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Abstract. The norm in classical Sobolev spaces can be expressed as a difference quo-
tient. This expression can be used to generalize the space to the fractional smoothness
case. Since the difference quotient is based on shifting the function, it cannot be gen-
eralized to the variable exponent case. In its place, we introduce a smoothed difference
quotient and show that it can be used to characterize the variable exponent Sobolev
space.

1. Introduction

While studying the limit behavior of the Gagliardo semi-norms

||f ||pW s,p =

ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy, 0 < s < 1

as s → 1, Bourgain, Brézis, and Mironescu [3, 4] established the appropriate scaling
factor for comparing the limit with the Lp-norm of the gradient of f . They characterize
the Sobolev space W 1,p and prove the convergence of certain imaging models of Aubert
and Kornprobst [2] to the well-known total variation model of Rudin, Osher, and Fatemi
[15].

In variable exponent Sobolev spaces one cannot expect to have a similar characteriza-
tion. Indeed, by [9, Proposition 3.6.1] the translation operator is bounded on Lp(·)(Rn) if
and only if p is constant. In particular, this means that in the difference quotient we can-
not replace the exponent by p(x) or p(y). This problem was first encountered by Fiorenza
[11] who proposed instead to use the exponent p(x, y) := minz∈[x,y] p(z) which depends on

two variables. Unfortunately, with this exponent the connection to the framework of Lp(·)

spaces is not so clear. In [8], Diening and Hästö replaced the difference quotient in the

definition of the trace space by a sharp averaging operator M#
B(x,r). This is the approach

followed also here that will lead to a characterization of variable exponent Sobolev spaces
W 1,p(·)(Rn).

Throughout the paper, (ψε)ε denotes a family of functions such that

(1.1) ψε ∈ L1(0, 1), ψε > 0,

ˆ 1

0

ψε(r) dr = 1

and for every γ > 0

(1.2) lim
ε→0+

ˆ 1

γ

ψε(r) dr = 0.
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Examples of such families were given by Brézis [5, Remark 8].
We define

ϱε#(f) :=

ˆ 1

0

ˆ
Rn

(
1
r
M#

B(x,r)f
)p(x)

dxψε(r) dr(1.3)

where

M#
B(x,r)f =

 
B(x,r)

|f(y)− fB(x,r)| dy and fB(x,r) =

 
B(x,r)

f(y) dy.

For each function ϱε#, we define the norm as usual from this by

∥f∥ε# := inf
{
λ > 0 | ϱε#(f/λ) 6 1

}
.

Our main result, Theorem 4.1, states that, for bounded exponents log-Hölder contin-
uous, p(·), with ess infx∈Rn p(x) > 1, an L1(Rn) function f , has gradient in Lp(·)(Rn;Rn)
if and only if lim supε→0+ ϱ

ε
#(f) < ∞. Moreover, if ∇f ∈ Lp(·)(Rn;Rn), then its variable

exponent modular as well as its Lp(·)-norm can be obtained as limits of some functionals
that do not involve the derivatives of f . Namely,

lim
ε→0+

ϱε#(f) = ϱp(·)(cn|∇f |) and lim
ε→0+

∥f∥ε# = cn∥∇f∥p(·)

where

cn =

 
B(0,1)

|x · e1| dx.

As mentioned above, the difference quotients functionals considered by Bourgain, Brézis,
and Mironescu [3, 4], in the case of constant exponent, provide good imaging models. Also
variable exponent variants of the ROF model have been proposed [6, 13, 14]. These mod-
els exhibit less staircasing than the classical models. It would be interesting to understand
whether the functional defined through the sharp averaging operator ϱε#(f) can be ap-
plied to imaging problems when the natural growth depends on the region of the domain.
Another open question is how fractional smoothness defined in this way relates to the
variable exponent Besov and Triebel–Lizorkin spaces [1, 10].

2. Background material

We denote by Rn the n-dimensional real Euclidean space. We write B(x, r) for the
open ball in Rn centered at x ∈ Rn and radius r > 0. We use c as a generic positive
constant, i.e. a constant whose value may change from appearance to appearance. If
E ⊂ Rn is a measurable set, then |E| stands for its (Lebesgue) measure and χE denotes
its characteristic function.

