ZndReading

November 8, 2016 3:53:39pm WSPC/117-1JSEKE 1750006
International Journal of Software Engineering [
and Knowledge Engineering \\ World Scientific
www.worldscientific.com

Vol. 27, No. 1 (2017) 1750006 (27 pages)
© World Scientific Publishing Company
DOI: 10.1142/50218194017500061

A Design Theory for Cognitive Workflow Systems

Jarkko Hyysalo*, Markku Oivo** and Pasi Kuvaja*$

*Faculty of Information Technology and Electrical Engineering, M3S
University of Oulu, P. O. Box 8000
FI-90014 Oulu, Finland
Tarkko. hyysalo@oulu. fi
Imarkku. oivo@oulu.fi
Spasi.kuvaja@oulu.fi

Received 24 October 2014

Revised 22 November 2014

Accepted 10 February 2016
Published

This paper addresses the design problem of providing cognitive support for workflow systems in
software development. Software development is demanding knowledge work that requires cre-
ativity and adaptability to changing requirements and situations. This type of work involves
cognitive actions that require substantial support in several forms in order to address needs such
as collaboration, communication, knowledge management, awareness and transparency, and
the coordination and structuring of the development processes. The literature and our empirical
results show that there is a lack of cognitive support in current workflow models. Hence, we
identify the need for a design theory for cognitive workflow systems (CWS). In this paper, such a
theory is presented. The proposed design theory for CWS is validated through an action re-
search intervention. This design theory has important implications from both research and
practical perspectives. The results will help developers in their daily work, enhance the efficiency
of the development processes, and facilitate decision-making activities.

Keywords: Cognition support; cognitive work; design theory; knowledge work; software devel-
opment; workflow; work support.

1. Introduction

Software development is increasingly challenging and intellectually demanding cre-
ative knowledge work [1]. It is a human- and knowledge-intensive activity in which
managing knowledge is paramount [2]. Such information-intensive knowledge work is
primarily a cognitive activity [3] based on the worker’s internal mental processes
rather than on physical labor. Cognitive perspectives are fundamental factors for
successful collaboration [4]. Thus, knowledge work and cognitive aspects should be

TCorresponding author.

http://dx.doi.org/10.1142/S0218194017500061

ZndReading
November 8, 2016 3:53:40pm WSPC/117-1JSEKE 1750006

2 J. Hyysalo, M. Owwo & P. Kuvaja

supported properly in order to obtain good results. Software systems are usually
developed as a multidisciplinary effort [5], typically in collaboration with several
types of stakeholders such as engineers, industrial designers, and marketing per-
sonnel [6, 7].

Workflows are used to support these collaborative processes. Here, we define a
workflow as a sequence of working steps or logically-related tasks, including the use
of resources to achieve a common goal — transforming a set of inputs into outputs
that provide value for stakeholders. However, it is not easy to plan the work in
detail beforehand [8], as software processes are often complicated in nature; they
involve a large number of tasks, performers, and coordination constraints. More-
over, cognitive work and cooperation are not properly supported in current
workflow models [9, 10].

A practical solution is needed for supporting cognitive work in collaborative de-
velopment. Hence, we need to design a workflow that addresses the above-mentioned
issues. As this is a design issue, we claim that the design theory approach proposed in
[11] is an effective approach to address it. Bringing forth a design theory for a
cognitive workflow system (CWS) is the main contribution of this work.

Building a workflow that supports cognitive work — intellectually demanding
and creative knowledge work — requires both the development of a formal meth-
odology that can help model the knowledge flows and an extension of current
workflow technologies to handle information that is characterized by dynamic
changes, requirements for innovative problem solving, and cognitive processing. The
framework and formalisms, we propose in this paper serve as the foundation for such
a methodology. Design theory has proven to be successful for the purposes of de-
scribing improved design processes [12]. We propose that the kernel and/or justifi-
catory theories and extensive case studies resulting in the design theory provide a
solid basis for prescribing the principles and requirements for designing and con-
structing an effective artifact.

The remainder of this paper is organized as follows. Section 2 discusses related
studies, workflow modeling, and design theory and states the motivation for this
research. Section 3 presents the research process and provides the theoretical
framework for this research in the form of kernel theories. Further, it describes the
results of empirical work. Section 4 evaluates how the implementation of the six
design principles addresses the identified issues by analyzing the research findings,
also including a comparison to existing approaches. Section 5 discusses the results,
implications, and future research directions and concludes the paper.

2. Theoretical Background

This section presents the theoretical concepts related to workflow modeling in the
context of knowledge work, discusses related studies, and states the motivation for
this research. In addition, the design theory approach is briefly described.

ZndReading
November 8, 2016 3:53:40pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 3

2.1. Cognitive work support in workflows

Software development involves several challenges related to individual and team
cognition, such as complex decision-making, innovative problem solving, handling of
vast amounts of information, building of a shared understanding, and information
and knowledge sharing [13]. The greater the flow of knowledge, knowledge sharing,
and learning between different organizational parts and external agents, the greater
are the opportunities for knowledge generation [14-16]. However, one of the pro-
blems in knowledge work is the number of disconnected tools, that is, tools that are
disconnected not only from other tools but also from the work processes; moreover,
knowledge is often disconnected from the context [17]. Thus, a workflow that sup-
ports knowledge sharing and enables the use of cognitive skills is required. The
workflow must also be designed such that it addresses different views, including those
of business analysts and software developers [18], and connects the knowledge to
work, processes, and the context of work.

In this study, cognitive activities and processes include, for example, the following
aspects of knowledge work: making observations; reasoning; processing information;
learning, understanding, and remembering information content, using information
systems and conceptualizing.

Support for cognitive work is crucial when the work concerns abstract matters
and knowledge, and the following challenges are identified: knowledge is not easily
transferred unless it is made explicit, knowledge elements are context-specific, and
cooperation is needed because of humans’ cognitive limitations — one does not know
everything [19]. Cognitive skills are also required to respond to changes, that is,
creativity and human problem-solving skills are required to deal with changes and
unexpected events [20].

It has been proposed that the purpose of collaborative software development
environments is to facilitate and nurture developers’ creative knowledge processes
[21]. For this purpose, for example, companies implement workflows to help manage
processes, transfer work and data from one worker to another, and establish a logical
order for task implementation. However, it has been acknowledged that traditional
workflow approaches are too static and do not address the changes and unexpected
events that inevitably occur in creative knowledge work; moreover, workflow models
lack cognitive support [9, 22—-25]. Nor are cognitive work and cooperation properly
supported in current workflow models [9, 10].

Hence, there is a need for workflow design principles to provide guidance on how
to model and implement a CWS that supports software development processes in
which uncertainty prevails and how knowledge flows can be utilized to create a
solid basis for decision-making activities. We suggest that most cognitive chal-
lenges can be tackled with properly designed cognitive workflows that address
collaboration and communication practices, implicit and explicit knowledge man-
agement, awareness and transparency, and processes supporting coordination
and negotiation.

ZndReading
November 8, 2016 3:53:40pm WSPC/117-1JSEKE 1750006

4 J. Hyysalo, M. Owo € P. Kuvaja

Abstracting and synthesizing from related works, we identified a set of char-
acteristics of software development, which we classified into six categories: cognitive
work support, collaborative work, communication, knowledge management, aware-
ness and transparency, and coordination. Table 1 presents a brief summary of this
categorization. Then, we mapped each characteristic to a design principle for CWS
and identified its requirements relevant to a workflow system.

Other characteristics and requirements could also be identified; however, this
work addressed the research problem from these six viewpoints, all of which com-
plement each other and contribute to defining cognitive support for collaborative
work. Many other concepts and viewpoints can also be seen as relating to CWS, such
as distributed work, global software development, decision-support systems, virtual
collaboration tools, learning, and computer-supported cooperative work. However,
this work did not address these areas individually but, rather, focused on viewing
workflow systems from a cognitive point of view.

Table 1. Summary of characteristics and their system support requirements.

