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Abstract: The aim of this paper is to highlight a recently proposed method for the

treatment of classical radiative effects, in particular radiation reaction, via effective field

theory methods. We emphasize important features of the method, and in particular the

doubling of fields. We apply the method to two simple systems: a mass–rope system

and an electromagnetic charge–field system. For the mass–rope system in 1+1 dimensions

we derive a double-field effective action for the mass which describes a damped harmonic

oscillator. For the EM charge–field system, i.e. the system of an accelerating electric charge

in 3+1 d, we show a reduction to a 1+1 d radial system of an electric dipole source coupled

to an electric dipole field (analogous to the mass coupled to the rope). For this system we

derive a double-field effective action, and reproduce in an analogous way the leading part

of the Abraham–Lorentz–Dirac force.
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1 Introduction

An action formulation for radiation reaction (RR) was presented in [1]. While [1] focused

on the post-Newtonian approximation to the two body problem in Einstein’s gravity, it

stressed the method’s generality, and presented detailed calculations also for radiation

reaction of scalar and electromagnetic (EM) fields. Following demand, this paper highlights

the method by focusing on the well-known electromagnetic Abraham–Lorentz–Dirac (ALD)

force [2–7].

The method offers certain advantages over the more standard approach. First, the ac-

tion formulation allows the application of efficient tools including the elimination of fields

through Feynman diagrams, and allows ready formulation and systematic computation of

analogous quantities in non-linear theories such as gravity. Secondly, a single effective ac-

tion would be seen to encode several ALD-like forces and its form would stress a connection

between the source and target not seen in the usual force expression.

We start in this section by surveying the background and reviewing the general method

and its key ingredients before proceeding to concrete demonstrations in the following sec-

tions. In section 2 the method is illustrated in a simple set-up – a mass attached to

an infinite rope. Section 3 describes the application of the method to the leading non-

relativistic ALD force (also known as the Abraham-Lorentz force), i.e. the force acting

on an accelerating electric charge due to its own EM field. The derivation has a strong

analogy with the mass–rope system, especially after a reduction to a radial system through

the use of spherical waves; many technicalities of the reduction are deferred to Appendix

A, and may be skipped in a first reading.

Background. Feynman diagrams and effective field theories were first introduced in the

context of quantum field theories, but they turn out to be applicable already in the context

of classical (non-quantum) field theories. One such theory is the Effective Field Theory

(EFT) approach to general relativity (GR) introduced in [8], see also contributions in

[9, 10].
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Similarly, the development of an action method for dissipative systems was first devel-

oped in the early 60’s in the context of quantum field theory, and is known as the Closed

Time Path formalism [11]. The essential idea is to formally introduce a doubling of the

fields which can account for dissipation. Here too relevant non-quantum problems exist,

such as radiation reaction, and hence it was natural to seek a theory for the non-quantum

limit. This was discussed in the context of the EFT approach to GR in [12] and was pro-

moted to general classical non-conservative systems in [13]. We also recommend comparing

the mass–rope system presented here with the case of coupling a mass to infinitely many

oscillators, presented in [13], and with the action formulations of a damped harmonic os-

cillator in [14]. Essential elements of the theory were reformulated in [1]. This formulation

was extended from 4d to general dimensions in [15].

Brief review of method

Here we present the tools generally, before demonstrating their use in the following sections.

Field doubling. The theory in [1] was formulated for classical (non-quantum) field

theories with dissipative effects, such as radiation reaction. The source for the departure

from the standard theory was identified to be a non-symmetric (or directed) propagator,

such as the retarded propagator. For such theories the fields are doubled together with the

sources, so that the propagator always connects a field and its double and thereby assigns

a direction to it. Here the term field should be understood to refer also to dynamical

variables in mechanics (viewed as a field theory in 0+1 d).

