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Abstract

In this paper another class of Dark Matter candidate particles: the pseu-
doscalar and scalar light bosonic candidates, is discussed. Particular care is
devoted to the study of the processes for their detection (which only involves
electrons and photons/X-rays) in a suitable underground experimental set-up.
For this purpose the needed calculations are developed and various related as-
pects and phenomenologies are discussed. In particular, it is shown that – in
addition to the WIMP cases already discussed elsewhere – there is also possi-
bility for a bosonic candidate to account for the 6.3 σ C.L. model independent
evidence for the presence of a particle DM component in the galactic halo ob-
served by DAMA/NaI. Allowed regions in these scenarios are presented also
paying particular care on the cosmological interest of the bosonic candidate.

Keywords: Dark Matter; axion-like particles; light bosons; underground Physics
PACS numbers: 95.35.+d, 14.80.Mz, 29.40.Mc

1 Introduction

In order to investigate in a model independent way the presence of a DM particle
component in the galactic halo we have exploited the effect of the Earth revolution
around the Sun on the DM particles interactions on suitable underground detectors.
In fact, as a consequence of its annual revolution, the Earth should be crossed by a
larger flux of DM particles in June (when its rotational velocity is summed to the one
of the solar system with respect to the Galaxy) and by a smaller one in December
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(when the two velocities are subtracted). This offers an efficient model independent
signature, able to test a large interval of cross sections and of halo densities; it is
named annual modulation signature and was originally suggested in the middle of
’80 by [1]. The annual modulation signature is very distinctive since a DM particle
induced seasonal effect must simultaneously satisfy all the following requirements: the
rate must contain a component modulated according to a cosine function (1) with one
year period (2) and a phase that peaks roughly around ≃ 2nd June (3); this modulation
must only be found in a well-defined low energy range, where DM particles induced
events can be present (4); it must apply to those events in which just one detector
of many actually ”fires”, since the dark matter particle multi-scattering probability
is negligible (5); the modulation amplitude in the region of maximal sensitivity must
be <∼7% for usually adopted halo distributions (6), but it can be larger in case of
some possible scenarios such as e.g. those in refs. [2, 3, 4]. Only systematic effects
able to fulfil these 6 requirements and to account for the whole observed modulation
amplitude could mimic this signature; thus, no other effect investigated so far in the
field of rare processes offers a so stringent and unambiguous signature.

The DAMA/NaI set-up has exploited such a DM annual modulation signature
over seven annual cycles [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. It has achieved a 6.3 σ
C.L. model independent evidence for the presence of a DM particle component in the
galactic halo. Some of the many possible corollary quests for the candidate particle
have been carried out mainly focusing so far the class of DM candidate particles
named WIMPs [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In literature several candidates for
WIMPs have been considered – all foreseen in theories beyond the Standard Model
of particle Physics – such as the neutralino in the supersymmetric theories [16, 17,
18], a subdominant sneutrino (the spin-0 supersymmetric partner of the neutrino),
a subdominant neutrino of the fourth family (see the analysis including the results
of the indirect search in ref. [19]), a dominant sneutrino in supersymmetric models
with violation of lepton number, where two mass states and a small energy splitting is
present, as reported in ref. [2], the particles from multi-dimensional Kaluza-Klein-like
theories, etc. In addition, other possibilities still exist with a phenomenology similar
as for the WIMP cases: the mirror Dark Matter particles [20], the self-interacting dark
matter particles [21], etc. Moreover, in principle even whatever particle with suitable
characteristics, not yet foreseen by theories, can be a good candidate as DM in the
galactic halo.

In the present paper the class of light bosonic candidates – either with the pseu-
doscalar or with the scalar coupling – will be investigated in some of the possible
scenarios. Moreover, also here we will not yet consider either the case of halos with
caustics or with streams contributions [4, 3], which can have significant impact for
all the DM candidate particles; we plan to exploit these scenarios in near future by
further devoted analyses.

It is worth to note that the direct detection process for light bosonic DM candidates
is based on the total conversion in NaI(Tl) crystal of the mass of the absorbed bosonic
particle into electromagnetic radiation. Thus, in these processes the target nuclei recoil
is negligible and is not involved in the detection process; therefore, signals from these
light bosonic DM candidates are lost in experiments based on rejection procedures of
the electromagnetic contribution to the counting rate.