Software development

characteristics Requirements for workflow systems Design principles for CWS
Complex tasks, knowledge-in- Supporting understanding, shared Cognitive work support
tensive processes, abstract understanding, and reducing
knowledge cognitive load
Different kinds of tasks, differ- Supporting collaboration, distrib- Collaborative work
ent expertize areas, distrib- uted interactions, and realiza-
uted work, team work tion of business processes
Information exchange, under- Creating and maintaining shared Communication
standing of each other understanding
Knowledge-intensive processes, Acquiring, sharing, and using Knowledge management
team knowledge, knowledge knowledge
management
Understanding of others’ activ- Enabling knowledge, supporting Awareness and transparency
ities, context, information awareness and transparency

visualization, situation
awareness, workspace

awareness
Simultaneous, sequential, Creating structure, synchroniza- Coordination
distributed tion, integrating contributions,

decision points

2.2. Design theory approach

Design theory has proven to be successful for the purposes of describing improved
design processes [12], and there are examples of successful attempts to use the design
theory approach; see [17, 26-29]. This section briefly describes the concept. For a
more detailed description, see, for example, [11, 12, 30-32], where the use of design
theory is discussed extensively.

ZndReading
November 8, 2016 3:53:40pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 5

Design theory describes components and their relationships for subsystems that
are then used to construct the system [11]. In other words, the “pieces” can be
designed relatively independent of one another; however, they eventually form a
complete system in which the subsystems are not completely independent. Thus, all
the pieces and the entire system must be satisfactorily constructed — this is the goal
of design theory. Another important aspect of design theory is that it deals with both
the product and the process of design; these two cannot be completely isolated,
because the process eventually yields the product [11].

Design theory consists of product and process aspects, and for both aspects, there
are kernel theories that describe the fundamental behavior underlying the concepts,
for example, the laws of nature. Meta-requirements are derived from the kernel
theories, and they describe a class of goals to which the theory is applicable [11].
Based on the meta-requirements, meta-design principles are drawn up to describe the
class of artifacts that are hypothesized to meet the meta-requirements. Finally, there
are testable design hypotheses for verifying whether the meta-design principles meet
the meta-requirements. However, it should be noted that context-specific modifica-
tions are required to accommodate domain-specific aspects.

Walls et al. [11] formally specified and coined the term, “design theory,” and
others have also used and modified the approach. Thus, there are several useable
ways of presenting design theories. The original approach by Walls et al. [11] has
been reviewed in literature, and there are considerations that it might initially have
been too cumbersome to use (cf. [29, 33]).

It has been argued that testable design hypotheses are unnecessary and not
essential to the theory, as design theory explains generalized solution components
with the related generalized requirements or design principles [31]. Gregor and
Jones [30] also agree, and they suggest that even without testable hypotheses and
empirical indicators, design theory is sufficient to describe the idea of an artifact
that could be constructed. There are also other examples where the testable hy-
potheses are not seen as necessary components of design theory; see, for example,
[29, 32].

Building the design theory in this article follows the approach presented in
Hanseth and Lyytinen [34]. Hanseth and Lyytinen also base their approach on Walls
et al. [11], but they have made small changes; for example, they have omitted the use
of testable hypotheses.

Table 2. Components of a design theory [32].

Design goals Describe the goals to which the theory applies.

A set of system features A set of artifacts hypothesized to meet the requirements.

Kernel theories Theories or justificatory knowledge from natural and social sciences governing
the design requirements or the processes for arriving at them.

Design principles A codification of procedures, which, when applied, increase the likelihood of

achieving a set of system features. These procedures are derived from
kernel theories.

ZndReading
November 8, 2016 3:53:40pm WSPC/117-1JSEKE 1750006

6 J. Hyysalo, M. Owwo & P. Kuvaja

In all, there are different approaches for design theory, as discussed in [32]; the
authors have summarized the interrelated elements of design theory as shown in
Table 2.

In addressing these elements, a set of guidelines is defined for designers to design
an effective artifact, justified by accepted theories or justificatory knowledge [28].

3. Industrial Case and Development of a Design Theory for CWS

This section introduces the study that prompted the development of a new design
theory for CWS. The research methods and the evolution of design principles are
presented.

3.1. Research process

Various cognitive issues have been identified in the literature, as discussed in Sec. 2.
A study was conducted to understand the practical problems currently faced by
software development companies. In addition to identifying industry-relevant issues,
this study provided an opportunity to verify the meta-requirements for CWS and to
develop a research prototype for validating the new design theory for CWS.

An action research intervention within a large global company was set up to
define and validate the design theory for CWS, and the empirical work was carried
out via the action research intervention. Action research is an approach for putting
theories into practice in order to help companies solve concrete problems while
expanding scientific knowledge at the same time [34]. Action research is an iterative
process whereby theory-based diagnosis is followed by practical intervention
through action planning, action taking, and evaluation. Learning from action and
evaluation should result in change, and the action research cycle is repeated until
satisfactory results are obtained. Action research was applied to put the developed
model into practice, to improve it, and to evaluate the results. Evaluations were
made by implementing a workflow prototype on the basis of the proposed design
principles and applying it in its intended settings, thus providing empirical evi-
dence on its use.

The study was conducted at a large global company that provides systems and
services, one of the largest information and communication technology companies in
the world. Most of the company’s products are considered software-intensive sys-
tems, which are developed as a parallel and interconnected set of processes run by
various stakeholders.

Our research began with a pre-study, where existing literature was first analyzed
to identify the need for CWS. Relevant kernel theories were selected, and the initial
goals for design theory for CWS were then developed. This work provided the initial
requirements and design principles. The case company was studied to understand the
state of its practice; company material was studied and weekly workshops were
arranged to understand practical needs and issues. Interview questions were

ZndReading
November 8, 2016 3:53:40pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 7

Diagnosing ﬁ

Specifying Action
learning planning
& Evaluating [<— gﬁ:ﬁg <—J

Fig. 1. Action research cycle with pre-study (adapted from [35]).

formulated based on the understanding achieved. The pre-study phase was iterative
in nature, to ensure a solid basis for subsequent actions.

A total of 35 qualitative interviews were conducted over a period of 18 months at
several sites in several countries. Interviewees represented various positions, from
“floor level” to mid-management. One of the interviewees was a service capability
manager, 14 were development team leaders with at least 15 years of work experi-
ence, and one was the head of the development team leaders. The rest were expe-
rienced developers with 10-20 years of work experience. Altogether, 20 different
organizational units were represented; they covered several aspects of the products’
life cycle. Different questionnaires were used, as the interviews were targeted at each
phase with relevant questions concerning the interviewees’ work.

After the pre-study, the action research cycle was initiated. The action
research cycle, shown in Fig. 1, was repeated three times, until the results were
satisfactory.

In the action research intervention, a prototype workflow system was designed
and developed in order to evaluate its use in practice. During the action research, the
design principles and the developed system were iteratively refined until satisfactory
results were obtained. Eight developers from the case company participated in the
prototype evaluations. Their roles in the company were as development team leaders
(4), and the rest were specialists (4). All of them had considerable experience in
practical work (10-20 years of work experience). Most of them had already partic-
ipated in previous interviews.

In the action research intervention, the implementation of the prototype and its
integration into the case company’s environment was carried out in order to evaluate
iteratively the prototype and the design theory for CWS and its assumptions. During
the action research intervention, the requirements, design principles, and prototype
were refined.

3.2. Toward design principles for CWS

Next, we describe our design theory for CWS as a set of six design principles. Each
design principle is presented in terms of how it stems from kernel theories. Several
kernel theories that relate to the design goals and desired system features could be

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

8 J. Hyysalo, M. Oio & P. Kuvaja

identified. The desired system features are based on the literature, kernel theories,
and practical industrial needs, as discussed in Sec. 2.1. Practical needs ensure that
the problems and solutions are relevant to the industry. We also show how the initial
needs evolved into final, revised requirements and design principles, which concern
the topics of development environment, cooperation and distributed work, com-
munication, information and knowledge, transparency and awareness, and structure
and support for development processes.

First, each design principle is briefly presented along with related kernel theories.
Then, the required system features are defined. Next, industrial experiences of cur-
rent workflows and methods are presented along with their shortcomings. Finally,
the evaluation of the workflow prototype designed according to our design principles
to validate the design theory for CWS is discussed, based on analyses of industrial
interviews and observations.