A generic theory may be described by a field φ = φ(x) together with its source ρ = ρ(x)

and the equation of motion for φ, 0 = EOMφ(x), where the subscript notation readily

generalizes to a multi-field set-up. The double field action is given by [1]

Ŝ
[
φ, φ̂; ρ, ρ̂

]
:=

∫
ddx

[
EOMφ(x) φ̂(x) +

∫
ddy

δEOMφ(y)

δρ(x)
ρ̂(x)φ(y)

]
, (1.1)

where φ̂ is a doubled auxiliary field, ρ̂ is the corresponding source, and ddx ≡ dd−1x dt is a

space-time volume element. The action is best described in terms of functional variations,

but in our examples it will amount to simple concrete expressions shown in the following

sections. The expression is constructed such that δŜ/δφ̂ = EOMφ, namely that the equa-

tion of motion with respect to φ̂ reproduces the original EOMφ. The first part introduces

terms of the form φ(x) φ̂(x), ρ(x) φ̂(x), while the second part introduces terms of the form

ρ̂(x)φ(x).

This formulation is applicable to arbitrary equations of motion, not necessarily associ-

ated with an action. When they can be derived from an action S = S[φ, ρ], such as in the

case of radiation reaction, namely if EOMφ = δS
δφ for some S, the double field action is

Ŝ
[
φ, φ̂; ρ, ρ̂

]
:=

∫
ddx

[
δS[φ, ρ]

δφ(x)
φ̂(x) +

δS[φ, ρ]

δρ(x)
ρ̂(x)

]
. (1.2)

Here φ̂, ρ̂ can be assigned the following meaning: φ̂ is the linearized field perturbation,

sourced by reverse (advanced) propagation from a generic source ρ̂. They correspond to
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the Keldysh basis of the Closed Time Path formulation and Ŝ is a linearization of the CTP

action with respect to φ̂. We remark that this procedure determines the action explicitly,

and in fact gives a recipe for the function K mentioned in [13]. It also generalizes the

specific field doubling method (using complex conjugation) of [14].

Zone separation. The EFT approach is characterized by a hierarchy of scales leading

to multiple zones (and a matched asymptotic expansion). In particular when the velocities

of the sources are small with respect to the velocity of outgoing waves, such as in the

Post-Newtonian approximation to GR, one defines a system zone and a radiation zone.

Elimination. Given Ŝ, one may proceed to eliminate fields through Feynman dia-

grams. Radiation sources Q[x] are defined diagrammatically by

−Q[x] := (1.3)

where the double heavy line denotes the whole system zone. Their definition involves the

elimination of the system zone field and matching, see [1] eq. (2.49), but this shall mostly

not be required in the present paper. The doubled radiation sources are given by

Q̂[x, x̂] =

∫
dt
δQ[x]

δxi(t)
x̂i(t) . (1.4)

which is the linearized perturbation of the source and as such does not require the compu-

tation of new diagrams beyond (1.3). Here too this general formula will be seen to reduce

to simple expressions in the examples.

Next the radiation reaction effective action ŜRR may be computed through elimination

of the radiation zone, see [1] eq. (2.53). This action describes the effects of dissipation and

radiation reaction.

Gauge invariant spherical waves in the radiation zone. When the spatial

dimension D > 1 (as in the ALD problem) each zone respects an enhanced symmetry and

corresponding field variables and gauge should be chosen:

• In the system zone time-independence (stationarity) is an approximate symmetry, due

to the slow velocity assumption, and hence non-Relativistic fields (and a compatible

gauge) should be used [10].

• In the radiation zone the system appears point-like and hence it was recognized in

[1] that this zone is spherically symmetric and accordingly gauge invariant spherical

waves (see [16]) should be chosen as the field variables.

Matching within action. Subsection 2.3 of [1] demonstrated how the matching

equations which are a well-known, yet sometime sticky element of the effective field theory

approach, can be promoted to the level of the action. This is achieved by introducing an

action coupling between the two zones, whereby the matching equations become ordinary

equations of motion with respect to novel field variables. These are termed two-way mul-

tipoles, and reside in the overlap region. This is an important ingredient of our method,

but is not used directly in this paper.
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Figure 1. The mass–rope system.