2



2 The light bosons candidates and their main inter-

actions with ordinary matter

Let us firstly remind the Peccei-Quinn (PQ) axion; it is a pseudoscalar particle hypoth-
esized in order to solve the strong CP problem. Several models exist which describe the
coupling of such a particle to ordinary matter; the most popular ones are the DFSZ,
where the particle is directly coupled with electron [22], and the KSVZ, where such a
coupling is not present at tree-level [23]. However, many models exist for axion-like
particles, that is particles having similar phenomenology with ordinary matter as the
axion, but which allow values for the coupling constants and for the mass significantly
different from those foreseen in the DFSZ and KSVZ models. For example, we mention
the axion itself in the Kaluza-Klein theories [24], where it would have similar couplings
as in the DFSZ and KSVZ models, but much higher mass states or the ”exotic” ax-
ion models proposed by [25]. Other candidates are pseudo-Nambu-Goldstone bosons
related to spontaneous global symmetry breaking different from the U(1)PQ hypoth-
esized by Peccei-Quinn, such as the pseudoscalar familon in the case of the family
symmetry or the Majoron for the lepton number symmetry [26, 27].

The previous cases mainly refer to light bosonic candidates with pseudoscalar cou-
pling; obviously, cases with scalar coupling can be considered as well, such as e.g. the
scalar familon [28] and the sgoldstino [29].

Moreover, it is also interesting to remark that some indirect astrophysical obser-
vations: i) the Solar corona problem; ii) the X-rays flux detected by ROSAT in the
direction of the dark side of the Moon; iii) the X-rays background radiation in the
2-8 keV region measured by CHANDRA (XRB); iv) the excess of X-rays from clus-
ters of galaxies; have recently been analysed in a model of axion-like particles with
mass in the keV range and coupling to photons gaγγ of the order of 10−13GeV −1 [30],
that is requiring a model with expectations for the coupling constants and masses well
different with the respect to those expected in the DFSZ and KSVZ models.

It has also been argued that the existence of axion-like particles may account for
the high energy cosmic rays [31]. Also in this case the bosonic candidate particle can
have masses of few keV and gaγγ of the order of 10−15 GeV−1, that is still couplings
well different than those expected by the DFSZ and KSVZ models.

Finally, a keV Majoron has been suggested as DM particle [32] and a ∼ keV DM
pseudoscalar candidate has also been taken into account in ref. [25, 33].

In this paper, we consider a light bosonic candidate, either with pseudoscalar or
with scalar couplings, of ∼ keV mass as DM component in the galactic halo2. Several
mechanisms can be advocated for the production of these particles in the early Universe
(see e.g. ref. [32, 25, 33]); in particular, it has been demonstrated that these particles
can be of cosmological interest, providing many configurations with Ω ∼ 0.3. Moreover,
such a DM keV candidate can also be able to explain the galactic scale in the structure
formation problem [32].

The diagrams of Fig. 1 show the main processes involved in the detection of a DM
light bosonic particle (here generically named a) both in the pseudoscalar and in the

2In fact, considering the phenomenology of this candidate (see later), a keV-scale bosonic candidate
naturally arises as an additional solution to the observed model-independent DAMA/NaI annual
modulation signal.
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scalar interaction types.

Figure 1: Possible diagrams for the direct detection processes of a light boson particle.
On the left: “Compton - like” effect; on the center: “Axioelectric” or photoelectric-like
effect; on the right: Primakoff effect. See text.

As first, let us recall that in the case of interest here the DM light bosonic candidates
are non-relativistic since they should be trapped in the galactic halo3.

On the left of Fig. 1 the “Compton - like” effect is shown; in fact, considering that
the light boson particle couples to charged fermions of the ordinary matter (either
electrons or u and d quarks), it is absorbed as in the ordinary Compton effect and it
is emitted a photon, whose energy is ≃ ma if – as in the case of interest here – ma is
much lower that the charged fermions masses.