We will need the following inequality

(a+ b)p 6 (1 + ε)p−1ap +
(1 + ε

ε

)p−1

bp,(2.1)

valid for p > 1 and ε > 0 and which follows from the weighted power-mean inequality

a+ ε b
ε

1 + ε
6 p

√
ap + ε( b

ε
)p

1 + ε
.

We denote by P+(Rn) the set of all bounded measurable functions p : Rn → [1,∞),
so-called variable exponents. For A ⊂ Rn and p ∈ P+(Rn) we denote p+A = ess supx∈A p(x)
and p−A = ess infx∈A p(x); we abbreviate p+ = p+Rn and p− = p−Rn .
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Let U ⊂ Rn. We say that g : U → R satisfies the local log-Hölder continuity condition
if

|g(x)− g(y)| 6 c

log(e+ 1/|x− y|)
for all x, y ∈ U . If

|g(x)− g∞| 6 c′

log(e+ |x|)
for some g∞ > 1, c′ > 0 and all x ∈ U , then we say g satisfies the log-Hölder decay
condition (at infinity). If both conditions are satisfied, we simply speak of log-Hölder
continuity. By the log-Hölder constant we mean max{c, c′}. The class of bounded log-

Hölder continuous exponents is denoted by P log
+ (Rn). In our analysis we will consider

exponents in P log
+ (Rn) with p− > 1.

The variable exponent modular is defined by

ϱp(·)(f) :=

ˆ
Rn

|f(x)|p(x) dx.

The variable exponent Lebesgue space Lp(·)(Rn) is the class of all measurable functions f
on Rn such that ϱp(·)(λf) < ∞ for some λ > 0. This is a Banach space when equipped
with the norm

∥f∥p(·) := inf
{
λ > 0 : ϱp(·)(f/λ) 6 1

}
.

If p(x) ≡ p is constant, then Lp(·) = Lp is the classical Lebesgue space. Variable exponent
Sobolev spaces are defined in an analogous way. For a detailed study of these spaces see
the monographs [9, 11].

In the sequel we will often need to estimate integral functionals raised to some variable
exponent introducing the exponent in the integrand. The following result is a variant of
[9, Theorem 4.2.4]: we do not need to assume ∥f∥p(·) 6 1 as in the original on account of
taking a minimum of two terms on the left-hand side.

Lemma 2.2. Suppose p ∈ P log
+ (Rn), x ∈ Rn and α,m > 0. Then there exists c > 0 such

that

min

{ 
B(x,r)

|f(y)| dy, r−α

}p(x)

6 c

 
B(x,r)

|f(y)|p(y) dy + c (e+ |x|)−m,

for every f ∈ L
p(·)
loc (Rn) and 0 < r 6 1.

Proof. Denote B := B(x, r). By log-Hölder continuity,

min

{  
B

|f(y)| dy, r−α

}p(x)−p−B

6 r−(p(x)−p−B)α 6 c.

Thus by Jensen’s inequality,

min

{ 
B

|f(y)| dy, r−α

}p(x)

6 cmin

{  
B

|f(y)| dy, r−α

}p−B

6 c

 
B

|f(y)|p
−
B dy.

Let 1
s
= 1

p−B
− 1

p
. By [9, Proposition 4.1.8], for every m > 0, there exists γ ∈ (0, 1) such

that γs(y) 6 (e+ |y|)−m, for all y ∈ B. Then, by Young’s inequality [9, Lemma 3.2.15],(
1
γ
|f | · γ

)p−B 6
(

1
γ
|f |

)p(y)

+ γs(y),

from which the desired estimate follows. �
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3. Auxiliary results

Let us start by proving our claim for regular functions. This result will be used in the
final proof.

Lemma 3.1. Suppose that p ∈ P+(Rn). If f ∈ C2
0(Rn), then

lim
ε→0+

ϱε#(f) = ϱp(·)(cn|∇f |)

where cn =

 
B(0,1)

|x · e1| dx.

Proof. If f ∈ C2
0(Rn), then a Taylor expansion gives

f(y) = f(x) +∇f(x) · (y − x) +R(x, y),

where R(x, y) = o(|x− y|) as y → x. Hence

f(y)− fB(x,r) =

 
B(x,r)

f(y)− f(z) dz

=

 
B(x,r)

∇f(x) · (y − x) +R(x, y)−∇f(x) · (z − x)−R(x, z) dz.