2 Mass–rope system

As a first example we consider a system shown in fig. 1 composed of a rope stretched along

the x axis with linear mass density λ and tension T (hence the velocity of waves along it

is c :=
√
T/λ). Its displacement along the y axis is given by φ(x). The rope is attached

at x = 0 to a point mass m which is free to move along the y axis and is connected to the

origin through a spring with spring constant k. We assume there are no incoming waves

from infinity. Our goal is to find an effective action describing the evolution of the point

mass in time without direct reference to the field – that is, after the field’s elimination. The

eliminated field carries waves, and therefore energy, away from the mass; we show directly

how this elimination gives a generalized (non-conservative) effective action describing the

dynamics of the mass, which is that of a damped harmonic oscillator.

The action describing the system (mass+rope) is given by

S =
1

2

∫
dt
[
mẏ2 − ky2

]
+
T

2

∫
dtdx (∂φ)2 −

∫
dtQ [φ(0)− y] , (2.1)

where (∂φ)2 = 1
c2
φ̇2− (∂xφ)2 and ẏ := ∂ty. The action is composed of the mass’s action, a

dynamical rope term, and a coupling term. This coupling enforces the boundary condition

y ≡ φ(x = 0) at the level of the action and introduces the Lagrange multiplier Q(t), where

the choice of notation will be explained later.

We wish to obtain a long-distance effective action for the rope, and for that purpose

we analyze the equations of motion. Varying the action with respect to φ and Q we find

�φ = −Q
T
δ(x) , (2.2)

y = φ(0) , (2.3)

where � := 1
c2
∂2
t − ∂2

x. Analysis of (2.2) near x = 0 gives [∂xφ] = Q/T where [∂xφ] :=

(∂xφ)|0+ − (∂xφ)|0− denotes the jump at the origin. On the other hand the equations of

motion and the outgoing wave condition imply

φ(x, t) =

{
y(t− x/c) x > 0

y(t+ x/c) x < 0
(2.4)
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and hence [∂xφ] = −2ẏ/c. Altogether we obtain

Q

T
= [∂xφ] = −2

c
ẏ . (2.5)

At this point we can substitute (2.5) in the eq. of motion for y and obtain a damped

harmonic oscillator. Yet, here we wish to demonstrate how such a dissipative system may

be described by a (double field) action. For that purpose we proceed and find that the

following action implies the same equations of motion1 including (2.5)

S =
1

2

∫
dt
[
mẏ2 − ky2

]
+
T

2

∫
dtdx (∂φ)2 + 2Z

∫
dt ẏ φ(0) , (2.6)

where Z :=
√
Tλ is the rope’s impedance. We interpret S as a long-distance effective action

for φ (as it incorporates the solution (2.4) including the asymptotic boundary conditions).

Comparing (2.6) with a standard origin source term Sint = −
∫
φ(0, t)Q(t)dt justifies the

notation Q. In fact, Q is the force exerted on the mass by the rope.

We double the field φ as well as its source y in (2.6) as described in (1.2) and find the

double field action

Ŝ = T

∫
dt dx ∂φ ∂φ̂+ 2Z

∫
dt
[
ẏ φ̂(0) + ˙̂y φ(0)

]
, (2.7)

Transforming to frequency domain with the convention φ(t) =
∫
dω
2π φ(ω) e−iωt, complex

conjugate fields appear such as φ∗(ω) and we obtain the Feynman rules. The directed

propagator from φ̂∗ to φ is

L x

x′

= Gω(x′, x) = −c e
iω
c
|x−x′|

i ω Z
, (2.8)

and the sources for the fields φ̂∗, φ are (compare (1.3),(1.4))

−Qω ≡ = −iω Z yω , − Q̂∗ω ≡ = iω Z ŷ∗ω . (2.9)

Similar Feynman rules hold for φ∗, φ̂.

Now that we have the Feynman rules we can proceed to compute the outgoing radiation

and the radiation reaction effective action. Radiation away from the source, for x > 0, is

given by

φω(x) =

x

= c yω e
iωx/c , (2.10)

1 In fact there is a slight difference: the effective action (2.6) implies φ̇(0) = ẏ which is not exactly the

same as (2.3).
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which in the time domain becomes

φ(t, x) =

∫
dω

2π
yω e

−iω(t−x
c

) = y(t− x

c
) , (2.11)

reproducing (2.4).