Principle 1. Design methods must develop a workflow that provides
cognitive support

This design principle is an essential goal that distinguishes the design theory for
CWS from other design methods. It broadly defines the overall goal of the new design
theory for CWS. In a sense, it is a definitional principle that all modern workflow
systems should address. However, cognitive work and cooperation are not properly
supported in current workflow models [9, 22—-25]. Hence, the need for design Prin-
ciple 1 that addresses the requirements for supporting understanding, shared un-
derstanding, and reduction of cognitive load.

Kernel theories: Design Principle 1 stems from cognitive workflows, which are
discussed in [9, 10]; it focuses mainly on the importance of providing cognitive
support and knowledge flows for collaborative and distributed work. In addition, a
theory of distributed cognition is proposed [36]. A cognitive framework for reengi-
neering knowledge-intensive processes is also set forth, and it is proposed that
developers’ cognitive work is the result of interactions among individuals, artifacts,
and resources in their environment [19]. Support for cognitive work is required when
working with abstract knowledge, in order to meet various challenges. The following
challenges are identified: knowledge is not easily transferred unless it is made explicit,
knowledge elements are context-specific, and cooperation is required because of the
cognitive limitations of humans, one cannot know everything [19].

System features: Cognitive workflows must create a common, flexible devel-
opment environment that reduces developers’ cognitive load and supports cognitive
activities and processes. Software development is a type of demanding knowledge
work that can be characterized as cognitive activity. It has also been argued [4] that
cognitive perspectives are fundamental for successful collaboration. As this type of
knowledge work is based on the internal mental processes of developers, it requires
cognitive support.

Experiences from case company: Initially, we began with an idea to create a
common, flexible development environment that provides data and guidance for

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 9

development tasks. However, the pre-study and interviews promptly showed that
there was a need for a more thorough study, and the focus was then adjusted toward
cognitive support. Interviews revealed that the needs and level of cognitive support
varied among developers with different skills and experiences. Our research also
promptly revealed that there were several issues that needed to be tackled. In gen-
eral, the development environments were inadequate for complex knowledge work.
An empirical study revealed several issues with tools, data, and other work items,
which imposed an additional cognitive load on developers. These challenges were
identified with regard to the following topics: communication and collaboration
practices, knowledge management and coordination, and transparent tools and
processes. A question was raised as to how solutions to these challenges may be
integrated into a workflow that structures and supports the development process.
These issues are further elaborated in discussions on design Principles 2—6. In sum-
mary, the cognitive activities and cognitive processes that must be addressed include
making observations; reasoning; processing information; learning, understanding,
and remembering information content; using information systems; and conceptual-
izing. The action research intervention proved that it is useful to have a common
development environment and flexible cognitive workflow, so that collaboratively
processed data become more accurate and more complete. It is proposed that prin-
ciples should be provided to properly build a development environment with cog-
nitive support.

Principle 2. Development of a workflow system should address the needs
of collaborative work

This design principle proposes that the workflow system should have collaboration
supporting facilities. By definition, workflows should help software development
companies to transform a set of inputs into outputs that provide value for stake-
holders, whereas collaborative workflows “connect” several persons and transfer
data, documents, work, etc., among them. However, problems emerge as human
collaborative activities cannot be fully predicted or anticipated [37]. We identified
the need to address the design principle of collaborative software development, which
stems from such characteristics as different kinds of tasks, different areas of expertize
required, the necessity for distributed work, and teamwork. Design Principle 2
addresses the requirements for supporting collaboration, distributed interactions,
and realization of business processes.

Kernel theories: Collaborative work has been discussed in [38], the authors of
which have studied the dimensions of the problems of global software development;
they suggest that the solutions that would help globally-distributed development
teams would also help developers that work more closely with one another. More-
over, they suggest that the development sites should be able to operate as inde-
pendently as possible, with the support of flexible and effective technological
solutions. Several aspects of collaboration could be supported with information
technology, and the selected kernel theories provide a starting point for defining the

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

10 J. Hyysalo, M. Oivo € P. Kuvaja

system features and design principles of a CWS. When the focus is on collaborative
workflows, the workflows should manage and coordinate the distributed interactions
and facilitate the realization of the business processes [37].

System features: Cognitive workflows must foster cooperation and distributed
work. In particular, workflow systems must be flexible in collaborative settings and
cater to the definitions of change and dynamic process. In addition, they must
support the independent work of development teams.

Processes, activities, and tasks must be mapped to high-level expectations (pur-
poses, goals, and objectives) so that each activity and task belongs to a context, and
tasks and work items are connected to others via a network of dependencies, thus
creating the context for one’s work.

Experiences from case company: The interviews and action research inter-
vention indicated that even though the case company has defined and documented
its processes, several developers had no proper overall view of the processes or de-
velopment phases. Alarmingly, in some cases, developers did not know whether there
was an official process at all. Further, not all organizational units were known, and in
some cases, interviewees viewed cooperation possibilities as completely lacking.
Cooperation — or the lack of it — among different developers, teams, and devel-
opment phases indicated that apart from different actors having, in some cases,
different perspectives, there were varying understandings of a product’s life cycle. In
particular, the developers described cooperation among the phases of a development
chain, with their focus and interests being restricted to their own work phase and the
phases immediately preceding and following theirs, instead of considering a product’s
entire life cycle. As a result, the developers’ own work was not put into the context of
the entire development chain, and the dependencies were not followed all the way
through. Thus, the real needs of processes and phases were not considered ade-
quately, nor were the relationships between processes and phases. Furthermore, the
purposes of different processes and phases were not recognized.

There was a clear need to foster cooperation and communication. Serious pro-
blems arose as a result of inadequate cooperation and communication, including an
insufficient understanding of what the others’ activities required. To address the
inadequacies in cooperation and communication, communication channels were
requested to be integrated into the workflow system to support social and organi-
zational cognition. The prototype also enabled developers to access documents and
development items by using a simple “invite to collaborate” functionality. Simul-
taneous work was enabled by allowing others to access the entire document instead
of only those data fields that were currently being manipulated. In addition, the
prototype also allowed users to see what others were doing, and this information was
constantly updated and made visible.

The workflow system that was implemented according to our design principle
provided information about the goals and objectives of the company’s processes. For
example, different phases were handled by describing the dependencies and rela-
tionships between different processes and development phases as well as the data

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 11

flows between them. The activities in the development process were justified, and
their purposes were clearly defined. This provided the work context and enabled
developers to achieve full comprehension of the entire work system with all its
purposes, goals, and objectives.

The action research intervention proved that enhanced communication and co-
operation resulted in developers gaining a better understanding of one another’s
needs and work. With the prototype, the visibility of others’ work was enhanced, as
was the understanding of the different phases or development processes and their
relationships and purposes, thereby enabling the developers to formulate a holistic
understanding of the entire context. This enabled the developers to understand the
impact of their work and its results on others’ work.

Principle 3. Development of a workflow should address communication
This design principle focuses on the communication aspects of workflow. In collab-
orative development, especially when the work is geographically distributed, it is
essential to have communication tools. There is a need for different types of appli-
cations, including instant messaging and video conferencing, and interfaces for other
types of tools should also be integrated into the system to provide instant access to
work items. The most convenient approach is to have those applications integrated
into the workflow so that all the data is directly available for all tools. The justifi-
cation for this design principle comes from the following two characteristics of
software development: extensive information exchange and each party’s under-
standing of the other. Design Principle 3 addresses the requirements for creating and
maintaining shared understanding.

Kernel theories: This principle is based on several theories. Communication is
considered in theories of media richness [39], media synchronicity [40], and social
presence [41]. These theories discuss the importance of understanding information as
well as how information depends on the media format. The more uncertain and
ambiguous the task is, the richer the media should be, including a degree of
awareness. Team members communicate in order to have a shared understanding,
and information is exchanged either synchronously or asynchronously; technology is
often needed, for a variety of reasons. One of the problems reported in [42] is that
developers have to rely on various tools and formats that do not necessarily follow
any communication standards or that may not provide all the necessary cognitive
support, and this can lead to misunderstandings. When combined with a complex
infrastructure, this may adversely affect both the frequency and quality of commu-
nication and, ultimately, productivity [42].