By symmetry,  
B(x,r)

∇f(x) · (z − x) dz = 0.

Thus we obtain

f(y)− fB(x,r) = ∇f(x) · (y − x) +R(x, y)−
 
B(x,r)

R(x, z) dz.

Therefore, by the triangle inequality,

M#
B(x,r)f =

 
B(x,r)

∣∣∣∣∇f(x) · (y − x) +R(x, y)−
 
B(x,r)

R(x, z) dz

∣∣∣∣ dy
6
 
B(x,r)

|∇f(x) · (y − x)| dy + 2

 
B(x,r)

|R(x, y)| dy

= |∇f(x)|
 
B(x,r)

∣∣∣∣ ∇f(x)|∇f(x)|
· (y − x)

∣∣∣∣ dy + 2

 
B(x,r)

|R(x, y)| dy.

Noting that
ffl
B(x,r)

|ν · (y − x)| dy is independent of ν ∈ Sn−1, we have

M#
B(x,r)f 6 cn r |∇f(x)|+ 2

 
B(x,r)

|R(x, y)| dy, where cn :=

 
B(0,1)

|x · e1| dx.

Similarly we derive the inequality

M#
B(x,r)f > cn r |∇f(x)| − 2

 
B(x,r)

|R(x, y)| dy.

Note the lower bound M#
B(x,r)f > 0 also holds.

Defining Ω := {x ∈ Rn : f |B(x,1) ̸≡ 0}, we can write

ϱε#(f) =

ˆ 1

0

ˆ
Ω

(
1
r
M#

B(x,r)f
)p(x)

dxψε(r) dr,

since M#
B(x,r)f = 0 when x ̸∈ Ω. Notice that Ω is bounded, since f has compact support.
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From these estimates of M#
B(x,r)f , it follows that

(3.2)

ˆ 1

0

ˆ
Ω

max
{
0, cn|∇f(x)| − h(x, r)

}p(x)
dxψε(r) dr

6 ϱε#(f) 6
ˆ 1

0

ˆ
Ω

(cn|∇f(x)|+ h(x, r))p(x) dxψε(r) dr,

where h(x, r) = 2
r

ffl
B(x,r)

|R(x, y)| dy.
Let us start with the upper bound of ϱε#(f). For δ > 0 and bounded p we have by (2.1)

that

(cn|∇f(x)|+ h(x, r))p(x) 6 (1 + δ)p
+

(cn|∇f(x)|)p(x) +
(
1 + δ

δ

)p+

h(x, r)p(x).

Therefore, using (1.1) and (3.2), we find that

ϱε#(f) 6 (1 + δ)p
+

ˆ
Ω

(cn|∇f(x)|)p(x) dx+
(
1 + δ

δ

)p+ ˆ 1

0

ˆ
Ω

h(x, r)p(x) dxψε(r) dr,

and passing to the limit as ε→ 0 we get

(3.3)

lim sup
ε→0

ϱε#(f) 6(1 + δ)p
+

ϱp(·)(cn|∇f |)+

+ lim sup
ε→0

(
1 + δ

δ

)p+ ˆ
Ω

ˆ 1

0

h(x, r)p(x) ψε(r) dr dx.

To achieve the desired upper bound it remains to show that the limit on the right hand
side is zero and then let δ → 0.

Let γ > 0 be such that |R(x,y)|
|x−y| < ε when |x − y| < γ. Since f ∈ C2

0(Rn), R(x,y)
|x−y| is

bounded. Thus

h(x, r) =
2

r

 
B(x,r)

|R(x, y)| dy 6 2

 
B(x,r)

|R(x, y)|
|x− y|

dy 6 2εχ(0,γ)(r) + cχ(γ,1)(r).

Therefore, the defining property of ψε implies thatˆ
Ω

ˆ 1

0

h(x, r)p(x)ψε(r) dr dx 6
ˆ
Ω

(ˆ γ

0

(2ε)p(x) ψε(r) dr + c

ˆ 1

γ

ψε(r) dr

)
dx

6 (2ε)p
−|Ω|+ c |Ω|

ˆ 1

γ

ψε(r) dr.