The radiation reaction effective action is found by eliminating the field φ

ŜRR = + c.c. =

∫
dω

2π
Q̂∗ω Gω(0, 0)Qω + c.c. =

=

∫
dω

2π
iω Z ŷ∗ω yω + c.c. = −2Z

∫
ŷ ẏ dt . (2.12)

Thus the full generalized effective action for the mass becomes

Ŝtot = ŷ
δ

δy

{
1

2

∫
dt
[
mẏ2 − ky2

]}
− 2Z

∫
ŷ∂ty dt (2.13)

and by taking the Euler–Lagrange equation with respect to ŷ we obtain

mÿ = −ky − 2Zẏ , (2.14)

which is the equation of a damped harmonic oscillator, as expected.

We remark that the 1 + 1 mass–rope system can be regarded as a specific case of a

scalar point charge coupled to a scalar field in d = D + 1 dimensions, and thus falls under

the general considerations of [15], for d = 2. Excluding relativistic, retardation and higher-

multipole effects (irrelevant in our 1 spatial dimension), we recover the form given there

for the radiation-reaction force (eq. 2.50), with Gq2 = Z, and a factor of 2 because the

rope has two sides.

3 Electromagnetic charge–field system

The physical problem of the self-force (radiation-reaction force) on an accelerating electric

charge has been treated for over 100 years [2–7] in different methods. We wish to show

how in its simplest form and to leading order, the Abraham–Lorentz force can be easily

found in essentially the same method as in the mass–rope system. We start likewise with

the standard Maxwell electromagnetic action2

Sfull =− 1

16π

∫
d4xFµνF

µν −
∫
d4xAµJ

µ, (3.1)

where the field of the rope φ has been replaced by the EM field Aµ (with Fµν =∂νAµ−∂µAν)3

and the mass on a spring is replaced by a point-charge q with trajectory xp(t) and current

density Jµ = q
dxµp
dτ δ(x− xp).

2 We use Gaussian units, the speed of light c = 1, and the metric signature is (+,−,−,−).
3 As usual Fµν encodes the electric and magnetic fields through Ei = F0i, Bi = − 1

2
εijkFjk.

– 6 –



As a 3+1 d problem, this appears more complicated than the mass-rope system. How-

ever, in the radiation zone the system appears point-like and the problem becomes spher-

ically symmetric. As dissipation and reaction are related to the waves propagating to

spatial infinity, we can reduce the problem using the spherical symmetry to an effective

1+1 dimensional (r, t) system, which can be treated analogously to the mass–rope system.

Physically, the reduction amounts to working with spherical wave variables which are de-

scribed in appendix A. For the purpose of the leading non-relativistic ALD force it suffices

to consider the electric dipole (` = 1) sector. We denote the corresponding field variable

by A = A(r, t) and the source by ρ = ρ(r, t), both defined in Appendix A. In this sector

the action, reduced to 1+1 dimensions, is given by (A.13). In the time domain it becomes

S =

∫
dt

∫
dr

[
− r

4

12
A·�A−A·ρ

]
, (3.2)

where now � := ∂2
t − ∂2

r − 4
r∂r. This field content is very similar to that of the rope: the

coordinate r replaces x, the field A(r) replaces the field φ(x). As in (2.1) the action has

both a kinetic field term and a source-coupling term, though their form here differs. The

double-field action is found using (1.2) as in the mass–rope system, and is given by

Ŝ =

∫
dt

∫
dr

[
−r

4

6
Â·�A−

(
Â·ρ + A·ρ̂

)]
. (3.3)

The method thus proceeds similarly to find the Feynman propagator for the field and

the expressions for the source vertices - non-hatted and hatted. To obtain the propagator

for A we transform to the ω frequency domain and consider the homogenous part of the

field equation (A.11), which in dimensionless variables x := ωr, becomes

[∂2
x +

4

x
∂x + 1] b̃3/2 = 0. (3.4)

Its solutions are the origin-normalized Bessel functions

b̃3/2 := Γ(
5

2
) 23/2 B3/2α(x)

x3/2
, (3.5)

where B ≡ {J, Y,H±} includes the Bessel functions J, Y and the Hankel functions, H± =

J ± i Y . The origin-normalized Bessel j̃3/2 = 1 + O
(
x2
)

is smooth at the origin and

h̃+
3/2 = − 3

x2 e
i x
(
1 +O

(
1
x

))
is an outgoing wave. More details on these Bessel functions

are given in Appendix B.

