j

]

∗
6= 0 in general, these relations are slightly different from the ordinary

canonical commutation relation. From the above operators, the (twisted) Fock space is defined by a
vector space spanned by the basis

|~n〉 = |n1, · · · , nN 〉 =
1√
~n!

(

a†1

)n1

∗
∗ · · · ∗

(

a†N

)nN

∗
∗ |~0〉, (6)

4



where a vacuum |~0〉 = |0, · · · , 0〉 is the vector such that

ai ∗ |~0〉 = 0, (i = 1, · · · , N), (7)

and ~n! = n1! · · · nN !. Note that (A)n∗ is the product of multiplying n by the star product ∗, i.e. (A)n∗ :=
A ∗ · · · ∗A
︸ ︷︷ ︸

n times by ∗

. Similarly, the dual basis for |~n〉 is defined by

〈~m| = 〈m1, · · · ,mN | = 〈~0| ∗ (a1)
m1
∗ ∗ · · · ∗ (aN )mN

∗
1√
~m!

, (8)

where 〈~0| is the (dual) vector for a vacuum |~0〉 such that

〈~0| ∗ a†i = 0, (i = 1, · · · , N), (9)

and ~m! = m1! · · ·mN !. Note that 〈~m| does not imply Hermitian conjugate of |~m〉, i.e. 〈~m| 6= |~m〉†.
Definition 2.2. Let M be a Kähler manifold and U be a holomorphic coordinate neighborhood on M .
Then, the (local) twisted Fock algebra (representation) FU is defined by

FU :=







∑

~n,~m

A~n~m|~n〉〈~m|

∣
∣
∣
∣
∣
∣

A~n~m ∈ C






. (10)

FU is defined as the algebra which is given by the creation and annihilation operators in (3) and star-
multiplication between each element of FU . Moreover, we can concretely express the coefficient functions
A~n~m which are the elements of FU . We expand a function exp Φ(z, z̄)/~ as a power series,

eΦ(z,z̄)/~ =
∑

~m,~n

H~m,~n(z)~m(z̄)~n (11)

where (z)~n = (z1)n1 · · · (zN )nN and (z̄)~n = (z̄1)n1 · · · (z̄N )nN . The creation and annihilation operators

a†i , ai act on the bases as follows,

a†i ∗ |~m〉〈~n| =
√
mi + 1|~m + ~ei〉〈~n|, ai ∗ |~m〉〈~n| =

√
mi|~m− ~ei〉〈~n|, (12)

|~m〉〈~n| ∗ a†i =
√
ni|~m〉〈~n− ~ei|, |~m〉〈~n| ∗ ai =

√
ni + 1|~m〉〈~n + ~ei|, (13)

where ~ei is a unit vector, (~ei)j = δij . The action of ai and a†i is derived by the Hermitian conjugation
of the above equations. The results of the twisted Fock representation of the noncommutative Kähler
manifolds are summarized as the dictionary in the Table 1:

Table 1: Functions - Fock operators Dictionary
Functions Fock operators

e−Φ/~ |~0〉〈~0|
zi a†i

1

~
∂iΦ ai

z̄i ai =
∑

√

~m!

~n!
H

~m,~k
H−1

~k+~ei,~n
|~m〉〈~n|

1

~
∂īΦ a†i =

∑
√

~m!

~n!
(ki + 1)H~m,~k+~ei

H−1
~k,~n
|~m〉〈~n|

5



For physics, it is difficult to interpret formal power series. So this Fock representation is useful to
construct physics theories like field theories on noncommutative Kähler manifolds. We will discuss this
point in Section 5.

2.2 Deformation quantization with separation of variables for locally symmetric

Kähler manifold

Let M be a complex N -dimensional locally symmetric Kähler manifold, U be a holomorphic coordinate
neighborhood of M . For any f, g ∈ C∞ (U) , we assume the following form for a star product with
separation of variables on M by Sako-Suzuki-Umetsu [54, 55] and Hara-Sako [22, 23] :

f ∗ g = Lfg :=

∞∑

n=0

∑

−→αn,
−→
β∗

n

T n
−→αn,

−→
β∗

n

(

D
−→αnf

)(

D
−→
β∗

ng
)

. (14)

Here Lf is a left star-multiplication operator with respect to f , and D
−→αn ,D

−→
β∗

n are differential operators
defined by

Dk := gkl∂l, Dk := gkl∂l,

D
−→αn := Dαn

1 · · ·Dαn
N , Dαn

k :=
(

Dk
)αn

k
,

D
−→
β∗

n := D
−→
βn = Dβn

1 · · ·Dβn
N , Dβn

k :=
(

Dk
)βn

k
,

−→αn,
−→
βn ∈

{

(γn1 , · · · , γnN ) ∈ Z
N

∣
∣
∣
∣
∣

N∑

k=1

γnk = n

}

,

respectively, where
{

(γn1 , · · · , γnN ) ∈ Z
N
∣
∣
∣
∑N

k=1 γ
n
k = n

}

is a N -dimensional module such that a sum of all

components is a non-negative integer n. If there exists at least one negative αn
k /∈ Z≥0 for k ∈ {1, · · · , N},

then we define D
−→αn := 0. We define D

−→
β∗

n := 0 in the same way when
−→
β∗
n has negative components. Note

that (14) is not a power series in the formal parameter ~, but a power series in the differential operators
Dk and Dk̄. Since M is locally symmetric, the coefficients of the star product T n

−→αn,
−→
β∗

n

can be assumed

to be covariantly constants. If −→αn /∈ Z
n
≥0 or

−→
βn /∈ Z

n
≥0, then we define T n

−→αn,
−→
β∗

n

:= 0 as well as D
−→αn and

D
−→
βn . In the following discussion, we shall omit ∗ when

−→
β∗
n is expressed in explicit form. For example, if−→

β∗
n = (1, 2, 3)∗ , then we denote (1, 2, 3)∗ = (1, 2, 3). It is known that the coefficient T n

−→αn,
−→
β∗

n

for the zeroth

and first orders in f ∗ g are given below.

Proposition 2.3 (Hara-Sako[22, 23]). For a star product with separation of variables ∗ on U,

T 0
−→α0,

−→
β∗

0

= 1, T 1−→ei ,−→ej = ~gij ,

where −→ei = (δ1i, · · · , δNi) .

In other words, Proposition 2.3 states that for any complex N -dimensional locally symmetric Kähler
manifold, the zeroth and first orders are completely determined.
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Theorem 2.4 (Hara-Sako[22, 23]). For f, g ∈ C∞ (M) , there exists a star product with separation of
variables ∗ such that

Lfg := f ∗ g =

∞∑

n=0

∑

−→αn,
−→
β∗

n

T n
−→αn,

−→
β∗

n

(

D
−→αnf

)(

D
−→
β∗

ng
)

, (f, g ∈ C∞ (M)) ,

where the coefficient T n
−→αn,

−→
β∗

n

satisfies the following recurrence relation :

N∑

d=1

~gidT
n−1
−→αn−−→ed,

−→
β∗

n−−→ei

= βn
i T

n
−→αn,

−→
β∗

n

+
N∑

k=1

N∑

ρ=1

~ (βn
k − δkρ − δik + 1) (βn

k − δkρ − δik + 2)

2
R k k

ρ i
T n
−→αn,

−→
β∗

n−−→eρ+2−→ek−−→ei

+

N−1∑

k=1

N−k∑

l=1

N∑

ρ=1

~ (βn
k − δkρ − δik + 1)

(
βn
k+l − δk+l,ρ − δi,k+l + 1

)
R k+l k

ρ i
T n
−→αn,

−→
β∗

n−−→eρ+−→ek+−−→ek+l−−→ei
.

These recurrence relations in Theorem 2.4 are equivalent to the equations (6.9) in [54]. Hence, from
Theorem 2.4, a star product with separation of variables on any complex N -dimensional locally symmetric
Kähler manifold is obtained. However, finding a general term T n

−→αn,
−→
β∗

n

that satisfies this system of recurrence

relations is not easy, except in the one-dimensional case.

Proposition 2.5 (Hara-Sako[22, 23]). Let M be a one-dimensional locally symmetric Kähler manifold,
and U be an open set of M . For f, g ∈ C∞ (U), the star product f ∗ g is given by

f ∗ g =

∞∑

n=0

[

(g11)n

{
n∏

k=1

4~

4k + ~k (k − 1)R

}{(

g11
∂

∂z

)n

f

}{(

g11
∂

∂z

)n

g

}]

,

where R = 2R 11
1 1

is the scalar curvature on M .

Note that Proposition 2.5 is corrected some errata for the one-dimensional formula in [22, 23]. This
proposition can be shown by direct calculations since the recurrence relation is a simple expression in the
one-dimensional case.