It is then clear, by (1.2), that the limit on the right hand side of (3.3) is zero, which
finishes the proof of the upper bound.

To achieve the lower bound, observe that, using again (2.1), we get, for δ > 0,

max
{
0, cn|∇f(x)| − h(x, r)

}p(x) > 1

(1 + δ)p+
(cn|∇f(x)|)p(x) −

1

δp+
h(x, r)p(x);

indeed the lower bound is trivial if the maximum equals zero. Therefore,

lim inf
ε→0

ϱε#(f) >
1

(1 + δ)p+
ϱp(·)(cn|∇f |)− lim sup

ε→0

1

δp+

ˆ
Ω

ˆ 1

0

h(x, r)p(x) dxψε(r) dr.

As already seen, this last limit is zero. The conclusion follows as before, by letting δ → 0.
All in all, this gives limε→0 ϱ

ε
#(f) = ϱp(·)(cn|∇f |), as was to be shown. �
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Next we derive an auxiliary upper bound which holds for all functions in the homo-
geneous Sobolev space D1,p(·)(Rn) which consists of functions u ∈ L1

loc(Rn) with |∇u| ∈
Lp(·)(Rn).

Lemma 3.4. Suppose that p ∈ P log
+ (Rn). If u ∈ D1,p(·)(Rn), then

ϱε#(u) 6 c max
{
∥∇u∥p

−

p(·), ∥∇u∥
p+

p(·)
}
.

Proof. Let u ∈ D1,p(·)(Rn) be such that ∥∇u∥p(·) 6 1. By the Poincaré inequality,

M#
B(x,r)u =

 
B(x,r)

|u(y)− uB(x,r)| dy 6 cr

 
B(x,r)

|∇u(y)| dy.

Applying this and Lemma 2.2, with f = |∇u| and m > n, we obtain that

ϱε#(u) 6 c

ˆ 1

0

ˆ
Rn

( 
B(x,r)

|∇u(y)| dy
)p(x)

dxψε(r) dr

6 c

ˆ 1

0

ˆ
Rn

 
B(x,r)

|∇u(y)|p(y) dy + (e+ |x|)−m dxψε(r) dr.

For the first integral we change the order of integration:ˆ
Rn

 
B(x,r)

|∇u(y)|p(y) dy dx =

ˆ
Rn

ˆ
Rn

|∇u(y)|p(y)
χB(y,r)(x)

|B(x, r)|
dx dy =

ˆ
Rn

|∇u(y)|p(y) dy.

Further we observe that
´
Rn(e + |x|)−m dx < ∞, since m > n. As

´ 1

0
ψε(r) dr = 1, we

obtain that ϱε#(u) 6 c (ϱp(·)(∇u) + 1) 6 2c.

Moreover, if we have a general, non-constant Sobolev function u ∈ D1,p(·)(Rn), the
scaled version u/∥∇u∥p(·) satisfies

ϱε#

(
u

∥∇u∥p(·)

)
6 c

(
ϱp(·)

(
∇u

∥∇u∥p(·)

)
+ 1

)
= 2c.

It follows from the definition of ϱε# that ϱε#(u) 6 ϱε#(
u
λ
)max{λp− , λp+}. Applying this

with λ = ∥∇u∥p(·) in the previous inequality gives the claim. �

4. Main results

In this section we establish and prove our main result, which provides, in particular a
characterization of variable exponent Sobolev spaces.

Theorem 4.1. Let p ∈ P log
+ (Rn) with p− > 1 and let (ψε)ε be a family of functions

satisfying (1.1) and (1.2). Assume f ∈ L1(Rn). Then |∇f | ∈ Lp(·)(Rn) if and only if

(4.2) lim sup
ε→0+

ϱε#(f) <∞.

In this case,

(4.3) lim
ε→0+

ϱε#(f) = ϱp(·)(cn|∇f |)

and

(4.4) lim
ε→0+

∥f∥ε# = cn∥∇f∥p(·)

where cn =

 
B(0,1)

|x · e1| dx.



CHARACTERIZATION OF THE VARIABLE EXPONENT SOBOLEV NORM WITHOUT DERIVATIVES7

Remark 4.5. We believe the result still holds under the weaker assumption f ∈ L1
loc(Rn).

