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Abstract

Neutrinos are the only matter particles in the Standard Model of particle physics that have
only been observed with left handed chirality to date. If right handed neutrinos exist, they
could be responsible for several phenomena that have no explanation within the Standard
Model, including neutrino oscillations, the baryon asymmetry of the universe, dark matter
and dark radiation. After a pedagogical introduction, we review recent progress in the phe-
nomenology of right handed neutrinos. We in particular discuss the mass ranges suggested by
hints for neutrino oscillation anomalies and dark radiation (eV), sterile neutrino dark matter
scenarios (keV) and experimentally testable theories of baryogenesis (GeV to TeV). We sum-
marize constraints from theoretical considerations, laboratory experiments, astrophysics and

cosmology for each of these.
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1 Introduction

This review is intended to give a comprehensive overview of what we know (more precisely: what
I know) about the phenomenology of right handed neutrinos. Faced with the difficulty of writing
a text that is readable within reasonable time, and is at the same time is as precise as possible,
I provide extra details, explanations and comments for the interested reader in an extensive set
of footnotes. For a quick read you may essentially ignore all of them. Furthermore, each section
has been written to be as self-contained as possible, so that they can also be read individually as
“mini reviews”. The basic notations used throughout the review are introduced in sections
and[2l A very quick summary is given in appendix [Al

I will maintain a list of corrections online at http://res-publica.eu/RightHandedNeutrinos.html.
If you find any errors or typos I would be very grateful if you could inform me; you can find
my most up-to-date contact information on the above website. This preprint is identical to the
published article [1] up to a few rephrasings and a number of additional references that appeared
after the article had been accepted for publication.

1.1 Physics beyond the Standard Model

The Standard Model of particle physics (SM) and theory of General Relativity (GR) form the basic
pillars of modern physics. Together they can describe almost all phenomena observed in naturd!}
in terms of a small number of underlying principles - general covariance, gauge invariance and
quantum mechanics - and a handful of mumberﬂlD [2]. All elementary particles we have observed
to date can be understood as fundamental excitations of a few quantum fields, the properties of
which are constrained by the local structure of space and timed. Interactions between them are
the result of (gauge) symmetries of the Lagrangian.

In spite of its enormous success, this cannot be a complete theory of nature for two reasons.
On one hand, it treats gravitational fields as a classical background, while matter and other
interactions are described by quantum field theory in the SM. This approximation certainly
becomes invalid and has to be extended to a theory of quantum gravity at energies near the
Planck scald] M p = 1.22 x 10" GeV. We do not address this problem in the following because
it is of little relevance for experiments in foreseeable time. On the other hand, there are four
experimental and observational facts which cannot be understood in the framework SM+GR.
Three of them are widely believed to be related to particle physics,

(I) flavour violation in neutrino experiments, section [2

(IT) the cosmological origin of the baryonic matter in the universe, section [5,

!The basic laws of other areas of natural science and technology can be understood as effective theories, which
in principle can be derived from the SM and GR. Though there exist many complex phenomena that we do not
understand or cannot predict in detail, this lack of predictivity is almost certainly related to the complexity of the
system rather than a lack of understanding of its basic components, the elementary quantum fields.

2There are 19 free parameters in the SM; these are usually chosen as six quark masses, three mixing angles
and one CP violating phase for the quarks, three charged lepton masses, three gauge couplings, two parameters
in the Higgs potential and a QCD vacuum angle. The neutrinos are massless in the SM. GR adds two additional
parameters to this barcode of nature, the Planck mass and the cosmological constant.

3All known elementary particles transform under irreducible representations of the Poincaré group.

4We use natural units ¢ = i = 1.
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(ITI) the composition and origin of the observed dark matter (DM), section [Gl

In addition to the above evidence for the existence of “new physics”, there are a number of hints
in experimental data that may point towards the existence of physics beyond the SM; these have
not (yet?) led to a claim of discovery and may also be explained by systematics. Of these, we
will only discuss two in detail in this review

(i) the statistical preference for additional relativistic particles dubbed “dark radiation” (DR)@
in some fits to cosmological data, section [,

(ii) the anomalies seen in some short baseline and reactor neutrino experiments, section B

All of the above phenomena may be related to right handed (RH) neutrinos with different masses.
It is the purpose of this article to summarize how they can be connected to these hypothetical par-
ticles and review bounds from theoretical considerations, laboratory experiments and cosmology
on RH neutrino properties.

To complete the list, let us add the fourth piece of evidence for physics beyond SM+GR,
which is related to gravitation of cosmology,

(IV) the overall geometry of the universe (isotropy, homogeneity and spatial flatness), as e.g.
seen in the cosmic microwave background (CMB).

We do not address (IV) here, as it is not related to RH neutrinos (or particle physics in general)
in an obvious Wayﬂ. An intuitive explanation is given by cosmic inflation, see section [£.Il Finally,
the observed acceleration of the universe’s expansion is often included in this list. However, all
observations can currently be explained in terms of a cosmological constant A, which is simply a
free parameter in GR. Hence, the accelerated expansion can be accommodated in the framework
of SM+GR. The question of the microphysical ”origin” of A (and its smallness) only arises when
the SM and GR are interpreted as low energy limits of a more general theory, including a com-
plete description of quantum gravity. To date, (I)-(III) and (IV) are the only confirmed empirical
proofs of physics that cannot be explained by SM+GRA.

In the remainder of this section we introduce the concept of RH neutrinos and define our
notation. In section[2]we review how they can generate masses for the known neutrinos. In section
Bl we summarize bounds from past laboratory experiments on RH neutrino properties, discuss the
interpretation of the observed neutrino oscillation anomalies (ii) in terms of RH neutrinos and
comment on possible future searches. In sections we discuss various cosmological constraints,

5Others include the long standing issues of the muon magnetic moment (see e.g. |3] for a review), the annual
modulation in the DAMA data [4], the excess of positrons in the cosmic radiation |3, 6], the ”forward-backward
asymmetry” observed at the Tevatron [7], the disputed evidence for neutrinoless double S-decay claimed by the
Heidelberg-Moscow experiment |§], the cosmological lithium problem [9], unexplained features in the galactic ~-
ray spectrum that may be related to DM [10] and shifts in quasar absorption lines that have been interpreted as
signatures of a varying fine structure constant [11].

5The term “dark radiation” refers to relativistic particles in the early universe with no or tiny interaction with
the SM at temperatures T' < 2 MeV.

It has been speculated that this point may be related to the RH neutrinos’ superpartners [12], see also [13].

8There are various aspects of the SM that may be considered “problems” from an aesthetic viewpoint or physical
intuition, such as the hierarchy between the electroweak and Planck scale, the strong CP problem, the factorization
of the gauge group and the flavour structure. We do not discuss these here. We also do not discuss the issue of
vacuum stability, which seems inconclusive at this stage due to uncertainties in the top mass [14-18].



starting with a general summary in section ]l The perspectives to interpret the hints for “dark
radiation” (i) in terms of RH neutrinos and reconcile them with the oscillation anomalies (ii) are
addressed in section Section [l is devoted to the idea that RH neutrinos are the origin of
the baryonic matter in the universe (leptogenesis) and possible implications for their properties.
Section [@] discusses RH neutrinos as DM candidates. In section [7] we address the question how
many of these phenomena can be explained simultaneously by RH neutrinos alone. We conclude in
section [§ and give a tabular summary of possible RH neutrino mass scales and their implications
for known and future observations in appendix [Al

1.2 The missing piece?

All matter we know is composed of elementary fermions with spin % These can be described
by Weyl spinors, which transform under irreducible representations of the Poncairé group, and
combinations thereof. There are two such representations, known as “left chiral” and “right
chiral” spinors. Remarkably, all known elementary fermions except neutrinos come in pairs of
opposite chirality, i.e. have been observed as “left handed” (LH) and “right handed” (RH)
particleﬁﬁ, see figure [l For unknown reasons the interactions of the SM are such that both can
be combined into a Dirac spinor, see appendix [Bl Neutrinos, however, so far have only been
observed as LH particles. One conclusion that could be derived from this is that no right chiral
“partner” for the observed LH neutrinos exists in nature. Another possible conclusion is that we
have not seen RH neutrinos just because their interaction with other matter is too weak. Indeed
LH neutrinos are electrically and colour neutral; in the SM they only participate in the weak
interaction, which does not couple to RH fields. This suggests that their RH partners are singlet
under all gauge interaction. Such particles are referred to as “sterile neutrinos”.

Let us add n RH fermions vg; to the SM that are singlet under all gauge interactions and
couple to LH neutrinos in same way as RH charged leptons couple to LH charged leptons, i.e.
via Yukawa interactions. We will refer to these fields as RH neutrinos and to the index ; that
labels them as flavour inder. Then the most general renormalizable Lagrangian in Minkowski

space that only contains SM fields and vg reads
_ ~ ~ 1
L= Lsy + iVRdve — I Fvg® — vgF1, & — 5 (VRMrvr + vEM V). (1)

Here we have suppressed flavour and isospin indices. Lgps is the Lagrangian of the SM. F is
a matrix of Yukawa couplings and Mj); a Majorana mass term for the right handed neutrinos
vr. lp = (vi, eL)T are the left handed lepton doublets in the SM and & is the Higgs doublet.
® = (e®)f, where € is the SU(2) antisymmetric tensor, and v§, = Cvi”, where the charge
conjugation matrix is C' = iy in the Weyl representation. We choose a flavour basis where
the charged lepton Yukawa couplings and M); are diagonal and the neutrino coupling to weak
currents has the form (B]) Throughout this article we assume that there are only three “active”
neutrinos vy, that are charged under the weak interaction. If there are more families, then these

%In this article “RH” and “LH” always refer to the chirality of the fields and not to helicity eigenstates.

YHere we refer to the SU(3) x SU(2) x U(1) gauge group of the SM. They can of course be charged under some
extended gauge group, which either acts only in a “hidden sector” or is broken at energies above the electroweak
scale.

"This corresponds to a “mass basis” for charged leptons and “flavour basis” for active neutrinos. For vanishing
Higgs field value it would coincide with the mass basis for all fields.
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Figure 1: The particle content of the SM. Are we missing the right handed partner of the neutrinos?
Picture taken from |21].

must be heavier than my /2, otherwise they would contribute to the width of the Z-boson [19],
see |20] for some recent discussion and references.

In the Lagrangian () the fields vg only interact via the Yukawa couplings F. In the early
universe, when the temperature was high enough that Higgs particles were present in the primor-
dial plasma (7" > Tew ~ 140 GeV for a Higgs mass my ~ 125 GeV [22, [23]), this interaction
allowed vg-particles to participate in various different scattering processes. At energies much
below the mass of the W-boson one can in good approximation replace the Higgs field ® by its
vacuum expectation value v = 174 GeV. Then (Il) can be written as

L = Lsy + VR 19VR,1 — (MD)alVL,aVR,I — (MD) &1 VR, VL o
1 — _
—5 (M) 1av jvr.g + (Mu) 157k 1v5,1] (2)
where we defined the Dirac mass matric mp = Fv. Thus, at T" < Tgrw the only effect of the
Yukawa interaction is the generation of the Dirac mass term mp, and the only way how the fields

vR interact with the SM is via their mixing with vy due to mp.

1.3 The range of right handed neutrino masses

While in the SM the Higgs mass my is the only dimensionful parameter (apart from the Planck
mass), the Lagrangian ([Il) introduces n new dimensional parameters in Mj;. The scale(s) asso-
ciated with these provide a convenient way to classify different RH neutrino scenarios. Various
embeddings of (I]) into a bigger framework make different predictions for My, (see e.g. [24-26]
for a general overview and [27-29] for recent developments in model building), but empirically
there are only few constraints. The following scenarios are particularly motivated, a summary in
table form is given in appendix [Al Of course, M), can have eigenvalues in several different mass
ranges, so that several of these scenarios may be combined in nature.

Mjs 2 10° GeV - This range is motivated by embeddings of (Il) into GUT scenarios [30],
such as SO(10) unification [31,132]. SO(10) models necessarily require the existence of vr [ For

2 Any model that contains a U(1)p_1 gauge symmetry requires this for anomaly freedom. This can be used as



Yukawa couplings F' of order one, RH neutrinos with masses favoured by GUT models reproduce
the scale of observed neutrino oscillations (I) via (I0). In addition, typical parameter values
allow to generate the observed baryon density in the universe (II) in CP-violating decays of RH
neutrinos, see section 5.1l The regime My, < 10'® GeV is favoured [33].

My ~ TeV - Theoretically this mass range is interesting because it follows from a no new
scale principle of minimality: If My, is near the electroweak scale, the origin of both scales may
be related. The origin of matter (II) may be explained by leptogenesis from CP-violating vg-
oscillations (see section [5.2)) or, if two v masses are degenerate, decays (see section[5.1]). Neutrino
masses (I) are explained by the seesaw mechanism. From an experimental viewpoint this mass
range is favourable because it is accessible by high energy experiments, such as LHC.

Mjys ~ GeV - If My, has at least two eigenvalues 2 2 GeV and another eigenvalue in the keV
range, then the observations (I)-(III) can be described by () alone, and no other physics between
the electroweak and Planck scales is required, see section [l Experimentally vg with GeV masses
may be found using high intensity experiments, see section [3.41

M)s ~ keV - RH neutrinos with keV masses are promising candidates for the DM (III), see
section [6l

M)s ~ eV - RH neutrinos with eV masses can provide an explanation for the anomalies (i)
and/or (ii), which are observed in some neutrino experiments (see section B.Il) and cosmological
data (see section Ml in particular [.2)).

My =0 - For n = 3 the leptonic sector exactly resembles the quark sector without strong
interactions. In this case neutrinos are Dirac particles Then neutrino masses are generated by
the Higgs mechanism in precisely the same way as other fermion masses, and their smallness can
only be assigned to very tiny Yukawa couplings. Though in principle possible, this may appear
“unnatural” unless there is a deeper reason for i1, Furthermore, there is no known principle
that forbids Mjs for the gauge singlet fields V. This is in contrast to quarks and charged
leptons, for which an explicit mass term is forbidden by gauge symmetry.

2 Neutrino oscillations

The probably strongest motivation for the existence of vr are neutrino oscillations, the only
processes amongst (I)-(IV) that have been observed in the laboratory. The neutrinos vy are
massless in the S . In the past two decades an increasing number of neutrino experiments has
observed neutrino flavour changes, which indicate that neutrinos are massive and oscillate, see
e.g. [27,138] for reviews with many references. The experimental results can be divided into two
categories: the standard 3-scenario (SS) of three massive neutrinos, which we discuss here, and
deviations from it, which we discuss in section [Bl

an argument for the existence of vr: The conservation of B — L in the SM is not related to a gauge symmetry. If
there is such symmetry, then vr must exist.

BFor n # 3 it is in general not possible to combine all vy, and vg into Dirac spinors, see appendix [Bl

'Some speculations on such reasons can e.g. be found in [34-31].

15 A small value of M is, however, “natural” in the technical sense because the symmetry of £ increases in the
limit Mas — O (there is a global U(1)p—r).

We do not consider neutrino masses as a part of the SM because we do not know what the nature (Dirac or
Majorana) or absolute scale of the mass term is.



The interactions of neutrinos in the SM are described by the Lagrangian term

- iIJ_L'Y“eLWJ - iﬁv“vLW; - vpy'vLZy, (3)

g

NG) V2 2 cos Oy
where g is the SU(2) gauge coupling constant and fy the weak mixing angle. This defines the
basis of weak interaction eigenstates (electron, muon and tau neutrino) If neutrinos have a
mass, then the mass term need not be diagonal in this basis in flavour space. In the SS, the weak
interaction eigenstates vy, ., v, and vy . are superpositions of three mass eigenstates vy, ; with
masses m;. For a given momentum, these have different energies if their masses are different,
and their wave functions oscillate with different frequencies. Thus, the flavour decomposition of
a neutrino state changes in time. This can explain the observed neutrino oscillations.

2.1 The standard scenario of massive neutrinos

There are two different ways to effectively realize the SS of three massive neutrinos with no extra
particles.