Thus the propagator for spherical waves is

L r

r′

= G(r′, r) = −2iω3

3
j̃3/2(ωr1) h̃+

3/2(ωr2) ; (3.6)

r1 := min{r′, r}, r2 := max{r′, r}.
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In this sector, the source in the radiation zone is nothing but the electric dipole Q ≡ D.

Its form is identified through matching (1.3) the full theory with the radiation zone

Afull(r)=

∫
dr′ρ(r′)

(−2iω3

3
j̃3/2(ωr′)h̃+

3/2(ωr)

)
= Q

−2iω3

3
h̃+

3/2(ωr)=Arad(r) . (3.7)

Using (1.3,1.4,3.4, A.3, A.12) and integration by parts, we read from (3.7) the electric

dipole source vertex Q at leading non-relativistic order

= Q=

∫
dr′j̃3/2(ωr′)ρ(r′)=−qω

2

∫
d3x′j̃3/2(ωr′)n′

[
r′2δ(x′ − xp)

]′
= qxp + · · · ≡ D

= Q̂ =
δQ

δxi
x̂i = qx̂p + · · · ≡ D̂ (3.8)

We remark that this is merely the static electric dipole moment D of the source, where the

ellipsis denote relativistic corrections.

With the Feynman rules at hand we can proceed to determine the outgoing radia-

tion and the radiation reaction effective action. Radiation away from the source is given

diagrammatically by (compare 2.10)

A(r) =

r

= −QG(0, r) = −2i ωQ eiω r

r2
, (3.9)

where we have used (3.6,3.8,B.4). In the time domain, we find

A(x, t) =
2

r
∂tQ(t− r) . (3.10)

The EM radiation reaction effective action is

ŜEM = + c.c. =
1

2

∫
dω

2π
Q̂∗G(0, 0) Q + c.c.

=
2

3

∫
dt Q̂ · ∂3

t Q (3.11)

where the propagator was evaluated at r = r′ = 0, as in (2.12), and we regulated h̃+(0)→
j̃(0) = 1. In the process of computing ŜEM the fields were eliminated and only the particle’s

dipole remains. Note that the third time derivative originates from the ω3 term in (3.6),

which in turn originates from the behavior of the Bessel function near its origin.

For a single charge we substitute (3.8) in (3.11) to obtain

ŜEM =
2

3
q2

∫
dt x̂ · ∂3

t x . (3.12)
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This can now be used to find the radiation-reaction (self) force, similarly to (2.13,2.14),

through the Euler-Lagrange equation with respect to x̂

FRR =
2

3
q2...

x . (3.13)

This of course matches the Abraham–Lorentz result [2–4], and is the leading order term in

the fully relativistic result of Dirac [5] (given in similar form in [1], eq. (3.67)).

In addition our approach offers some benefits. Rewriting (3.11) with the notation

D ≡ Q we have

ŜEM =
2

3

∫
dt D̂ · ∂3

t D (3.14)

This expression applies not only to single charge, but also to a system of charges if only

we set

D [xa] :=
∑
a

qa xa (3.15)

where the sum is over all the particles in the system. To get the radiation reaction force

on any specific charge in the system we need only vary the single object Ŝ

F iRR,a =
δŜ

δxia
(3.16)

Moreover, the form (3.14) and the Feynman diagram (3.11) reveal that the dipole

appears in the self-force twice: once in an obvious way as D, the source of the radiation

and reaction fields, and a second, less obvious, time as D̂ which is the “target” coupling

through which the reaction field acts back on the charges. In this sense the source and the

target are seen to be connected.

Going beyond the non-relativistic limit, an expression for all the relativistic corrections

was given in eq. (3.65) of [1]. When expanded, the first relativistic correction includes the

electric quadrupole term, the magnetic dipole term, and relativistic corrections to the

electric dipole. These were shown to confirm the expansion of Dirac’s formula to next-to-

leading order (eq. (3.68) there).