If p− = 1, then the previous theorem still holds provided the condition ∇f ∈ Lp(·)(Rn)
is replaced by a suitable BV-variant, see [12], in particular [12, Proposition 6.3] for the
compactness argument needed in part 2 of the proof.

Proof of Theorem 4.1. We divide the proof into three parts corresponding to the sufficient
and necessary conditions for (4.2) and the equivalence of (4.3) and (4.4).

Part 1. We prove that (4.3) holds when |∇f | ∈ Lp(·)(Rn), from which (4.2) follows,
since then ϱp(·)(cn|∇f |) <∞ as p is bounded.

By the triangle inequality, for any f, g ∈ L1
loc(Rn), 

B(x,r)

|f(y)− fB(x,r)| dy

6
 
B(x,r)

|f(y)− g(y)− (f − g)B(x,r) + g(y)− gB(x,r)| dy

6
 
B(x,r)

|f(y)− g(y)− (f − g)B(x,r)| dy +
 
B(x,r)

|g(y)− gB(x,r)| dy.

This reads M#
B(x,r)f 6 M#

B(x,r)(f − g) +M#
B(x,r)g. On the other hand, by (2.1) and since

p is bounded, (a+ b)p(x) 6 (1 + δ)p
+
ap(x) + cδb

p(x). Combining these, we conclude that

ϱε#(f) 6 cδϱ
ε
#(f − g) + (1 + δ)p

+

ϱε#(g).

Let f ∈ D1,p(·)(Rn) and g ∈ C∞
0 (Rn). By Lemmas 3.4 and 3.1,

lim sup
ε→0+

ϱε#(f) 6 cδ max
{
∥∇(f − g)∥p

−

p(·), ∥∇(f − g)∥p
+

p(·)
}
+ (1 + δ)p

+

ϱp(·)(cn|∇g|).

In place of g, consider gν ∈ C∞
0 (Rn) such that ∇gν converges to ∇f in Lp(·)(Rn), as

ν → ∞ [9, Proposition 12.2.7]. Then, letting ν → ∞, we obtain that

lim sup
ε→0+

ϱε#(f) 6 lim
ν→∞

(1 + δ)p
+

ϱp(·)(cn|∇gν |) = (1 + δ)p
+

ϱp(·)(cn|∇f |)

since modular convergence follows from norm convergence [9, Lemma 2.1.9]. Finally we
let δ → 0 and obtain the desired upper bound. The lower bound is proved similarly, with
the estimate

ϱε#(f) >
1

(1 + δ)p+
ϱε#(gν)−

cδ
(1 + δ)p+

ϱε#(gν − f).

Part 2. We prove that if (4.2) holds, then |∇f | ∈ Lp(·)(Rn).
Let G be a standard mollifier, that is G ∈ C∞

0 (B(0, 1)) is positive and radially sym-
metric with

´
B(0,1)

G(x) dx = 1. Let K > 0 be a constant such that G 6 K
χB(0,1)

|B(0,1)| and let

us denote H :=
χB(0,1)

|B(0,1)| . Let Gδ(x) = δ−nG(x/δ) and Hδ(x) = δ−nH(x/δ). Then by the

triangle inequality and a change of integration order we find that,

M#
B(x,r)(Gδ ∗ f) =

 
B(x,r)

|(Gδ ∗ f)(y)− (Gδ ∗ f)B(x,r)| dy

=

 
B(x,r)

|(Gδ ∗ (f − fB(·,r)))(y)| dy 6 (Gδ ∗M#
B(·,r)f)(x).
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On the other hand, by the Poincaré inequality,

1

r
M#

B(x,r)(Gδ ∗ f) 6 c

 
B(x,r)

|∇(Gδ ∗ f)(y)| dy =
c

δ

 
B(x,r)

|(∇G)δ ∗ f(y)| dy

6 cδ−1∥(∇G)δ∥∞∥f∥L1 6 cδ−n−1.

Denote gr(x) := 1
r
M#

B(x,r)f and observe that Gδ ∗ gr 6 KHδ ∗ gr. The previous two

inequalities can be summarized as

1
r
M#

B(x,r)(Gδ ∗ f) 6 cmin
{
Hδ ∗ gr(x), δ−n−1

}
.