System features: Creation and maintenance of shared understanding requires
constant communication. Cognitive workflows must provide communication infra-
structures that foster communication; they must also provide rich information,
shared understanding, and awareness information.

Experiences from case company: Our study revealed a lack of communication
between different teams and organizational units. This led to serious problems such

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

12 J. Hyysalo, M. Oivo € P. Kuvaja

as a lack of feedback and an insufficient understanding of others’ activities. On the
other hand, informal means of communication were used extensively, which posed a
hindrance to documentation.

Experiences with the prototype highlighted the need to integrate easy-to-use
communication infrastructures into the workflow. Interviewees commented that
different kinds of tools were necessary, ranging from instant messaging applications
to video conferencing. The inclusion of communication infrastructures supported the
collaborative nature of software development, eased the dissemination of knowledge,
improved cooperative work, and provided several other benefits. In addition, rigor-
ous documentation was encouraged.

Principle 4. Development of a workflow should address knowledge
management

Data, information, and knowledge are all covered in this principle, as these concepts are
closely interrelated. It is necessary to have a means of gathering, managing, and dis-
seminating knowledge. For example, the knowledge obtained from various stakeholders
may be used to form guidelines and principles, and this knowledge can be used by
adopting knowledge bases while making the different development perspectives more
visible. The number of various types of knowledge-management applications and solu-
tions indicates the importance of this design principle. In addition, it is necessary to
address the need for knowledge management in CWS. This design principle stems from
the following characteristics of software development: knowledge-intensive work and
processes, team knowledge, and knowledge management. Design Principle 4 addresses
the requirements for enabling acquisition, sharing, and using knowledge.

Kernel theories: Several potential candidates for kernel theories are available.
Here, we highlight the following: team knowledge and its management and coordi-
nation in geographically-distributed software development [43], the knowledge
foundations of effective collaboration [4], and support for expert-level communica-
tion in developer-centered collaborative software development environments [21].

Nakokoji et al. [21] suggest that “software development is about information,
generating information, and making information artifacts.” To perform knowledge-
intensive tasks and solve problems, developers must have an understanding of both
the current state and the goal state, and naturally, they have to find a way to reach
the goal. This understanding provides the basis for problem solving and task im-
plementation. In addition, both team cognition and knowledge will support coordi-
nation and improve developer interactions, as developers can understand and
anticipate what others do [43]. However, it is not a trivial task to have and under-
stand all this information.

System features: Knowledge management aspects have to be covered, such as
acquisition, sharing, and utilization, including the use of experience and skills.

Experiences from case company: Our studies revealed inadequate knowledge
acquisition, sharing, and utilization in the case company. For example, information
was either insufficient or it was not stored in a way that was accessible and useful for

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 13

others. Practical problems also included finding relevant data, which was often
scattered over several sources without proper structure, classification, or means of
identification. In some cases, the information was missing, while in others, there was
too much information. Developers wanted to have instant access to all necessary
information, tools, databases, and repositories directly from the workflow, with
proper search and filter functionalities to allow the development to be based on up-
to-date facts.

A workflow system prototype was built with the intention of making the devel-
opers produce accurate data in the correct format. The system helped the developers
to think about what was really asked for in the tasks, and it guided them to produce
the most relevant data. If there was a need for guidance and instructions, developers
could request help, as the system included context-sensitive guidance. Developers
could easily check the guidance, for example, for processes, activities, and tasks. The
system enabled users to quickly understand how the process worked, how informa-
tion flowed, and the purposes of each process element, activity, and task.

In their work, the developers created, stored, and shared information while
implementing their tasks, and each developer accumulated information, knowledge,
and experiences. These were recorded to ensure maintenance of the data even if the
member were to leave the team. Different aspects of development were represented
by groups of stakeholders. Behind each aspect, a platform of knowledge and tech-
nology was created to be adapted to the development process. These platforms were
knowledge bases that covered both products and processes. Among other benefits,
these data provided solution strategies to support the developers’ work. They could
be used to train new team members and to support team members who were unfa-
miliar with a particular task. As a result, developers seemed to understand what was
needed to create the necessary content or work items.

Principle 5. Development of a workflow should address awareness and
transparency
Awareness is critical for collaboration [42, 44, 45]. Awareness can be defined as an
understanding of others’ activities, which also provides the context for one’s own
activities [46, 47]. It is also suggested that awareness is the key to transparency [48].
Awareness and transparency enable the developers to be aware of the status of
development activities and work items; further, they facilitate a common, shared
understanding of the development goals and objectives. For example, transparency
helps in achieving effective and open communication, while transparent tools and
processes ensure the success of product development. The following characteristics of
software development are also requirements of CWS: the need for understanding
others’ activities, information visualization, context awareness, situation awareness,
and workspace awareness. Design Principle 5 addresses the requirements for enabling
knowledge and supporting awareness and transparency.

Kernel theories: Selected kernel theories and justificatory works include dis-
cussing awareness and coordination in shared workspaces [46, 49] and developing and

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

14 J. Hyysalo, M. Oivo € P. Kuvaja

maintaining awareness in collaborative software development [44]. Information vi-
sualization and situational awareness are needed in workflows [50].

System features: Transparency and awareness are key knowledge enablers.
Technology is needed for creating and supporting transparency and awareness, and
such technologies should be designed to support the development work and pro-
cesses. Thus, we propose that cognitive workflows must provide transparency and
awareness for data, tools, resources, and processes.

Experiences from case company: Various awareness issues with tools, docu-
ments, and work items were revealed in the case company. For example, tools,
interfaces, and data usage caused an additional cognitive load owing to inadequate
transparency or awareness information. Developers or managers were not always
aware of the work conducted during the preceding or following phases, as it was not
visible anywhere in practice; they were also not aware if something had been changed
or work had progressed. This caused tracking issues, especially for managers, as there
was no way to track the progress of the work toward subsequent process phases.

Proposals included providing awareness of others’ actions and ensuring the
transparency of the work to reduce overlapping activities and to control redundancy
and the repetition of work. Further, the processes and phases were required to be
visible so that the developers were aware of the context and dependencies between
tasks and work items. Awareness was also needed to identify and understand the
current conditions. Therefore, information was provided about the workspace, work
items, and others’ activities to help create a shared understanding and to tackle
awareness issues. Workspace awareness, including, for example, information about
developers’ availability, instant messaging systems, and contact information, sup-
ported the instant connection between people and facilitated communication and
collaboration. Task management and coordination ranging from backlogs to work
allocation created the awareness of development tasks and objectives and provided
information about the state of the work items and tasks.

Process visibility was addressed in the prototype by displaying an overview and
the status of documents and other work items. The prototype also indicated the
process and phase to which each of the different documents and work items was
related. In addition, the prototype also enabled users to see what others were doing.
The aim was to provide an understanding of all elements and their state in order to
enhance one’s awareness of a situation and, ultimately, to produce more accurate
data and results. In summary, the action research intervention with the prototype
proved that the overall transparency of the work was improved.

Principle 6. Design methods should result in a workflow that coordinates
and structures the product development process

This design principle focuses on the ways to coordinate and structure the develop-
ment activities and processes, which facilitate human interactions in collaborative
development. The coordination, structuring, and synchronization of work are nec-
essary in collaborative development, as different teams carry out their tasks

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 15

simultaneously or in sequence. In any case, the efforts must be integrated at some
point, as there are often several dependencies and relations between the tasks and
work items. Synchronization points can be used for this.

Coordination of activities is also supported by solid guidelines on what to do, that
is, clearly stated requirements of the work to be done and acceptance criteria that
explicitly show what is needed for each task. These guidelines also provide justifi-
cation and purpose for the work. Synchronization points are natural sites for defining
the information content to be produced in development tasks, and the results are
checked against the guidelines and acceptance criteria at these points. Thus, we can
identify the need to address the CWS requirements that are covered by design
Principle 6, including creating structure, synchronizing, integrating contributions,
and decision points.