Conclusions

Inspired by the (quantum) Closed Time Path formalism, we have shown how dissipative

systems can be treated with an action principle in classical contexts. The explicit algorithm

to find the generalized action incorporates field doubling, zone separation and spherical

waves. They were demonstrated by deriving the generalized (dissipative) action for a

classical oscillator attached to a rope (2.12) and for the Abraham–Lorentz–Dirac EM self-

force (3.12). While these two problems may seem remote from each other, and involve

different dimensionality, fields, and sources, the treatment of their radiation follows a very

similar path.
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A Gauge-invariant spherical waves for electromagnetism

In this appendix we provide details on spherical electromagnetic waves and the definition

of A,ρ which are used in the main text and represent the field and source, respectively, of

the electric dipole sector. While it is rather technical in nature, its main purpose is simple:

reducing the 3+1 d EM action (3.1) - the action of a 4-vector field in 4d - to the action

of a single field in 1+1 d, in complete analogy with the mass–rope system. The single

field will be labeled A(r, t), and it will be coupled to the source ρ(r, t). The reduction

is performed by first singling out the radial coordinate r from the spherical coordinates

and then using the tool of gauge invariant spherical fields, mentioned in Sec. 1. The

technicalities themselves are best returned to after a full reading.

To utilize spherical symmetry, we define the basis of symmetric trace free (STF) mul-

tipoles XL` = x<k1xk1 · · ·xk`> =
(
xk1xk1 · · ·xk`

)STF 4, which satisfy

∆Ωx
L = −`(`+ 1)

r2
xL ,

∫
xL`x

L′
`′ dΩ =

4πr2`

(2`+ 1)!!
δ``′ δ

L′
`′

L`
. (A.1)

By also Fourier-transforming over time, we express the fields and sources as

At/r =

∫
dω

2π

∑
L

ALωt/r xLe
−iωt , AΩ =

∫
dω

2π

∑
L

(
ALωS ∂Ω xL +ALωV xLΩ

)
e−iωt ,

J t/r =

∫
dω

2π

∑
L

J
t/r
Lω x

Le−iωt , JΩ =

∫
dω

2π

∑
L

(
JSLω ∂

ΩxL + JVLω x
Ω
L

)
e−iωt , (A.2)

where the four general functions comprising the field Aµ(t,x) have been replaced by

AtLω(r), ArLω(r), ASLω(r), AVLω(r), which are each 1-dimensional. The leading order expres-

sion in v/c � 1 (3.13), i.e. the Abraham–Lorentz force, requires only the dipole (` = 1)

electric components of the field and source5, i.e. only the 1-dimensional vector fields6

At(r),Ar(r),AS(r) and source vectors Jt(r),Jr(r),JS(r), where

Jt(r) =
3!!

4πr2

∫
ρω(x) x dΩ =

3

4πr2

∫∫
dt eiωtρ(x, t) x dΩ ,

Jr(r) =
3

4πr2

∫ (
~Jw(~r) · r̂

)
x dΩ =

3

4πr2

∫∫
dt eiωt

(
~J(~r, t) · r̂

)
x dΩ , (A.3)

4 For completeness we mention that there are also divergence-less vector multipoles xLΩ = (~r × ~∇xL)Ω,

but they do not contribute at leading order at v/c ; see [1].
5 Higher multipole orders (of both the scalar (electric) and vector (magnetic) fields) correspond to

relativistic corrections of higher order in v/c, and must be included to reproduce the full ALD force [1].
6 We henceforth drop the index ω, it will be implied. Note A−ω=A∗ω,J−ω=J∗ω since Aµ, J

µ are real.
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and JS(r) is replaced using the equation of current conservation

0 = DµJ
µ = iωJt + (∂r +

3

r
)Jr − 2JS . (A.4)

Substituting (A.2) into Maxwell’s action (3.1) and using (A.1) we obtain (at leading order)

S =
1

6

∫
dω

2π

∫
dr r4

{∣∣∣∣iωAr −
1

r
(rAt)

′
∣∣∣∣2 +

2

r2
|iωAS −At|2

− 2

r2

∣∣∣∣1r (AS)′ −Ar

∣∣∣∣2−4π
[
Ar ·Jr∗ + At ·Jt∗ + 2AS ·JS∗ + c.c.