Majorana neutrinos - A Majorana mass term of the form
1__ c
SVLMwVL + h.c. (4)

can be constructed without adding any new degrees of freedom to the SM. This term, however,
breaks gauge invariance unless it is generated by spontaneous symmetry breaking from a gauge
invariant term like [39]

1—. -
Sl ® fOT15 4+ he., (5)

where f is some flavour matrix of dimension 1/mass. The dimension-5 operator ({]) is not renor-
malizable; in an effective field theory approach it can be understood as the low energy limit
of renormalizable operators that is obtained after ”integrating out” heavier degrees of freedom.
These can, for example (but not necessarily!), be right handed neutrinos, cf. (II]). Therefore a
Majorana mass term () clearly hints towards the existence of new physics although it can be
constructed from SM fields only. At low energies one effectively observes the SS with only three
massive neutrinos if the energy scale related to the new physics (in case of RH neutrinos the mass
Myy) is sufficiently high that all new particles are too heavy to be seen in neutrino experiments.
The Majorana mass term (4 can be diagonalized by a transformation

m,, = U,diag(mi,ma, m3)Uy. . (6)

Such a transformation is always possible because the most general m,, is a symmetric matrix. An
antisymmetric part is unphysical due to the simple spinor relation 20rm,vf = 7 (m, + mZ)VEJé
The matrix U, is constructed from the eigenvectors of m,,m,t. In the mass base, the neutrino
mixing matrix U, appears in the coupling to W), in (@]).

"More precisely, if one considers the general form of the interaction %H’Y“ Uanger,p WJ in the basis where
charged Yukawa couplings are diagonal, then the basis of weak interaction eigenstates for vy is the one where
Uag = (5(15.

8For the same reason the Majorana matrix My in () is symmetric in any flavour basis.



Dirac neutrinos - If neutrinos are Dirac particles, the existence of vg is directly required to
construct the mass term
vrmpvg + h.c.. (7)

Though this means adding new degrees of freedom to the SM at low energies, it is still a realization
of the SS, i.e. only three massive neutrinos are observed. The vi can be combined with the vy,
into Dirac spinors and there are only three different masses. One could say that there are no
new particles in the strict sense, but just additional spin states for neutrinos. We refer to both
of these scenarios as the SS.

A bi-unitary transformation mp = U,diag(mi, ma, mg)V,,T can diagonalize the mass term ([7]),
with real and positive m;. One can define a Dirac spinor ¥, = VJ VR + UJVL with a diagonal
mass term mglag = diag(mq, ma, m3), i.e. U, (ig — mgiag)\ll,,. The matrix V,, is not physical and
can be absorbed into a redefinition of the flavour vector vg. The neutrino mixing matrix U,
then appears in the coupling of that Dirac spinor to W, in (). A phenomenological prediction
of Dirac neutrinos is that there is no neutrinoless double S-decay. In order to be consistent with
observations, the Yukawa couplings F have to be very small (F ~ 107'2) compared to those of
the charged leptons and quarks.

The neutrino mixing matrix - In the basis where charged Yukawa couplings are diagonal,
the mixing matrix U, is identical to the Pontecorvo-Maki-Nakagawa-Sakata matrix [40, 41] and
can be parametrized as

U, = VB Uy B y_sv (12 diag(ei*1/2 ei2/2 1) (8)

with Uys = diag(e¥/2,1,e*%9/2). The matrices V(%) are given by

1 0 0 C13 0 S13 C12 S12 0
VE = 0 g sa3, |, V= 0o 1 0 VI = 515 e 0 ], (9)
0 —S893 C23 —S813 0 C13 0 0 1

where ¢;; and s;; denote cos(0;;) and sin(0;;), respectively. 0;; are the neutrino mixing angles,
a1, as and § are C'P-violating phases. Many parameters of the mixing matrix U, have been
measured in recent years. In particular, two mass square differences have been determined as
Am?, =m3 —m? ~ 7.5 x107%V? and Am?,, = |m3 — m?| ~ 2.4 x 10~3eV?, the mixing angles
are 019 ~ 34°, 023 ~ 39° and 013 ~ 9°; the precise best fit values differ for normal and inverted
hierarchy (but the difference is smaller than the 1o ranges) and are given in [2,42-44], see also

[45] and [46, 47] for recent reviews. What remains unknown are

e the hierarchy of neutrino masses - One can distinguish between two non-equivalent setups.
The normal hierarchy corresponds to my < mg < mg, with Am2, = m3—m? and Am2,,, =
m% —m? ~m%—m3 > Am?|. The inverted hierarchy corresponds to m3 > m? > m3, with

sol*
Am2, =m3% —m? and Am 2

_ 2 _ 2 2 ~ 2 2
sol — atm — 1M — M3 = M5 m3 > A7nsol'

e the CP-violating phases - The Dirac phase ¢ is the analogue to the CKM phase and remains
present even for My, = 0. Global fits to neutrino data tend to prefer 6 ~ 7 [42], but are
not conclusive. The Majorana phases a7 and as become unphysical in the limit My; — 0
because they can be absorbed into redefinitions of the fields.



e the absolute mass scale - The mass of the lightest neutrino is unknown, but the sum of
masses is bound from above as ), m; < 0.23 eV [48] by cosmology@l. It is also bound from
below by the measured mass squares, >, m; > 0.06 eV for normal and )", m; > 0.1 eV for
inverted hierarchy.

2.2 Neutrino masses from right handed neutrinos

In this section we discuss how sterile neutrinos described by the Lagrangian (Il) can give Dirac or
Majorana mass terms to the active neutrinos. It is obvious that the Lagrangian (2) with M, = 0
represents Dirac neutrinos with a mass term (7). For Mj; # 0 they generate a Majorana mass
term (4). If the mass M), is sufficiently large, RH neutrinos are heavy and neutrino oscillation
experiments can be described by an effective Lagrangian that is obtained by integrating them

out of (2),
1
L=Lsn — §ﬁm,,1/i with m, = —mDMA_jmlT). (10)

If the Majorana mass is above the electroweak scale (My; > v) one can already integrate out the
v in (D) to obtain (G) with f = FM,}FT,

1—- -
L=Lsy+ §ZL<I>FMA_41FT<I>TZE. (11)

Hence, the SS with three massive neutrinos is effectively realized if My, is either zero or
so much bigger than the observed neutrino masses that (I0) can be used to describe neutrino
oscillations. If one or more eigenvalues of M), are not that large, then the light sterile neutrinos
appear as new particles in neutrino experiments. To explore the full range of masses, we write
the mass term as

C C

%(ﬁ V%)W( ZII% ) + h.c. = %(ﬁ vg) < WSQD« ]\n/}if ) < Z}L% > + h.c. (12)
Here we have used the identity %M MVE = ﬁMﬂj/}VR and the symmetry of M. If vg exist, they
generate a mass term for vy except if F' either Vanishe@, F and My have a particular flavour
structure that leads to cancellations in m or there are not enough RH neutrino flavours vp
to give mass to all U ; this is seen as a strong motivation to postulate their existenc. The
relative size of My, and mp (i.e. their eigenvalues) allows to distinguish different scenarios. Note
that this does not say anything about the absolute scale of mp, which may lie anywhere between
0 and the electroweak scale (assuming perturbative couplings F').

19The bound and preferred value for > , M. slightly change, depending on the dataset and analysis. It becomes
more stringent when different data sets are combined, see e.g. |49].

20Tn the case F' = 0 it is not clear from the viewpoint of (@) why the fields vr should be called “neutrinos”, as they
have nothing in common with the known neutrinos except being neutral. Of course, such pariah neutrinos [which
only interact gravitationally in ()] can be charged in a way that justifies this classification under an extended
gauge group that it broken at high energies.

21Such cancellation occurs in models where Mys and F are chosen in a way that there is no total lepton number
violation.

22For the Lagrangian (III) the number of massive active neutrinos vy, o cannot exceed the number n of RH fields
VR,1; each vr 1 can only generate one neutrino mass. Hence, at least two RH neutrino flavours are required to
explain the observed mass splittings Amatm and Amsge (for n = 2 the lightest active neutrino is massless).

230f course there are alternative ways to generate a neutrino mass term, see e.g. |[50-67] or [24-126] for a general
overview with many references.



My < mp - This is a pseudo-Dirac scenario; for n = 3 the neutrinos in this case effectively
behave like Dirac particles?d. This case is excluded unless M), < 107? eV, as otherwise solar
neutrino oscillations into vz should have been observed [66].

My; ~ mp - In this case My; and mp should both be of the order of the observed neutrino
mass differences. The full mass term can be diagonalized by a (3 +n) X (3 + n) matrix U as
M = Udiag(my, ma, ms3, My,..., M,)UT. This can lead to rather large mixing between v; and
VR.

Mjs > mp - This is the seesaw limit, in which the neutrino mass term is described by (I0]).
This scenario is discussed in detail in the following section 23l The seesaw limit roughly applies
if My > 1eV.

2.3 The seesaw mechanism

In the limit mp < M)y (in terms of eigenvalues), the full (3+n) x (3 + n) mass matrix 9 for vy,
and vg has two distinct sets of eigenvalues. n of them (M) are of the order of the eigenvalues of
My, the remaining three (m;) are suppressed by two powers of the active - sterile mizing matrix
0,

0 =mpM;;. (13)

The seesaw hierarchy 6 < 1 separates the two distinct sets of mass eigenstates. One can block-
diagonalize (I2)) by expanding in #; on one hand one obtains the 3 x 3 mass matrix

m, = —60My67 (14)

with eigenvalues m;; it corresponds to the operator (I0]). The known bounds on neutrino masses
impose constraints between the values of F' and Mj;, see figure 2l On the other hand there is
the n x n matrix

1
My = My + 5(¢9T¢9MM + M676%) (15)

with eigenvalues M;. The matrices m, and My are not diagonal and lead to flavour oscillations.
Diagonalizing them yields the mass term

1 ) .
3 (Wmﬂ‘agvz + U%M;\iflang) + h.c. (16)
with
maP8 = diag(my, ma, ms3) , dev‘ag = (M, ..., My,) (17)

In summary, the full matrix ¢ that diagonalizes 9 reads

(O ) ()

Three mass states have light masses m; ~ O[0?M);] and are mainly mixings of the SU(2) charged
fields vy,

1
v, =US ((11 — 599*)% — 9,,;:2) (19)

24This is not only way how Dirac fermions can arise. For instance, if the splitting between two eigenvalues of
M)y is sufficiently small, then one can form Dirac spinor by combining different flavours, see appendix [Bl
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The remaining n mass states have masses M; ~ O[M);]| and are mainly mixings of the singlet
fields vg,

v =UL ((11 - %eTe*)yR + 9%;) . (20)

We refer to vy, as active neutrinos because they take part in the unsuppressed weak interactions
@B). The vg also participate in the weak interaction (B]), but only with an amplitude suppressed
by 0; hence they are sterile neutrinos. The matrix Uy diagonalises the sterile neutrino mass
matrix M N it can be seen as analogue to U,. The diagonal elements of My are much bigger
than the off-diagonals and very close to the entries of Mj;. Therefore one can in most cases
neglect all terms of second order in # and approximate My = Mjy;, Uy = 1. However, if two
eigenvalues of M), are degenerate, then the Uy can contain large sterile-sterile mixing angles.
The active-sterile mixing angles are determined by the entries of the matrix # and always small.
More precisely, the experimentally relevant mixing between active and sterile species is given by
the matrix © wit

@aI = (HU;\([)OJ (21)

Practically, experiments to date constrain the quantities
UZ=) 00104 = 0a1b (22)
I I

and combinations thereof.

This is known as the seesaw mechanism [67-70] because increasing the eigenvalues of My,
pushes the masses of the sterile neutrinos up and those of active neutrinos down, just as if they
sat on a seesaw?l. If the couplings F' are of order one and My, in the range suggested by GUT
models, then m,, roughly reproduces the observed neutrino mass splittings. Hence, the mechanism
provides a natural explanation for the smallness of neutrino masses. However, the scale Mj; of
the seesaw is phenomenologically almost unconstrained and may be as low as 1 eV [75].

To make the Majorana nature of the fields explicit (and get rid of the charge conjugation
matrix in the mass term) one can describe them in terms of Majorana spinors; we define the
flavour vector

N =vp+v%, v=u + vf. (23)

Obviously, the elements v; are active neutrinos and the N7y sterile neutrinos. The mass and kinetic
terms then can be combined as

1= - 1 -
V(i = M™)N + 59(i§ — my“®)v (24)

Up to the normalization, this looks like the Lagrangian for a Dirac field, but one has to keep in
mind the Majorana conditions N; = Ny, v; = v§.

25We choose the phase convention in Uy such that My = Undiag(M;, ..., Mn)U;{, with M7 real and positive. In
this convention we observe the same relations vy, ~ U,vr and vg ~ Unvg for left and right handed fields (rather
than Uy for vg).

26Tn @0) the matrix U;{,QT = OT appears (rather than ©) because the N; couple to v, but overlap with v7 .

27 More precisely, this is the type-I seesaw mechanism. The term “seesaw” is also used for several modifications
of this idea |71], such as the “type-1I seesaw” |52, [54-457], “type-II1” seesaw [60], “split seesaw” [72], “radiative
seesaw” [73, |74] or “inverse seesaw” [58, |59].

28Obviously vr = PrN and vi = Prv, where Pgr 1 are chiral projectors.
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Figure 2: A schematic illustration of the relation between F' and M in the seesaw limit mp << M.
Individual elements of the matrices F' and My can deviate considerably from this if there are
cancellations in (I4). Plot taken from |21].

3 Other laboratory experiments

The production and study of N particles in the laboratory is in principle possible if M; is below
the electroweak scale. At energies < My, the N only leave indirect traces in the laboratory.
They manifest as higher dimensional operators [76], such as the mass term (I0). These can
lead to deviations from SM predictions in different observables, such as lepton number violation
or B-decays. These signatures provide valuable information, but are usually not specific to RH
neutrinos. Here we list a number of experimental setups that can constrain the properties of Nj.
So far almost all but those in section B.1] have reported negative results, i.e. only allow to exclude
certain parameter regions.

3.1 Neutrino oscillation anomalies

Accelerator experiments - Some short baseline and reactor neutrino experiments have re-
ported deviations (ii) from the SS. A more detailed review of these results can found in [77],
which we follow closely here. The most prominent findings come from the LNSD experiment
[78, 179], which studied transitions 7, — 7, and saw an excess of De-events. The similar KAR-
MEN experiment did not see such excess [80], but could not exclude the entire parameter space
of the LSND anomaly [81], mostly due to its shorter baselength. The most recent results from
the MiniBooNE experiment [82] from v, — v, and 7, — 7. studies seem compatible with the
LSND anomaly, which is in contrast to previous results. However, it has been pointed out that
much of the signal comes from energies below 475 MeV, where the background evaluation is
problematic [77]. The ICARUS experiment [83] is also sensitive to sterile neutrinos; active-sterile
oscillations get averaged over, but lead to an energy independent enhancement of event rates.
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Figure 3: Left plot: The region in the mass-mixing plane preferred by the LSND anomaly (coloured
bands) is compared to the region allowed by MiniBooNe (coloured lines) and exclusion plots by other
experiments as indicated in the plot; plot taken from @] Right plot: region allowed by the combined
reactor and gallium anomalies, taken from m] Data from both is e.g. combined in figure 4 in @]

Together these experiments roughly restrict the parameter space for one sterile neutrino to a
mass splitting Am? ~ 0.5eV? and mixing sin?260 ~ 5 x 1073 Eﬂ], see figure [31

Reactor and gallium anomalies - There are two more anomalies that can be interpreted
as a sign for sterile neutrinos with eV masses. One is the reactor anomaly @] The neutrino
fluxes from nuclear reactors appeared to be in agreement with theory until recently. It was not
new experimental data, but more refined theoretical calculations that lead to tension with the SS

,@] However, it should be pointed out that even in these results, about 10% of the S-decay
branches are not known and can only be estimated 2 This involves using the ILL-experiment’s
measurement for the electron spectrum @, @] as a reference point, hence the anomaly could
be due to a systematic in that measurement. The other anomaly arises in the calibration of the
GALLEX and SAGE experiments @, @]

These anomalies have resulted in a great interest in searches for eV-mass sterile neutrinos.