On the other hand, T n
−→αn,

−→
β∗

n

were only obtained for n = 0, 1 and 2 for the two-dimensional case. The

following proposition is shown by directly solving the recurrence relation in Theorem 2.4 for n = 2.

Proposition 2.6 (Hara-Sako[22, 23]). Let M be a complex two-dimensional locally symmetric Kähler
manifold. Then the coefficients T 2

−→α2,
−→
β∗

2

are given by

(
T 2
ij

)
= ~

2A2X
−1
2 ,

where

T 2
ij := T 2

(3−i,i−1),(3−j,j−1),

7



A2 :=





(g1̄1)2 g1̄1g2̄1 (g2̄1)2

2g1̄1g1̄2 g1̄2g2̄1 + g1̄1g22̄ 2g2̄1g2̄2
(g1̄2)2 g2̄1g2̄2 (g2̄2)2



 ,

X2 :=





2 + ~R 1̄1̄
1̄ 1̄

~R 1̄1̄
2̄ 1̄

~R 1̄1̄
2̄ 2̄

~R 2̄1̄
1̄ 1̄

1 + ~R 2̄1̄
2̄ 1̄

~R 2̄1̄
2̄ 2̄

~R 2̄2̄
1̄ 1̄ ~R 2̄2̄

2̄ 1̄ 2 + ~R 2̄2̄
2̄ 2̄



 .

We have reviewed the previous works. In general, solving recurrence relations is not easy. In particular,
when we attempt to obtain the general term using a matrix representation, we need a square matrix of
order n+1. In addition, the matrix size increases with increasing order. Therefore, it had been considered
difficult to obtain the general term. In this paper, we find that the expression of the general term does
not become unlimitedly complex, and succeed in getting the general term by using this fact. We shall
see that in the following sections. In Section 3, we are going to describe the coefficients T n

−→αn,
−→
β∗

n

for any

n ∈ Z≥0.

3 Star product with separation of variables for a complex

two-dimensional locally symmetric Kähler manifold

In this section, we construct the formula that explicitly determines a star product with separation of
variables for a complex two-dimensional locally symmetric Kähler manifold. In other words, we construct
the solution of the recurrence relations in Theorem 2.4 for the two-dimensional case in this section.

3.1 Complex two-dimensional formula

The explicit formula for the coefficient T n
−→αn,

−→
β∗

n

for any order n ∈ Z≥0 is obtained by not dealing with the

recurrence relations independently but attributing them to one recurrence relation.

Theorem 3.1. Let M be a complex two-dimensional locally symmetric Kähler manifold, U be an open
set of M , and ∗ be a star product with separation of variables on U such that

f ∗ g =
∞∑

n=0

∑

−→αn,
−→
β∗

n

T n
−→αn,

−→
β∗

n

(

D
−→αnf

)(

D
−→
β∗

ng
)

=

∞∑

n=0

n+1∑

i,j=1

T n
ij

{(
D1
)n−i+1 (

D2
)i−1

f
}{(

D1
)n−j+1 (

D2
)j−1

g

}

for f, g ∈ C∞ (U) . Then,

TnXn = ~A′
n, (15)

where

Tn :=
(
T n
ij

)
∈Mn+1 (C [[~]]) ,

T n
ij := T n

(n−i+1,i−1),(n−j+1,j−1),

8



A′
n =

(

A
′n
ij

)

=





2∑

k,l=1

gklT
n−1
i−δ2l,j−δ2k



 ∈Mn+1 (C [[~]]) ,

and Xn ∈Mn+1 (C [[~]]) is a pentadiagonal matrix such that these components are given as follows :

Xn
j−2,j =

(n−j+3
2

)
~R 1̄1̄

2̄ 2̄,

Xn
j−1,j = 2

(
n−j+2

2

)
~R 1̄1̄

2̄ 1̄ + (n− j + 2) (j − 2) ~R 2̄1̄
2̄ 2̄,

Xn
j,j = n +

(n−j+1
2

)
~R 1̄1̄

1̄ 1̄ +
(j−1

2

)
~R 2̄2̄

2̄ 2̄ + 2 (n− j + 1) (j − 1)~R 2̄1̄
2̄ 1̄,

Xn
j+1,j = 2

(
j
2

)
~R 2̄2̄

2̄ 1̄ + j (n− j) ~R 2̄1̄
1̄ 1̄,

Xn
j+2,j =

(j+1
2

)
~R 2̄2̄

1̄ 1̄,

Xn
j,k = 0 (|j − k| > 2) ,

where
(m
n

)
is a binomial coefficient.

Proof. Note that, −→αn = (αn
1 , α

n
2 ) and

−→
βn = (βn

1 , β
n
2 ) satisfy αn

1 + αn
2 = βn

1 + βn
2 = n. All possible

combinations of T n
−→αn,

−→
β∗

n

are (n + 1)2 ways :

T n
(n,0),(n,0) · · · T n

(n,0),(0,n),
...

. . .
...

T n
(0,n),(n,0) · · · T n

(0,n),(0,n).

The recurrence relations for these T n
−→αn,

−→
β∗

n

satisfies

2∑

d=1

~gidT
n−1
−→αn−−→ed,

−→
β∗

n−−→ei

= βn
i T

n
−→αn,

−→
β∗

n

+

2∑

k=1

2∑

c=1

~ (βn
k − δkc − δik + 1) (βn

k − δkc − δik + 2)

2
R k k

c i
T n
−→αn,

−→
β∗

n−−→ec+2−→ek−−→ei

+

2∑

c=1

~ (βn
1 − δ1c − δi1 + 1) (βn

2 − δ2c − δi2 + 1)R 2 1
c i

T n
−→αn,

−→
β∗

n−−→ec+−→e1+−→e2−−→ei
(16)

from Theorem 2.4, and two types of them for i = 1, 2 exist. Both sides of these recurrence relations are
linear combinations of some T n

−→αn,
−→
β∗

n

. So we now make one new recurrence relation below by summing over

the index i on both sides of them.

2∑

i,d=1

~gidT
n−1
−→αn−−→ed,

−→
β∗

n−−→ei

=

2∑

i=1

βn
i T

n
−→αn,

−→
β∗

n

+

2∑

i,k,c=1

~ (βn
k − δkc − δik + 1) (βn

k − δkc − δik + 2)

2
R k k

c i
T n
−→αn,

−→
β∗

n−−→ec+2−→ek−−→ei

+

2∑

i,c=1

~ (βn
1 − δ1c − δi1 + 1) (βn

2 − δ2c − δi2 + 1)R 2 1
c i

T n
−→αn,

−→
β∗

n−−→ec+−→e1+−→e2−−→ei
. (17)
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Using the fact αn
1 + αn

2 = n and βn
1 + βn

2 = n, we can redefine the coefficients T−→αn,
−→
β∗

n
as

T n
i,j := T n

−→αn,
−→
β∗

n

, i := αn
2 + 1, j := βn

2 + 1.

Then the recurrence relation (17) is rewritten as

~

2∑

k,l=1

gklT
n−1
i−δ2l,j−δ2k

= Xn
j−2T

n
i,j−2 + Xn

j−1T
n
i,j−1 + Xn

j T
n
i,j + Xn

j+1T
n
i,j+1 + Xn

j+1T
n
i,j+2, (18)

where each Xn
j is given as

Xn
j−2 =

(n−j+3
2

)
~R 1̄1̄

2̄ 2̄,

Xn
j−1 = 2

(
n−j+2

2

)
~R 1̄1̄

2̄ 1̄ + (n− j + 2) (j − 2) ~R 2̄1̄
2̄ 2̄,

Xn
j = n +

(n−j+1
2

)
~R 1̄1̄

1̄ 1̄ +
(j−1

2

)
~R 2̄2̄

2̄ 2̄ + 2 (n− j + 1) (j − 1)~R 2̄1̄
2̄ 1̄,

Xn
j+1 = 2

(
j
2

)
~R 2̄2̄

2̄ 1̄ + j (n− j) ~R 2̄1̄
1̄ 1̄,

Xn
j+2 =

(j+1
2

)
~R 2̄2̄

1̄ 1̄,

respectively. We put that Xn
j := 0 when j < 0 or j > n + 1. Here, introducing each Xn

k,j for k =
1, · · · , j, · · · , n + 1 by

(
0 · · · 0 Xn

j−2,j Xn
j−1,j Xn

j,j Xn
j+1,j Xn

j+2,j 0 · · · 0
)T

:=
(

0 · · · 0 Xn
j−2 Xn

j−1 Xn
j Xn

j+1 Xn
j+2 0 · · · 0

)T
,

then the right-hand side of the recurrence relation (18) can be written as

(r.h.s.) =
(
T n
i,1 · · · T n

i,n+1

) (
0 · · · 0 Xn

j−2,j Xn
j−1,j Xn

j,j Xn
j+1,j Xn

j+2,j 0 · · · 0
)T

.

