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Abstract

In this paper, we provide a lower bound for an area of the convex

hull of points and a rectangle in a plane. We then apply this estimate to

establish a lower bound for a universal cover problem. We showed that a

convex universal cover for a unit length curve has area at least 0.232239.

In addition, we show that a convex universal cover for a unit closed curve

has area at least 0.0879873.

1 Introduction

One of the open classical problems in discrete geometry is the Moser’s Worm
problem, which originally asked for “the smallest cover for any unit-length
curve”. In the other words, the question asks for a minimal universal cover
for any curve of unit length – also called unit worm. Although it is not clearly
stated in the original problem, in this report, we will only concern ourselves
with convex covers.

In 1979, Laidacker and Poole [5] proved that such minimal cover exists. How-
ever, finding this minimal cover turns out to be much more difficult. Instead,
there have been attempts trying to estimate the area of this minimal cover.
In 1974, Gerriets and Poole [2] constructed a rhombus-shaped cover with an
area of 0.28870, thus establishing the first upper bound for the problem. Later,
Norwood and Poole [7] improved the upper bound to 0.2738, while Wetzel [4]
conjectured the upper bound of 0.2345.

On the other hand, the lower bound for the problem has not been as exten-
sively studied. In 1973, Wetzel [1] showed that any cover has an area at least
0.2194, exploiting the fact that such cover must contain both a unit segment and
the broadworm [8]. This lower bound has only recently improved to 0.227498
[3], using the following facts:

• Any convex universal cover must contain a unit segment, an equilateral
triangle of side length 1

2
and a square of side length 1

3
.

• The minimum area of the convex hull of these three objects provide a
lower bound for Moser’s Worm Problem.
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In this paper, we generalize these ideas by considering an arbitrary rectangle
instead of the square. In Section 2, we provide a lower bound for the convex
hull area of a set of points and a rectangle, and then apply the technique to a
universal cover problem. As a result, in Section 3, we improve the lower bound
for the Moser’s problem to 0.232239. In Section 4, we consider a variation of
the Moser’s problem: we try to estimate an area of a universal cover for any
unit closed curve. Only partial results were established by Wetzel in 1973 when
he showed that a translational cover for any unit closed curve must have area
between 0.155 and 0.159 [10]. We are able to show that a convex universal cover
must have area at least 0.0879873.

2 Estimating area of the convex hull of points

and rectangles

Let P be a polygon with verticesK1, . . . , Kn, we denote by µ(P) = µ(K1, . . . , Kn)
the area of the convex hull of P . We also denote by µ(P1, P2, . . . , Pm) the area
of the convex hull of P1∪· · ·∪Pm, where Pi are sets in a plane. Next, we define

Definition 2.1. Given segments AB and DC, the height of AB with respect to
DC is the length of the perpendicular segment from either A or B to the parallel
of DC passing another point. We denote this height by hDC(AB) (Figure 1).

h     (AB)
DC

Figure 1: The height of AB with respect to DC is hDC(AB).

First, we provide a lower bound for the convex hull area of any four points
on a plane.

Lemma 2.2. Let E, F , P , Q be points in R
2. Then µ(EFPQ) ≥ 1

2
|EF |hEF (PQ).

Proof. Without loss of generality, we can rotate the figure so that EF is hor-
izontal and P is above EF . We can also relabel points to ensure that P is
above Q, as well as, E and F . Let d1 be the distance from the point P
to EF , and d2 the distance from Q to EF . Note that the convex hull of

2



EFPQ always contain triangle EFP and so µ(EFPQ) ≥ µ(EFP ). If Q also
lies above EF , then it is clear that d1 ≥ hEF (PQ) (Figure 2) and we have
µ(EFPQ) ≥ µ(EPF ) = 1

2
|EF |d1 ≥ 1

2
|EF |hEF (PQ).

d
1

E

Figure 2: The case where both P and Q lie above EF .

Otherwise, if Q lies below EF , we notice that EFPQ contains both triangles
EPF and EQF , and the two triangles do not intersect except on EF . Hence,
µ(EFPQ) ≥ µ(EPF ) + µ(EQF ) = 1

2
|EF | (d1 + d2) = 1

2
|EF |hEF (PQ), and

the equality holds when EFPQ is convex (Figure 3).

d
1

d
2

Figure 3: The case where EF lies between P and Q.

�

The next proposition provides a lower bound for the convex hull area of a
rectangle and four arbitrary points on the same plane.

3



Proposition 2.3. Let ABCD be a rectangle and E, F, P, Q be points on the

same plane. Assume that hBC(EF ) > |AB| and hAB(PQ) > |BC|. Then

µ(ABCDEFPQ) ≥ 1

2
(hBC(EF )−|AB|) |BC|+1

2
(hAB(PQ)−|BC|) |AB|+|AB||BC|

(1)

Proof. Without loss of generality, we can assume that the slope of AB is finite
and non-negative. Let V be the strip between extension of BC and AD and W
be the strip between extension of BC and AD (Figure ??).