29Tf the uncertainty in S-transitions is bigger than usually assumed the anomaly could be statistically insignificant

les).
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Global fits to all data have e.g. been performed in [84,193,194]. As discussed in detail in [84], the
situation at this stage is not clear. The accelerator anomalies come from appearance measure-
ments (muon to electron). If they are caused by sterile neutrino oscillations, there should also
be a v, disappearance, which is not observed. This tension is present in the 3 + 1 (three active
and one eV mass sterile neutrino) model and remains in 3+ 2 scenarios (three active plus two eV
mass sterile neutrinos). It reduces a bit in a 1 + 3 + 1 model with two sterile neutrinos (where
one sterile neutrino is lighter than an active one). The reactor and gallium anomalies, which
are due to disappearance, do not show such tension to other experiments. They come, however,
from v, disappearance, which is controlled by other parameters than v, disappearance. Hence,
the situation remains puzzling. A detailed list of various proposals for future experiments [95-9§|
can be found in [27].

3.2 Lepton flavour violation

The most studied consequence of the lepton number violation due to M), is the neutrinoless
double S-decay discussed in the following subsection[3.3l M), and F' also mediate flavour violation
in the charged lepton sector [55, 199-109], leading e.g. to muon decays p — ey and unitarity
violation of the PMNS matrix [110, [111]. Searches for these processes in proposed experiments,
such as COMET (112, [113] or Mu2e [114], can help to constrain RH neutrino properties [109].

In the framework of (Il), with no other physics added to the SM, it is hard to observe these
processes. For a generic choice of parameters the seesaw relation (I4]) implies that either the
suppressing scale M is too heavy or the Yukawa couplings F' are too small. A class of models
that offers relatively good chances to observe lepton flavour violation are those where the structure
of F and My, is such that an approximately conserved generalized lepton number can be defined
[58, 76, 115-121]. In this case the scales where lepton flavour violation and total lepton number
violation occur can be rather different. In such models even RH neutrinos responsible for the
baryon asymmetry of the universe may give a measurable contribution to u — evy [121]

Models that embed () into an extended framework, such as supersymmetric and grand unified
theories, often contain interactions that violate lepton flavour or even the total lepton number.
This includes left-right symmetric models, see e.g. [124] and references therein. It also applies to
various “bottom up” models that e.g. include an extended scalar sector which couples to neutri-
nos. Hence, while non-observation of u — ey and other processes can constrain Nj-properties,
the observation would not necessarily be a clear sign for their existence.

3.3 Neutrinoless double -decay

If neutrinos are Majorana particles, neutrinoless double- decays (0v3/) are possible [57] (see
[125, [126] for recent reviews). Whether OvSS-decay occurs at observable rates depends on the
Majorana mass matrix Mpy;. The lepton number violation is sufficient if at least one eigenvalue
of My is larger than the exchanged momentum ~ 100 MeV [127-129], see also [106, 130]. The
Ovf3B-decay can be pictured as exchange of an electron neutrino that acts as its own antiparticle
between the nuclei, see figure @l The amplitude is given by the convolution of nuclear matrix

30Right handed neutrinos can also mediate lepton number violation in more exotic models. For instance, p — ey
may be measurable [122] in models where the vr are composite objects that are hold together by strong couplings
in a hidden sector |37, [123].
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Figure 4: Diagram for neutrinoless double beta decay. Here we have made the lepton number flow
explicit by assigning arrows to fermion lines. The “clashing arrows” in the center of the diagram are
allowed because neutrinos and antineutrinos are indistinguishable if they are Majorana particles. If
some Np are light enough, they may also be exchanged instead of v;. The amplitude for this process
vanishes in the limit My — 0.

elements with

2 2
2 Ny my
(Uv)ei P 661 P 2"
pT = mz b —my

Here p? = p% — p? is the exchanged momentum, with |p| ~ 100 MeV. In the regimes M; < 100
MeV and M; > 100 MeV one can make analytical approximations and approximate the inverse
half life time for Ov33-decays

M7;<100MeV M7>100MeV

~G0,,ZM U Y M1921ﬂ+ Z M; 02, mp. (25)
1

Me

Here G, is the “phase space factor” (for instance G, = 7.93 x 105yr~! for ®Ge [129]). The
dependence in the intermediate regime is more complicated [129]. The M; and M are nuclear
matrix elements corresponding to light active or sterile neutrino exchange. The M; are matrix
elements for the contribution from heavy sterile neutrinos, sometimes called “direct contribution”
or “contact term” (the indicates the different normalization conventions for both regimes). Such
heavy neutrinos are not really “exchanged” as propagating particles; because their mass is larger
than the exchanged momentum, they can be integrated out and their contribution can be un-
derstood in terms of an effective operator as (). The nuclear matrix elements are a source of
considerable uncertainty.

Usually light neutrinos (active or sterile) with masses < 100 MeV strongly dominate in the
exchange [131]. However, without any extra sources of L-violation beyond (), the existence of a
mass state with M; > 100 MeV remains a necessary condition for observable rates of Ov53-decay
even if the direct exchange of these heavy particles does not give a significant contribution to

. When only light neutrinos are exchanged one can approximately factorize the dependencies
on nuclear and neutrino physics and parametrize the latter in terms of the effective Majorana

mass .

M;<100MeV
Mee = Z(Uy)gzmz + Z @21M[ . (26)
% I

31 The effective Majorana mass is different from the kinetic mass (3, [Ue:|*m?)*/2.
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Figure 5: Current bounds on me. (here called mgg) as a function of the smallest neutrino mass, as
summarized in @] “NS” refers to normal hierarchy, “IS” to inverted hierarchy. The cosmological
limit has tightened with the publication of the Planck results ]

For very light Ny one has to go beyond the seesaw approximation (2I]) to calculate the active-
sterile mixing matrix ©.

Leaving aside some tuned special cases @], the contribution from active neutrinos dominates
in (type I) seesaw models @] If all sterile neutrino masses are below 100 MeV, they
usually give a negative contribution, i.e. reduce the rate of Ov3S-decays compared to the case
where only active neutrinos are exchanged (which in any case is undetectably small if there is no
M; above 100 MeV), see | for a recent discussion. The existence of light sterile neutrinos is
strongly constrained by cosmology. In particular, if sterile neutrinos compose the observed DM
(see section [6]), then the bounds on their mixing imply that they do not contribute @, ] If
only the active neutrino mass states v; contribute to (26]) and have an inverted mass hierarchy,
then there exists a lower bound m.. > 20 meV, see figure Bl For normal hierarchy there is no
such bound. If also light sterile states Nj contribute ﬁgj, @, @, @@] there is no lower
bound for any hierarchy.

So far there is no clear observation of neutrinoless double-5 decays. The only claim of a
detection ﬂg, ] suggests mee. = 0.324+0.03 eV ], but is disputed, as it appears to be in conflict
with other observations @@] For instance, the EXO-200 experiment finds m.. < 0.14 —0.38
eV ] Other experiments so far only put upper bounds on the rate for this process, see figure
(an overview is also given in , ])
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3.4 Collider searches

Depending on the masses M7, there are different ways to look for Nj-signatures in collider ex-
periments, see [146] for a review.

Intensity frontier - If kinematically possible, the sterile neutrinos Ny participate in all pro-

Vg

GF(’AI

Figure 6: Example for a contribution to Nj-decay at low energies. The N itself can be produced
in meson decays. Instead of the vg-vg pair there can also be charged lepton-antilepton pairs or
quark-antiquark pairs (which hardronize) in the final state if this in kinematically allowed.

cesses that involve active neutrinos, but with a probability that is suppressed by the small mixings
U2. This makes it possible to produce them in meson decays for M; < a few GeV [147-152],
see also [1537155]. One can distinguish two ways to look for Nj. First, they could be seen
as missing energy in the meson decays that produce them; in two body decays this allows to
determine their mass and (via the branching ratio) their mixing. Second, the subsequent decay
of the N; shown in figure [6l may also be observed (e.g. as “nothing — leptons” process) if one
places a detector along the beamline. For some parameter choices, it can even be possible to
observe both events in the same detector |[157]. Several experiments of this type have been set
up in the past [158-165], in particular CERN PS191 [160, 161], NuTeV [162], CHARM [163],
NOMAD [164] and WA66 [165]. The bounds derived from these for n = 2 are shown in figure
[Il They are valid under the assumption that N; have no interactions other than those in ()
below the electroweak scale. If the mass My is larger than a few GeV, the N are too heavy to be
produced efficiently (D or B meson decays are not possible) and it is unlikely that direct searches
in the near future can find them. If they are, on the other hand, lighter than ~MeV, then their
Yukawa coupling F' must be very small due to (I4]) and the branching ration is very smal.

High energy frontier - Sterile neutrinos with masses up to a few TeV in principle are within
reach of the LHC or other future high energy experiments [118, |119, 146, [166-181]. A promising
signal in different scenarios are Nj-decays that involve same sign dileptons (two leptons of the
same charge) in the final state. However, the Yukawa coupling in (I]) have to be tiny due to the
seesaw relation (I4) and p — ey data [106]. If the vi only interact via these Yukawa couplings
F, the branching ratio is usually too small [175]; a detection is only possible if F' has a particular
structure that leads to cancellations in the contributions of different elements to m, [118, [119],
hence allows for larger individual entries of F'. Such cancellation can occur if the total lepton
number L is approximately conserved [118].If the v only interact via these Yukawa couplings F,

32Sterile neutrinos may also be produced in the decay of tauons [154-156].
331t has been suggested that, if M)y is generated by spontaneous symmetry breaking below the electroweak scale,
it may be possible to detect even lighter (keV) sterile neutrinos [166].
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the branching ratio is usually too small [175]; a detection is only possible if F' has a particular
structure that leads to cancellations in the contributions of different elements to m,, [118, [119],
hence allows for larger individual entries of F'. Such cancellation can occur if the total lepton
number L (summed over active and sterile flavours) is approximately conserved [118].

The perspectives are much better if the vz have interactions in addition to those in (). For
instance, it may be possible to study RH neutrinos in high energy collisions if the scalar sector
is extended in comparison to the SM [166, [171, 174, 177], in models where neutrino masses are
generated via the inverse seesaw mechanism [178, 179, [182] or if spacetime has more than four
dimensions [176,(183]. In left - right symmetric models [184-186] the v are charged under a right
chiral SU(2) gauge symmetry, which can be broken near the TeV sale. One promising possibility
to test such models is to search for the associated gauge bosons [187], but also the properties
of the Ny themselves can be probed [188-191]. Current bounds are given in [192, 193], the
right W-boson should be heavier than about 2.5 TeV [124]. In supersymmetric (SUSY) theories
the seesaw mechanism may also be studied indirectly at colliders |194]; if their SUSY-partner
(sneutrino) is the lightest sparticle, then observations of the decays of heavier SUSY-particles
into sterile sneutrinos can constrain their properties |[195]. It has been suggested that N; can
give a contribution to the Higgs mass, see e.g. [196-198], though this is disputed [199]. Finally,
LHC searches can also be promising for models that couple N; to Z' gauge bosons [200, 201],
including those where N; are responsible for leptogenesis [202].

3.5 Direct dark matter searches

Sterile neutrinos are a promising DM candidate, which we discuss in detail in section Bl If they
compose all DM, then bounds from X-ray and structure formation imply that their Yukawa
couplings are so small that they cannot contribute to the observed neutrino oscillations [203].
This means that, if one at the same time requires RH neutrinos to explain the two observed
neutrino mass differences, there must be at least three of them. The small coupling also makes it
practically impossible to directly observe these particles in collider experiments due to the tiny
branching ratio for their production. They could at least in principle be found in direct detection
experiments that look for interactions of DM sterile neutrinos from the interstellar medium with
atomic nuclei in the laboratory, and some experiments have been suggested 205, [206]. However,
such detection would be extremely challenging (most likely impossible) due to the small mixing
angle and the background from solar and stellar active neutrinos [207].

3.6 Other constraints

Several other ways to constrain Nj properties have been suggested. If they have eV masses as
suggested by the oscillation anomalies (ii), they should affect 5-decays |78, 208-211], which has
not been observed. They may also leave traces in neutrino telescopes [212] like IceCube [213-217]
or detectors for direct DM searches |218]. The effect of keV sterile neutrinos on nuclear decays
has been studied in [219, [220], a detection at the current stage seems very unlikely due to the
background. In [221] it was found that sterile neutrinos with TeV masses can improve the fits to
electroweak precision data

341t has been shown that the bounds on DM sterile neutrinos can constrain the active neutrino mass spectrum
if additional assumptions are made [204].

35Electroweak precision data also allows to constrain models of right handed neutrinos with electroweak scale
masses beyond (), see e.g. [222].

18



4 Thermal history of the universe

If RH neutrinos vg with F' # 0 exist, they are necessarily produced thermally in the early
universe. At temperatures above the electroweak scale Tgy ~ 140 GeV [assuming a Higgs mass
of ~ 125 GeV [22, 23]], Higgs particles are present in the plasma. This allows for N; production
as long as the temperature is high enough [T" 2 M;(T), where M;(T) is an effective mass in
the plasmal. The relevant processes are decays and inverse decays Ny <> ®l, (or ® <> Njl,,
depending on the effective masses of the (quasi)particles in the plasma [223-225]) and scatterings
(such as tt «» Njl,). If the masses My are below the electroweak scale, N; are produced at
T < Tgpw via active-sterile mixing [The same process can be viewed as a vp-vg oscillation in
the flavour basis used in ({)]. In addition to that, there may be other production mechanisms if
vr have additional interactions with a hidden sector or extended Higgs sector, couple directly to
the inflaton or are charged under a gauge symmetry that is broken above the electroweak scale.
The presence of Ny in the plasma can have different effects in the early universe, which we will
summarize in the following.

All astronomical observations to date are in rather good agreement with the ACDM model of
cosmology@, sometimes dubbed the “Concordance Model” or “Standard Model of Cosmology” in
analogy to the SM. The most important cosmological parameters in the context of RH neutrinos
are the fractions of the total energy budget of the observable universe from baryons (Q2p ~ 0.049)
and dark matter (Qpys ~ 0.265 without active neutrinosi[48], as well as the effective number
of meutrino species Nqg in the radiation dominated epoc B7. The latter can be understood as a
measure for the expansion history of the universe. The (Hubble) rate of the universe’s expansion
is given by
TG, (27)

3
where G = Mp 2 is Newton’s constant and p the energy density of the universe. The contribution
of “known neutrinos plus unknown physics” to p is usually parametrized as Neg X p,, where p,
is the contribution from one ultrarelativistic species and Neg is the effective number of neutrino
species. It can be identified with the actual number of neutrino species if all neutrinos are
effectively massless and there is no other “new physics”. It is common to parametrize

1 +NeﬂvZ <i>4/3] , (28)

H? =

2
. T
P~ + Preutrinos + [new physics effects] = Py + Negrpy = 1—5T 74

8\ 11

where T), and p, are temperature and energy density of photons and ppeutrinos is the energy
density of the SM-neutrinos. The second equality holds only for T' < 0.2 MeV, i.e. after electrons
and positrons annihilated. This is the temperature regime where N.g is practically tested by
observations. In the standard scenario Neg = 3 during BBN and N.g = 3.046 at the time
of photon decoupling This assumes that each neutrino flavour has two internal degrees of
freedom. In the SM (without neutrino masses), these are particles and antiparticles. In contrast
to charged leptons and quarks, vz-states do not have an independent spin degree of freedom in

36 A brief review of the ACDM model is given in [2], see e.g. [226,2217] for detailed introductions.

37«Radiation dominated epoch” refers to the period in the universe’s history when more energy was stored in
relativistic than in nonrelativistic degrees of freedom.

38The deviation from 3 parametrises a deviation from the equilibrium distribution of neutrinos caused by et
annihilation |228].
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the SM: For massless particles, the helicity must be equal to the chirality; hence neutrinos (i.e.
one-particle states |vr)) must have left helicity and antineutrinos have right helicity.