In the center of Fig. 1 the “axioelectric effect” or photoelectric-like effect is shown;
there the a particle – in the hypothesis of a non-zero coupling to electrons – is absorbed
by a bound electron of the atom exciting or ionizing it. Thus, the sum of the kinetic
energy of the photoelectron and of the energy produced by X-rays and Auger electrons
in the re-arrangement of the atomic shell is ≃ ma; this is the detected quantity. This
effect is phenomenological similar to the ordinary photoelectric effect.

On the right of Fig. 1 the Primakoff effect is shown; in this case a is coupled
with two photons through a charged fermions loop (leptons or quarks). One of the
two photons is virtual and is related to the electric field of the atoms in the NaI(Tl)
crystal, the other photon has energy ≃ ma and can be detected.

For the sake of completeness, we note that the elastic scatterings of these light
bosonic particles on atoms, nuclei and electrons are not considered here since their
effect is negligible in underground direct detection experiments.

In all the processes described above the total (including the secondary processes:
X-rays and Auger electrons) energy release, Erel, in the detector (providing that its
detection efficiency is ≃ 1 for low-energy electrons and low-energy photons) matches
the total energy of the a particle, Ea ≃ ma since the a velocity is of the order of 10−3c.

3Moreover, in case these particles are relics from the early Universe, they should have been cooled
down by the cosmological redshift; thus, they can be non-relativistic now, similarly as the case of
massive neutrinos. Other scenarios for their production and for their non-relativistic properties can be
in principle considered as well. On the other hand, in order to induce the observed annual modulation
signal, they cannot obviously be relativistic (see also later).
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Therefore, the differential cross section can generally be written as:

dσtot
dErel

= σtot(v)δ(Erel − Ea) ≃ σtot(v)δ(Erel −ma) (1)

where σtot generally depends on the DM particle velocity in the laboratory frame,
|~v| = v.

Taking into account the energy resolution of the detectors, ∆, the total differential
counting rate per unit target as function of the detected energy, Eee, is:

dRtot

dEee
=
∫

dErel
e
−

(Eee−Erel)
2

2∆2√
2π∆

∫

d3v dφ(~v)
d3v

dσtot

dErel
= Rtot × 1√

2π∆
e−

(Eee−ma)2

2∆2 (2)

where Rtot is the area of the gaussian peak centered at the a particle mass.
The incoming flux of a particles is given by dφ(~v) = ρav

ma
f(~v + ~v⊕)d3v, with ρa =

ξ · ρhalo local density (in GeV · cm−3) of the a particles in the galactic halo (ρhalo is
the local halo density and ξ ≤ 1 is the a particle fraction amount of the local density).
In the following for simplicity we will assume ξ = 1, since the scaling of the presented
results can be derived straightforward for the other cases. Moreover, f(~v + ~v⊕) is
the DM particle velocity distribution, which also depends on the Earth velocity in the
galactic frame, ~v⊕, and, thus, on the time along the year. Therefore, the total counting
rate per unit target is:

Rtot =

∫

d3v
ρav

ma
f(~v + ~v⊕)σtot(v) (3)

and, generally, it can depend on the time along the year. As an example, we cite here
a case, that we will see again in the following: let us assume that σtot(v) ∝ v; thus:

Rtot ∝
∫

d3v v2f(~v + ~v⊕) = 〈v2〉 (4)

Defining the velocity of a particle in the galactic frame as ~vg = ~v + ~v⊕, we obtain for
non rotating halo: 〈v2〉 = 〈v2g〉+v2⊕. Since the Earth velocity in the galactic frame, ~v⊕,
is given by the sum of the Sun velocity, ~v⊙, and of the Earth’s orbital time-dependent
velocity around the Sun, ~vSE(t), we obtain neglecting the v2SE term:

〈v2〉 ≃ 〈v2g〉+ v2⊙ + 2~v⊙ · ~vSE(t) ≃ 〈v2g〉+ v2⊙ + v⊙vSEcos(ω(t− t0)) (5)