Kernel theories: Hazelrigg [51] discusses decision-based engineering, where
engineering design is basically recognized as a decision-making process. As decision-
making requires clearly stated decision criteria, we can recognize the importance of
synchronization points when they also provide the development direction (goals and
objectives) and decision criteria (acceptance criteria). Cooper [52] has proposed
decision points in his Stage-Gate® process. Gates, or decision points, can be used as
“natural” synchronization points for development activities. Perrin and Godart [37]
present an overview and the concept of synchronization points as points at which to
share, manage, coordinate, and communicate in collaborative development. In
summary, a decision-based development approach is proposed, where decision gates
are also used as synchronization points. These points also coordinate and structure
the development process.

System features: Workflows must structure and support the development
process and integrate the contributions of each participant seamlessly into a coherent
whole.

Experiences from case company: To obtain feedback on design Principle 6
from the case company, a workflow was built to provide a defined input for all
activities, along with information and knowledge about tasks, resources, objectives,
decision criteria, and the context. In the workflow, the development activities were
handled as loosely coupled sets of tasks that aimed at producing a coherent piece of
work focusing on defined topics. When defined content for an activity or a task was
completed, the results of the activities and tasks were presented for decision makers
as proposals that could be evaluated against the given decision criteria defined by
relevant stakeholders. The completion order of tasks and activities was not strictly
enforced, and developers could choose how to reach their goals within specifically
defined and acceptable performance boundaries and existing constraints.

Before the workflow prototype was implemented, cooperation between different
development phases was lacking, and collaboration was mostly observed between
successive phases; there was no clear picture as to why other phases needed the input
and work results. With the prototype, the justification and purpose for work was
more visible to the developers.

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

16 J. Hyysalo, M. Oivo € P. Kuvaja

The work results were also synchronized and/or integrated at the decision points.
Decision points clearly defined what was necessary in order to produce the required
content or work items. In addition, the results were examined at each decision point,
and decisions were made as to whether the work could progress to another stage.

4. Evaluation and Specifying Learning

Design theory provides a prescriptive theory that informs how to do something [11,
53]. This type of theory proposes guidelines that are meant for constructing an
artifact. It provides a prescriptive theory, with, for example, methods, techniques,
and principles of form and function for constructing an artifact [53].

In the present study, the result of design theory is a list of design principles that, if
followed in the design process, both provide a system that addresses design goals and
produce a system that has the requested features implemented in it — a CWS.

Design theories rely on the knowledge of kernel theories for their design principles
[53]. In this work, the knowledge was collected first from the literature in the form of
kernel theories, and then the resulting design theory was evaluated in the industry in
an action research study using a system prototype. During the action research, the
system was implemented and evaluated in an iterative manner. In each cycle, new
learning emerged, and this was used in the following cycle.

The design theory is proven through the validation and evaluation of design
principles by constructing a system and using it in its intended settings in a case
company. The empirical work shows clearly that the design principles and the pro-
posed system features are recognized as necessary for successful CWS.

The evaluation of each design principle with learning from the action research
intervention is discussed next. The individual design principles are all related to each
other, even if they have different focuses. They are complementary and contribute
partially to define the overall research problem.

The first design principle necessitates having cognitive support integrated into the
workflow. Software engineering is not only about how to build a software system; in
addition to that, and perhaps even more importantly, software engineering is about
understanding what to build. This requires, for example, the use of existing knowl-
edge and the creation of new knowledge is supported.

The prototype was built for practical evaluation. In the prototype, all develop-
ment activities, inputs, and outputs were specified along with information and
knowledge about tasks, resources, objectives, decision criteria, and the context. A
graphical presentation and links to data, development and collaboration tools, and
guidance were provided.

When the tasks were defined and described carefully with justification for all
activities, developers easily could understand what was expected from them, and
what was the intention in each task. The empirical evaluation of the prototype
proved that by linking the developers and their tasks to development processes,
information, knowledge, and tools, and by helping them understand what they

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 17

needed to do as well as why and how they needed to do it, the developers’ cognitive
performance was improved. Developers were able to create shared understanding and
to work better toward the development goals. The developers also understood better
the development activities and tasks as they were put into a context. The graphical
presentation helped in navigating a workflow, tracking the work, and visualizing the
dependencies of work items. The necessary cognitive support was found adequate to
meet the first design principle.

The second design principle addresses the collaborative needs of workflow sys-
tems. It is not enough only to have a system that connects persons and transfers work
items to the next handler; there must also be several other collaboration supporting
features in the workflow. The workflow system must be flexible and allow indepen-
dent work as well as teamwork; it must manage and coordinate the collaborative
work.

In practice, developers must understand how their work is positioned in the
overall picture, in order to understand the whole context of their work — each
individual’s work is part of the larger whole. For this, the graphical presentation of
the process, activities, and tasks was developed, clearly showing the dependencies
and relationships of tasks, activities and work items. The persons who worked with
an item could also be identified in order to see the work item’s history, enable the
tracking of changes, etc. Moreover, it was clearly shown in the prototype where the
outcomes of one’s tasks were to be delivered, so that the whole path of the work items
could be traced, back and forth. A set of collaboration tools was also integrated into
the workflow. All of this together satisfied the second design principle.

Furthermore, we learned from the empirical evaluation that having a clearly
articulated common goal is necessary; otherwise, different developers, teams, and
development phases have different perspectives and varying understandings of a
product and product development. In our prototype, the common goal was then
further divided into smaller pieces of work, activities, and tasks that instantiated the
higher level goals and purposes. Individuals and teams could then implement ac-
tivities and tasks, and their contributions were integrated to form the desired
product. The inclusion of collaboration tools such as change management tools and
history, tracking, and project management tools were also found to be a very useful
addition to support the collaboration. All of these created a good basis for successful
collaboration and proved the importance of the second design principle.

The third design principle addresses the communication in workflows and is quite
straightforward. Communication tools must be integrated into the workflow. The
collaboration and the distributed development that are often met in software engi-
neering means that a lot of communication is required, for example, to set shared
goals or to exchange information. Communication channels between the experts
support the collaborative nature of development, which eases the dissemination of
knowledge and improves cooperative work.

The “process chart” linked each activity and actor with contact information,
enabling developers to communicate with the correct persons. In addition, each task,

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

18 J. Hyysalo, M. Oivo € P. Kuvaja

activity, and work item was assigned an owner, enabling others to see who was
responsible for each. With contact information readily available, owners could be
contacted via email, telephone, or a note left in the workflow system. This latter
option enabled developers to contact owners by clicking on contact information,
which presented the option of leaving a note or sending an email. In empirical
evaluations, this use of technology to support communication was found to be helpful
and necessary to collaboration. Further ideas also emerged for future development.
In particular, instant messaging tools (like Skype) were requested to be included in
the prototype; however, those requests were not yet met in the prototype. The
research clearly indicated the validity of this design principle, and even without
instant messaging tools, the prototype already proved to be successful in fulfilling the
third design principle.

The most important thing learned from the action research intervention was the
importance of fulfilling developers’ information needs and defining the information
flows to support communication and information distribution. In our prototype,
communication supported coordination and synchronization by providing the whos,
whats, hows, whys, and wheres. Supporting communication also provided cognitive
support.

The fourth design principle is about knowledge management in workflows. Soft-
ware development is intellectually demanding knowledge work, involving hard
decisions, innovativeness, knowledge creation, and many other mental activities, all
dealing with knowledge and information. Knowledge work and managing knowledge
is also cognitive effort and thus requires cognitive support.

In practice, certain managers representing different stakeholders were nominated.
Their task was to gather the experiences and knowledge and then to formulate
guidelines and principles, for example. These guidelines were then followed in the
product process. Such managers are where the knowledge of various stakeholders,
representing different development viewpoints, is collected. The main role of man-
agers with respect to each viewpoint is to use that knowledge and to form guidelines
and principles. There were also managers who were “champions,” advancing their
viewpoints, documenting practices and know-how, and making them known. Their
experiences with and knowledge of both the product and the process were docu-
mented and made available through links from the workflow system. The data in-
cluded background information about the work and the work environment, examples
of solutions to development problems, and links to relevant standards and legisla-
tion. Along with the communication tools, this data from champion managers im-
proved knowledge management appreciably.