If additional particles were present in the early universe, this would lead to a larger value
of Neg [229, 1230]. Each vg; adds two neutrino degrees of freedom. If n = 3 and all of these
were thermalized, N.g would be 6. However, if neutrinos are Dirac fields, then the Yukawa
couplings F' must be tiny to explain the smallness of the neutrino masses. Then the vr degrees
of freedom do not get populated significantly by thermal production. In other words, the helicity
changing processes are so suppressed at 1" > m; that practically all neutrinos, which are produced
by the weak interaction, have left helicity. This argument of course assumes that vr have no
other couplings than F' that could contribute to thermal production. Hence, the fact that we
observe Ngg o~ 3 — 4 strongly constrains models of Dirac neutrinos in which vg are charged under
some gauge group at high energies or otherwise produced in the early universe. If neutrinos are
Majorana fields and Mjp; 2 100 MeV, then the heavy particles Ny have decoupled and decayed
long before big bang nucleosynthesis (BBN) and do not affect light element abundances or the
CMB. Lighter sterile neutrinos can be long lived enough to contribute to Ny during BBN and
afterwards. If they are in thermal equilibrium and ultrarelativistic, then each N; increases Nqg
by one. If their abundance is below equilibrium or their mass not negligible, they contribute less.

Since (28)) assumes that all neutrinos are massless and in thermal and chemical equilibrium,
any deviation of the momentum distribution from (eP/” + 1)~! [such as a chemical potential,
a non-negligible mas@ or a nonequilibrium distribution] leads to non-integer contribution to
Neg; this applies to both, active and sterile neutrinos. Furthermore, in the SM the ratio of
the temperatures of the neutrino and photon backgrounds at the time of photon decoupling is
(4/ 11)1/ 3. If this ratio is different (e.g. because some decaying particle injects energy into either of
them), then this would lead to deviations from N.g = 3.046 even if there are only three neutrinos
[234-234].

4.1 A brief history of the universe

Observations of the CMB show that the universe was homogeneous and isotropic to one part in
~ 100000 at redshift z ~ 1100, when photons decoupled from the primordial plasma [237]. This
is puzzling, as the radiation we receive from different directions originates from regions that were
causally disconnected at that time if the universe only contained radiation and matter (“horizon
problem”). Furthermore, the inferred overall spatial curvature is zero or very small |237], which
means that it was extremely close to zero at earlier times (“flatness problem”). Both problems
can be understood as the result of cosmic inflation [238, 239], a phase of accelerated expansion
in the universe’s very early history. Inflation can also explain the small density perturbations
that served as seeds for structure formation in the universe as quantum fluctuations that were
“streched out” to macroscopic scales by the rapid expansion, and predict the correct properties
of their spectrum. However, while inflation is an excellent model for cosmology, we do not know
much about the fundamental physics mechanism that drove it.

If inflation was driven by the potential energy of an inflaton field, then the quantum fluc-
tuations of this field lead to small perturbations in the (otherwise homogeneous) gravitational
potential. After the inflaton dissipates its energy into relativistic particles during cosmic re-

39 See [231], 232] for a detailed discussion of the effects of neutrino masses in cosmology. For eV masses the
deviation is small in the early universe. An early discussion in Russian can be found in |233].
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heating [24(%242]@ these lead to density fluctuations in the primordial plasma, which manifest
in temperature fluctuations in the CMB and form the seeds for the formation of structures in
the universe [244]. The power spectrum of CMB fluctuations is in very good agreement with
the above hypothesis [237]. After reheating, N; can affect the thermal history of the expanding
universe in several ways.

Baryogenesis via leptogenesis (7 > Tgw) - There is good evidence [245] that the observed
Qp is the thermal relic of a small matter-antimatter asymmetry of order ~ 10719 in the early
universe (BAU), which survived after all other particles and antiparticles annihilated into CMB
photons and neutrinos and is reflected in today’s baryon to photon rati np ~ 10710, If this
asymmetry was produced by leptogenesis, then the observed Q2p allows to constrain F and My,
cf. section [Bl

Dark Matter production (7 ~ 100 MeV if produced by mixing) - If DM consists of thermally
produced Ny, then there are various different bounds on their properties, which we discuss in
section [0l

Late time leptogenesis (Tgw > T > few MeV) - Sphaleron processes [246] are the only
source of baryon number violation[247-249] in the early universe in (). They freeze out? at
T ~ Tgw, below which baryon number is conserved. The production of a lepton asymmetry can,
however, continue afterwards if some N are out of equilibrium (e.g. during their freezeout and
decay) because F' and M), violate flavoured and total lepton number, respectively. The generated
asymmetries can be much bigger than np and differ in each flavour [250, 251]. A weak constraint
on the asymmetry may be derived from its effect on hadronisation at T ~ 200 MeV [252]. Stronger
constraints can be derived from BBN, see below. Late time asymmetries can be very important
if there are long lived sterile neutrinos because they can amplify or suppress their production
rate. For keV-mass sterile neutrinos an amplification of their production rate [253, 254] can
be so efficient that they are abundant enough to constitute all DM [250]. A suppression of the
thermal production rate, on the other hand, can help to ease the tension between cosmological and
laboratory hints for eV-mass sterile neutrinos, see section In return, light sterile neutrinos
can also amplify an active neutrino asymmetry [255].

Neutrino freezeout (7' ~ 1.1 MeV for active neutrinos) - The freezeout of active neutrinos
leads to a cosmic background of relativistic neutrinos, analogue to the CMB. They affect the
expansion by their energy density pneutrinos- L he neutrino background may carry a lepton asym-
metry that is orders of magnitude larger than the baryon asymmetry ~ ng ~ 10719, The main
constrains on such asymmetry come from BBN [256]. In the SS, active neutrino oscillations tend

408ee [243] for a recent discussion.

41 The relation between these parameters is given by gz ~ 2.739-10"8h?Qp, where h parametrises the the Hubble
rate Ho = 100h(km/s)/Mpc.

127 reaction “freezes out” when the temperature dependent rate at which it occurs falls below the Hubble rate
H of cosmic expansion. This essentially means that the density of the primordial plasma has become so low that
the rate at which the participating particles meet is negligible. A particle freezes out when the last process (other
than decay) that changes its comoving number density freezes out.
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to make the asymmetries in individual flavours equa [257-259]. How complete this equilibra-
tion is depends on the mixing angle 813. The measured value for 813 suggests a high degree of
equilibration [260]. Lepton asymmetries in the neutrino background can be constrained due to
their effect on the momentum distribution, which changes the relation between temperature and
energy density (28]) and mimics an Neg # 3. The bounds on Neg from BBN (see below) allow to
constrain the asymmetry to roughly |nz| < 0.1 [260], where 7y, is defined analogously to (29]); see
also [261-264)].

If sterile neutrinos are relativistic, then they can form a similar background and contribute
to Neg. For an active-sterile mass splitting Am? < 1.3 x 10~7eV? active-sterile oscillations
are effective only after the active neutrino freezeout, then they simply distort the momentum
distributions [232]. For much larger splittings they can be produced efficiently via their mixing
at T > 1 MeV. The preference for Neg > 3 in different cosmological data sets (see below)
can be interpreted as a hint for eV mass sterile neutrinos as DR, see section However, the
constraints on Neg from BBN, see below, imply that such background must either have frozen out
considerably earlier if it ever was in equilibrium or never thermalized (e.g. because the production
was suppressed by some mechanism).

Big bang nucleosynthesis (7' < 100 keV) - There was a brief period in the early universe
during which the temperature was low enough for nuclei heavier than hydrogen (H) to exist and
still high enough for thermonuclear reactions to occur. During this period most of the deuterium
(D), helium (3He, *He) and lithium (mainly "Li) in the universe were formed [265], see e.g. chapter
22 in [2] for a review. These light elements, in particular *He, make up the vast majority of all
nuclei other than H in the universe. Sterile neutrinos can affect this big bang nucleosynthesis
(BBN) in different ways, depending on their mass. N; with masses far above the electroweak scale
have no effect on BBN, as they have decayed long before. If the masses are in the GeV to TeV
range, these particles can be long lived enough that the entropy released during their decay affects
BBN or the thermal history afterwards. The good agreement between BBN calculations and the
observed H and He abundances implies that, if sterile neutrinos with GeV< M; <TeV exist,
they must have decayed sufficiently long before BBN. The resulting bounds [250, 251, 266] in the
mass-mixing plane are plotted in figure Il If DM is composed of keV-mass sterile neutrinos,
these would have no visible effect on BBN because their number density is too low to affect the
expansion history in that era. Light sterile neutrinos (with eV masses) would, on the other hand,
significantly contribute to Neg [231, 267, [268] as additional radiation and increase the rate of
expansion of the universe via (27) and (28]). This, for instance, determines the precise moment
of neutron freeze-out (T' ~ 0.8 MeV), which roughly occurs when the expansion rate (27) equals
the rate for the reaction n + e™ < p + 7. It also affects the amount of time that passes until
the formation of elements (7"~ 10 — 100 keV), during which neutrons decay. Both determine the
number of neutrons available for fusions [269, 270]. However, a change in the expansion rate is
not specific to light neutrinos, hence the resulting change in the value for N.g extracted from fits
to light element abundances does not actually "measure” the number of light neutrinos or other
particles (see e.g. [271] for a summary of examples). It simply parametrizes any deviation from
the SM prediction. Sterile neutrinos can also affect BBN if they cause deviations of the neutrino
momentum distributions from a Fermi-Dirac spectrum, e.g. by active-sterile oscillations or by

43This is often referred to as “flavour equilibration”, though the process occurs close to the neutrino freezeout
and neutrinos may not reach thermal equilibrium. This means that the lepton asymmetry cannot be translated
into a chemical potential in the strict sense.
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inducing chemical potentials [272]. On one hand, this slightly modifies the relation (28) between
T and p,, which again affects the rate of expansion. More importantly, the He abundance is
directly affected by a distortion of the v, spectrum [231]. D is less affected, hence provides a
more direct probe of the expansion rate [273].

BBN depends on 5, Neg and the lepton asymmetries Y,,. In the SM, where Nog = 3 is fixed
and Y, = 0, the only free parameter during BBN is Qp (or 1), and there is a rather impressive
agreement between theoretical predictions and the value obtained from the light elements, see
e.g. [274]. If one treats N.g as a free parameter using (28]), a deviation from 3 mainly reflects
in the “He abundance. The values for N.g obtained from BBN alone (see e.g. [274-276], cf.
also 277, 1278]) show a slight preference for Nog > 3, but are consistent with N.g = 3. Different
interpretation of the data are discussed in [270]: In absence of significant lepton asymmetry, BBN
alone yields N.g = 3.71J_r8:ig. If one fixes the He abundance to the value inferred from the CMB.
this tightens to Neg = 3.53f8:gg (Negg = 3.22 + 0.55 when using the D abundance measured in
[276] alone). The likelihood functions given in [275] show a preference for Neg > 0, but clearly
constrain Neg < 4. Hence, sterile neutrinos with eV masses, as motivated by the oscillation
anomalies (ii), can only be made consistent with BBN if they are not thermalized. This strongly
constrains models of light sterile neutrinos unless some mechanism suppresses their production.
If DM is composed of sterile neutrinos with keV masses (see section [0)), these do not affect Neg
because their number density is well below the equilibrium value (their number density can simply
be obtained by putting today’s Qp in relation to their mass). Hence, they are unaffected by these
bounds.

Matter - radiation equality (7 ~ 0.8 eV) - As the universe expands, the matter density is
diluted as oc a®, where a is the scale factor, due to the increasing physical volume. The radiation
energy density is diluted faster (oc a?) due to the stretching of the wavelengths, hence an initially
radiation dominated universe becomes matter dominated at the point of matter-radiation equality.
In cosmology, one refers to all relativistic degrees of freedom (particle energy dominated by
momentum) as “radiation”, while nonrelativistic degrees of freedom (particle energy dominated
by mass) are “matter”. A first principles derivation of the kinetic equation in the expanding
universe that covers both regimes is given in [279]. Due to Hubble expansion, constituents
of the primordial plasma change their identity from “radiation” to “matter” when T (more
precisely: their average momentum) falls below their mass, which has to be taken into account
when determining the point of equality. If sterile neutrinos are relativistic near T' ~ 1 eV, they
change the temperature of matter radiation equality. This is crucial for the growth of density
perturbations in the primordial plasma, see following paragraph. If they become nonrelativistic
just around this time, their equation of state is neither that of “radiation” nor “matter” in the
intermediate regime. The effect of the time dependence of the equation of state has e.g. been
studied in [280)].

Photon decoupling (7" ~ 0.25 eV) - The universe becomes transparent when the temperature
is so low that photons cannot dissociate H atoms any mor. While photons previously scattered
frequently with free electrons, the cross section with neutral atoms is so small that the average

“The temperature at which this happens is much lower than the H binding energy because of the small baryon
to photon ratio g, which implies that there are enough photons in the high energy tail of the Bose-Einstein
distribution to dissociate the atoms.
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photon has not interacted with matter ever since. The cosmic microwave background (CMB)
formed by these primordial photons allows us to observe the universe at a very early stage
(redshift z ~ 1100). The CMB contains an enormous amount of information and is, altogether,
one of the most impressive confirmations of the ACDM model. The vast amount of data also
makes it an excellent tool to look for hints of physics beyond ACDM and the SM. The small
temperature fluctuations (of relative order 67/T ~ 107°) in the CMB yield the earliest probe of
structure in the universe. They were generated by acoustic oscillations of the coupled baryon-
photon plasma in the primordial gravitational potential wells (DM also falls into these wells, but
does not feel the radiation pressure and does not oscillate).

The fluctuations can be decomposed into modes with wave numbers k, their spatial extension
is characterized by the inverse of k. When 1/k is larger than the causal horizon, the mode remains
“frozen”. After the end of inflation, density fluctuations successively “(re)enter the horizon”; that
is, the causal horizon becomes bigger than their spatial extension. Then their amplitude starts to
grow due to gravitational infall. The evolution in the radiation dominated era is governed by the
competition between gravity and the radiation pressure (which depends on Neg); this competition
leads to baryon acoustic oscillations (BAO) of the plasma. The modes oscillate under the action
of both forces until they decouple (when the baryons stop feeling the pressure) and start to
collapse under the action of gravity, eventually forming the the structures that we observe in the
universe. The observed peaks in the CMB power spectrum can be identified with multipoles [ in
the multipole expansion of the CMB fluctuations that correspond to the modes & which reached
the maximal elongation at the moment of decoupling. The first peak corresponds to the smallest
k that reached maximal compression by the time of decoupling and so on. The evolution of
perturbations can be studied quantitatively by a coupled set of Boltzmann and Einstein equations.
Before photon decoupling, the density perturbations are small and dxp/p < can be used as
as an expansion parameter in calculations.

The power spectrum of temperature fluctuations can be affected by RH neutrinos in different
ways [27, 1232, 281]. If they are nonrelativistic, they act as DM. Then they only affect the growth
of perturbations via their free streaming length (the DM sterile neutrinos discussed in section
are relativistic at freezeout, but become nonrelativistic between BBN and the decoupling of
photons). If they are relativistic (as e.g. the eV-mass-N; motivated by oscillation anomalies),
they act as radiation and modify the power spectrum in several ways [281H287]. Their contribution
to Neg > 3 increases the rate of expansion (27]), hence reduces the comoving sound horizon, which
moves the peaks in the power spectrum to higher multipoles. It also enhances the hight of the
first two peaks via the integrated Sachs-Wolfe effect |283]. Light sterile neutrinos are essentially
collisionless and can, in contrast to baryons and photons, not be treated as a perfect fluid. Their
anisotropic stress affects the gravitational potential via Einstein’s equations. Since this effect is
more relevant in the radiation dominated era, it affects modes that enter the horizon before and
after matter-radiation equality in a different way, which reflects in a change in the relative height
of high and low [ peaks [285]; it suppresses the modes [ 2 200 and also shifts the positions of
the peaks [281]. Finally, sterile neutrinos contribute to the damping of small scales via their free
streaming and affect the high-/ modes [281, 1282, 28R]. All these effects can be parametrized in
terms of chf

“SHere 6px/p collectively refers to the contrasts in the densities of photons, baryons, neutrinos and metric degrees
of freedom, which of course have to be studied independently.

46Note that individually they are degenerate with other effects, cf. e.g. the discussion in [27] and references
therein, and only a global fit allows to reliably determine Neg.
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Figure 7: CMB power spectrum as measured by WMAP [237], SPT [289], ACT |290] and Planck
[291]; plot taken from [291].