Furthermore, to summarize the recurrence relation (18) by a matrix representation, we introduce A
′n
ij for

the left-hand side and Xj for the right-hand side as

A
′n
ij :=

2∑

k,l=1

gklT
n−1
i−δ2l,j−δ2k

Xj :=
(

0 · · · 0 Xn
j−2,j Xn

j−1,j Xn
j,j Xn

j+1,j Xn
j+2,j 0 · · · 0

)T
,

respectively. Thus, by summarizing the recurrence relation (18) for each i and using a matrix represen-
tation, we have

~A′
n = TnXn

for the coefficient T n
i,j = T n

−→αn,
−→
β∗

n

, where Tn :=
(

T n
ij

)

, A′
n =

(

A
′n
ij

)

∈Mn+1 (C [[~]]), and

Xn = (X1, · · · ,Xn+1)
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=































Xn
11 Xn

12 Xn
13 0 0 0

Xn
21 Xn

22 Xn
23 Xn

24 0
. . .

Xn
31 Xn

32 Xn
33 Xn

34 Xn
35

. . .
. . .

0 Xn
22 Xn

43 Xn
44 Xn

45
. . .

. . .
. . .

0 0 Xn
53 Xn

54 Xn
55

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . Xn
n−3,n−3 Xn

n−3,n−2 Xn
n−3,n−1 0 0

. . .
. . .

. . . Xn
n−2,n−3 Xn

n−2,n−2 Xn
n−2,n−1 Xn

n−2,n 0
. . .

. . . Xn
n−1,n−3 Xn

n−1,n−2 Xn
n−1,n−1 Xn

n−1,n Xn
n−1,n+1

. . . 0 Xn
n,n−2 Xn

n,n−1 Xn
n,n Xn

n,n+1

0 0 0 Xn
n+1,n−1 Xn

n+1,n Xn
n+1,n+1































.

This proof was completed.�

Here, we note the fact with respect to Xk that each X−1
k , the inverse matrix of each Xk, is determined

by a formal power series with respect to a matrix Hk ∈ Mk+1 (C) . Here Hk is a pentadiagonal matrix
such that each component depends on Riemann curvature tensors on M . We decompose Xk into the two
matrices:

Xk = kIdk+1 + ~Hk,

where Hk is given as follows :

Hk
j−2,j =

(
k−j+3

2

)
R 1̄1̄

2̄ 2̄,

Hk
j−1,j = 2

(k−j+2
2

)
R 1̄1̄

2̄ 1̄ + (k − j + 2) (j − 2)R 2̄1̄
2̄ 2̄,

Hk
j,j =

(k−j+1
2

)
R 1̄1̄

1̄ 1̄ +
(j−1

2

)
R 2̄2̄

2̄ 2̄ + 2 (k − j + 1) (j − 1)R 2̄1̄
2̄ 1̄,

Hk
j+1,j = 2

(j
2

)
R 2̄2̄

2̄ 1̄ + j (k − j)R 2̄1̄
1̄ 1̄,

Hk
j+2,j =

(j+1
2

)
R 2̄2̄

1̄ 1̄,

Hk
j,l = 0 (|j − l| > 2) .

Then, X−1
k is given by

X−1
k =

∞∑

p=0

(−~)p

kp+1
(Hk)p . (19)

Note that, since a power of a pentadiagonal matrix is not a pentadiagonal matrix in general, Xk is
pentadiagonal but X−1

k is not always pentadiagonal.

For each n ∈ Z≥0, Tn ∈ Mn+1 (C [[~]]) , (15) is also a square matrix of order n + 1. These matrices are
not a unified expression, as the size of matrices depends on n, then it is inconvenient to solve the general
term. This problem can be solved by embedding “finite-dimensional” matrices into “infinite-dimensional”

11



matrices, and such a procedure provides a unified expression for n ≥ 2. For matrices A ∈Mn (C [[~]]) the
embedding of A is carried out so that the component whose row or column is greater than n is 0. That
is, the embedding is

A =






a11 · · · a1n
...

. . .
...

an1 · · · ann




 7→ A (∞) :=













a11 · · · a1n
...

. . .
... 0

an1 · · · ann

0 0













=

(
A 0

0 0

)

. (20)

In the following calculations, we use Idn, Id (∞), Fd,n, Fd (∞) Fr,n and Fr (∞) given by

Idn =






1 0
. . .

0 1




 , Id (∞) =






1 0
0 1

. . .




 , (21)

Fd,n =








0
1 0

. . .
. . .

1 0








, Fd (∞) =








0
1 0

1 0
. . .

. . .








, (22)

Fr,n = F T
d,n, Fr (∞) = Fd (∞)T . (23)

Remark 3.2. Note that multiplying Fd,n from the left corresponds to “shifting the components of the
matrix downward by one position, with zeros appearing in the top row”. And multiplying Fr,n from
the right corresponds to “shifting the components of the matrix rightward by one position, with zeros
appearing in the first column”. Fd (∞) and Fr (∞) correspond to their infinite-dimensional versions.

From Proposition 2.3, the embeddings of T0 (∞) and T1 (∞) are

T0 = (1) 7→ T0 (∞) :=

(
T0 0

0 0

)

=






1 0 · · ·
0 0
...

. . .




 ,

T1 = ~

(
g11̄ g12̄
g21̄ g22̄

)

7→ T1 (∞) :=

(
T1 0

0 0

)

= ~








g11̄ g12̄ 0 · · ·
g21̄ g22̄ 0
0 0 0
...

. . .








,

respectively. Similarly, (15) in Theorem 3.1 is embedded as

Tn (∞) = ~A′
n (∞)X−1

n (∞) , (24)

where A′
n (∞) and X−1

n (∞) are

A′
n (∞) :=

(
A′

n 0

0 0

)

, X−1
n (∞) :=

(
X−1

n 0

0 0

)

.
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Note that X−1
n (∞) is not the inverse matrix of Xn (∞). As we saw in Theorem 3.1, A′

n ∈ Mn+1 (C [[~]])
is expressed as

A′
n =





2∑

k,l=1

gklT
n−1
i−δ2l,j−δ2k



 =
(

g11T
n−1
i,j + g12T

n−1
i−1,j + g21T

n−1
i,j−1 + g22T

n−1
i−1,j−1

)

.

Recall that T n−1
i,j = 0 if i < 0, i > n− 1, j < 0 or j > n− 1 by definition. By a matrix representation

(

g11T
n−1
i,j + g12T

n−1
i−1,j + g21T

n−1
i,j−1 + g22T

n−1
i−1,j−1

)

= g11

(
Tn−1 0n−1

0Tn−1 0

)

+ g12

(
0Tn−1 0

Tn−1 0n−1

)

+ g21

(
0n−1 Tn−1

0 0Tn−1

)

+ g22

(
0 0Tn−1

0n−1 Tn−1

)

with Tn−1 which is the square matrix of order n, where 0n−1 is an n − 1 dimensional zero vector. Since
these matrices can be expressed as

(
Tn−1 0n−1

0Tn−1 0

)

=Idn+1

(
Tn−1 0n−1

0Tn−1 0

)

Idn+1,

(
0Tn−1 0

Tn−1 0n−1

)

=Fd,n+1

(
Tn−1 0n−1

0Tn−1 0

)

Idn+1,

(
0n−1 Tn−1

0 0Tn−1

)

=Idn+1

(
Tn−1 0n−1

0Tn−1 0

)

Fr,n+1,

(
0 0Tn−1

0n−1 Tn−1

)

=Fd,n+1

(
Tn−1 0n−1

0Tn−1 0

)

Fr,n+1,

using Idn+1, Fd,n+1 and Fr,n+1, respectively, then we have

g11

(
Tn−1 0n−1

0Tn−1 0

)

+ g12

(
0Tn−1 0

Tn−1 0n−1

)

+ g21

(
0n−1 Tn−1

0 0Tn−1

)

+ g22

(
0 0Tn−1

0n−1 Tn−1

)

= g11Idn+1

(
Tn−1 0n−1

0Tn−1 0

)

Idn+1 + g12Fd,n+1

(
Tn−1 0n−1

0Tn−1 0

)

Idn+1

+ g21Idn+1

(
Tn−1 0n−1

0Tn−1 0

)

Fr,n+1 + g22Fd,n+1

(
Tn−1 0n−1

0Tn−1 0

)

Fr,n+1.

By introducing some functions Θp
µ̄,Θ

p
ν ∈ C∞ (U) (p ∈ {1, · · · , 4}) such that gµν = Θp

µ̄Θp
ν , A′

n can be
expressed as

A′
n =

4∑

p=1

(Θp
1Idn+1 + Θp

2Fd,n+1)

(
Tn−1 0n−1

0Tn−1 0

)
(
Θp

1̄
Idn+1 + Θp

2̄
Fr,n+1

)
.