To eliminate redundant cases on the position of four points E, F, P, Q rela-
tive to the strips V and W , we note that by reflecting across the perpendicular
bisector of BC and re-labeling P and Q as necessary, we can ensure that Q lies
under both W and P . Specifically, if Q initially lies above W , so is P and the
reflection will bring both points below W . Otherwise, if Q initially lies inside
W , from the assumption that hAB(PQ) > |BC|, P must lie above W and the
reflection and re-labeling of P and Q will bring Q below both W and P as
desired.

Similarly, we can ensure that E lies to the left of V by using reflection
across the perpendicular bisector of AB and re-labeling of points E and F .
Moreover, because the reflection around the perpendicular bisector of AB does
not affect the relative positions of P , Q, and W , and vice versa, we can obtain
both conditions simultaneously. Next, we consider four cases for whether P lies
above W and whether F lies to the right of V .

Case 1: P lies above W and F lies on the right of V .

W

V

Figure 4: Case with no intersection between triangles.

If no pair of triangles BEC, CQD, DFA, APB intersects (Figure 4), then
we directly obtain the following lower bound for the convex hull area:

µ(ABCDEFPQ) ≥ µ(BEC) + µ(DFA) + µ(APB) + µ(CQD) + µ(ABCD)

=
1

2
|BC|h1 +

1

2
|AD|h2 +

1

2
|AB| g1 +

1

2
|CD| g2 + |AB||BC|,
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where h1, h2, g1, and g2, are the respective heights of triangles BEC, DFA,
APB, and CQD. This can also be written as

µ(ABCDEFPQ) ≥ 1

2
(h1 + h2) |BC|+ 1

2
(g1 + g2) |AB|+ |AB||BC|

= R.H.S. of inequality 1

and the equality holds when ABCDEFPQ is convex.
When some triangles intersect, because of the conditions on the positions

of E, F, P , and Q, triangle BEC cannot intersect DFA, triangle APB cannot
intersect CQD, and no three triangles can have nonempty intersection. We pick
the case where DFA∩CQD 6= ∅ as a representative example and subsequently
show that, in general, we can always find a set of disjoint triangles lying inside
the convex hull of ABCDEFPQ whose total area is greater than or equal to
the sum of areas of triangles BEC, APB, DFA, and CQD.

For the two triangles DFA and CQD to intersect, both F and Q must lie
below W and to the right of V (Figure 5). We then draw a line L1 passing
through F parallel to AD and a line L2 passing through F parallel to CD. It
is clear that Q must lie either above L2 or to the right of L1.

W

V

L

L

1

2

Figure 5: The case where ADF and CDQ intersects.

Hence, we see that either µ(CFD) > µ(CQD) or µ(DQA) > µ(DFA), and
obtain the bound max{µ(DQA)+µ(CQD), µ(DFA)+µ(CFD)} ≥ µ(CQD)+
µ(DFA). Note that none of these triangles can intersect BEC, BPC, APB,
or AEB because P lies above W and E lies to the left of V . If triangles BEC
and APB also intersect, we can indenpendently apply the same consideration
as above and derive a similar bound.

For the sake of simplicity, consider the case where BEC and APB are dis-
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joint and compute the following lower bound for the convex hull area

µ(ABCDEFPQ) ≥ µ(ABCD) + µ(APB) + µ(BEC)

+max{µ(DQA) + µ(CQD), µ(DFA) + µ(CFD)}
≥ µ(ABCD) + µ(APB) + µ(BEC) + µ(CQD) + µ(DFA)

= R.H.S. of inequality 1

and thus inequality 1 holds when P lies above W and F lies on the right of V .
Case 2: F lies on the right of V but P does not lie above W .
We now ignore triangle APB and consider only BEC, DFA, and CQD.

If CQD intersect BEC or DFA, we can use the same argument from Case
1 to show that we can always find a set of disjoint triangles lying inside the
convex hull of ABCDEFPQ whose total area is greater than or equal to the
sum of areas of triangles BEC, DFA, and CQD. Moreover, since P does not
lie above W , the height of CQD with base CD is greater than or equal to
hAB(PQ)− |BC|, and so we have

µ(ABCDEFPQ) ≥ µ(ABCD) + µ(BEC) + µ(DFA) + µ(CQD)

≥ µ(ABCD) + µ(BEC) + µ(DFA)

+
1

2
(hAB(PQ)− |BC|) |AB|

= R.H.S. of inequality 1

W

V

Figure 6: Case 2.