The CMB power spectrum has been studied with different instruments, including the Wilkin-
son Microwave Anisotropy Probe (WMAP) satellite, South Pole Telescope (SPT), Atacama Cos-
mology Telescope (ACT) and Planck satellite, see figure [[l A few years ago these datasets
consistently preferred Neg > 3. In order to constrain Neg, it is crucial to have information from
high and low multipoles . While WMAP with its full sky coverage can measure the low [ at
good precision, its angular resolution is not high enough to go beyond the third peak. ACT and
SPT have a better resolution, but can only observe parts of the sky and cannot go below [ ~ 500.
Thus, these data sets need to be combined to reduce the degeneracies between Neg and other
parameters. Planck has, for the first time, measured low and high [ with a single instrument.
Combining WMAP 7 year data with ACT in 2011 preferred Neg = 5.3 & 1.3 (which reduced to
4.6 +0.8 if data from BAO and measurements of the Hubble rate Hy are added) [290], combining
SPT with WMAP7 gave Neg = 3.85 £ 0.62 (3.86 4 0.42 with BAO and Hj) [289]. More recent
SPT results [292] continue to favour DR with Neg = 3.6240.48 (3.71+0.43 when combined with
BAO and Hj data). In contrast to that, new ACT data [293, 294] favours Neg = 2.79 4+ 0.56, in
accord with the SS. This tension between SPT and ACT has e.g. been discussed in [94, 295]. The
WMAP collaboration quotes Neg = 3.84+0.40 using their 9 year data |237]. A combined analysis
performed in [296] yields Neg = 3.28 4 0.40. Very recently, Planck found Neg = 3.30 4+ 0.27 [48],
which is perfectly consistent with the SS. We discuss the implications of these measurements for
sterile neutrinos as DR in section
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Figure 8: Matter power spectrum from different observations as indicated in the plot and combined
in [297] (plot taken from there).

Large Scale Structure The formation of structures in the universe (see [298] for a review)
after photon decoupling can roughly be divided into two parts. As long as dpy/p < 1 can be used
as an expansion parameter (“linear regime”), semianalytic methods [299] and fully automated
codes (such as CAMBAT [300, 1301] or CLASYH [302]) are applicable. These can test a large
number of cosmological parameter sets in a short time. For dpx/p > 1 (“nonlinear regime”)
the applicability of semianalytic methods (see e.g. [303-305]) is very limited; in general only
expensive numerical n-body simulations [306-312] allow to make predictions. In the intermediate
range, some sophisticated methods have been suggested (see e.g. [313-319]). For perturbations
on different scales, the evolution becomes nonlinear at different times; the behaviour on cosmic
scales is still linear nowadays, while the matter distribution locally is extremely inhomogeneous.
Sterile neutrinos can affect the structure formation if they act as DM or DR.

The implications of DM sterile neutrinos with keV masses are discussed in section [6, the
only big difference to CDM scenarios lies in their free streaming length Apps. This leads to a
suppression of structures on (comoving) scales smaller than Apys. Lighter sterile neutrinos with
~eV masses as suggested by the oscillation anomalies (ii) would act as DR and as hot dark matter
(HDM) contribution to Qpas. The effect that they have on the expansion rate (27]) would not
only reflect in the abundances of light elements and the CMB, but also in the distribution of

“Thttp://camb.info
“Bhttp://lesgourg.web.cern.ch/lesgourg/class.php
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Figure 9: Left plot: Combinations of Neg and the sum of neutrino masses favoured by the analysis
in [94]. Note that the parameter Neg on the horizontal axis is not exactly identical to the parameter
in (28) because the authors allowed for a common neutrino mass. Right plot: Marginalized posterior
distribution of Neg from Planck (black) and Planck data supplemented by BAO data [@, @, @,
1328, [330] (blue), a local Ho measurement [335] (red), and both BAO and Hy (green); plot from [48].

matter in the universe.
An important quantity that characterizes the distribution of large scale structures (LSS) in the
universe is the matter power spectrum, cf. figure 8 which is obtained from large galaxy surveys
] and measures fluctuations on smaller scales than the CMB. Apart from small wiggles
(related to baryonic acoustic oscillations), the matter power spectrum shows a “turnover point”,
the position of which is sensitive to Neg. This feature occurs because perturbations oscillated in
the radiation dominated era after they enter the horizon and grew only slowly, while in the matter
dominated era they grew more quickly. The initial power spectrum is almost scale invariant, but
those modes that entered the horizon during radiation domination grew only slowly until the
moment of matter-radiation equality and are suppressed with respect to those that enter after
that point. A larger N.g leads to a later equality, which affects the position of the turnover point.
The damping of modes right of the turnover point is controlled by the ratio Qp/(2p + Qpar). It
is also affected by the velocity dispersion of massive neutrinos ﬂﬁ] However, since the position
of the turnover point is only known with limited accuracy ﬂﬁ] and LSS data cannot constrain
all cosmological parameters, it is usually analysed in combination with CMB data (see below).

4.2 Sterile neutrinos as dark radiation

For the past decade, cosmological data generally favoured N.g > 3.046, though the significance
was not strong enough to rule out the SS. It is tempting to think that sterile neutrinos may be
the common origin of the oscillation anomalies (ii) and these observations (i). For the masses and
mixings indicated by LSND, the thermal production of the sterile neutrinos in the early universe
would be efficient enough to thermalize them @@], leading to a contribution to Neg of order
one per species.
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Unfortunately, the current situation is rather confusing. On one hand there is some tension
amongst different oscillation experiments [84]; most of the region favoured by LNSD is excluded
by ICARUS, KARMEN and MiniBooNE. On the other hand, there is also tension between the
latest results from the CMB. SPT+WMAP results [292] favour DR with Neg = 3.62 £ 0.48;
this is consistent with the Neg ~ 4 predicted by a thermalized sterile neutrino with masses and
mixing suggested by the oscillation anomalies, but also does not rule out the SS. In contrast,
ACT+WMAP [293, 294] favours Neg = 2.79 + 0.56, which would clearly rule out thermal DR.
This is in contrast to earlier ACT results [290], which favoured DR. Planck found 3.30 £+ 0.27
[48] (also using BAO data); though this shows a slight preference for Neg > 3, it is perfectly
consistent with the SS and clearly disfavours Neg = 4.

The WMAP, ACT and SPT results have been combined with various other data sets, including
measurements of the CMB, the LSS and BAO from galaxy surveys and measurements of the
contemporary Hubble constant Hy. For instance, in [94] it was recently argued that cosmology
can be consistent with the neutrino oscillation anomalies. This conclusion was mainly possible
because the authors excluded ACT and BBN data from the combined analysis. This can be seen
in figure @ For small masses < 0.5 eV, WMAP+SPT+ACT data prefer extra neutrinos; but
for masses around 1eV the data favours Neg ~ 3, as predicted by the SS. Including BAO and
Hy data indicates Nog > 3, but also disfavours the ~ 1 eV region for the masses preferred by
oscillation anomalies. Without ACT, N = 4 and a mass of 1 eV are perfectly consistent. Similar
analyses, using pre-Planck data, have e.g. been performed in [278, 288, 295, 3367342]. The
conclusions differ, depending on the selected data sets and statistical method. There is a general
preference for Neg > 3, but no exclusion of the SS.

However, while the authors of [94] presented arguments to exclude ACT from their analysis,
the conclusions change dramatically when the Planck result 3.30 + 0.27 [48] is included. Though
a slight preference for Neg so far seems to remain [344-348], the thermalized DR (Neg > 4) that
the oscillation anomalies hint at is clearly disfavoured [349]. The above result assumes massless
neutrinos, but does not change significantly if the sum of neutrino masses is allowed to vary
(Negt = 3.32702) and >, m; < 0.28 eV when combined with BAO [48]). There is some freedom
to increase Nog if local measurements are used to determine Hj instead of the value obtained
from the Planck data itself, see figure [ Local measurements of cosmological quantities such as
the Hubble rate or the age of the universe (by studying old objects) depend less on the assumed
model of cosmology and can be used complementary to high redshift data, see [350] for a recent
discussion. The Planck collaboration concludes that the tension between direct Hy measurements
and the CMB and BAO data in the ACDM model can be relieved by Neg > 3.046, but there is
no strong preference for this extension from the CMB damping tail [48]. It remains to be seen
whether this tendency continues when the full Planck data is analysed, which will provide the
most stringent constraint on Neg from a single instrument [351].

The apparent tension between oscillation anomalies and the Planck and ACT results could
be eased if the thermal production of light sterile neutrinos in the early universe is somehow
suppressed, e.g. by a chemical potential [278, [352-354]. Quantitative studies of the flavour
evolution [255, 257-259, 355-357] are required to answer the question to which degree a lepton
chemical potential can prevent the thermalization [278, 1334, 353, 1354, [358-366].

If one, on the other hand, interprets the Planck and ACT results as indicators that there is no
DR, then it remains to be understood why so many previous analyses seemed to point towards

9 A nice summary of various other ways to combine different data sets can be found in [343].
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its existence. The possibility that the preference Neg > 3.046 is an artefact of the prior choice
in Bayesian analyses has been discussed and rejected in [367]. On the other hand, the authors
of [342] found that Bayesian model selection prefers the SS, despite the fact that parameter
estimates for Neg are larger than 3.046. In [368] it has been pointed out that there is no evidence
for Neg > 3 if one relaxes the assumptions on the late history of the universe suggested by ACDM
when analysing the CMB. Generally, there is a lot more freedom if one allows for more physics
beyond the ACDM scenario. In [235] it has been discussed in detail that different modifications of
the SM can predict values Nog > 3 or Neg < 3, irrespective of the number of neutrino degrees of
freedom. However, it seems that at least the simplest scenario in which light sterile neutrinos with
generic couplings are the common explanation for the oscillation anomalies and the preference
for Neg > 3 is disfavoured by Planck unless more new physics is added. At the same time, it
seems unlikely that the SS can be ruled out by CMB observations in foreseeable time.

4.3 Sterile neutrinos in astrophysics

In addition to possible signatures in high redshift observations, sterile neutrinos may also have an
effect on astrophysical phenomena at present time. Their most studied role in astrophysics is that
of a DM candidate, see section [4.2] but they may have effects on other phenomena. They can,
for instance, affect the transport in supernova explosions if they have eV [369], keV [370,371] or
GeV [372] masses. Sterile neutrinos with keV masses can also help to explain the high rotation
velocities of pulsars |373, 1374].

5 Baryogenesis via leptogenesis

The observable universe does not contain any significant amounts of antibaryons [245], i.e. it
is highly matter-antimatter asymmetric. Given our knowledge about the thermal history of
the universe, today’s baryon density 2p is easily explained as the remnant of a small matter-
antimatter asymmetry at early times, when the temperature was high enough for pair creation
processes to occur faster than the Hubble rate. The baryon asymmetry in the early universe
(BAU) can be estimated by the baryon-to-photon ratio at later times,
— ~TETE TR = a2 (29)
np +nglT>1GeV S Ny IT<1GeV
Here np and np are comoving number densities for baryons and anti-baryons. np can be deter-
mined rather consistently from BBN [274] or the CMB and LSS [237],

nBBN = 5.80 £ 0.27 , n§MB = 6.21 +0.12, (30)

both in units of 10719, A period of cosmic inflation, as suggested by the CMB, would have
diluted any pre-inflationary asymmetry. Thus, the BAU must have been created dynamically
afterwards. There are three conditions for the dynamical generation of a BAU (“baryogenesis”),
known as Sakharov conditions [375]: Baryon number (B) violation, breaking of charge (C) as
well as charge-parity (CP) symmetry and a deviation from thermal equilibrium. In principle,
all of them are fulfilled in the SM: at the quantum level, baryon number is violated [247-249] at
T > Trw by nonperturbative sphaleron processes |246], C and CP are violated by the phase in the
CKM matrix [376] and the weak interaction [377,378], and a deviation from thermal equilibrium
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is caused by Hubble expansion. However, the CP violation and deviation from equilibrium are
both too small in the SM to explain the observed np; see [245] for a detailed account of the
Sakharov conditions and baryogenesis in the SM.

RH neutrinos described by (Il) can fix both of these shortcomings. As gauge singlets, they
can be out of equilibrium at temperatures when all other particles are tightly coupled by gauge
interactions, and their Yukawa couplings contain several unconstrained CP-violating phases. This
makes baryogenesis via leptogenesis possible [379]. In this scenario a matter-antimatter asym-
metry is first generated in the leptonic sector by the CP-violating interactions of the vgr and
then transferred to the baryonic sector by electroweak sphaleron processes Sphalerons are only
effective for T' > Tgw. At these temperatures the Higgs field has a vanishing expectation value,
hence leptogenesis operates in the symmetric phase of the SM. In this regime the fields vy, behave
like massless Weyl fields that can be described as the left chiral projection of a Dirac spinor
[rather than the Majorana spinors (23))]. We can define the left handed lepton numbers Ly, o
as the zero components of the currents Jﬁa = U, oV, + €n,aY'er,o. Analogously, we define
lepton numbers Lg , from the current J E, o = €Rr,aY"eR o for the RH fields. The total LH lepton
numberis Ly, = > Ly, q, and we furthermore define the active lepton numbers Lo, = Ly, o+ LR o-
For F' = 0 the L, are exactly conserved. The vp have a Majorana mass term Mys; in general
they do not carry any conserved lepton charge, and interactions with them violate the charges
L, P71 However, due to the smallness of I’ these interactions are slow, and L, are still approxi-
mately conserved charges for which one can define a chemical potential. If there is an (exactly
or approximately) conserved charge in the vg-sector, we may define “lepton numbers” for the
sterile neutrinos. This is always the case at temperatures T > Mj, when helicity changing pro-
cesses are suppressed by M /T; then one can interpret two helicity states of Ny as “particle” and
“antiparticle” and define sterile lepton charges L; as the difference of their occupation numbers,
cf. (39). They contribute to the RH lepton number Lr = > ; L; + > Lro. The total lepton
number is L = L, + Lg. If the flavour structure of F' and M), obeys a symmetry such that there
is another conserved charge (exactly or approximately), it can be more convenient to use that
charge to define “lepton numbers” in the sterile sector. A particularly interesting scenario of this
kind is that in which total lepton number L is almost conserved [58, |76, 115-121, 1382].

When one or more of the Ny are out of equilibrium, they can generate lepton asymmetries via
various processes, including decays and inverse decays, scatterings and flavour oscillations (the
probability to decay /scatter/oscillate into leptons and antileptons is different at second order in
F due to quantum interferences between CP-violating processes). Sphalerons violate B and L
individually, but conserve B — L. At T' > Tgy they transform part of the lepton asymmetry into
a baryon asymmetry; if all interactions are in equilibrium it is given by B ~ %(B — L) [383,1384].
B is protected from washout after sphaleron freezeout around T" ~ Ty . Since sphalerons only
couple to left chiral fields, they in fact only see the leptonic charge Ly, stored in these fields, which
may differ from the total lepton asymmetry L. Thus, the BAU we observe is determined by Ly,
at T ~ Tgw ~ 140 GeV. The nonequilibrium condition can be fulfilled three times for each Ny:
during their production, their freezeout, and their decay.

59The term leptogenesis is often used in a wider sense, referring to all scenarios where the source of CP-violation
lies in the leptonic sector. Here we only refer to those scenarios where the BAU is generated from the interactions
in (.

51For T' < Trw the active neutrinos also receive a Majorana mass term (DZI) that violates lepton number. This
violation is, however, suppressed by m, /T. Similar arguments apply to thermal masses in the primordial plasma,
which change the kinematics of quasiparticles, but respect the symmetries of the theory [380, 381].
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5.1 Leptogenesis from N; freezeout and decay

N s

Figure 10: A crucial contribution to the CP-violation in the simplest version of “vanilla leptogenesis”
comes from the quantum interference between the tree level diagram and radiative corrections to the
decay Ni — ®l,. Due to the CP-violation contained in the complex phases in I, the amplitudes
for these processes with l. in the final state differ from those with ln. At tree level this difference
amounts to an overall phase, which does not affect the physical absolute square of the amplitude, but
in the interference terms between tree level and loop diagrams it makes a physical difference. The
rightmost diagram gets resonantly enhanced for M ~ My because then the N; propagator is nearly
onshell. In more general scenarios, also scattering processes (such as ®lo — ®lg with intermediate
N;) have to be considered.