These Θp
µ̄ and Θp

ν play a similar role of “a vierbein”, but not a vierbein because they are not necessarily
to be orthonormal. Furthermore, by introducing the new matrices F p

n , Bp
n ∈Mn+1 (C [[~]]) as

F p
n := Θp

1Idn+1 + Θp
2Fd,n+1, Bp

n := Θp
1̄
Idn+1 + Θp

2̄
Fr,n+1

13



respectively, A′
n is expressed as

A′
n =

4∑

p=1

F p
n

(
Tn−1 0n−1

0Tn−1 0

)

Bp
n,

so A′
n (∞) , that is, the embedding matrix for A′

n, is expressed as

A′
n (∞) =

4∑

p=1

F p
n (∞)Tn−1 (∞)Bp

n (∞) .

Here, F p
n and Bp

n were replaced by F p
n (∞) and Bp

n (∞), where

F p
n (∞) := Θp

1Id (∞) + Θp
2Fd (∞) , Bp

n (∞) := Θp
1̄
Id (∞) + Θp

2̄
Fr (∞) . (25)

Therefore, Tn (∞) is obtained as

Tn (∞) = ~

4∑

p=1

F p
n (∞)Tn−1 (∞)Bp

n (∞)X−1
n (∞) .

By using recursively the above procedure, we obtain the following main theorem.

Theorem 3.3 (Main result). Let M be a complex two-dimensional locally symmetric Kähler manifold, U
be an open set of M , and ∗ be a star product with separation of variables on M . For f, g ∈ C∞ (U) , f ∗g
is given by

f ∗ g =

∞∑

n=0

n+1∑

i,j=1

T n
ij

{(
D1
)n−i+1 (

D2
)i−1

f
}{(

D1̄
)n−j+1 (

D2̄
)j−1

g

}

.

Here each of the coefficient T n
ij is

Tn (∞)ij =

{

T n
ij (1 ≤ i, j ≤ n + 1)

0 (otherwise)
,

and Tn (∞) is determined by

Tn (∞) = ~
n

4∑

p1,··· ,pn=1

F pn
n (∞) · · ·F p1

1 (∞)T0 (∞)
(
Bp1

1 (∞)X−1
1 (∞)

)
· · ·
(
Bpn

n (∞)X−1
n (∞)

)
, (26)

where each F pk
k (∞), Bpk

k (∞) and X−1
k (∞) are given as above.

From Theorem 3.3, we obtain a deformation quantization with separation of variables for complex two-
dimensional locally symmetric Kähler manifold is realized by this star product.
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3.2 Another formula

The formula (26) was obtained by summation with respect to the index i of the complex coordinate in
the recurrence relation (16). In Subsection 3.1, we made one recurrence relation by adding two recurrence
relations and determined the solution using only that recurrence relation. On the other hand, we have
not yet considered another recurrence relation. In this subsection, we consider another formula obtained
by “subtracting” for i = 1, 2 rather than “adding” two recurrence relations for i = 1, 2 as we did in
Subsection 3.1.

Theorem 3.4. Let M be a locally symmetric Kähler manifold, U be an open set of M , and f, g ∈
C∞ (U) , ∗ be a star product with separation of variables on U such that

f ∗ g =

∞∑

n=0

n+1∑

i,j=1

T n
ij

{(
D1
)n−i+1 (

D2
)i−1

f
}{(

D1̄
)n−j+1 (

D2̄
)j−1

g

}

.

Then

TnYn = ~C ′
n (27)

or equivalently

Y †
nTn = ~C

′†
n , (28)

where

C ′
n =

(

C
′n
ij

)

=





2∑

k,l=1

(−1)δk2 gklT
n−1
i−δ2l,j−δ2k



 ∈Mn+1 (C [[~]])

and Yn ∈Mn+1 (C [[~]]) is a pentadiagonal matrix such that its components are given as follows :

Y n
j−2,j = −

(n−j+3
2

)
~R 1̄1̄

2̄ 2̄,

Y n
j−1,j = − (n− j + 2) (j − 2) ~R 2̄1̄

2̄ 2̄,

Y n
j,j = n− 2j + 2 +

(n−j+1
2

)
~R 1̄1̄

1̄ 1̄ −
(j−1

2

)
~R 2̄2̄

2̄ 2̄,

Y n
j+1,j = j (n− j) ~R 2̄1̄

1̄ 1̄,

Y n
j+2,j =

(
j+1
2

)
~R 2̄2̄

1̄ 1̄,

Y n
j,k = 0 (|j − k| > 2) .

Proof. This is shown in the same way as in Theorem 3.3.�

Note that equation (27) is also expressed as an embedding version

Tn (∞)Yn (∞) = ~C ′
n (∞) (29)

or equivalently

Y †
n (∞)Tn (∞) = ~C

′†
n (∞) , (30)
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where the embedding Yn (∞) for Yn is as in the way of (20) in Subsection 3.1. Here we use Tn = T †
n. Its

derivation is in Appendix C.

It is known from Karabegov’s result that there is always a star product with separation of variables on
a Kähler manifold [30, 31]. A star product with separation of variables on a locally symmetric Kähler
manifold is determined by (26) in Theorem 3.3. Therefore, Tn (∞) given by (26) should satisfy (29).
To ensure that the result obtained by Theorem 3.3 does not contradict Theorem 3.4, we consider the
following equation:

Y †
nTnXn = ~C

′†
n Xn. (31)

Here, (31) is obtained by multiplying (28) by Xn from the right. This is merely a change to a form that
allows direct substitution of the result of Theorem 3.3. The reason for using (28) rather than (27) is that
X−1

n appears if we try to check (27) directly, and it is difficult to calculate because it is an infinite power
series matrix. In this discussion, we shall simply show only the cases n = 1 and 2.

Case: n = 1

Since Proposition 2.3 and

X1 =

(
X1

11 X1
12

X1
21 X1

22

)

= Id2,

Y1 =

(
Y 1
11 Y 1

12

Y 1
21 Y 1

22

)

=

(
1 0
0 −1

)

,

it follows that

Y †
1 T1X1 = ~

(
g11 g21
−g12 −g22

)

,

C†
1X1 =

(
g11 −g21
g12 −g22

)†
=

(
g11 g21
−g12 −g22

)

.

Therefore Y †
1 T1X1 = ~C ′

1X1 , equivalently Y †
1 (∞)T1 (∞)X1 (∞) = ~C ′

1 (∞)X1 (∞) .

Case: n = 2

Calculations for both sides of (31) yields

Y †
2 T2X2 = ~

2





2 + ~R 11
1 1 ~R 21

1 1 ~R 22
1 1

0 0 0
−~R 11

2 2 −~R 21
2 2 −2− ~R 22

2 2









(g11)
2 2g11g21 (g21)2

2g11g12 2 (g11g22 + g12g21) 2g21g22
(g12)

2 2g12g22 (g22)2



 (32)

and

~C ′
2X2 = ~

2





(g11)2 2g11g21 (g21)
2

0 0 0

− (g12)2 −2g12g22 − (g22)
2









2 + ~R 1̄1̄
1̄ 1̄

2~R 1̄1̄
2̄ 1̄

~R 1̄1̄
2̄ 2̄

~R 2̄1̄
1̄ 1̄

2 + 2~R 2̄1̄
2̄ 1̄

~R 2̄1̄
2̄ 2̄

~R 2̄2̄
1̄ 1̄

2~R 2̄2̄
2̄ 1̄

2 + ~R 2̄2̄
2̄ 2̄



 (33)

respectively. Here we use

T2X2 = ~A′
2 =





(g11)
2 2g11g21 (g21)2

2g11g12 2 (g11g22 + g12g21) 2g21g22
(g12)

2 2g12g22 (g22)2



 . (34)
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Furthermore, each component of both sides of (31) coincides with each other from the calculations (57)–
(74) in Appendix B. Hence, it is shown that (31) for n = 2 holds.

4 Examples

In this section, we describe the deformation quantization with separation of variables for C
2 and CP 2 as

concrete examples realized from Theorem 3.3. The deformation quantizations were already given by the
other methods as we will see in the next subsection. To compare our results with them, we can check if
Theorem 3.3 works well. Moreover, we show that the concrete examples satisfy the identities in Theorem
3.4.