By Lemma 2.2, noting that Hδ ∗ gr is the integral average of gr, we obtain that

min
{
Hδ ∗ gr(x), δ−n−1

}p(x) 6 cHδ ∗ (gp(·)r )(x) + c (e+ |x|)−m.

Henceˆ
Rn

(
1
r
M#

B(x,r)(Gδ ∗ f)
)p(x)

dx 6 c

ˆ
Rn

Hδ ∗ (gp(·)r )(x) dx+ c

ˆ
Rn

(e+ |x|)−m dx.

Here the second integral on the right hand side is bounded by a constant, if we choose
m > n. For the first integral we change the order of integration:ˆ

Rn

ˆ
Rn

Hδ(x− z)gr(z)
p(z) dz dx =

ˆ
Rn

ˆ
Rn

Hδ(x− z) dxgr(z)
p(z) dz =

ˆ
Rn

gr(z)
p(z) dz.

Since gr(x) =
1
r
M#

B(x,r)f , we conclude thatˆ
Rn

(
1
r
M#

B(x,r)(Gδ ∗ f)
)p(x)

dx 6 c

ˆ
Rn

(
1
r
M#

B(x,r)f
)p(x)

dx+ c.

Multiplying by ψε(r) and integrating over r ∈ [0, 1], we find that

ϱε#(Gδ ∗ f) 6 c ϱε#(f) + c.

Suppose then that limε→0+ ϱ
ε
#(f) <∞ and note that Gδ ∗ f ∈ C2(Rn). By Lemma 3.1

(in a bounded domain instead of a compactly supported function),ˆ
B(0,R)

|∇(Gδ ∗ f)|p(x) dx 6 lim
ε→0

ϱε#(Gδ ∗ f ;B(0, R + δ)) 6 c lim
ε→0

ϱε#(f) + c = c.

Here the upper bound is independent of R. Therefore ∇(Gδ ∗ f) is a bounded sequence
in Lp(·)(Rn). Since 1 < p− 6 p+ < ∞, a subsequence weakly converges in Lp(·)(Rn) to
a function l ∈ Lp(·)(Rn) [9, Theorem 3.4.7]. It follows by the definition of the derivative
that l = ∇f , since Gδ ∗ f converges to f in L1

loc(Rn). Thus |∇f | ∈ Lp(·)(Rn).

Part 3. Finally we observe that we obtain (4.4) from (4.3) as follows: let δ > 0 and set
g := f/(cn(1 + δ)(∥∇f∥p(·) + δ)). By (4.3) for g it follows that

lim
ε→0

ϱε#(g) = ϱp(·)(cn|∇g|) = ϱp(·)

(
|∇f |

(1 + δ)(∥∇f∥p(·) + δ)

)
6 1

1 + δ
ϱp(·)

(
|∇f |

∥∇f∥p(·) + δ

)
6 1

1 + δ
.

Hence for all sufficiently small ε, ϱε#(g) 6 1. Thus also ∥g∥ε# 6 1, and so ∥f∥ε# 6
cn(1 + δ)(∥∇f∥p(·) + δ). Then we let δ → 0 to obtain one inequality of (4.4). The other
is obtained analogously. �
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5. Connection with difference quotient formulation

In this section we consider how the constant exponent formulation in terms of difference
quotients compares to ours. The classical formulation is based on the family of functionals

DQε(f) :=

ˆ
Rn

ˆ
Rn

(
|f(x)− f(y)|

|x− y|

)p

φε(|x− y|) dx dy,

where φε(r) := ψε(r)r
1−n. In this classical setting, the results obtained by Bourgain,

Brézis, and Mironescu in [3, 4] assert, in particular, that, for p > 1, an Lp function f is
in W 1,p(Rn) if and only if lim supε→0DQε(f) is finite, in which case the limit exists and
can be expressed in terms of the Lp-norm of ∇f.