It is common to split the lepton number violating processes into “source” and “washout”.
The source consists of all contributions that violate active lepton numbers in the absence of
an existing asymmetry (e.g. Ny-decays); these can generate asymmetries in the presence of a
deviation from thermal equilibrium. The “washout” consists of all other processes, which tend
to eliminate existing asymmetries (e.g. inverse Nj-decays). In addition, there are “spectator
processes” [385,1386] that do not violate L themselves, but redistribute charges amongst different
fields and thereby affect the time evolution of L. If the N; have masses as suggested by GUT
models, they are produced thermally, freeze out and decay at temperatures T' > Tgryw . Since L-
violating processes are strongly suppressed at T' < Mj, B— L # 0 is preserved from washout. This
is the most studied version of leptogenesis, and there exist several detailed reviews, see e.g. [387]
or, more recently, [388,1389]. This setup is very appealing because it can easily be embedded into a
GUT-framework, provides a “natural” explanation for the smallness of the neutrino masses m; via
the seesaw mechanism and allows to probe at least some parameters of very high energy physics
in low energy neutrino experiments via (I0)). The downside is that such heavy Nj-particles cannot
be studied in the laboratory. Out of the 7Tn — 3 parameters in F' and Mjs, one can under ideal
conditions probe the 3 neutrino masses and 6 angles and phases in U,, experimentally (being very
optimistic in case of the Majorana phases). The generated asymmetry np (the only observable
number in leptogenesis) can in general depend on all 7n — 3 parameters. Thus, the perspectives
to constrain Nj-properties from leptogenesis are very limited. We therefore only recapitulate the
basic ideas and refer the interested reader to the reviews named above.

Minimal “Vanilla” leptogenesis - In the simplest scenario one assumes that the Ny are
very heavy, have hierarchical masses (Tgy < M; < Mj=1) and the washout is strong. The
latter statement is usually parametrized in terms of the parameter K; = I'f|lr—o/H|r=m, =~
(FTF)v?/(M; x 1073eV), where I'; is the thermal width of Ny particles, H ~ 1.66,/g:17%/Mp
the Hubble rate and g, the effective number of relativistic degrees of freedom in the plasma
(g« = 106.75 in the SM at T > Tgw). If (F1F)11 ~ eV x M;/v?, as suggested by the seesaw
relation (I4]), then K7 > 1 and one is in the strong washout regime. In this case the BAU
responsible for the observed np may have been created by the freezeout and decay of the lightest
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sterile neutrino Ny alone. This is possible if any pre-existing asymmetries, the asymmetries
generated during the production of the N; and the asymmetries from the Njy-i-decays are all
washed out efficiently by Ny . This scenario has the advantage that np is essentially independent
of the initial conditions. A major contribution to the final asymmetry comes from the decay
diagrams shown in figure[I0l In addition, there are lepton number violating scatterings. However,
vanilla leptogenesis can be qualitatively understood by considering the decays and inverse decays
only [390]. This mechanism can reproduce npg for My 2> 4 x 108 GeV [391], which requires a rather
large reheating temperature if Nj are mainly produced thermally (“thermal leptogenesis”). There
is also a constraint on the mass of the lightest active neutrino as m; < 0.1 eV [392,1393]; see [394]
for an review on the connection with neutrino masses. In the weak washout regime K; < the
predictive power is much smaller because asymmetries from processes at earlier time (nonthermal
production during reheating, thermal N; production, N7~ freezeout and decay...) are not washed
out efficiently and contribute to np.

Flavour effects - In the simplest scenario it is assumed that only one sterile neutrino Ny
dynamically participates in leptogenesis and all three active flavours can be treated equivalently
(“unflavoured regime”). In the unflavoured regime, only the linear combination ~ F,q|lp,) of
active leptons that couples to N7 is relevant for leptogenesis. In the corresponding flavour basis
one can ignore the directions in flavour space perpendicular to that, and the problem is equivalent
to the one flavour case. Both of these assumptions do not hold in general.

Active flavours have to be treated separately when the Hubble rate drops below the rate at
which interactions that distinguish active flavours, mediated by the charged Yukawa couplings,
occur (“flavoured regime”). These interactions destroy the coherence of the flavour state that
couples to N1 because they have different strength for the different /7, . For the 7-Yukawa, this
happens below T' ~ 10'2 GeV. The importance of flavour has been realized in [395] and [396-399]
and meanwhile been studied by various authors, see [388,389] for details and references. Once two
flavour states are distinguishable, one has to treat the asymmetries stored in each individually.
They can differ considerable and even have opposite signs [400]. This can affect np if e.g. the
washout is very different for different flavours; it makes leptogenesis possible even if the source
term does not violate ), L. Flavour effects can reduce the lower bound on M; in generic seesaw
scenarios by 1 — 2 orders of magnitude [401, |402], which is still far out of experimental reach.

Also the assumption that the generation of today’s BAU only involved Nj-dynamics does
not hold in general. In the unflavoured regime, N7 can only wash out the asymmetry that
is stored in the combination F,1Y, in flavour space to which it couples. This singles out a
particular direction in flavour space. If pre-existing asymmetries or those produced by N1 have
a component orthogonal to this, N7 cannot wash them out efficiently [403, 404]. In fact, it is
a rather special case that there is no such component. The effect of active flavours in scenarios
where the heavier N contribute has been discussed in [405-409].

Flavour effects offer ways to circumvent the lower bound on Mj;. One possibility is that the
BAU originates from a purely flavoured asymmetry; i.e. the total asymmetry is vanishing or
small (L ~ 0), but the left handed asymmetry is non-vanishing (|Lz| > |L|) [121, 402]. Since
sphalerons only couple to LH fields, they convert part of L into a LH baryon asymmetry. This
is possible for M; < v because in this case the seesaw relation (I4)) enforces Yukawa couplings

52Though there are no Ny~ particles in the plasma at T' < Mr>1, the existence of more than one RH neutrino
is crucial to provide CP-violation in the lepton sector.
53This is possible in spite of ([4)) because M and F are matrices.
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that are so small that L7 and Lr may not equilibrate before sphaleron freezeout. This makes
leptogenesis possible even for My, = 0 [|382] (Dirac leptogenesis), and it is also the basis of
scenarios discussed in the following section The mass bound may also be circumvented if the
generated asymmetry is resonantly enhanced by a degeneracy between sterile neutrino masses
[410] (resonant leptogenesis). This enhancement is discussed from first principles in [411, |412];
in [411] it is shown that the maximal enhancement (compared to the non-resonant case) of the
total asymmetry L can be expressed in terms of the paramete

My M,
2(MiTy + Mal'g)’

(31)

The enhancement allows values of Mj; in the TeV range, which raises hope to probe Ny in high
energy experiments. In this case it is of course not only the lightest sterile neutrino N that
generates the asymmetry, but the interplay between the two mass-degenerate states, and flavour
effects in the sterile sector have to be taken into account. This is generally the case when the
spectrum of M is not hierarchical (|M; — Ma| < My), not only in the extreme case My ~ Mj.

This discussion and the quoted mass bounds apply to leptogenesis within the framework of a
pure type-I seesaw. If one introduces new degrees of freedom beyond those in (IJ), these bounds
can weaken, see e.g. [223, 418, 1419], [420] and [421].

5.2 Leptogenesis during N; production

If some masses M| are near the electroweak scale or below, the seesaw relation (I4]) requires the
entries F,,; to be very small to be consistent with bounds on the active neutrino masses. That
means that the rate I'f ~ (FTF )rrT of thermal N; production is so small that these particles
may not come into thermal equilibrium until 7" ~ Ty . During the thermal production before
equilibration, the nonequilibrium condition is fulfilled and asymmetries L, are generated. The
total asymmetry L is suppressed by M;/T unless there is a resonant enhancement a la (BII), but
the flavoured asymmetries L, are unsuppressed [422], hence |Lp| > |L| for M; < Tgw. This is
sufficient because sphalerons only see Ly ~ —Lg. In contrast to the scenarios with M7 > Trw
discussed in section [5.], lepton number is not conserved near Tgy, because the sterile neutrinos
are still present in the plasma; once the N reach thermal equilibrium, the L, are washed out.
A baryon asymmetry can be generated from Ly, in spite of this (and the smallness of |L|) if the
N7 have not thermalized or the washout is not efficient enough to eliminate L; before sphaleron
freezeout. This scenario is often referred to as baryogenesis via neutrino oscillations [423], though
individual oscillations are not always crucial [422, 424, 1425]. One advantage of this mechanism
is that the N; are light enough to be within reach of laboratory experiments. This makes it
one of the few known models of baryogenesis that are empirically testable (the other two much
studied testable mechanisms are resonant leptogenesis and electroweak baryogenesis [426]). The
perspectives to study the N; responsible for baryogenesis in the laboratory have been studied
in detail in [250, 251, 422, |424]. If the N; interact only via the Yukawa couplings F, then a
clear detection is realistically only possible for masses M; < a few GeV (unless F' has some
special structure, leading to cancellations in (I4]) that allow for larger individual elements F,r
[118,1119]). If they have additional interactions, masses up to a few TeV are in reach of high energy
experiments, see section B.4] and references therein for more details. In the minimal scenario with

51See [410, 1411, 14131417] for earlier discussions of this point.
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Figure 11: Constraints on the sterile neutrino masses and mixing U? = tr(87) for n = 2 from

baryogenesis; upper panel - normal hierarchy, lower panel - inverted hierarchy. For the displayed case
of n = 2 RH neutrinos, baryogenesis can only be successful if their masses M1 and Ms are degenerate
(|M1—Ms| < (M1+Ma)/2), the parameter M refers to their mean value (M1+Ma)/2. Forn > 3 RH
neutrinos no mass degeneracy is required [422]. The observed BAU can be generated in the region
between the solid blue “BAU” lines. The regions below the solid black “seesaw” line and dashed
black “BBN” line are excluded by neutrino oscillation experiments and BBN, respectively. The areas
above the green lines of different shade are excluded by direct search experiments, as indicated in the
plot. The solid lines are exclusion plots for all choices of parameters, for the dashed lines the phases
were chosen to maximize the asymmetry, consistent with the blue lines. Plots taken from [251].

n = 2 sterile neutrinos a mass degeneracy |M; — Ma|/(M; + Mz) ~ 1073 is required to produce
the observed BAU (or np). Bounds on mass and mixing from the baryogenesis requirement in
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this case are shown in figure [I1] together with other experimental and astrophysical constraints.
For n > 2 and Mj in the GeV range no mass degeneracy is necessary [422].

The number of possible leptogenesis scenarios increases greatly when (I]) is extended by ad-
ditional degrees of freedom or embedded into a bigger framework (e.g. supersymmetry); we do
not discuss these here in detail and refer the interested reader to the reviews [387-389)].

Finally, the CP- and B-violation that make leptogenesis possible can also ”"work backwards”
and rule out or constrain other baryogenesis scenarios because they wash out matter-antimatter
asymmetries created by those mechanisms at higher temperatures. The mass spectrum of the N7
can be constrained by the requirement that they do not wash out the baryon asymmetry in the
early universe [427], though these conclusions rely on assumptions about additional interactions
of Ny. A similar argument was suggested in [428] to constrain the properties of a fourth neutrino
generation.

5.3 Towards a quantitative treatment

Transport equations - Most quantitative studies of leptogenesis solve a set of momentum
integrated Boltzmann equations (“rate equations”) to predict np as a function of the parameters
in (). In the case of “vanilla leptogenesis”, these can be written as [390]

AT e
HX—= = ~Ti(-Y{"), (32)

dYp_ .
HX d’i{L = al (Y1 =Y — eyl Yp_1. (33)

Here Y7 is the abundance of Ny particles, i.e. the momentum integral over the phase space
distribution function divided by the entropy density s. ¥, is its value in thermal equilibrium
and Yp_r the difference between baryon and lepton abundances (particles minus antiparticles
for each of them). We use the variable X = M;/T instead of time, which leads to a factor
dX/dt ~ HX on the left hand sidePd, €1 is a parameter that characterizes the amount of CP-
violation,
3 1 2] My 3 M T

€1~ ~T6n (FTE), EI:Im [(FTF>IJ i ~ ﬁi(FTF)HUQIm [(F"'m,F)11] (34)
The constant ¢y in the simplest case (washout by inverse decays) is given by 1/2 times the ratio
between the number densities of N7 and active leptons. Calculation of the final Yz_;, requires
solving the rate equations ([B2) and (33), it can be estimated as Yp_1 ~ ke1/g« [379]@ where
the number x < 1 is called efficiency factor and is related to the washout.

Equations (32 and (B3] can be used when only one sterile neutrino dynamically contributes
to the BAU and the SM leptons can be described in an effective one flavour treatment (un-
flavoured regime). In the fully flavoured regime flavour dependent interactions act sufficiently
fast (compared to the time scale ~ 1/I'; related to the N; dynamics and 1/H) to fully decohere
the different contributions in the state F,1|l1o) that couples to Ni. Then (B3]) has to be replaced
by three different equations for the asymmetries Y,, in the individual flavours. In the intermediate

55The expression for dX/dt can be complicated when g. changes during leptogenesis. This can e.g. affect the
generation of lepton asymmetries at T' << Tew .
*6Qur notation is more close to that in [387).
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regime between these two cases, there is no full decoherence. In this case flavour oscillations have
to be taken into account. This is usually done by density matriz equations [429], see [395, 39§]
for early applications to leptogenesis. These are matrix valued generalizations of the rate equa-
tions (32) and (33 in which the lepton charges Y, carry two indices. The diagonal elements
Yao of these are simply describe the lepton abundance in flavour «, the off-diagonal components
describe correlations between different flavours. A first principles approach that allows to study
the flavoured, unflavoured and intermediate regimes consistently was presented in [430)].

If more than one RH neutrino is relevant for leptogenesis, also the different sterile flavours have
to be treated independently. For a hierarchical mass spectrum, this usually amounts to simply
replacing ([32]) by n different equations for the abundances Y7 of all relevant sterile flavours Nj.
In scenarios of resonant leptogenesis or leptogenesis during N; production, oscillations between
the different flavours may be relevant. In these scenarios, leptogenesis typically happens at
temperatures T > M. In this situation transitions between the different helicity states are
strongly suppressed and the different helicity states of N7 evolve independently. Effectively, they
act as “particle” and “antiparticle” for the Ny, though this notion can of course not be taken
literally for a Majorana field®T. Correlations between different helicities are usually negligible,
and it is justified to describe the Ny by two matrices Y and Y} for the two helicity states. In the
mass basis, the total abundances Y7 can be identified with the elements (Yn);r + (Yy)1r, while
the “lepton asymmetry” L stored in the sterile flavour Ny is proportional to (Yn)rr — (Y )11
In the fully flavoured regime, where leptogenesis during N; production and resonant leptogenesis
usually take place, the kinetic equations then read

) i i -

ZHXd—)](V = [Hn,YN] - §{FN,YN - Y+ §Yar?v ) (35)

. dY? * Z * Z Tk

ZHXd—)éV = [HN7YN] - §{FN7YN _Y]%q}_ §Yar?\f ’ (36)
ay, . )

iHX L = —il§Y +itr |[f(Yy Yﬁq)] —itr [F%*(YN —ve) (37)

The flavour-matrix Hpy is the dispersive part of the effective Nj-Hamiltonian, which leads to
sterile neutrino oscillations; the rate-matrices I'y, T'y and I'¢ form the dissipative part, which
acts as collision term. These transport coefficients have to be computed from the real- and
imaginary parts of the Ny and [y , self energies in thermal field theory. More precise definitions
are given in [251], along with a derivation of (B3])-(BT).

The equations ([B2))-(B7) are rate equations for momentum integrated abundances. They pro-
vide a good approximation if the momentum distributions are proportional for equilibrium dis-
tributions (this is often called kinetic equilibrium). If this is not the case, each momentum mode
has to be tracked independently by a Boltzmann equation, see e.g. [431,432]. In numerical simu-
lations, one of course has to sample a finite number of representative momenta. In addition, one
needs to calculate the collision term as a function of momentum and temperature. This makes
the treatment technically much more challenging.