4.1 Previous results for C2 and CP 2

It is known that noncommutative R
2N is the most trivial noncommutative manifold. We can say that the

quantization map from R
2N to noncommutative R

2N is introduced by Dirac [17] because the canonical
quantization is the quantization of phase space R

2N . In the strict deformation quantization case, the
noncommutative plane has also been proposed by Rieffel from the perspective of C∗-algebra [51]. On the
other hand, the deformation quantization of R2N is also the most trivial example in the formal deformation
quantization case. In particular, the Moyal product [42] and the Voros product [68] are well-known
examples of star products on R

2N . Here, a noncommutative R
2N can be regarded as a noncommutative

C
N . For noncommutative CN , the concrete construction is provided by using the deformation quantization

with separation of variables by Karabegov as an example [30]. As another concrete example, we shall
consider here a deformation quantization with separation of variables for CP 2. Previous works related to
noncommutative CPN are known from deformation quantizations and fuzzy geometry. Noncommutative
CPN via a deformation quantizations had constructed by Omori-Maeda-Yoshioka [45], Bordemann et al.
[7], Sako-Suzuki-Umetsu [54, 55], and Hara-Sako [22, 23]. In addition, the (twisted) Fock representation
of noncommutative CPN was given by Sako-Suzuki-Umetsu [54, 55] and Sako-Umetsu [57, 58, 59]. It is
known that this representation is essentially equivalent to ordinary Fock representation. On the other
hand, in fuzzy physics, noncommutative CPN , called fuzzy CPN , had constructed via a matrix algebra.
The construction methods of fuzzy S2, i.e. fuzzy CP 1, had proposed by Hoppe [29] and Madore [37].
Hayasaka-Nakayama-Takaya constructed a star product on S2 from their fuzzy S2 [24]. Furthermore,
more general works were proposed by Grosse-Strohmaier [20], Alexanian et al. [1] for fuzzy CP 2, and
by Balachandran et al. [3], Carow-Watamura-Steinacker-Watamura [15] for CPN . See [38] for other
references. In particular, the Fock representation on fuzzy CPN was also discussed by Alexanian-Pinzul-
Stern [2] and Carow-Watamura-Steinacker-Watamura [15]. In this subsection, we introduce the results
of noncommutative C

2 by Karabegov and Voros, and noncommutative CP 2 by Sako-Suzuki-Umetsu to
compare them with results given by Theorem 3.3 in the following sections.

Theorem 4.1 (Karabegov[31]). For any f, g ∈ C∞ (
C
2
)
, the star product with separation of variables

on C
2 is locally given by

f ∗ g = fexpν
(←−
∂z1
−→
∂z1 +

←−
∂z2
−→
∂z2
)

g. (35)

It is known as the star product which is called “Voros product” [68] and isomorphic to Moyal product
[42]. A simple proof for the isomorphism of them is given by, for example, Section 2.2 in [2]. The star
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product (35) is sometimes called the “Wick product” [7, 9, 10]. For CPN , the noncommutative one had
been constructed by several previous works. In Section 4.3, we compare the star product on CP 2 obtained
by Theorem 3.3 with the previous work by Sako-Suzuki-Umetsu. So we denote the result for CP 2 by
them.

Theorem 4.2 (Sako-Suzuki-Umetsu[54, 55]). For any f, g ∈ C∞ (
CP 2

)
, the star product with separation

of variables on CP 2 is locally given by

f ∗ g =
∞∑

n=0

Γ
(
1− n + 1

~

)
gµ1ν1 · · · gµnνn

n!Γ
(
1 + 1

~

) (Dν1 · · ·Dνnf)
(
Dµ1 · · ·Dµng

)
. (36)

Here µk, νk = 1, 2. Note that we use the Einstein summation convention in Theorem 4.2. In [54, 55], it
is confirmed that the star product on CPN coincides with one obtained by Bordemann et al. [7]. See
[54, 55] for more detail.

4.2 Example of C2

We shall construct a deformation quantization with separation of variables for C
2, the simplest concrete

example via Theorem 3.3, and show that it also reproduces the star product with separation of variables
by Karabegov [31]. Since C

2 is flat, i.e. R D
ABC = 0, each Xk (∞) is a constant multiple of the identity

matrix, and Tn (∞) can be obtained easily.

Proposition 4.3. The formula for determining a star product with separation of variables on C
2 is given

by

Tn (∞) =

(
~

2

)n 1

n!












(n
0

) 0
. . .

(
n
n

)

0 0
. . .












. (37)

Proof. We now take the canonical coordinates z1 = x1 + iy1, z2 = x2 + iy2 as the local coordinates. Since
(gAB), the component matrix of the Kähler metric on C

2, is

(gAB) =







g11 g12 g11 g12
g21 g22 g21 g22
g11 g12 g1 1 g1 2
g21 g22 g2 1 g2 2







:=







gz1z1 gz1z2 gz1z1 gz1z2
gz2z1 gz2z2 gz2z1 gz2z2
gz1z1 gz1z2 gz1z1 gz1z2
gz2z1 gz2z2 gz2z1 gz2z2







=







0 0 1
2 0

0 0 0 1
2

1
2 0 0 0
0 1

2 0 0







,

so the inverse matrix
(
gAB

)
is

(
gAB

)
=








g11 g12 g11 g12

g21 g22 g21 g22

g11 g12 g1 1 g1 2

g21 g22 g2 1 g2 2








:=








gz
1z1 gz

1z2 gz
1z1 gz

1z2

gz
2z1 gz

2z2 gz
2z1 gz

2z2

gz
1z1 gz

1z2 gz
1z1 gz

1z2

gz
2z1 gz

2z2 gz
2z1 gz

2z2








=







0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0







.
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Since gAB , gAB are constant matrices, ΓA
BC = 0

(
A,B,C = 1, 1, 2, 2

)
, therefore R D

ABC = 0. Thus each
Xk ∈ Mk+1 (C [[~]]) (k = 1, · · · , n) is obtained as Xk = kIdk+1, and especially X−1

k = 1
k Idk+1. Next, we

must determine F ik
k and Bik

k . Since the choice of the functions Θik
µ and Θik

ν is not unique, there are many

possible F ik
k and Bik

k . So we shall now simply choose Θik
µ = Θik

µ = 1√
2
δikµ here. We can confirm that these

Θik
µ and Θik

ν recover gµν =
∑4

ik=1 Θik
µ Θik

ν . So in this case

F ik
k =

1√
2

(

δik1Idk+1 + δik2Fd,k+1

)

, Bik
k =

1√
2

(

δik1Idk+1 + δik2Fd,k+1

)

.

By X−1
k = 1

k Idk, we obtain

Tn (∞) =~
n

4∑

i1,··· ,in=1

F in
n (∞) · · ·F i1

1 (∞)T0 (∞)
(

Bi1
1 (∞)X−1

1 (∞)
)

· · ·
(
Bin

n (∞)X−1
n (∞)

)
.

=
~
n

n!

(
1√
2

)2n 4∑

i1,··· ,in=1

(

δin1Id (∞) + δin2Fd (∞)
)

· · ·
(

δi11Id (∞) + δi12Fd (∞)
)

T0 (∞)

·
(

δi11Id (∞) + δi12Fr (∞)
)

· · ·
(

δin1Id (∞) + δin2Fr (∞)
)

.

By using

(
Ak+1 0

0 0

)(
X−1

k 0

0 0

)

=

(
Ak+1 0

0 0

)(
X−1

k 0

0 B

)

for any Ak+1 ∈Mk+1 (C [[~]]) and B ∈M∞ (C [[~]]). The above equation can be written as

Tn (∞) =

(
~

2

)n 1

n!

2∑

µ1,ν1,··· ,µn,νn=1

δµ1ν1 · · · δµnνn (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n))

=

(
~

2

)n 1

n!

2∑

µ1,··· ,µn=1

(Fd (∞))γ(µ(n)) T0 (∞) (Fr (∞))γ(µ(n)) ,

where γ (·) : {1, 2}n → Z≥0 is defined by

γ
(

µ(n)
)

:=

n∑

k=1

[µk

2

]

=

n∑

k=1

δµk2

for multi-indices µ(n) = (µ1, · · · , µn) , and [·] : R → Z is Gauss symbol. We define γ
(
ν(n)

)
in the same

way. In other words, γ (·) : {1, 2}n → Z≥0 gives the number of each µk (or νk ) that is 2. We can rewrite

(
~

2

)n 1

n!

2∑

µ1,··· ,µn=1

(Fd (∞))γ(µ(n)) T0 (∞) (Fr (∞))γ(µ(n)) =

(
~

2

)n 1

n!

n∑

j=0

(
n

j

)

(Fd (∞))j T0 (∞) (Fr (∞))j
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since there are
(
n
j

)
combinations of each µk such that γ

(
µ(n)

)
= j. After summing over j ∈ {1, · · · , n} ,

this is concretely expressed as

(
~

2

)n 1

n!

n∑

j=0

(
n

j

)

(Fd (∞))j T0 (∞) (Fr (∞))j =

(
~

2

)n 1

n!












(n
0

) 0
. . .