In the last equation we have considered the angle of ∼ 60o of the terrestrial orbit
with the respect to the galactic plane, ω = 2π/T with T = 1 year and the phase t0
corresponding to ≃ 2nd June (when the Earth’s speed in the galactic frame is at the
maximum). The Sun velocity can be written as |~v⊙| ≃ v0 + 12 km/s, where v0 is the
local velocity, whose value is in the range 170-270 km/s [8, 34]; the Earth’s orbital
velocity is vSE ≃ 30 km/s. Moreover, 〈v2g〉 depends on the halo model and on the v0
value (just for reference, in the particular unphysical case of isothermal halo model:
〈v2g〉 = 3

2v
2
0). Finally, in this illustrative case Rtot = S0 + Sm · cos(ω(t− t0)), giving a

time dependent contribution with amplitude depending on the adopted halo model.
In the following, the contributions of each process and of each coupling to the

σtot(v) will be shown, as well as the contributions to Rtot through the eq. (3). Note
that in all the following formulae we assume h̄ = c = 1. For clariteness, hereafter
the DM bosonic candidate particle will be named either a if it has a pseudoscalar
interaction or h if it has a scalar one.
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3 The pseudoscalar case

In Fig. 2 the diagrams, which describe the interactions of the pseudoscalar a particle
with the fermions f (in general leptons and quarks) and the ”anomalous” coupling to
two photons, are shown.

Figure 2: Coupling of the pseudoscalar a particle to the fermions f (a case) and to the
photons through the loop of charged fermions (b case).

The effective Lagrangian of interaction of the pseudoscalar a particle is:

Lint = i gaf̄fa f̄γ5f +
gaγγ
4

a Fµν F̃
µν (6)

where the second term describes the effective coupling to the photons through a charged
fermion loop. As a consequence the pseudoscalar a particle can decay into fermions
and photons. The decay in couples f̄f could obviously be possible if a would have a
mass larger than two times the fermion mass, mf .

In order to be of cosmological interest as DM candidates in the Universe the lifetime
(τa) of a should roughly be of the order or larger than the age of the Universe4, although
this condition might be released in case other exotic scenarios would be considered.
Its lifetime can be derived considering just the second term of eq. (6) under the
assumptions that ma < 2me ≃ 1 MeV and that the possible decay into massive
neutrinos (whose coupling constants gaν̄ν can be expected to be very low) would be
neglible with the respect to the two-photon decay contribution:

τa =
64π

g2aγγm
3
a

(7)

The effective coupling constant to photons gaγγ can be calculated by taking into
account the charged fermions loop with Qf charge. For a pseudoscalar particle having
ma << mf one gets [35]:

gaγγ =
∑

f

gaf̄fQ
2
fα

πmf

[

1 +
m2

a

12m2
f

+O

(

m4
a

m4
f

)]

(8)

4The depletion of these particles over the course of the history of the Universe is largely dominated
by the decay processes. Therefore, the effect of depletion through conversion processes on ordinary
matter are consequently not addressed here.
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3.1 Direct detection of the pseudoscalar particle

3.1.1 The Compton-like effect

Let us take into account the diagram of Fig. 1, where a pseudoscalar particle having
a momentum ~k = ma~v is absorbed by a charged free and point-like fermion and a
photon is emitted. In this case, in the non-relativistic limit, one gets (see Appendix):

σC−l,f ≃
αQ2

fg
2
af̄f

m2
a

2m4
f |~v|

(9)

considering that the fermion recoil is negligible.
Since the pseudoscalar interaction gives a spin-dependent contribution (see Ap-

pendix), the coherent conversion on closed (spinless) shells vanishes. Hence, the
counting rate RC−l expected in a detector, made of various species of target fermions
(electrons and nuclei in NaI(Tl)) identified with the f index, is:

RC−l = NT

∑

f

ρaαQ
2
fg

2
af̄f

ma

2m4
f

Ff (q) (10)

where NT is the number of target atoms (either Na or I atoms in NaI(Tl) detectors)
and the sum runs over all the electrons and over the nuclei (if they have unpaired
nucleon, as it is the case for 23Na and 127I nuclei). Ff is the incoherent scattering
function [36] of the transferred momentum, q ≃ ma.