Case 3: P lies above W but F does not lie on the right of V .
This case is analogous to Case 2.
Case 4: P does not above W and F does not lie on the right of V .
Here we conveniently consider only triangles BEC and CQD. By similar

argument from Case 1, we can resolve the case where BEC and CQD intersect.
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Using similar argument from Case 2, we also know that the height of BEC is
greater than or equal to hBC(EF )− |AB|. Hence,

µ(ABCDEFPQ) ≥ µ(ABCD) + µ(BEC) + µ(CQD)

≥ µ(ABCD) +
1

2
(hBC(EF )− |AB|) |BC|

+
1

2
(hAB(PQ)− |BC|) |AB|

= R.H.S. of inequality 1

�

W

V

Figure 7: In Case 4 we take only Q and E into consideration.

Now that we have proved some basic results, we are ready to proceed to the
main problem.

3 Lower bound for a universal cover of curves

of unit length

3.1 Basic Figures

Consider a unit segmentL with endpoints EF , a V-shaped unit worm T with
vertices QPR and side length 1

2
, and a U-shaped right angle unit worm R with

vertices ABCD. To maximize the area of the convex hull of ABCD, we let
AB = CD = 1

2
and BC = AD = 1

4
. Another unit worm that we consider is the

well known unit broadworm [9], denoted by B, which was introduced by Schaer
in 1968 [8] as the broadest unit worm whose minimum width in any direction is
given by b0, approximately 0.4389.

We start by introducing parameters to define the positioning of L, T and
R. By rotation, we can assume that L is horizontal.
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Let O1 = (x1, y1) be the centroid of the rectangle R. We can always pick

the vertex for A so that A = (x1, y1) +
√

5

8
(cosα, sinα) and θ0 ≤ α < θ0 + π,

where θ0 = arctan 1

2
, and then label the rest of the vertices B, C, and D going

counterclockwise. Furthermore, for each configuration of R, the value of α
is uniquely defined and we denote it by α(R). Regarding vector as complex
number, we see that

arg
(−→
CA

)

= α

arg
(−−→
CD

)

= α− θ0.

O
1

Figure 8: We construct the rectangle by rotating the vector.

Let O2 = (x2, y2) be the centroid of the triangle T , we can similarly pick the

vertex for P so that P = (x2, y2) +
√

3

6
(cos β, sinβ) and π

6
≤ β < 5π

6
, and then

label the rest of the vertices Q and R going counterclockwise. Furthermore, for
each configuration of T , the value of β is uniquely defined and we denote it by
β(T ). Again, regarding vector as complex number, we have

arg
(−−→
QP

)

= β − π

6

arg
(−→
RP

)

= β +
π

6
.

Let σ be the point reflection across the origin and τ be the reflection across
the y-axis. Both transformations keep the segment L horizontal. We notice that

α (σ(R)) = α(R)

β (σ(T )) =

{

β(T ) + π

3
when π

6
≤ β(T ) < π

2

β(T )− π

3
when π

2
≤ β(T ) < 5π

6

α (τ(R)) = π − α(R)

β (τ(T )) = π − β(T ).
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Hence, with a suitable combination of σ and τ , we can ensure that θ0 ≤
α(R) ≤ θ0 +

π

2
and π

3
≤ β(T ) ≤ 2π

3
.

O
2

P

Q

R

Figure 9: By rotating the vector ΛA we can construct the whole triangle.

3.2 Area Estimation

Here we use the inequalities from the Section 2 to bound the areas of the convex
hull of L, B, T and R. For simplicity, we shall refer to α(R) and β(T ) by simply
α and β, respectively. The following lemmas provide basic lower bounds on the
area of the convex hull of configurations involving line segment L.

Lemma 3.1. µ(L, R) ≥
√

5

8
sinα.

Proof. From Lemma 2.2 and because EF is horizontal and arg
(−→
CA

)

= α,

it follows that µ(L, R) = µ(ABCDEF ) ≥ µ(ACEF ) ≥ 1

2
|EF |hEF (AC) =

√

5

8
sinα.

�

Lemma 3.2. µ(L, T ) ≥ 1

4
max

{

sin (β − π

6
), sin (β + π

6
)
}

.

Proof. Note that µ(L, T ) ≥ max {µ(EFPQ), µ(EFPR)}, and we also know
that µ(EFPQ) ≥ 1

4
sin (β − π

6
) and µ(EFPR) ≥ 1

4
sin (β + π

6
).

�

Next, we provide a lower bound for the area of the convex hull of configura-
tions involving L, T and R together.

Proposition 3.3. µ(L, T , R) ≥ 1

8

(

sin(α − θ0 +
π

2
) + sin(β − α+ θ0 +

π

6
)
)

.
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Proof. First notice that µ(L, T , R) ≥ µ(ABCDEFPR), then we apply Propo-
sition 1 to obtain

µ(ABCDEFPR) ≥ 1

2
(hBC(EF ) |BC| + hAB(PR) |AB|) .