(n
n

)

0 0
. . .












by matrix representations. This proof was completed.�

By Theorem 4.3, the coefficients T n
−→αn,

−→
β∗

n

(or T n
ij ) is determined as

T n
−→αn,

−→
β∗

n

= T n
ij =







(
n

i−1

)
~
n

2n · n!
(i = j)

0 (i 6= j)
, (38)

where αn
2 = i− 1 and βn

2 = j − 1. Hence, the star product with separation of variables on C
2 is obtained

as follows :

f ∗ g =

∞∑

n=0

∑

−→αn,
−→
β∗

n

T n
−→αn,

−→
β∗

n

(

D
−→αnf

)(

D
−→
β∗

ng
)

=

∞∑

n=0

n+1∑

i=1

T n
ii

{(
D1
)n−(i−1) (

D2
)i−1

f
}{(

D1
)n−(i−1) (

D2
)i−1

g

}

. (39)

Substituting (38) into the right-hand side of (39),

∞∑

n=0

n+1∑

i=1

T n
ii

{(
D1
)n−(i−1) (

D2
)i−1

f
}{(

D1
)n−(i−1) (

D2
)i−1

g

}

=
∞∑

n=0

n+1∑

i=1

(
~

2

)n 1

n!

(
n

i− 1

){(

g11∂1

)n−(i−1) (

g22∂2

)i−1
f

}{(

g11∂1

)n−(i−1) (

g22∂2

)i−1
g

}

=

∞∑

n=0

(2~)n

n!

n∑

j=0

(
n

j

)(

∂n−j
z1

∂j
z2
f
)(

∂n−j
z1

∂j
z2
g
)

, (40)

where we rewrite i− 1 as j in the last line in (40). Here, using the left (right) differential operator

f
←−
∂zA := ∂zAf,

−→
∂zAg := ∂zAg (A ∈ {1, 2, 1̄, 2̄}) ,

we obtain the star product on C
2 as

f ∗ g =

∞∑

n=0

(2~)n

n!

n∑

j=0

(
n

j

)(

∂n−j
z1

∂j
z2
f
)(

∂n−j
z1

∂j
z2
g
)
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=

∞∑

n=0

(2~)n

n!
f







n∑

j=0

(
n

j

)(←−
∂z1
−→
∂z1
)n−j (←−

∂z2
−→
∂z2
)j






g. (41)

Let us compare the previous result (35) to verify that Theorem 3.3 works well. By using the binomial
theorem for the left and right differential operators in (41), we have

∞∑

n=0

(2~)n

n!
f







n∑

j=0

(
n

j

)(←−
∂z1
−→
∂z1
)n−j (←−

∂z2
−→
∂z2
)j






g =

∞∑

n=0

(2~)n

n!
f
(←−
∂z1
−→
∂z1 +

←−
∂z2
−→
∂z2
)n

g

=fexp2~
(←−
∂z1
−→
∂z1 +

←−
∂z2
−→
∂z2
)

g. (42)

Here, if we put the formal parameter ν as ν := 2~, we obtain f ∗ g = fexpν
(←−
∂z1
−→
∂z1 +

←−
∂z2
−→
∂z2
)

g, which is

the star product with separation of variables by Karabegov (35).

We stated in Subsection 3.1 that Tn (∞) given in (26) solved via Theorem 3.3 satisfies the formula (29)
in Theorem 3.4. So we shall directly verify that Tn (∞) obtained via Theorem 3.3 actually satisfies the
formula (29) in Theorem 3.4 in the case of C2. By Theorem 3.4, Yn is obtained as

Yn =











n 0
n− 2

. . .

−(n− 2)

0 −n











.

The embedding Yn (∞) for Yn is as in the way of (20). Thus,

Tn (∞)Yn (∞) =

(
~

2

)n 1

n!
















n
(
n
0

) 0
(n− 2)

(
n
1

)

. . .

−(n− 2)
( n
n−1

)

0 −n
(n
n

)

0
. . .
















.

On the other hand, ~C
′

n (∞) is calculated as

~C
′

n (∞) =~

(
1

2
Tn−1 (∞)− 1

2
Fd (∞)Tn−1 (∞)Fr (∞)

)

.

We substitute (37) for n− 1, (22), and (23) into the the right-hand side of the above. Then,
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(
~

2

)n 1

(n− 1)!




















(n−1
0

) 0
. . .

(n−1
n−1

)

0 0
0

. . .














−














0 0
(n−1

0

)

. . .

0 (n−1
n−1

)

0
. . .




















=

(
~

2

)n 1

n!
















n
(n
0

) 0
(n− 2)

(n
1

)

. . .

−(n− 2)
( n
n−1

)

0 −n
(
n
n

)

0
. . .
















.

Hence, for any n ∈ Z≥0, the matrix Tn (∞) for C
2 satisfies (30).

4.3 Example of CP 2

In this subsection, we confirm that the deformation quantization with separation of variables for CP 2

obtained via our main result (Theorem 3.3) satisfies the identities in Theorem 3.4 or equivalently (29) in
Subsection 3.2.

Proposition 4.4. The formula for determining a star product with separation of variables on CP 2 is
given by

Tn (∞) =
Γ
(
1− n + 1

~

)

n!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

gµ1ν1 · · · gµnνn (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n)) , (43)

where each gµkνk is Fubini-Study metric and γ (·) : {1, 2}n → Z≥0 is defined by

γ
(

µ(n)
)

:=

2∑

k=1

[µk

2

]

=

2∑

k=1

δµk2, γ
(

ν(n)
)

:=

2∑

k=1

[νk
2

]

=

2∑

k=1

δνk2 (44)

for multi-indices µ(n) = (µ1, · · · , µn) , ν(n) = (ν1, · · · , νn) .

We can prove this proposition by direct calculations of (26) in Theorem 3.3. See [47] for detailed proof
of it. By Proposition 4.4, the star product with separation of variables on CP 2 is obtained by

f ∗ g =

∞∑

n=0

Γ
(
1− n + 1

~

)
gµ1ν1 · · · gµnνn

n!Γ
(
1 + 1

~

) (Dν1 · · ·Dνnf)
(
Dµ1 · · ·Dµng

)
. (45)

Detailed calculations for deriving equation (45) from (43) are also given in [47]. This star product coincides
with (36) by Sako-Suzuki-Umetsu . This result implies that Theorem 3.3 works well.
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As in the case of C2, we shall see that (43) satisfies (29) in Theorem 3.4. By Theorem 3.4, the components
of Yn for CP 2 are calculated as

Y n
i,j =

{

~ {n− 2 (i− 1)}
(
1− n + 1

~

)
(i = j)

0 (i 6= j)
.

Yn (∞) is written as

Yn (∞) = ~

(

1− n +
1

~

)
















n 0
n− 2

. . .

−(n− 2)

0 −n
0

. . .
















. (46)

To calculate Tn (∞)Yn (∞) we use the following proposition.

Proposition 4.5.

(Fd (∞))k T0 (∞) (Fr (∞))l
















n 0
n− 2

. . .

−(n− 2)

0 −n
0

. . .
















= (n− 2l) (Fd (∞))k T0 (∞) (Fr (∞))l , (k, l = 0, · · · , n) .

Proof. Since the properties of Fd (∞) and Fr (∞) in Remark 3.2,

(Fd (∞))k T0 (∞) (Fr (∞))l =

(
(δi,kδj,l) 0

0 0

)

, (47)

where (δi,kδj,l) ∈Mn+1 (C [[~]]) is the square matrix of order n+ 1 such that the (k, l) component is 1 and
the others are 0. And note that the indices k and l are fixed. Then we get the equation. �

By Proposition 4.5, Tn (∞)Yn (∞) is calculated as

Tn (∞)Yn (∞)

=
~
(
1− n + 1

~

)
Γ
(
1− n + 1

~

)

n!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

gµ1ν1 · · · gµnνn

23



· (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n))
















n 0
n− 2

. . .

−(n− 2)

0 −n
0

. . .
















=
~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

2∑

µ1,··· ,µn=1
ν1,··· ,νn=1

gµ1ν1 · · · gµnνn

(

1− 2

n
γ
(

µ(n)
))

(Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n)) .