As far as regards electrons, the incoherent scattering function takes into account
their binding in the atoms. In particular, a good approximation for non relativistic a

particle is to consider that Ff (ma) = 1 when the electron recoil energy (≃ m2
a

2(me+ma)
) is

larger then the binding energy of the bound electron, zero elsewhere. For this purpose,
we report in Tab. 1 the binding energies for the electrons in Na and I atoms.

For the case of nuclei, eq.(10) still holds when using for Qf the effective charges of
the nuclei, Zeff , (which take into account the screening of the electrons) and for the
coupling constants the following scaling law (valid for nuclei with unpaired proton, as
Na and I are):

gaĀA

mA
∼ gap̄p

mp
≃ 1

3

(

4
gaūu
m∗

u

− gad̄d
m∗

d

)

(11)

where m∗
u and m∗

d are the constituent up and down quark masses. This scaling law has
been determined with a similar procedure than those used for the evaluation of nucleon
magnetic moments in NRQM [38]. The incoherent scattering function for the nuclei
can be considered as one for the energy of interest. As it can be seen, the contribution
of the nuclei to the total cross section can be generally neglected because of the larger
mass of the nuclei with the respect to the electron mass.

Finally, it is worth to note that, due to the dependence of σC−l,f on the inverse
of the a velocity, in this particular case RC−l does not depend on the time along the
year (Sm = 0). Therefore, this process only contributes to the constant part, S0, of
the signal.
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Table 1: Binding energies of elettrons in 23Na and 127I [37]

Shell ENa (eV) EI (eV)
1s 1070.8 33169
2s 63.5 5188

2p1/2 30.4 4852
2p3/2 30.5 4557
3s few eV 1072

3p1/2 - 931
3p3/2 - 875
3d3/2 - 630.8
3d5/2 - 619.3
4s - 186

4p1/2 - 123
4p3/2 - 123
4d3/2 - 50.6
4d5/2 - 48.9
5s - few eV
5p - few eV

3.1.2 The axioelectric effect

The process similar to the usual photoelectric effect has been investigated. Hence,
it has been calculated (see Appendix) the differential cross section for the process of

absorption of the pseudoscalar a particle (having a momentum ~k) by an atomic electron
(described by the wave function ψnlm) which is extracted (with final momentum ~p)
from the atomic shell with quantum numbers nlm:

dσA−e,nlm

dΩ
≃ g2aēe

π|~k|
2me

|~p|
(2π)3

∣

∣

∣

∣

∫

e−i(~p−~k)~xψnlmd
3x

∣

∣

∣

∣

2

(12)

Therefore, since in this case ~q = ~p − ~k ≃ ~p, we expect σA−e,nlm ∝ v and a non-
zero modulation term appears, as described before. To evaluate the ψnlm Fourier
transform integral, we have approximated the wave functions to the hydrogenic case:
∫

e−i~q·~xψnlmd
3x = (2π)3/2Fnl(q) · Ylm(Ω), where Ylm are the spherical harmonics.

Defining Q = |~q|
Zq0

with q0 = 1/a0 and a0 Bohr radius, one gets [39]:

Fnl(q) =
[

2(n−l−1)!
π(n+l)!

]1/2

n222l+2l! nlQl

(n2Q2+1)l+2C
l+1
n−l−1

(

n2Q2−1
n2Q2+1

)

(Zq0)
−3/2 (13)

where Cα
j (x), the Gegenbauer polynomials, are defined by the serie:

(1 − 2xs+ s2)−α =
∑

j

Cα
j (x)s

j (14)
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Then, one obtains:

Cα
0 (x) = 1 (15)

Cα
1 (x) = 2αx (16)

Cα
2 (x) = 2α(α+ 1)x2 − α (17)

Cα
3 (x) =

4

3
α(α+ 1)(α+ 2)x3 − 2α(α+ 1)x (18)

Cα
4 (x) =

2

3
α(α+ 1)(α+ 2)(α+ 3)x4 − 2α(α+ 1)(α+ 2)x2 +

1

2
α(α+ 1) (19)

From these relations it is possible to obtain all the Fnl for the Iodine and Sodium
atoms.