Here we will show that, for any f ∈ D1,p(Rn),

lim
ε→0

DQε(f) = lim
ε→0

ˆ
Rn

ˆ 1

0

(
1
r
M#

p,B(x,r)f
)p
ξε(r) dr dx

where

M#
p,B(x,r)f :=

( 
B(x,r)

|f(y)− fB(x,r)|p dy
) 1

p

and ξε is a function satisfying, up to a constant, (1.1) and (1.2).
Comparing this expression with (1.3), we see that the only difference is that the classical

approach uses M#
p,B(x,r)f whereas we used M#

1,B(x,r)f . A direct consequence of Jensen’s

inequality is that M#
1,B(x,r)f 6 M#

p,B(x,r)f for p > 1. Hence the classical approach uses a

marginally larger functional.

Next we prove our assertion. Suppose that f ∈ D1,p(Rn) is fixed. Let (ψε)ε be,
as before, a family of functions satisfying (1.1) and (1.2), and assume also that ψε is
extended to R+ getting ψε ∈ C1((0,∞)) with ψε(r) = 0 when r > 1. Let us denote

F (x, r) :=

ˆ
B(x,r)

|f(x)− f(y)|p dy.

Note that

F ′(x, r) =

ˆ
S(x,r)

|f(x)− f(y)|p dy.

Then

DQε(f) =

ˆ
Rn

ˆ 1

0

F ′(x, r)r−pφε(r) dr dx

since ψε(r) = 0 for r > 1. We abbreviate r−pφε(r) =: φ̄ε(r). In the inner integral we use
integration by parts:

ˆ 1

0

F ′(x, r)φ̄ε(r) dr = − lim
r→0

F (x, r)φ̄ε(r)−
ˆ 1

0

F (x, r)φ̄′
ε(r) dr,

since φε(1) = 0. We show that the limit equals zero.
For this we estimate

r−nF (x, r) 6 c

 
B(x,r)

|f(y)− fB(x,r)|p dy + c |f(x)− fB(x,r)|p.
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The first term is bounded by crp
ffl
B(x,r)

|∇f |p dy (Poincaré’s inequality) while the second

is bounded by crp(M |∇f |)p (Riesz’ potential estimate, eg. [9, Lemmas 6.1.4 and 8.2.1]),
where M denotes the maximal operator. Hence

r−n−pF (x, r) 6 c

 
B(x,r)

|∇f(y)|p dy + cM |∇f |(x)p 6 cM |∇f |(x)p.

for almost every x, since the average integral can be estimated by the maximal function.
Thus for almost every x ∈ Rn,

0 6 lim
r→0

F (x, r)φ̄ε(r) 6 cM |∇f |(x)p lim
r→0

rnφε(r) = 0.

It follows that

DQε(f) = −
ˆ
Rn

ˆ 1

0

F (x, r)φ̄′
ε(r) dr dx =

ˆ
Rn

ˆ 1

0

 
B(x,r)

|f(x)− f(y)|p

rp
dy ξε(r) dr dx,

where

ξε(r) := −|B(0, r)| rpφ̄′
ε(r) = c (prn−1φε(r)− rnφ′

ε(r)).

We see that ξε satisfies conditions (1.1) and (1.2) up to a constant. In particular, if
φε(r) =

ε
rn−ε , then ξε = |B(0, 1)| (p+ n− ε)rn−1ψε.

We every δ > 0, we have by (2.1) that∣∣|f(x)− f(y)|p − |f(y)− fB(x,r)|p
∣∣ 6 δ |f(x)− f(y)|p + cδ|f(x)− fB(x,r)|p.

With this estimate and the inequality |f(x) − fB(x,r)| 6 crM |∇f | from above, we can
show that, at the limit, f(x) in the above formula for DQε can be changed to fB(x,r). In
other words, we obtain that

lim
ε→0

DQε(f) = lim
ε→0

ˆ
Rn

ˆ 1

0

(
1
r
M#

p,B(x,r)f
)p
ξε(r) dr dx.

It would be possible to cover both the classical functional and the variable exponent
version with the expression

lim
ε→0

ˆ
Rn

ˆ 1

0

(
1
r
M#

p−,B(x,r)f
)p(x)

ξε(r) dr dx,

where the exponent is“split”so that the global minimum is taken inside the sharp maximal
function and the variable part is left outside.
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2013 (Centro de Matemática e Aplicações) and EXPL/MAT-CAL/0840/2013. Part of
this work was done while the authors enjoyed the hospitality of University of Turku and
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Birkhäuser/Springer, New York, 2013.
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