(48)

Next, we calculate the right-hand side of (29). By Theorem 3.4,

~C
′

n (∞) =~ (g1̄1Tn−1 (∞) + g1̄2Fd (∞)Tn−1 (∞)− g2̄1Tn−1 (∞)Fr (∞)− g2̄2Fd (∞)Tn−1 (∞)Fr (∞)) ,

=
~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

4∑

pn=1

2∑

µ1,ν1,··· ,µn−1,νn−1=1

gµ1ν1 · · · gµn−1νn−1 (Θpn
1 Id (∞) + Θpn

2 Fd (∞))

· (Fd (∞))γ(ν(n−1)) T0 (∞) (Fr (∞))γ(µ(n−1)) (Θpn
1̄

Id (∞)−Θpn
2̄
Fr (∞)

)
. (49)

Here Θik
µ̄ ,Θik

ν ∈ C∞ (U) are the C∞ functions such that gµν =
∑4

ik=1 Θik
µ̄ Θik

ν . We can choose Θik
µ̄ and

Θik
ν concretely [47], but we do not have to. This is because we can carry out the following calculations

without using concrete expressions. The right-hand side of (49) can be rewritten as

4∑

pn=1

(Θpn
1 Id (∞) + Θpn

2 Fd (∞)) (Fd (∞))γ(ν(n−1)) T0 (∞) (Fr (∞))γ(µ(n−1)) (Θpn
1̄

Id (∞)−Θpn
2̄
Fr (∞)

)

=

2∑

µn,νn=1

(

1− 2
[µn

2

])

gµnνn (Fd (∞))(
∑n−1

k=1 [ νk2 ])+[ νn2 ] T0 (∞) (Fr (∞))(
∑n−1

k=1 [µk2 ])+[µn2 ] , (50)

where we use γ
(
µ(n−1)

)
=
∑n−1

k=1

[µk

2

]
, γ
(
ν(n−1)

)
=
∑n−1

k=1

[νk
2

]
and also introduce a new indices µn and

νn.
(
1− 2

[µn

2

])
in the right-hand side of (50) is sign ±1 using the Gauss symbol and −1 when µn = 2.

Then we obtain

~C
′

n (∞) =
~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

(

1− 2
[µn

2

]) 2∑

µ1,ν1,··· ,µn,νn=1

gµ1ν1 · · · gµnνn

· (Fd (∞))
∑n−1

k=1([ νk2 ])+[ νn2 ] T0 (∞) (Fr (∞))
∑n−1

k=1([µk2 ])+[µn2 ] .

Using

γ
(

µ(n)
)

=

(
n−1∑

k=1

[µk

2

]
)

+
[µn

2

]

, γ
(

ν(n)
)

=

(
n−1∑

k=1

[νk
2

]
)

+
[νn

2

]

,
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we have

~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2
[µn

2

])

gµ1ν1 · · · gµn−1νn−1gµnνn

· (Fd (∞))(
∑n−1

k=1 [ νk2 ])+[ νn2 ] T0 (∞) (Fr (∞))(
∑n−1

k=1 [µk2 ])+[µn2 ]

=
~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2
[µn

2

])

gµ1ν1 · · · gµnνn (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n))

=
~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2

n
· n
[µn

2

])

gµ1ν1 · · · gµnνn

· (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n)) . (51)

By replacing the indices, the above is expressed as

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2

n
· n
[µn

2

])

gµ1ν1 · · · gµnνn (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n))

=
2∑

µ1,ν1,··· ,µn,νn=1




1− 2

n

[µn

2

]

− · · · − 2

n

[µn

2

]

︸ ︷︷ ︸

n




 gµ1ν1 · · · gµnνn (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n))

=

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2

n

[µ1

2

]

− · · · − 2

n

[µn

2

])

gµ1ν1 · · · gµnνn (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n)) .

(52)

Substituting (52) into (51), we have

~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2

n
· n
[µn

2

])

gµ1ν1 · · · gµnνn

· (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n))

=
~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2

n

[µ1

2

]

− · · · − 2

n

[µn

2

])

gµ1ν1 · · · gµnνn

· (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n))

=
~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2

n
γ
(

µ(n)
))

gµ1ν1 · · · gµnνn

· (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n)) .

Hence,

~C
′

n (∞) =
~Γ
(
1− (n− 1) + 1

~

)

(n− 1)!Γ
(
1 + 1

~

)

2∑

µ1,ν1,··· ,µn,νn=1

(

1− 2

n
γ
(

µ(n)
))

gµ1ν1 · · · gµnνn
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· (Fd (∞))γ(ν(n)) T0 (∞) (Fr (∞))γ(µ(n)) . (53)

From (48) and (53) it is shown that (43) satisfies (29) in Subsection 3.2 for the CP 2 case.

5 Discussions

In this paper, we obtained the explicit star products with separation of variables for two-dimensional
locally symmetric Kähler manifolds by solving the recurrence relations in [22, 23]. By using Theorem 3.3,
we can construct a deformation quantization with separation of variables for any complex two-dimensional
locally symmetric Kähler manifold. Furthermore, we gave the noncommutative C

2 and CP 2 as concrete
examples. We verified these noncommutative C

2 and CP 2 coincide with the previous results by Karabegov
[30] and Sako-Suzuki-Umetsu [54, 55], respectively.

In this section, we discuss what can be done in the future using the theorems obtained in this paper. We
give an example of a two-dimensional symmetric Kähler manifold to which Theorem 3.3 is applicable and
for which deformation quantization has not yet been obtained. The concrete example of two dimensional
locally symmetric Kähler manifold is a quadric surface Q2 (C) = SO(4)/ (SO(2)× U(1)). However, the
deformation quantization for Q2 (C) have not yet been constructed. It is known that the Kähler potential
of Q2 (C) is given by

ΦQ2(C) = log



1 +

2∑

k=1

|zk|2 +
1

4

2∑

k,l=1

(zk)2(zl)2



 . (54)

See [18, 26, 43] for more detail. Since Kähler metric and curvature are expressed by using a Kähler
potential, it is possible to explicitly construct the noncommutative Q2 (C) by using Theorem 3.3, explic-
itly. Supersymmetric nonlinear sigma models whose target spaces are Kähler manifolds are studied by
Higashijima-Nitta [26, 27, 28], Higashijima-Kimura-Nitta [25] and Kondo-Takahashi [34]. Some models of
them are defined on CPN and Q2 (C) as the target spaces. It should be possible to extend the nonlinear
sigma models to ones on noncommutative CPN and Q2 (C), naively.

We can expect to develop the physics on noncommutative locally symmetric Kähler manifolds from our
result. For example, the constructions of some field theories and gauge theories on noncommutative
ones are expected. Someone might think that in contrast to strict deformation quantization, formal de-
formation quantization is difficult to interpret some physics. However, it is possible to construct Fock
representations from the formal deformation quantization in our cases. In fact, (twisted) Fock represen-
tations can be constructed by using a deformation quantization with separation of variables as discussed
in Section 2. See [54, 55, 57, 58, 59] for more detailed discussions. Recalling that field theories can be
described by using Fock representations, we can expect to propose the field theories on noncommutative
Kähler manifold. In addition, it is expected to clarify the relationship between fuzzy manifolds and de-
formation quantization, since Fock representations can be interpreted by using a matrix representation.
Furthermore, we can concretely construct gauge theories by using (twisted) Fock representations. They
have been already studied by Maeda-Sako-Suzuki-Umetsu [39] and Sako-Suzuki-Umetsu [56] on noncom-
mutative homogeneous Kähler manifolds. See [53] for the review of these facts. For example, if the
noncommutative Q2 (C) are given by Theorem 3.3, we can propose gauge theories on noncommutative
Q2 (C).
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As described above, it is expected that various physical theories on complex two-dimensional noncommu-
tative locally symmetric Kähler manifold can be obtained by using the Theorem 3.3. They are left for
future work.

Acknowledgement

A.S. was supported by JSPS KAKENHI Grant Number 21K03258. The authors are grateful to Yasufumi
Nitta, Shunsuke Saito, and Yohei Ito for useful advice. The authors appreciate the referees of IJGMMP
for their thoughtful feedback.

A Some properties from Kähler geometry

We review some properties for Kähler manifolds that we use in this paper. See Kobayashi-Nomizu for
more details [33]. Let M be a complex N -dimensional Kähler manifold, U be a holomorphic coordinate
neighborhood of M , and ∇ be the Levi-Civita connection on M . For ∂B , ∂C ∈ Γ (TM |U ) , the Christoffel
symbol ΓA

BC is defined by ∇∂B∂C = ΓA
BC∂A, where A,B,C ∈

{
1, · · · , N, 1, · · · , N

}
, ∂A := ∂

∂zA
, and

zi := zi for i ∈ {1, · · · , N} . In particular, ΓA
BC is given by

ΓA
BC =

1

2
gAD (∂BgDC + ∂CgDB − ∂DgBC)

by using the components of the Kähler metric g. Since M is Kähler, the non-trivial Christoffel symbols
are Γk

ij and Γk
i j

, where i, j, k ∈ {1, · · · , N} . Furthermore, the covariant derivative for (k, l)-tensor field

Y A1···Ak

B1···Bl
∂A1 ⊗ · · · ⊗ ∂Ak

⊗ dzB1 ⊗ · · · ⊗ dzBl ∈ Γ((TM)⊗k ⊗ (T
∗

M)⊗l) is given by using the Christoffel
symbol as follows :

∇∂C

(

Y A1···Ak

B1···Bl
∂A1 ⊗ · · · ⊗ ∂Ak

⊗ dzB1 ⊗ · · · ⊗ dzBl

)

=



∂CY
µ1···µkµ1···µm

ν1···νlν1···νn +

k∑

q=1

Γ
Aq

CDY
A1···Aq−1DAq+1···Ak

B1···Bl
−

l∑

q=1

ΓD
CBq

Y A1···Ak

B1···Bq−1DBq+1···Bl





× ∂A1 ⊗ · · · ⊗ ∂Ak
⊗ dzB1 ⊗ · · · ⊗ dzBl ,

where A1, · · · , Ak, B1, · · · , Bl, C,D ∈
{

1, · · · , N, 1, · · · , N
}
.