Let us now consider the counting rate RA−e expected in a detector made by various
kinds of target atoms – as it is the case of NaI(Tl) – identified by the b index:

RA−e = NT
ρaπg

2
aēe

2me
〈v2〉

∑

b=Na,I

∑

nl

NnlF
2
nl(q) p Θ(ma − Enl) (20)

with q ≃ p ≃
√

2me(ma − Enl). There the second sum is running over nl levels – each
of them with Nnl electrons – allowed by the Heaviside step function Θ(ma−Enl). The
binding energy Enl of Na or I atoms have already been reported in Tab. 1.

3.1.3 The Primakoff effect

As regards the Primakoff effect (see Appendix):

dσPrim

dΩ
≃
g2aγγ
16π2

sin2(θ)m3
a |~k|

∣

∣

∣

∣

∫

d3xΦ(~x)ei~q·~x
∣

∣

∣

∣

2

(21)

where θ is the scattering angle between a and γ, ~k is the a momentum and Φ is the
electric potential of the target nuclei.

Since, the NaI crystal is a ionic crystal, the electric potential generated by each
ion is well approximated by two components, a Yukawa one shielded by the bound
electrons and a Coulomb one at long range, respectively:

Φb(~x) =
(Zb ± 1)e

4πx
e
− x

rb ∓ e

4πx
(22)

where the upper(lower) sign is for b = I(b = Na) and rb is the screening radius of the
atom. The Fourier transform of the electric potential is:

Fb(q) =
(Zb ± 1)e

q2 + 1
r2
b

∓ e

q2
(23)

Hence, the counting rate RPrim can be expressed as:

RPrim =
NTρam

3
ag

2
aγγ

6π

∑

b=Na,I

|Fb(q)|2 〈v2〉 (24)

with q ≃ ma.
Therefore, also in this case, as for the axioelectric one, a non-zero modulation term

is present.
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3.1.4 Conclusions

In conclusion, all the kinds of interaction discussed above for the pseudoscalar candi-
date contribute to the costant part of the signal, while the Compton-like interaction
does not contribute to the modulation part of the signal. Moreover, as it can be
easily demonstrated, for the pseudoscalar case the axioelectric contribution to the to-
tal expected counting rate is largely dominant with the respect to the Primakoff and
Compton-like on nuclei contributions at least in all the “natural” cases, where gaēe/me

is not lower than a factor ∼ 10−3 the coupling constant to mass ratios of the other
charged fermions; in addition, it still remains at least one order of magnitude larger
than the one due to the Compton-like effect on electrons, for a particle mass below ≃
6 keV.

3.2 The data analysis and results for the DM pseudoscalar can-

didate

A complete data analysis of the 107731 kg · day exposure from DAMA/NaI in this
framework would offer an allowed multi-dimensional volume in the space defined by
ma and by all the gaf̄f coupling constants to charged fermions. Since a graphic rep-
resentation would be practically impossible, we will present some particular slices of
such an allowed volume.

In the following calculations, we have considered some of the possible uncertainties
in the parameters needed for the counting rate evaluations. In particular, the screen-
ing radia of Sodium and Iodine atoms have been taken in the range: 1

rNa
= (2.0± 0.5)

keV and 1
rI

= (5.0 ± 0.5) keV, respectively. Moreover several halo models have been
considered [14, 15] either spherically symmetric matter density with isotropic velocity
dispersion or spherically symmetric matter density with non-isotropic velocity disper-
sion or axisymmetric models or triaxial models. The parameters of each halo model
have been chosen taking into account the available observational data; in particular
the local velocity has been varied within its allowed range: v0 = (220 ± 50) km s−1

(90% C.L.) and local density ρhalo has been varied within the range evaluated as in ref.
[13] taking into account the following physical constraints: i) the amount of flatness of
the rotational curve of our Galaxy, considering conservatively 0.8 · v0 <∼ v100rot <∼ 1.2 · v0,
where v100rot is the value of rotational curve at distance of 100 kpc from the galactic
center; ii) the maximal non dark halo components in the Galaxy, considering con-
servatively 1 · 1010M⊙ <∼ Mvis <∼ 6 · 1010M⊙ [40, 41]. Although a large number of
self-consistent galactic halo models, in which the variation of the velocity distribution
function is originated from the change of the halo density profile or of the potential,
have been considered, still many other possibilities exist. The parameter 〈v2g〉 has been
evaluated for each considered halo model and for the given local velocity value.