The action research showed that when knowledge and information were gathered,
stored, and disseminated, then the developers were able to utilize that information to
implement development tasks and solve problems they encountered in development.
This way, the workflow provided shared knowledge about processes, products, tools,
and team members, including the use of experience and skills. This knowledge is
developed over time, and the utilization of shared knowledge is furthered during

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 19

development tasks. Evaluations showed that this kind of shared knowledge helped
developers to understand different perspectives and created a common ground, thus
demonstrating the importance of the fourth design principle. Finally, the utilization
of the prototype provided common guidelines and instructions and a harmonized
way to aim for the common goal, instead of leaving each group or department to
implement its own plans.

The fifth design principle concerns awareness and transparency. Technologies are
used for creating and supporting transparency and awareness, and it is important
that those technologies are designed to support the development work and processes.
On the other hand, processes and practices must also support awareness and
transparency, as tools alone cannot provide that.

Transparency is the visibility of things, and awareness can be defined as an un-
derstanding of others’ activities. These both help in communicating and help to
understand what is going on. They both provide shared understanding and help to
put things into the correct context. The transparency and awareness of the prototype
were improved upon, for example, by providing information about others’ activities
and showing ongoing work, who was working with what, the status of the develop-
ment process, and showing where individuals’ actions affected. In addition, the work
item histories and change log enabled activities to be tracked throughout the de-
velopment cycle. This support for transparency and awareness was available from
the prototype’s graphical user interface.

As software development is inherently cooperative, it requires several developers
who need to coordinate their efforts. Our empirical evaluation showed that an im-
portant part of software development is the creation and maintenance of a shared
understanding that concerns the state of project tasks and artifacts and the activities
and expertize of developers. The results show the importance of understanding each
other and of transparency and awareness. Awareness was agreed to be critical to
collaboration and to be a necessity for a better understanding of the information.
Thus, this design principle was agreed to be necessary. The prototype also addressed
the awareness and transparency needs of developers discussed in Sec. 3.2.

The sixth design principle requires the coordination and structuring of the de-
velopment process. The workflow must provide proper information about the goals
and objectives of organizations’ processes. How and in what order the work is done
does not have be strictly defined; instead, it is preferable that the developers have the
ability to choose how to reach their goals within specifically defined acceptable
performance boundaries and existing constraints. Coordination and structuring the
processes by defining these boundaries and constraints and making them visible are
the main goals of this principle.

In the prototype, work activities and items were defined based on the decision
points. For each activity that was necessary to enter any decision point, clearly
defined acceptance criteria covering completeness and quality were created. The
decision criteria and decision-making were integrated into the development process,
and the development goals were defined within decision points, with clearly specified

ZndReading
November 8, 2016 3:53:41pm WSPC/117-1JSEKE 1750006

20 J. Hyysalo, M. Oivo € P. Kuvaja

decision criteria for various abstraction levels of work, including processes, activities,
and tasks. These criteria guided the decision-making activities and defined the in-
formation content that needed to be created during development tasks between
decision points. In addition, the data flows were described. By these means, the
prototype offered information about the developers’ goals and described the de-
pendencies between activities and work items. All of this also clarified why all the
processes and activities were necessary in the development process, even if the
developers previously did not understand the need for all the development activities.
The coordination and integration of development results also occurred at the deci-
sion points. In decision points, the results of activities and tasks were presented for
decision makers as proposals that were evaluated against given decision criteria
defined by relevant stakeholders. This particularly helped managers, who could
obtain accurate and up-to-date information about the state of the work and then
could “steer” the work and provide guidance and other corrective actions whenever
needed.

From the action research intervention, we learned that this design principle was
seen as important, and having this kind of support in the workflow proved to be
useful. In the prototype, various development phases were handled by describing the
dependencies and relationships among various processes and the data flows among
them. The developers easily understood the intended characteristics of the end
product and why they had been requested. The activities in the development process
and the expected work results were justified, and the criteria for achieving the
purposes, values, and priorities were defined.

Evaluation of current workflow systems revealed that many traditional workflow
systems could already be counted out, based on the literature research; current
workflow models do not support cognition and cognitive work [9, 10, 22—-25]. There
are also other good approaches, such as unified modeling language (UML) or the
“4 4+ 1 view model,” which enable either analyzing and designing software products
and decision-making or describing the interests of various stakeholders. Similarly,
there are numerous computer-aided software engineering (CASE) tools to help
designers and developers. However, they do not specifically address the cognitive
aspect; thus, they do not meet the first design principle, which is definitional in the
sense that all CWS must address it.

However, there are works that have discussed cognition in the context of work-
flows [cf. 9, 10, 50], and it is reasonable to see how our workflow model compares to
those efforts. Table 3 (following page) evaluates workflow systems with respect to
how they implement the proposed design principles. In the table, “+” means that the

design principle is met, and “—”

means that the design principle is not met.

Most of the current workflow models do not meet the first design principle. The
workflow models by Zhuge [9], Wang and Wang [10] and Jalote-Parmar et al. [50]
were identified from the literature as also addressing the first design principle, and
thus they were included in the more thorough examination. The evaluation of other

workflow systems than our own is based on the literature, as the implementation of

ZndReading
November 8, 2016 3:53:42pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 21

Table 3. Evaluation of workflow models in relation to proposed design principles.

Wang and Jalote-Parmar

Workflow models Design principles Zhuge [9] Wang [10] et al. [50] Our work

1. Design methods must develop a workflow + + + +
that provides cognitive support

2. Development of a workflow system should + - - +
address the needs of collaborative work

3. Development of a workflow should address + - - +
communication

4. Development of a workflow should address + + + +
knowledge management

5. Development of a workflow should address — + + +
awareness and transparency

6. Design methods should result in a workflow - + - +

that coordinates and structures the product
development process

those workflow systems in any form into the real-life processes of the case company
would not have been possible. Our own system, however, was evaluated in practice in
a real development environment.

The examination of existing workflow models showed that Zhuge’s [9] proposition
addresses collaboration to an extent. It recognizes the different abstraction levels of
work, communications, and connections between persons and the coordination and
management of collaborative work. Flexibility is also very well included in his work, as
is knowledge management. Together these solve many of the issues related to design
Principles 1-4. However, Zhuge’s model lacks the awareness and transparency aspects
and does not address the coordination and structuring of the development process. Nor
does it propose the inclusion of other kinds of collaboration supporting tools.

Wang and Wang [10] also address several requirements related to the design
principles. They include knowledge management and awareness support as integral
mechanisms in their model. They also address process structuring and coordination
quite well. However, their support for collaboration is limited, focusing mostly on
context creation and slightly touching the management and coordination of
resources. Thus, their approach does not offer much support for developers in their
daily work, as it is more focused on the real-time routing and strategic control of
process management.

The solution by Jalote-Parmar et al. [50] is a workflow-centered framework for an
expert decision-making system; they integrate the knowledge of cognitive processes
into system development. Their focus is on providing situational awareness for
decision-making through information visualization. There are strengths and weak-
nesses in their proposal; for example, it takes into account awareness, information
visualization, knowledge management, and the context of work. However, it does not
address collaboration and communication, probably due to the nature of the domain.
The main issue is that their work is strongly in the clinical domain, and it cannot be
straightforwardly transferred to the software domain. Thus, the application of their

ZndReading
November 8, 2016 3:53:42pm WSPC/117-1JSEKE 1750006

22 J. Hyysalo, M. Oivo & P. Kuvaja

results to software development workflows would require further industrial evalua-
tions in the software domain. Still, their proposal for designing a workflow seems to
be solid, and it should also be taken into serious consideration in software engineering
where applicable.

A CWS designed by following the design principles addresses all of these princi-
ples, as discussed earlier in this section. The experiences in the case company proved
that the designed systems addressed all the design principles.