Conceptual issues - A question that has received much attention in recent years is whether
Boltzmann equations for particle abundances are in principle suitable to describe leptogenesis. For
instance, early calculations based on Boltzmann equations were plagued with a double-counting

5TAt T > M the average momentum of particles is so large that the Majorana mass is kinematically negligible,
hence vg effectively behaves like at massless Weyl field up to corrections O[Mas/T.
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problem [433]. This problem arises if one “naively” plugs vacuum S-matrix elements as colli-
sion terms into the classical Boltzmann equations by hand. Doing so, one somewhat artificially
distinguishes the external and internal lines of a Feynman diagram; only the external lines are
associated with physical particles that appear in the phase space distribution functions. If one,
in addition to the N; decays and inverse decays shown in figure [0 introduces collision terms
for Ny-mediated scatterings in this way, then one counts the same processes twice: If the inter-
mediate Ny in a scattering is on-shell, then the scattering [,® — ®lg is identical to an inverse
decay [,® — Ny followed by a decay N; — ®lg and should not be counted independently This
particular problem can be fixed by hand within the Boltzmann approach by performing a real
intermediate state subtraction (RIS) and using finite temperature field theory to calculate the
amplitude@, but it reflects a deep conceptual issue of Boltzmann equations in leptogenesis.

In leptogenesis, the leading order processes that contribute to the generation of a matter-
antimatter asymmetry come from an interference with loop diagrams, as e.g. shown in figure
0@ hence leptogenesis is a pure quantum effect. This is in contrast to many other processes
that are well-described by Boltzmann equations, such as CMB decoupling or BBN. Boltzmann
equations are semi-classical. The dynamical quantities are phase space distribution functions for
particles and antiparticles, i.e. classical quantities. The collision terms, on the other hand, are
calculated from S-matrix elements. This treatment is based on a number of assumptions that
may be questionable in the dense primordial plasma. The definition of particle numbers and
the S-matrix are both based on the notion of asymptotic states, the meaning of which is not
clear in a dense plasma, where particles are never “far away” from their neighbours. Even if the
plasma can be described as an ensemble of (quasi)particles, the dispersion relations of these differ
considerably from those in vacuum. Finally, the collision terms are affected by thermodynamic
effects (such as Bose enhancement, Pauli blocking, Landau-Pomeranchuk-Migdal effect, possible
enhancements from multiple scatterings...) and cannot be calculated from the (vacuum) S-matrix.
The range of validity of the Boltzmann equations and size of possible corrections cannot be
estimated within this framework and requires a first principles treatment. This has lead to a great
interest in nonequilibrium quantum field theory [279, 439-443] and applications to leptogenesis
[224, 1279, 1411, 412, 1419, 1430, 438, 444-458] in recent years.

At a fundamental level, the state of any quantum system can be described by an infinite
tower of n-point correlation functions. In practice, it is usually sufficient to consider two-point
functions. The leptonic charge can conveniently be described in terms of a correlation function
known as statistical propagatm@ SH(@1,22)ap = {lna(@1)l g(z2) — Ip g(22) 1L o(21)T), where
the transposition applies to spinor indices (which we have suppressed here). The average (...) =
Tr(p...) includes quantum mechanical and thermodynamic fluctuations (o is the density operator
[459,1460]). The definition of this two-point function does not depend on any notion of asymptotic
states or (quasi)particles. From the Fourier transform of the statistical propagator in the relative

58 This side of the problem is related to the bookkeeping of physically different processes in the plasma. In
addition, the use of vacuum S-matrix elements neglects finite density corrections to the propagators. The incomplete
inclusion of quantum statistics can lead to an overestimate of the generated asymmetry, which has happened
repeatedly in the literature. Most recently this was pointed out for the soft leptogenesis [434-4436] mechanism in
[419]. Using a more complete treatment, the authors there conclude that soft leptogenesis [431] cannot explain 1z
for generic parameter choices.

9See [438] and references therein for a detailed account of this issue.

50Here we use the notation of [452].
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coordinate x1 — x9 one can define the momentum integrated lepton abundance matrices

4 r[y 0 + I‘ 0 +

Here z; = (ti,x;), t = (t1 +t2)/2 @ and the trace runs over Dirac indices. The diagonal elements
Yi(t)aa correspond the lepton numbers in flavour «, the off-diagonals describe correlations between
different flavours during flavour oscillations. For the sterile neutrinos we define the statistical
propagator G7;(z1,22) = 2 (Ny(21)Ny(z2) — Nj(z2)T Nr(z1)T). The matrices Yy and Yy can be
extracted from it as

4 r 0 . 4 r 0
0= - [ e e = - [ RN

where P are helicity projectors. The time evolution of G and SZ is governed by the Kadanoff-
Baym equations [461], which can be obtained from a Dyson-Schwinger equation on a complex time
path [462-465]. The Kadanoff-Baym equations are exact integro-differential equations; There are
different ways to derive effective kinetic equations for Yy, Yy and Y; from them [279,1412, 1430, 438,
452, 1456]. In the fully flavoured or unflavoured regime, one can neglect active flavour oscillations
and use a flavour basis in which Y] is diagonal. In this case we can, assuming that sphalerons act
rapidly on the time scale related to the Nj-evolution with a rate that is in good approximation
given by the equilibrium on. relate Y to the quantities in B3)-@B1) as Yo = (Yi)aa—(nB—15)/3.

Though the above approach provides a controlled approximation scheme to formally obtain
effective kinetic equations from first principles, it is not yet a complete theory of leptogenesis
because the computation of the transport coefficients in practice can be complicated [225, 1253,
468-475]. Tt requires knowledge of the quasiparticle spectrum in the plasma [223, 1412, 1456, |476—
479] and inclusion of all processes in the plasma [223, 224, 471, 473]. In the regime M; < T
it is still not clear which effect corrections from soft and collinear gauge boson exchange have
[225, 471-474].

The conclusion on this point is that it is possible to describe leptogenesis in the unflavoured
[449, 1452], flavoured 430, 451] and resonant [411, 412] regimes by effective kinetic equations.
By that, we mean differential equations that are local and of first order in time [279], which is
in contrast to the non-local second order fundamental Kadanoff-Baym equations. The situation
is relatively simple if the lepton asymmetry is generated at T' < M7 and the M spectrum is
hierarchical. Then first principles calculations suggest that in the unflavoured [449,1452] and fully
flavoured [430)] cases standard Boltzmann equations give results which are correct up to factors
O[1], provided that the RIS is performed consistently. When flavour oscillations are relevant, one
has to use their matrix-valued generalisation, the density matrix equations, as e.g. derived in
[251, 1430, 456]. For T' > M or when two masses are degenerate, one can still formulate effective
kinetic equations, such as (35))-(B7). However, inserting S-matrix elements into the classical
Boltzmann equation may not give a correct quantitative description. Instead, they should be
derived using controlled approximations to the full nonequilibrium field theory, which take into
account the modified (quasi)particle spectrum and dispersion relations in the plasma, the effect
of (possibly multiple) scatterings with quanta from the thermal bath and other thermodynamic
effects. Though great progress has been made in this regime [225, 251, 1411, 412, 1422, 1450, 471~
473, 1480], the accurate quantitative description is not complete at this stage.

51Tn the homogeneous and isotropic early universe there is no dependence on x; + xa.
52See 466, 1467 for some discussion of this point.
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6 Sterile neutrinos as dark matter

Over the past 80 years@l, overwhelming evidence has accumulated that most of the mass in
the observable universe is not composed of baryonic matte@ as we know it. The presence of
large amounts of non-luminous matter can on one hand be inferred by comparing the observed
gravitational potentia to the density of visible matter. Independently of that, it is also required
in order to explain the clustering of matter and formation of structures in the universe, e.g.
the power spectrum shown in figure [l This process can be studied by the analysis of density
perturbations in the CM and by observations of the structure in the universe, such as galaxy
surveys, gravitational lensing or the absorption in the spectra of distant quasars (“Lyc« forest”).

Numerous attempts to simultaneously explain these phenomena by modifications of gravity
or the presence of compact macroscopic objects (such as lonely planets, black holes or other
non-luminous star remnants) have failed. In contrast to that, they can easily be understood if
one assumes the existence of (one or several) new particles that are massive, electrically neutral,
long lived (compared to the age of the universe), collisionless and have a free streaming length in
the matter dominated era that is sufficiently small to be consistent with the observed structure
in the universe.

One can qualitatively distinguish three types of DM candidates. cold dark matter (CDM) is
composed of particles that were nonrelativistic at the time of decoupling. hot dark matter (HDM)
particles were relativistic at the time of decoupling and remain so into the matter dominated
epoch, when structures can grow nonlinearly due to gravitational collapse. warm dark matter
(WDM) is relativistic at the time of freezeout, but becomes nonrelativistic during the radiation
dominated epoch.

CDM scenarios predict that smaller scale objects form first and then merge into bigger struc-
tures (“bottom up”) [483,1484]. This is in good agreement with observations as well as numerical
simulations of LSS. On smaller scales, it was noticed more than a decade ago [485, 486] and
remains an unsolved puzzle that CDM simulations tend to predict more objects (satellite galax-
ies and subhalos) than observed. Furthermore, they do not reproduce shape of galactic halos
(“cusp/core issue”). However, at this stage this is far from being a reason to disregard CDM
because the discrepancy may be related to the resolution or other technical limitations of the
simulations (to date, most of them are pure DM simulations that do not include baryons consis-
tently). Furthermore, small objects are hard to observe if they fail to confine gas and form stars,
see e.g. [487-490], though this may not explain the discrepancy for objects that are too big to fail
to attract gas, see e.g. [491]. A recent summary on issues and possible solutions in the ACDM
model can be found in [492].

In contrast to that, HDM predicts that large structures form first [299] because primordial
fluctuations in the gravitational potential have been erased due to the large free streaming length

53The term “dark matter” was already used in [481], 482], but in that context simply referred to non-luminous
matter. Zwicky concluded that the velocities in the Coma-system are an “unsolved problem”, which, however, did
not receive much attention for decades.

541n this context all matter that is composed of SM fermions (including leptons) is usually referred to as “bary-
onic”.

55The gravitational potential can be studied by tracking the dynamics of astrophysical objects on various scales,
such as stars in galaxies (in particular rotation curves) as well as galaxies and ionized gas clouds within galaxy
clusters, and by gravitational lensing (weak and strong).

56The fact that most of the matter started to cluster before the decoupling of photons implies that it had
decoupled considerable earlier, hence is not composed of (electrically charged) SM particles.
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of DM particles (“top down”). This is in contradiction to the observed LSS, which rules out the
only potential DM candidate within the SM, the neutrinos I/L@ In WDM scenarios, structure
formation on scales larger than the particles’ average free streaming length Apps is similar to
CDM, but differences on smaller scales are expected to be visible in various observables, such as
the matter power spectrum, halo density profile, halo mass function, subhalo density profile and
subhalo mass function. Qualitatively, structures on scales smaller than Apj; are suppressed due
to the free streaming.

Sterile neutrinos are collisionless and can be very long lived, hence they are an obvious DM
candidate. This scenario has been studied by a large number of authors, see e.g. [72, (74, 203,
204, 1312, 1358, 1370, 1493-514, 514-535] . Formally, sterile neutrinos are WDM candidates, though
this classification is slightly ambiguous because momentum distribution may be very different
from Fermi-Dirac. Their properties are constrained by the requirements outlined below. In what
follows, we require that all DM is composed of sterile neutrinos. If they make up only a fraction
of Qpas, then the bounds weaken considerably. For instance, sterile neutrinos with eV masses
could give a subdominant HDM contribution to 2pjy if there are other CDM particles that ensure
consistency with structure formation.

Stability - Nj particles are unstable and decay via the f-suppressed weak interaction. If they
are DM, their lifetime must be longer than the age of the universe.

X-ray bounds - The radiative decay N; — v, via processes as shown in figure[I3] predicts the
emission of photons with energy M;/2 from DM dense regions [498, 532]@. The non-observation
of such signal in the data of different X-ray observatories (such as XMM, Chandra and Suzaku)
[203, 1495, 497502, 508, 1509, 513, 523-529, [537] imposes upper bounds in the mass-mixing plane;
these are displayed in figure In figure [I4] X-ray bounds are combined with other constraints.
For decaying DM, the signal strength scales only linear with the DM column density along the
line of sight, hence one can expect a signal from wider range of astrophysical objects than for
annihilating DM. This makes future searches promising despite the fact that there are various
astrophysical sources in the keV range. The perspectives for future searches have e.g. been
outlined in [27, 1516, 532-534]. Finally, it is worth to emphasize that this scenario is falsifiable:
if DM is made of RH neutrinos that are produced thermally in the early universe through their
mixing with active neutrinos, their mass and mixing are constrained in all directions in figure [14]
and this scenario can be found or falsified on human time scales.

Phase space analysis - As a fermionic DM candidate, the mass of RH neutrinos is constrained
by the Tremaine-Gunn bound [538] on the phase space density in the Milky way’s dwarf spheroidal
galaxies |512, 1514]. This yields a lower bound of My > 1 keV. In [530] it has been shown that
phase space arguments on the galactic scale indeed favour a keV DM particle. The same authors
have argued in [531] that, due to the high phase space density, a quantum mechanical treatment
is necessary on these scales, which may solve the “cusp issue”.

57The active neutrino background can be viewed as a small HDM contribution to the matter density in the
universe.

58Here we assume that vg have (at least) the Yukawa interactions in (@). If such interactions are suppressed,
the RH neutrinos that constitute DM can be much heavier and may even be related to the observed excess [10] of
~-ray emission near the galactic center |536].
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Figure 12: Different constraints on sterile neutrino DM mass and mixing from X-ray observations.
The constraints are take from m (red), rescaled by a factor of two due to mass estimate uncertain-
ties as recommended in m], ] (grey) and @] (purple). Some analyses have claimed stronger

constraints, but were later found to be too optimistic. In ,1501] it was found that @] underes-
timated the flux by two orders of magnitude. According to )| the mass was overestimated in @]
leading to too restrictive constraints. The constraints in ] might be too restrictive due to the

choice of source profile @ ]. The spectral resolution seems to be overestimated in @ , cf. Chandra
Proposers Guide; this seems to be the main reason for the stronger bounds used in ]. Thanks to
Signe Riemer-Sgrensen for the plot and comments.
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Figure 13: Example for a contribution to the radiative decay of a DM sterile neutrino N1 — YVq.
The coupling of N1 to the W-boson is suppressed by the mixing 6.1 as indicated.

Production in the early universe It is not known when and how DM was produced in the
early universe. If it is composed of sterile neutrinos, then there are several possible production
mechanisms.

e Thermal production via mixing (non-resonant) - If vz have nonzero Yukawa couplings
F (i.e. mp # 0), then they are produced thermally from the primordial plasma via their
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Figure 14: Different constraints on sterile neutrino DM mass and mixing, assuming vr have no
interactions in addition to the Yukawa couplings in ({l). The blue region is excluded by X-ray
observations, the dark grey region M < 1 keV by the Tremaine-Gunn bound [512, 1514, |538]. The
solid black lines are “production curves” for thermal production. For all points on the upper black
line the observed Qpas is produced in the absence of lepton asymmetries (for Yo = 0, non-resonant
production) [253]. Points on the lower solid black line yield the correct Qpas for |Ya| = 1.24-107* at
T = 100 MeV, the dashed line for |Y,| = 7-10™*. For these values the resonant production mechanism
contributes. The region between these lines is accessible for intermediate values of Y,. We do not
display bounds derived from structure formation because they depend on Y, in a complicated way
and there are considerable uncertainties. Plot taken from [25(0)].
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mixing with the SM neutrinos vy, [539]. If this production was efficient enough to bring
them into thermal equilibrium, their density would be bigger than Qp,s; and “overclose” the
universe unless they are diluted by entropy production at some later stage [540-542]. This
puts an upper bound on the mixing angle, given by the upper production curve in figure[I4l
The production can yield the correct Q2pys if 6 is small enough that the DM sterile neutrino
never reach thermal equilibrium. In that case they still have a momentum distribution that
is proportional to a Fermi-Dirac spectrum [494, 539, 543, [544], which makes them a WDM
candidate that is at least disfavoured by structure formation arguments (see below).

e Resonant thermal production - The properties of (quasi)particles in the primordial
plasma are modified by the interactions with the medium [380, 545, 546]. In the presence of
a lepton asymmetry, the Mikheev-Smirnov-Wolfenstein effect [547, 548] can lead to a level
crossing between active and sterile neutrino dispersion relations [253, 1549]. This results in
a resonant enhancement of the sterile neutrino production rate. The resulting spectrum is
nonthermal, with higher occupation numbers for low momentum modes [253]. Production
curves for two different values of the asymmetry are also given in figure[I4l Note that these
have to be taken with some care because in the calculation of the production efficiency [253]
it was assumed that Y, =Y, = Y. In reality the asymmetries in different flavours may be
different and can even have opposite sign (see e.g. [251] for a particular model).

e Thermal production beyond the SM - The fields vi are singlet under SM the gauge
group and only interact with SM particles via their Yukawa couplings F'. However, if
there exists and extended “hidden sector” [550] or extended Higgs sector, they may have
additional interactions with these. They may also be charged under some extended gauge
group that is broken at high energies, as e.g. in the left-right-symmetric model [522].
Such additional interactions would contribute to the thermal production [541] in the early
universe. Since they usually increase the production rate, the universe may overclose unless
the DM abundance is diluted by additional entropy production at later times [551].

e Nonthermal production - RH neutrinos can also be produced nonthermally, e.g. due to
a coupling to an inflaton [552-554], the SM Higgs [555], other scalars [166, 556] or modified
gravity [557].