Next, we define the Riemann curvature tensor R∇ : Γ (TM)×Γ (TM)×Γ (TM)→ Γ (TM) on M for the
vector fields X,Y ∈ Γ (TM) and its component R∇ (∂A, ∂B) ∂C by

R∇ (X,Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ],

R∇ (∂A, ∂B) ∂C := R D
ABC ∂D,

respectively. Note that the notation R D
ABC used in this paper can be expressed by the relation

R D
ABC = R

D
CAB (55)

using the notation

R∇ (∂A, ∂B) ∂C := R
D
CAB∂D
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by Kobayashi-Nomizu [33]. In this paper, we fix the position of the indices of the components of the
Riemann curvature tensor in the above equation. The components R D

ABC are also given by

R D
ABC = ∂AΓD

BC − ∂BΓD
AC + ΓE

BCΓD
AE − ΓE

ACΓD
BE

by using the Christoffel symbols, and their non-trivial ones are

R l
ijk

= −∂jΓl
ik,

R l̄
ij̄k̄ = ∂iΓ

l̄
j̄k̄.

For RABCD = gDER
E

ABC , it is also confirmed that the non-trivial components are Rijkl̄ and Rij̄k̄l, which
are given by

Rijkl = −glp∂jΓ
p
ik = −∂i∂j∂k∂lΦ + gpq (∂i∂q∂kΦ)

(

∂p∂j∂lΦ
)

,

Rijkl = glp∂iΓ
p

jk
= ∂j∂i∂k∂lΦ− gpq

(

∂j∂q∂kΦ
)

(∂p∂i∂lΦ)

respectively, where Φ is the Kähler potential, i.e. Φ is a function on M such that gij = ∂i∂jΦ.

Here we consider R k̄l̄
ī c̄

= gkpglqRipqc which often appears in this paper. We refer to R k̄l̄
ī c̄

simply as

“curvature”. This curvature R k̄l̄
ī c̄

has the following symmetries concerning the indices i, c, k, and l :

R k̄l̄
ī c̄ = R k̄l̄

c̄ ī = R l̄k̄
ī c̄ = R l̄k̄

c̄ ī. (56)

This property plays an important role in this paper.

We now turn our attention to a locally symmetric Kähler manifold : the fact that M is locally symmetric
is equivalent to the fact that ∇∂ER

D
ABC = 0, for A,B,C,D,E ∈

{
1, · · · , N, 1. · · · , N

}
.

B Calculations for both sides of (31) in Subsection 3.2

We show that (31) for n = 2 holds in Subsection 3.2. In this appendix, we denote the detailed calculations
for each component of both sides of (31) in Subsection 3.2. They can be enumerated as follows.

The left-hand side

(1, 1) = ~
2
{(

2 + ~R 11
1 1

)
(g11)

2 + 2~R 21
1 1g11g12 + ~R 22

1 1 (g12)
2
}

= ~
2
{

2 (g11)2 + ~R11̄1̄1

}

, (57)

(1, 2) = 2~2
{(

2 + ~R 11
1 1

)
g11g21 + ~R 21

1 1 (g11g22 + g12g21) + ~R 22
1 1g12g22

}

= 2~2 {g11g21 + ~R12̄1̄1} , (58)

(1, 3) = ~
2
{(

2 + ~R 11
1 1

)
(g21)

2 + 2~R 21
1 1g21g22 + ~R 22

1 1 (g22)
2
}

= ~
2
{

2 (g21)2 + ~R12̄2̄1

}

, (59)

(2, 1) = 0, (60)

(2, 2) = 0, (61)
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(2, 3) = 0, (62)

(3, 1) = −~2
{

~R 11
2 2 (g11)

2 + 2~R 21
2 2g11g12 +

(
2 + ~R 22

2 2

)
(g12)2

}

= −~2
{

2 (g12)
2 + ~R21̄1̄2

}

, (63)

(3, 2) = −2~2
{
~R 11

2 2g11g21 + ~R 21
2 2 (g11g22 + g12g21) +

(
2 + ~R 22

2 2

)
g12g22

}

= −2~2 {2g12g22 + ~R22̄1̄2} , (64)

(3, 3) = −~2
{

~R 11
2 2 (g21)

2 + 2~R 21
2 2g21g22 +

(
2 + ~R 22

2 2

)
(g22)2

}

= −~2
{

2 (g22)
2 + ~R22̄2̄2

}

. (65)

The right-hand side

(1, 1) = ~
2
{(

2 + ~R 1̄1̄
1̄ 1̄

)

(g11)
2 + 2~R 2̄1̄

1̄ 1̄g11g21 + ~R 2̄2̄
1̄ 1̄ (g21)2

}

= ~
2
{

2 (g11)
2 + ~R11̄1̄1

}

, (66)

(1, 2) = 2~2
{

~R 1̄1̄
2̄ 1̄ (g11)

2 +
(

2 + 2~R 2̄1̄
2̄ 1̄

)

g11g21 + ~R 2̄2̄
2̄ 1̄ (g21)

2
}

= 2~2 {g11g21 + ~R12̄1̄1} , (67)

(1, 3) = ~
2
{

~R 1̄1̄
2̄ 2̄ (g11)2 + 2~R 2̄1̄

2̄ 2̄g11g21 +
(

2 + ~R 2̄2̄
2̄ 2̄

)

(g21)2
}

= ~
2 {2 (g21) + ~R12̄2̄1} , (68)

(2, 1) = 0, (69)

(2, 2) = 0, (70)

(2, 3) = 0, (71)

(3, 1) = −~2
{(

2 + ~R 1̄1̄
1̄ 1̄

)

(g12)2 + 2~R 2̄1̄
1̄ 1̄g12g22 + ~R 2̄2̄

1̄ 1̄ (g22)
2
}

= −~2
{

2 (g12)2 + ~R21̄1̄2

}

, (72)

(3, 2) = −2~2
{

~R 1̄1̄
2̄ 1̄ (g12)

2 +
(

2 + 2~R 2̄1̄
2̄ 1̄

)

g12g22 + ~R 2̄2̄
2̄ 1̄ (g22)

2
}

= −2~2 {2g12g22 + ~R22̄1̄2} , (73)

(3, 3) = −~2
{

~R 1̄1̄
2̄ 2̄ (g12)2 + 2~R 2̄1̄

2̄ 2̄g12g22 +
(

2 + ~R 2̄2̄
2̄ 2̄

)

(g22)
2
}

= −~2
{

2 (g22)2 + ~R22̄2̄2

}

. (74)

Note that we denote each (i, j) component of both sides simply as (i, j). Hence, the calculations (57)–(74)
show that (31) in Subsection 3.2 for n = 2 holds.

C Hermiteness of Tn

In Subsection 3.2, we use the fact that Tn is Hermitian conjugate, i.e. Tn = T †
n. So we shall derive this

property of Tn in this appendix.
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Lemma C.1 (Sako-Umetsu[57]). The coefficients T n
−→αn,

−→
β∗

n

satisfy

T n
−→αn,

−→
β∗

n

= T n−→
βn,

−→
α∗

n

or equivalently

Tn = T †
n, (75)

Proof. From Proposition 3.1. in [57],

f ∗ g = g ∗ f . (76)

Substituting (14) into the left-hand side of (76), we have

f ∗ g =
∞∑

n=0

∑

−→αn,
−→
β∗

n

T n
−→αn,

−→
β∗

n

{(

D1
)αn

1 · · ·
(

DN
)αn

N
f

}{(
D1
)βn

1 · · ·
(
DN

)βn
N g
}

=

∞∑

n=0

∑

−→αn,
−→
β∗

n

T n−→
βn,

−→
α∗

n

(

D
−→αng
)(

D
−→
β∗

nf
)

.

Here we rewrote the dummy indices in the last equation. On the other hand, since

g ∗ f =

∞∑

n=0

∑

−→αn,
−→
β∗

n

T n
−→αn,

−→
β∗

n

(

D
−→αng
)(

D
−→
β∗

nf
)

by the assumption for the star product with separation of variables, we obtain

T n
−→αn,

−→
β∗

n

= T n−→
βn,

−→
α∗

n

by comparing the coefficients on both sides of (76). The above equation can be expressed as an equivalent

equation Tn = T †
n.�
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