To specify the learning, this work complements the traditional workflow models
[cf. 22-24, 54] by providing cognitive support. Workflows are one way to manage
processes, transfer the work and data from one to another, and help establish a
logical order for task implementation. There are several works that discuss the
workflows and their modeling and technical solutions; however, not many authors
have applied the cognitive viewpoint to workflows.

As the study shows, this cognitive support is not adequately provided within
current workflow models. We argue that proper support for cognitive work in
workflows will help developers use available knowledge to come up with creative
solutions to non-routine situations and to improve the efficiency and the results of
the product creation process. Cognitive support also helps to address changes and
unexpected events; enough information is provided so that developers can make solid
decisions based on facts, and they are supported by earlier experiences and other
guides that they might apply while working.

The empirical evaluations showed how cognitive support integrated into the
workflow was useful, and it improved developers’ abilities to accomplish their work.
With the prototype, the developers were also able to respond to changes and solve
practical development problems more efficiently. The quality of the work results was
improved as well.

5. Discussion and Conclusions

The aim of the proposed design theory for CWS is to provide a set of requirements
and design principles for creating an effective workflow system that supports cog-
nitive work in software development. Table 4 summarizes the elements of our design
theory, which was validated in a real-world environment with an action research
intervention. Each of the features, kernel theories, and design principles has been
extensively discussed in the preceding section.

The proposals complement each other, and each contributes partially to defining
CWS. Together, they tackle the cognitive challenges discussed in this paper. The
action research results verified the usefulness of a common, flexible workflow that
connects the development phases, so jointly processed data is available to all relevant
stakeholders, and that data can be completed and made more accurate as the de-
velopment progresses.

The results of this research will support developers’ cognitive work, which
is a result of interactions among individuals, artifacts, and resources in their

November 8, 2016 3:53:42pm

ZndReading
WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 23

Table 4. Design theory for CWS.

Design goals

1. A set of
system features

2. Kernel theories

3. Design principles

CWS design methods must develop a workflow that provides cognitive support,
i.e. design methods must provide the means to address the needs of complex
knowledge work that requires cognitive support.

1.1. Cognitive workflows must create a common, flexible development environ-

ment that reduces developers’ cognitive load and supports cognitive activities and

processes.

1.2. Cognitive workflows must foster cooperation and distributed work.

1.3. Cognitive workflows must provide communication infrastructures that foster

communication as well as rich information, shared understanding, and awareness

information.

1.4. Information and knowledge must be distributed among the development

teams.

1.5. Cognitive workflows must provide transparency and awareness for data,

tools, resources, and processes.

1.6. Workflows must structure and support the development process and inte-

grate the contributions of each participant seamlessly into a coherent whole.

2.1 Theory of distributed cognition, workflow-based cognitive flow management
for distributed team cooperation, and cognitive approaches to business process
management.

2.2 Approaches for alleviating distance and for cooperative work and cognition.
2.3 Theories of media richness, media synchronicity, and social presence.

2.4 Knowledge foundations of effective collaboration, team knowledge, knowledge
management, and coordination in geographically distributed software develop-
ment, and support for expert-level communication in developer-centered collab-
orative software development environments.

2.5 Awareness and coordination in shared workspaces.

2.6 Planning the design process and quality of execution of key activities.

3.1 Design methods must develop a workflow that provides cognitive support.
3.2 Development of a workflow system should address the needs of collaborative
work.

3.3 Development of a workflow should address communication.

3.4 Development of a workflow should address knowledge management.

3.5 Development of a workflow should address awareness and transparency.

3.6 Design methods should result in a workflow that coordinates and structures
the product development process.

environment, as suggested in [36]. The aim of the proposed design principles is to
reduce the cognitive burden — the burden of keeping unnecessary factors in mind,
such as how to use tools, how to link information between tools, and how to search

for relevant data — as well as to enable and foster communication, transfer

knowledge, provide awareness, provide context for work and knowledge, and support

collaborative work.

5.1. Implications and future research areas

The results presented in this article constitute a concept that is, to the best of our
knowledge, not discussed in existing literature. This work provides valuable insights

ZndReading
November 8, 2016 3:53:42pm WSPC/117-1JSEKE 1750006

24 J. Hyysalo, M. Oivo & P. Kuvaja

for academic research and lays the foundation for further scholarly inquiry, including
a validation of the findings in other companies and domains besides information and
communication technology, and as no testable hypotheses are presented, there is an
opportunity for further development of this design theory. Furthermore, this re-
search serves as the basis for developing the actual implementation of cognitive
workflows. One of the possible future research topics would also be the quantitative
analysis to support the validation of design theory more.

For practitioners, the design theory for CWS provides new ideas to improve the
efficiency of work and the accuracy of results. In summary, cognitive workflows
designed by following the proposed design principles would provide a better under-
standing of the context of work, especially the real needs of all processes, phases, and
functions; this in turn would provide better development results, primarily because
the produced data and other results will fulfill their purpose more effectively and
ensure less wastage.

5.2. Conclusions

Current workflow models do not address the needs of collaborative software devel-
opment. In particular, cognitive support is lacking in current workflows. Existing
methods for designing CWS do not meet the six design principles discovered through
design theory and presented in this paper. As a result, although current workflow
systems address different cognitive aspects, they lack the comprehensiveness needed
for such systems.

Our design theory for CWS leads to six design principles that help to resolve the
shortcomings of current workflow systems and their design methods. The proposed
design theory was validated in practical settings with an action research interven-
tion. The action research demonstrated the relevance, feasibility, and usefulness of
the proposed design theory in a real-world environment. Thus, the proposed design
principles provide a promising solution to current issues in cognitive workflows.

Acknowledgments

This research is supported by the European ITEA2 program with national funding
from Tekes (the Finnish Funding Agency for Technology and Innovation). The
authors would like to thank AMALTHEA, ONION, and DHR project partners for
their assistance and cooperation.

References

1. F. O. Bjornson and T. Dingseyr, Knowledge management in software engineering: A
systematic review of studied concepts, findings and research methods used, Inf. Softw.
Technol. 50(11) (2008) 1055-1068.

2. D. Panagiotou and G. Mentzas, Leveraging software reuse with knowledge management
in software development, Int. J. Softw. Eng. Knowl. Eng. 21(5) (2011) 693-723.

November 8, 2016

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

ZndReading
3:53:42pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 25

J. J. Sung, Representation-oriented software development: A cognitive approach to
software engineering, in Proc. 17th Annual Psychology of Programming Interest Group
Workshop (PPIG’05), 2005, pp. 173-187.

D. Noble, Knowledge foundations of effective collaboration, in Proc. of 9th Int. Command
and Control Research and Technology Symp., 2004.

P. Helo, Managing agility and productivity in the electronics industry, Ind. Manag. Data
Syst. 104(7) (2004) 567-577.

R. G. Cooper, S. J. Edgett and E. J. Kleinschmidt, Benchmarking best NPD practices-III,
Res. Technol. Manage. 47(6) (2004) 43-55.

A. Gupta, K. S. Pawara and P. Smart, New product development in the pharmaceutical
and telecommunication industries: A comparative study, Int. J. Prod. Econ. 106(1)
(2007) 41-60.

S. Buckingham Shum, Negotiating the construction of organizational memories, J. Univ.
Comput. Sci. 3(8) (1998) 899-928.

H. Zhuge, Workflow- and agent-based cognitive flow management for distributed team
cooperation, Inf. Manage. 40 (2003) 419-429.

M. Wang and H. Wang, From process logic to business logic: A cognitive approach to
business process management, Inf. Manage. 43(2) (2006) 179-193.

J. G. Walls, G. R. Widmeyer and O. A. El Sawy, Building an information system design
theory for vigilant EIS, Inf. Syst. Res. 3(1) (1992) 36-59.

J. G. Walls, G. R. Widmeyer and O. A. El Sawy, Assessing information system design
theory in perspective: How useful was our 1992 initial rendition? J. Inf. Technol. Theory
Appl. (JITTA) 6(2) (2004) 43-58.

J. Hyysalo, J. Lehto, S. Aaramaa and M. Kelanti, Supporting cognitive work in software
development workflows, in Proc. of Profes 2013, 14th Int. Conf. Product-Focused Soft-
ware Process Improvement, 2013, pp. 20-34.