All these scenarios are constrained by the requirements to produce the correct 2pys and a mo-
mentum distribution that is consistent with the observed LSS.

Structure formation - The masses dictated by the above bounds suggest that, if RH neutrinos
mix with LH neutrinos, then they formally are WDM, but their momentum distribution can be
non-thermal. Structure formation in WDM scenarios on scales above the free streaming length
is similar to CDM. On smaller scales the formation of structures is affected in different ways, the
study of which is in general complicated due to the nonlinear nature of the clustering process.
Most importantly, one expects a cut in the matter power spectrum at scales below the free
streaming length [558]. In addition, the suppression of small scale structures should be visible
in the halo mass function (which counts the number of haloes per unit volume per unit mass
at given redshift) [559] and affect the gravitational collapse leading to the formation of the first
stars [560, 561]. Unfortunately, these arguments do not directly constrain My, but the free
streaming length. Furthermore, structure formation is a highly nonlinear problem in the regime
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dpr/p > 1 that can only be studied quantitatively with expensive many body simulations. With
few exceptions [312], these simulations assume that the DM distribution is proportional to a
Fermi-Dirac distribution [494]. If this is the case, then the comoving free streaming length Apas
is simply related to the mass by [534, 558]

) ) o
where py and p, are the spatial momenta of sterile and active neutrinos and M is the sterile
neutrino mass. Such spectra are produced by the non-resonant thermal production from the
primordial plasma. In that case Ly« forest observations strongly constrain the viability of WDM
[312, 1504506, 510, 1519, 1520, 562-567]; for sterile neutrinos they impose a lower bound of My > 8
keV [510]. Then it may be very difficult to distinguish RH neutrino WDM from CDM observation-
ally [510, 568], see also [569]. If, on the other hand, RH neutrino DM is produced by some other
mechanism and has a nonthermal spectrum, the relation ([@0) between mass and free streaming
length does not apply, and simulations of structure formation based on thermal WDM do not
allow to draw any general conclusions. In case of the resonant thermal production mechanism,
the resulting spectrum has been calculated for Y, =Y, = Y, [203, 1253] . It can be viewed as
a superposition of a WDM component and a nonthermal cold component [510, [511], where the
Lya forest bounds allow the warm component to be much “warmer” than in conventional WDM
scenarios. First simulations [312] indicate that this scenario may perform better than CDM in
predicting the abundance of small scale structures (such as satellite/dwarf galaxies), but the
question is not settled at this stage. On one hand, only little is known about how much structure
actually exists at small (sub-galactic) scales. While lensing flux and stellar streams suggest the
existence of subhalos [492], there is no direct observation of such structures and their existence
is disfavoured by some stability considerations [570]. On the other hand there are no systematic
studies of structure formation in the nonlinear regime that include the nonthermal component.
Arguments against sterile neutrino DM are essentially based on extrapolations of results from
simulations that assume purely thermal spectra.

)\DM ~ 1MpC <@> <pN>

7 A theory of almost everything

Right handed neutrinos vg, described by the Lagrangian (I), provide plausible explanations for
the phenomena (I), (IT), (III), (i) and (ii) named in the introduction. In this section we address
the question how many of these phenomena can be explained simultaneously by RH neutrinos
alone.

Minimal case n =3 - The Lagrangian () with n = 3 RH neutrinos and M}, at or below the
electroweak scale [571, 1572] is an extension of the SM motivated by the principle of minimality
(or Ockham’s razor); it makes only minimal modifications to the known principles and particles
in nature. There is no modification to the SM gauge group, the number of fermion families is
unchanged, there is no modification to the bosonic field content of the SM or the mechanism of
electroweak symmetry breaking, and no new scale above the electroweak scale is introduced®. In
[250] it has been shown that this model can indeed simultaneously explain (I)-(III); that is, all
known evidence for particle physics beyond the SM. This minimal scenario is known as Neutrino

% This implies that the hierarchy problem of the SM can be avoided [573-575].
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Minimal Standard Model (¥MSM). Various aspects of this model have been studied in the past
by different authors [119, 132,133, 147, 148, 151}, 1203, 1250, 1253, 266, 422, 1424, 1468, 497, 498, 1524,
540, 1544, 1552, 1553, 555, 571, 1572, [574-588], see [203, 1251, 1589] for a detailed introduction and
review.

In the vMSM, two sterile neutrinos (N 3) have degenerate masses between roughly a GeV
and the electroweak scale; the third one (N7) has a mass in the keV range and acts as DM
candidate. N3 generate active neutrino masses via the seesaw mechanism; at the same time,
the CP-violating oscillations during their thermal production at temperatures T' > Ty produce
the baryon asymmetry of the universe via the mechanism outlined in section The lepton
asymmetries generated during Na 3 production are washed out after sphaleron freezeout at 7' ~
Tgpw. The freezeout (T' ~ My 3 ) and decay (T" < My 3) of the Ny 3 particles produce new, late
time lepton asymmetries, which can be orders of magnitude bigger than the baryon asymmetry.
The late time asymmetries are capable of enhancing the rate of Ny production sufficiently to
explain the observed Qpj for |Yy| 2 10~°, while being in agreement with all known constraints
on DM properties.

The minimal extension of the particle content in the vMSM comes at the price of a "fine
tuning” in the mass splitting of two RH neutrinos: Ms and M3 have to be equal to a level of
precision | My — M|/ (Ma+Ms) ~ 10713 [251]. This degeneracy may be related to new symmetries
[119,582], but cannot be explained in the framework of the YMSM itself. The tuning mainly arises
from the requirement to produce a late time lepton asymmetry |Yy| = 1075; this is necessary to
sufficiently enhance the V1 production to explain the observed Q2p,s. If some of the asymmetries
generated before sphaleron freezeout can be preserved from washout [590] or Ny is produced by
some other mechanism (e.g. during reheating), then the required degree of degeneracy reduces
to ~ 1073, This weaker degeneracy is necessary for baryogenesis, i.e. to explain the observed
1p from CP-violating oscillations of two sterile neutrinos N 3. The third sterile neutrino Ny
cannot contribute significantly to leptogenesis if it is DM because in this case its couplings F,
are constrained to be tiny by X-ray bounds on its decay width, cf. section[6l For the same reason
it also cannot make a significant contribution to neutrino masses via the seesaw mechanism (I4]);
this implies that the lightest active neutrino is effectively massless in the vYMSM. The smallness
of the Yukawa couplings also implies that the lepton flavour violation they induce is too small
to be observed in muon-to-electron conversion experiments in foreseeable time [589]. Constraints
from to OvBp-decays currently also do not constrain the allowed region, but will be relevant when
Mee is probed at the level of 1072 eV [134]

The particles Ny and N3 can be searched for in collider experiments, cf. section 3.4l They also
lead to L-violation that may be seen in Ovf3-decay searches [133,134]. Known bounds on their
mass and mixing are summarized in figure The DM candidate N; is too weakly coupled to be
studied at colliders, but can be found by indirect DM searches for the X-ray emission line from
the decay N1 — v, cf. figure[I3l Its properties are also constrained by phase space and structure
formation considerations. Figure [[4] summarizes different bounds on N; mass and mixing.

More than three sterile neutrinos - The required amount of “fine tuning” can be con-
siderably reduced if there are more than three sterile neutrinos. For instance, if three sterile
neutrinos participate in baryogenesis, then there is no need for degenerate masses even if they
are as light as a few GeV [422]. If one at the same time requires one sterile neutrino with keV

"The contributions from N exchange in the vMSM are negligible [132] or negative [133].
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mass to compose DM, then that means there must be at least n = 4 of them altogether. If one,
in addition to the evidence (I)-(III), also wants to address the hints (i) and (ii) in this framework,
then there must be least one more sterile neutrino with an eV mass. This light sterile neutrino,
responsible for the oscillation anomalies, would leave the thermal history of the universe before
BBN essentially unaffected due to the smallness of its couplings enforced by the seesaw relation
(I4)). At the same time it can be responsible for the Neg > 3 inferred from BBN and the CMB,
see section Ml The late time lepton asymmetries generated by the freezeout and decay of its
My 2 1 GeV siblings could help to suppress the efficiency of its thermal production and ease the
tension between oscillation anomaly and dark radiation signals, see section Thus, n > 4 RH
neutrinos described by the Lagrangian (Il) alone can be capable of explaining the points (I)-(III)
as well as (i) and (ii) simultaneously without “new physics” above the electroweak scale; that is
all confirmed fundamental physics phenomena that cannot be explained in the SM except those
that are likely to involve accelerated cosmic expansion. Hence, this framework at the current
stage provides a phenomenologically complete description of particle physics.

8 Conclusions

Right handed neutrinos provide plausible explanations for neutrino oscillations, the observed
dark matter and the baryon asymmetry of the universe, which cannot be understood within the
SM. They may also be responsible for the anomalies reported by some short baseline neutrino
experiments and hints for dark radiation in cosmological data. Right handed neutrinos can be
embedded naturally into bigger frameworks, such as left-right symmetric theories, grand unified
theories, supersymmetric extensions of the SM and various models of neutrino mass generation.
The different phenomena point towards different right handed neutrino mass ranges, which may
of course coexist in nature. Several of these can be probed by direct and indirect laboratory
searches, astrophysical observations and cosmological data in the near future. We summarize
well-motivated mass ranges and their phenomenological relevance in the overview table appendix
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A Overview Table: Majorana mass scales and observables

“naturally” small v-masses

| Mys || Motivation v-oscillations | laboratory searches CMB BBN DM Leptogenesis
v-oscillations anomalies massses by seesaw, oscillation anomalies
< " ’ . ) ’ xplain N, 3b 7 explain N, 3b
SeV dark radiation explain anomalies? [B-decays explain Nog > 3 may explain Nog > 3 ne e
. direct searches?? act as DM, effect on Neg
H N¢C ) ’ e A N ate
keV bM no DM nuclear decays?? no effect on Neg too small if DM good candidate 1o
- intensity frontier, constrains , possible
? asses by sees: ’ affec € . .
MeV testability, why not? masses by seesaw OvBA unaffected M; > 200 MeV no fine tunine
~ (=}
s intensity frontier,
testability, .. ' . .
GeV L. . masses by seesaw EW precision data, unaffected unaffected no® possible
minimality i
ov@s
inimalit; . .
TeV [Hmanty; masses by seesaw LHC unaffected unaffected no¢ possible
testability
d unificati ,
>10°GeV granc uniticasion, masses by seesaw too heavy to be found unaffected unaffected no® works naturally

Colour code: green = can affect, red = does not affect

@ This assumes that the observed Amatm and Amg, are generated by v other than those responsible for the anomalies, i.e. n > 2.

b Sterile neutrinos with masses and mixings suggested by the oscillation anomalies would be in thermal equilibrium in the early universe, hence increase Neg by one unit

per species. In ACDM cosmology, this is in conflict with recent CMB data and HDM constraints. If some mechanism prevents the sterile neutrinos from thermalizing or

there are deviations from the standard ACDM model, this conflict can be avoided.

¢ vr with keV-masses can generate neutrino masses via the seesaw mechanism, but then they are too short lived to be DM. If they are DM, then their Yukawa coupling

is too small to contribute to the seesaw - they can either be DM or contribute to the seesaw mechanism.

4 Tt is disputed whether the signal can be distinguished from the active neutrino background; for the case that keV sterile neutrinos compose all DM the author considers

it very unlikely that such searches are successful because of the astrophysical constraints on the mixing angle.

¢ This applies to sterile neutrinos thermally produced via their mixing. Sterile neutrinos with M; > keV can be DM if F' ~ 0 ensures their stability and the production

in the early universe is due to an unknown interaction.




B Dirac and Majorana masses

This appendix summarizes some basic aspects of Majorana fermions, see |24, 25] for details. In the
SM, matter is composed of fermions. In relativistic quantum field theory these can be described
by two component (Weyl) spinors ¢y, and 1r, which transform under the (irreducible) left or right
handed representations of the Poncairé group, respectively. For historical [591] and computational
reasons fermions are, however, often represented by four component spinors [592]. In this review
we adopt this common “overnotation”; using the Weyl representation of v* matrices, we define
four component spinors ¥ = (¢,0)” and W = (0,7r)?. Consider sets of left and right handed
spinors ¥y, ; and Vg j, where the indices ; and ; run from 1 to n and m, respectively, and label
individual fields (“flavours”). The most general free Lagrangian reads

_ _ _ 1 — _
(ULdUL + VRdVR) — U mpPp — 3 (Urmap g + VrMy V%) + hee., (41)

N =

where we have suppressed flavour indices (Vp, Wy, are now flavour vectors with components ¥ ;
and ¥r, ;). The matrices mp, mys and Mjs can be combined into a (n +m) x (n 4+ m) matrix
9, the physical mass squares are the eigenvalues of 9MMT. The mass term reads

j R— LU | R— my  Mmp ve
— (W, U< L c. = —(Up U¢ L h.c. 42
(35 ) e horwn (5 5 ) (%) e o

All fermions in the SM are charged under some gauge group, thus any intrinsic mass terms
are forbidden by gauge invariance. Terms as mp are generated by the Higgs mechanism. For
Mpy; = 0, mps = 0 one can combine pairs of left and right handed fields in ([@I) into Dirac spinors
U, = Vp; + ¥r,; and write £ = E(za — mD)\I’Z- This is the reason why one can describe
charged leptons and quarks by Dirac spinors though the basic building blocks of matter are
Weyl fermions: the conserved charge related to the unbroken U(1) subgroup in the electroweak
theory leads to mass matrix that allows to combine all Weyl fields into Dirac spinors. If, on the
other hand, mys, My # 0, then one can form n + m Majorana spinors [593] . In the simplest
case, when mp = 0 and mys and My, are diagonal, one can define these as x; = ¥ ; + g,
and }; = Vg, + \I/%J. Formally x; and 1; are four component objects, and the Lagrangian
can be written in analogy to the Dirac equation, %(X(za — mar)x + V(g — My )W), but they
obey the additional Majorana conditions x; = x5, b; = V§ and have only two independent
components. Due to this property the neutral fermions can annihilate with themselves (are their
own antiparticles).

Because of these considerations mp is usually referred to as Dirac mass term, while mjs and
My are called Majorana mass terms. However, apart from the two special cases discussed above,
they have not much to do with the appearance of Dirac or Majorana particles. Even for mp =0
the particle spectrum may contain Dirac spinors. Consider, for instance, a set of three fields ¥y, 1,
Vg1 and Upo with mp,my = 0 and My; = M1sy2. Then one can combine Vg ; and ¥g o into
a Dirac spinor ¥ = (i; +)/v/2. On the other hand, one can split any Dirac spinor into two
Majorana spinors in this way.

Thus, fermions can generically described by two component Weyl spinors. If one, for compu-
tational convenience, prefers to use four component spinors, one can use the chiral spinors U r.
Only in special cases one can combine these into Dirac spinors. This is possible whenever the full

For m # n or if not all eigenvalues of My are vanishing this is obviously not possible for all ¥, ; and ¥r,;.
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mass matrix 9t has degenerate eigenvalues (with opposite sign), and not necessarily related to
the presence of “Dirac” or “Majorana mass terms”.
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