]}
, (A.5)

where ′ := d
dr . We notice that Ar is an auxiliary field, which means its derivative A′r does

not appear in (A.5). Hence, its EOM is algebraic and is readily solved,

Ar = − 1

ω2 − 2
r2

[
iω

r
(rAt)′ +

2

r3
(rAS)′ − 4πJr

]
. (A.6)

Substituting this algebraic solution for the field back into the action and using (A.4) for the

sources, we see that the 1-dimensional action depends in fact on a single gauge invariant

1-dimensional field Ã with a single source ρ̃:

S =
1

6

∫
dω

2π

∫
dr r4

[
1

1− Λ

∣∣∣∣1r (rÃ)′
∣∣∣∣2 +

cs
r2

∣∣∣Ã∣∣∣2 + 4π(Ã·ρ̃∗ + c.c.)

]
, (A.7)

where

Ã := At − iωAS , ρ̃ := −Jt +
i

ωr3

(
r3 Λ

Λ− 1
Jr
)′

, (A.8)

and Λ := ω2r2

2 . For the single charge q with trajectory xp(t), the second summand on the

right hand side of ρ̃ (A.8) is sub-leading
(
∼ (ωr)2

)
and can be dropped, leaving

ρ̃ = −Jt = − 3q

4πr2

∫
dΩ x δ(x− xp) . (A.9)

In order to bring the action (A.7) closer to canonical form we will define a new field A,

which is essentially the momentum conjugate to (rÃ), via the transformation(
r2A

3

)
:=

∂L

∂(rÃ∗)′
=

r2(rÃ)′

3(1− Λ)
;

(
r2A

3

)′
:=

∂L

∂(Ã∗)
=

2

3
(rÃ) +

4πr3ρ̃

3
, (A.10)

and by differentiating once more w.r.t r and combining these two equations, we find

0 =
r4

6

(
ω2 + ∂2

r +
4

r
∂r

)
A− ρ , (A.11)

where

ρ =
2πr2(r3ρ̃)′

3
= −qr

2

∫
dΩ x

[
r2δ(x− xp)

]′
, (A.12)

as the new field’s equation and source term.
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Altogether in this sector the 1-dimensional action is given by

S =

∫
dω

2π

∫
dr

[
r4

6
A∗ ·
(
ω2 + ∂2

r +
4

r
∂r

)
A− (A∗ ·ρ + A·ρ∗)

]
. (A.13)

This 1+1 d action is (to leading order) the EM analog of the mass–rope action, and serves

as the starting point for field doubling and solution ((3.2) and on).

B Bessel functions

Equation (3.4) is a special case of[
∂2
x +

2α+ 1

x
∂x + 1

]
b̃α(x) = 0 , (B.1)

for order α = 3/2. As described in [15] (see eq. B.6), it matches the case of dipole (` = 1)

waves in d = 4 spacetime, as α = `+ d−3
2 . The solutions are given by the origin-normalized

Bessel functions

b̃α := Γ(α+ 1) 2α
Bα(x)

xα
, (B.2)

where B ≡ {J, Y,H±} includes Bessel’s functions of the first and second kind J, Y and

Hankel’s functions, H± = J ± i Y . With this definition, j̃α behaves smoothly in the

vicinity of the origin x = 0,

j̃α(x) =
∞∑
p=0

(−)p (2α)!!

(2p)!!(2p+ 2α)!!
x2p = 1 +O

(
x2
)
, (B.3)

and the Hankel functions’ asymptotic form for x→∞ is given by

h̃±α (x) ∼ (∓i)α+1/2 2α+1/2Γ(α+ 1)√
π

e±ix

xα+1/2
. (B.4)

For further details see Appendix A.2 of [1] or Appendix B.2 of [15]. Note the conventions

for the subscripts of j̃ are slightly different; we adopt those of [15].
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