J. Birkinshaw, G. Hamel and M. J. Mol, Management innovation, Acad. Manage. Rev.
33(4) (2008) 825-845.

W. Tsai, Social structure of “coopetition” within a multiunit organization: Coordination,
competition, and intraorganizational knowledge sharing, Organ. Sci. 13(2) (2002)
179-190.

A. C. Inkpen, Creating knowledge through collaboration, Calif. Manage. Rev. 39(1)
(1996) 123-140.

M. L. Markus, A. Majchrzak and L. Gasser, A design theory for systems that support
emergent knowledge processes, MIS Q. 26(3) (2002) 179-212.

D. Draheim, V. Geist and C. Natschlaeger, Integrated framework for seamless modeling of
business and technical aspects in process-oriented enterprise applications, Int. J. Softw.
Eng. Knowl. Eng. 22(5) (2012) 645-674.

H. van Leijen and W. R. J. Baets, A cognitive framework for reengineering knowledge-
intensive processes, in 36th Annual Hawaii Int. Conf. System Sciences, 2003, pp. 97-106.
J. J. G. van Merriénboer, Training Complex Cognitive Skills (Educational Technology
Publications, Englewood Cliffs, NJ, 1997).

K. Nakakoji, Y. Ye and Y. Yamamoto, Supporting expertise communication in developer-
centered collaborative software development environments, in Collaborative Software
Engineering (Springer, Berlin Heidelberg, 2010), pp. 219-236.

M. Klein and C. Dellarocas, A knowledge-based approach to handling exceptions in
workflow systems, Comput. Support. Coop. Work 9 (2000) 399-412.

N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O’Brien and M. E. Wiegand,
Agent-based business process management, Int. J. Coop. Inf. Syst. 5(2-3) (1996)
105-130.

November 8, 2016

26

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

ZndReading
3:53:43pm WSPC/117-1JSEKE 1750006

J. Hyysalo, M. Oivo € P. Kuvaja

W. M. P. van der Aalst and T. Basten, Inheritance of workflows: An approach to tackling
problems related to change, Theor. Comput. Sci. 270(1-2) (2002) 125-203.

M. Minor, R. Bergmann, S. Gorg and K. Walter, Reasoning on business processes to
support change reuse, in Proc. of the 13th Conf. Commerce and Enterprise Computing,
IEEE, 2011, pp. 18-25.

G. M. Kasper, A theory of decision support system design for user calibration, Inf. Syst.
Res. 7(2) (1996) 215-232.

M. Siponen, R. Baskerville and J. Heikka, A design theory for secure information systems
design methods, J. Assoc. Inf. Syst. 7(1) (2006) 725-770.

O. Hanseth and K. Lyytinen, Design theory for dynamic complexity in information
infrastructures: The case of building Internet, J. Inf. Technol. 25(1) (2010) 1-19.

E. W. Stein and V. Zwass, Actualizing organizational memory with information systems,
Inf. Syst. Res. 6(2) (1995) 85-117.

S. Gregor and D. Jones, The anatomy of a design theory, J. Assoc. Inf. Syst. 8(5) (2007)
312-335.

R. Baskerville and J. Pries-Heje, Explanatory design theory, Bus. Inf. Syst. Eng. 2(5)
(2010) 271-282.

O. Hanseth and K. Lyytinen, Theorizing about the design of information infrastructures:
Design kernel theories and principles, Sprouts: Working Papers on Information Systems
4(12) (2004) 4-12.

J. G. Walls, G. R. Widermeyer and O. A. El Sawy, Assessing information system design
theory in perspective: How useful was our 1992 initial rendition? J. Inf. Technol. Theory
Appl. 6(2) (2004) 43-58.

R. Baskerville and A. T. Wood-Harper, A critical perspective on action research as a
method for information systems research, J. Inf. Technol. 11(3) (1996) 235-246.

G. Susman and R. Evered, An assessment of the scientific merits of action research, Adm.
Sci. Q. 23(4) (1978) 582-603.

J. Hollan, E. Hutchins and D. Kirsch, Distributed cognition: Toward a new foundation for
human-computer interaction research, ACM Trans. Comput.-Human Interact. 7(2)
(2000) 174-196.

O. Perrin and C. Godart, A model to support collaborative work in virtual enterprises,
Data Knowl. Eng. 50(1) (2004) 63—86.

J. D. Herbsleb and D. Moitra, Global software development, IEEE Softw. 18(2) (2001)
16-20.

R. L. DaftR. H. Lengel, Organizational information requirements, media richness, and
structural design, Manage. Sci. 32(5) (1986) 554-571.

A. R. Dennis and J. S. Valacich, Rethinking media richness: Towards a theory of media
synchronicity, in Proc. of the 32nd Annual Hawaii Int. Conf. System Sciences, IEEE
1999, pp. 1-10.

J. Short, E. Williams and B. Christie, Communication modes and task performance,
Readings in Groupware and Computer Supported Cooperative Work (Morgan-Kaufmann
Publishers, 1976), pp. 169-176.

M. Jiménez, M. Piattini and A. Vizcaino, Challenges and improvements in distributed
software development: A systematic review, Adv. Softw. Eng. 2009(3) (2009) 1-14.

J. A. Espinosa, S. A. Slaughter, R. E. Kraut and J. D. Herbsleb, Team knowledge and
coordination in geographically distributed software development, J. Manage. Inf. Syst.
24(1) (2007) 135-169.

I. Omoronyia, J. Ferguson, M. Roper and M. Wood, A review of awareness in distributed
collaborative software engineering, Softw.-Pract. Ezp. 40(12) (2010) 1107-1133.

November 8, 2016

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

ZndReading
3:53:43pm WSPC/117-1JSEKE 1750006

A Design Theory for Cognitive Workflow Systems 27

A. Sarma, A survey of collaborative tools in software development, UCI ISR Technical
Report, UCI-ISR-05-3 (Institute for Software Research, 2005), https://isr.uci.edu/tech_
reports/UCI-ISR-05-3.pdf.

P. Dourish and V. Bellotti, Awareness and coordination in shared workspaces, in Proc.
ACM Conf. Computer Supported Cooperative Work, 1992, pp. 107-114.

T. Robertson, Cooperative work and lived cognition: A taxonomy of embodied interac-
tion, in Fifth European Conf. Computer-Supported Cooperative Work (ECSCW '97),
1997, pp. 205-220.

M. Beaudouin-Lafon and A. Karsenty, Transparency and awareness in a real-time
groupware system, in Proc. ACM Symp. on User Interface Software and Technology,
(ACM 05), 1992, pp. 171-181.

C. Gutwin, S. Greenberg and M. Roseman, Workspace awareness in real-time distributed
groupware: Framework, widgets, and evaluation, in Proc. Int. Conf. on Human—Com-
puter Interaction: People and Computers, 1996, pp. 281-298.

A. Jalote-Parmar, P. Badke-Schaub, W. Ali and E. Samset, Cognitive processes as in-
tegrative component for developing expert decision-making systems: A workflow centered
framework, J. Biomed. Inform. 43(1) (2010) 60-74.

G. A. Hazelrigg, A framework for decision-based engineering design, J. Mech. Des. 120(4)
(1998) 653—658.

R. G. Cooper, Stage-gate systems: A new tool for managing new products, Bus. Horiz.
33(3) (1990) 44-54.

S. Gregor, The nature of theory in information systems, MIS Q. 30(3) (2006) 611-642.
M. Adams, A. ter Hofstede, D. Edmond and W. van der Aalst, Worklets: A service-
oriented implementation of dynamic flexibility in workflows, in Proc. CoopIS’06, 2006,
pp. 291-308.

	A Design Theory for Cognitive Workflow Systems
	1. Introduction
	2. Theoretical Background
	2.1. Cognitive work support in workflows
	2.2. Design theory approach

	3. Industrial Case and Development of a Design Theory for CWS
	3.1. Research process
	3.2. Toward design principles for CWS

	4. Evaluation and Specifying Learning
	5. Discussion and Conclusions
	5.1. Implications and future research areas
	5.2. Conclusions

	Acknowledgments
	References