Since arg
(−−→
BC

)

= α− θ0 +
π

2
, we have hBC(EF ) = sin (α − θ0 +

π

2
). Sim-

ilarly, we obtain hAB(PR) = 1

2
sin (β − α+ θ0 +

π

6
), and therefore get the de-

sired result.

�

Lastly, we replace T with the broadworm B and denote its breadth by b0.

Proposition 3.4. µ(L, R, B) ≥ 1

4

(

1

2
sin(α− θ0 +

π

2
) + b0

)

.

Proof. By the definition of breath, there exist points S and T on B such that
hAB(ST ) ≥ b0. Again, we apply Proposition 1 to obtain

µ(L, T , B) ≥ µ(ABCDEFST ) ≥ 1

8
sin(α− θ0 +

π

2
) +

b0
4

and complete the proof.

�

Now we can combine all the lower bounds together to try to minimize
µ(L, R, T , B). We define the following functions:

• p(α) =
√

5

8
sinα

• q(β) = 1

4
max

{

sin (β − π

6
), sin (β + π

6
)
}

• f(α, β) = 1

8

(

sin(α− θ0 +
π

2
) + sin(β − α+ θ0 +

π

6
)
)

• g(α) = 1

4

(

1

2
sin(α− θ0 +

π

2
) + b0

)

• F (α, β) = max {p(α), q(β), f(α, β), g(α)}
It follows immediately that µ(L, R, T , B) ≥ F (α, β), and we will find a lower
bound for F (α, β) on the domain θ0 ≤ α ≤ θ0 +

π

2
and π

3
≤ β ≤ 2π

3
.

Proposition 3.5. F (α, β) ≥ 0.232239 on the domain [θ0, θ0 +
π

2
]× [π

3
, 2π

3
].

Proof. We consider the possible values of F (α, β) in four cases.
Case 1: 0.980693572< α ≤ θ0 +

π

2

Clearly we have
√

5

8
sinα > 0.23223900008.

Case 2: θ0 ≤ α < 0.663720973
We have 1

4

(

1

2
sin(α − θ0 +

π

2
) + b0

)

> 0.232239000003.

Case 3: π

3
≤ β < π

2
− 0.1443850667 or π

2
+ 0.1443850667< β ≤ 2π

3
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We have 1

4
sin(β − π

6
) > 0.232239000012 when π

3
≤ β < π

2
− 0.1443850667,

and 1

4
sin(β + π

6
) > 0.232239000012 when π

2
+ 0.1443850667< β ≤ 2π

3
.

Case 4: 0.663720972 ≤ α ≤ 0.980693573 and π

2
− 0.1443850668 ≤ β ≤

π

2
+ 0.1443850668
Consider f(α, β) on this domain, which is a product of closed and bounded

intervals. We can check that there is no local minimum except possibly at the
corners and compute

f(0.663720972, π/2− 0.1443850668) = 0.245506

f(0.663720972, π/2 + 0.1443850668) = 0.234071

f(0.980693573, π/2− 0.1443850668) = 0.232475

f(0.980693573, π/2 + 0.1443850668) = 0.232239210

Thus, f(α, β) ≥ 0.232239210 on this domain
Therefore, F (α, β) = max {p(α), q(β), f(α, β), g(α)} ≥ 0.232239

�

Hence, we have established a new lower bound for the Moser’s problem.

4 Lower bound for a universal cover of unit closed

curves

We now consider a universal cover for any unit closed curve. Denote the segment
of length 1

2
, the circle with unit circumference, and a square of side length 1

4

by L, C, and R, respectively. We parameterize the orientation of L and R in
essentially the same way as before.

The circle C imitates the role of the broadworm as the C has width 1

π
in

every direction. Additionally, we can assume that π

4
≤ α ≤ π

2
because of the

symmetry of the square. Then we have the following

Proposition 4.1. i) µ(L,R) ≥
√

2

16
sin(α) and ii) µ(L,R, C) ≥ 1

8

(

1

2
sin(α+ π

4
) + 1

π

)

Proof. The prove is exactly the same as in Lemma 3.1 and Proporsition 3.4.

We now define

G(α) = max

{√
2

16
sin(α),

1

8

(

1

2
sin(α+

π

4
) +

1

π

)

}

Then we have,

Proposition 4.2. G(α) ≥ 0.0879873 on the domain [π
4
, π

2
].

Proof. We divide the domain into two parts

Case 1: When 1.4755040221< α ≤ π

2
, we see that

√

2

16
sin(α) > 0.08798734

Case 2: When π

4
≤ α < 1.4755040222, we have 1

8

(

1

2
sin(α+ π

4
) + 1

π

)

>
0.08798739
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Hence we establish a lower bound for a universal cover of unit closed curves.
Remark : In this case, adding an equilateral triangle of side 1

3
does not improve

the lower bound.
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