The results presented in the following by using the DAMA/NaI annual modulation
data over the seven annual cycles are calculated by taking into account the time and
energy behaviours of the single-hit experimental data through the standard maximum
likelihood method5.

5Shortly, the likelihood function is: L = Πijke
−µijk

µ
Nijk

ijk

Nijk !
, where Nijk is the number of events

10



In particular, the likelihood function requires the agreement: i) of the expecta-
tions for the modulation part of the signal with the measured modulated behaviour
for each detector and for each energy bin; ii) of the expectations for the unmodulated
component of the signal with the respect to the measured differential energy distri-
bution. In the following for simplicity, the results of these corollary quests for the
pseudoscalar candidate particles are presented in terms of allowed regions obtained as
superposition of the configurations corresponding to likelihood function values distant
more than 3σ from the null hypothesis (absence of modulation) in each of the several
(but still a limited number) of frameworks. Obviously, these results are not exhaus-
tive of the many scenarios (still possible at present level of knowledge) for these and
for other classes of candidates, such as the WIMPs we already deeply investigated
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

First of all, as already mentioned, the axioelectric contribution is dominant with
the respect to the Compton-like and Primakoff effects in all the “natural” cases; thus,
the results can be presented in terms of only two variables gaēe and ma. The allowed
region in the plane defined by these two variables has been calculated considering the
DAMA/NaI results on the model independent annual modulation signature and has
been reported in Fig. 3. It is worth to note that, for the reasons reported above, this
allowed region is almost independent on the adopted gaūu and gad̄d coupling constants.
The allowed region reported in Fig. 3 can only marginally be affected by the results

Figure 3: Pseudoscalar case: region in the plane gaēe vsma allowed by the DAMA/NaI
annual modulation data in the considered model framework. See text.

collected in the i-th time interval, by the j-th detector and in the k-th energy bin. Nijk follows a
Poissonian distribution with expectation value µijk = [bjk +S0,k+Sm,k · cosω(ti− t0)]Mj∆ti∆Eǫjk.
The unmodulated and modulated parts of the signal, S0,k and Sm,kcosω(ti − t0), respectively, are
functions of the coupling constants and of the light boson mass; bjk is the background contribution;
∆ti is the detector running time during the i-th time interval; ǫjk is the overall efficiency and Mj is
the detector mass.
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already presented at low energy by low-background ionization detectors; in fact, due
to their energy resolution and to their quoted counting rate at low energy, their results
do not rule out a particles with ma <∼ 3 keV and, for ma >∼ 3 keV, a particles with

gaēe <∼ 2× 10−10.

Some strongly model dependent astrophysical limits on the gaēe can be found in
literature (see e.g. [42]) by studying the globular cluster stars; however, these con-
straints only apply to particles with masses much below few keV, which is the typical
core temperature of the stars.

Figure 4: DAMA/NaI allowed region at 3σ C.L. in the plane gaγγ vs ma for a light
pseudoscalar candidate (crossed hatched region). All the configurations in this region
can be allowed depending on the values of all the gaf̄f . Examples of two of the many
possible models: i) upper black region: coupling only to electrons; ii) lower black region:
coupling (proportional to the ma) through the (weak) isospin to quarks and leptons.
For details see text. The indicative region of the Kaluza-Klein (K.K.) pseudoscalar
axion credited in ref. [30] from the analysis of indirect observations and the region of
the DFSZ and KSVZ models (P.Q. axion) are shown as well. The solid line corresponds
to a particle with lifetime equal to the age of the Universe; at least all the gaγγ ’s below
this line are of cosmological interest. See text. Thus, a pseudoscalar DM candidate
could also account for the DAMA/NaI model independent result as well as the WIMP
solutions already discussed elsewhere.

Let us now investigate the cosmological interest of the allowed a particle, actually
the case of an a lifetime of order or larger than the age of the Universe. As reported
in eq. (7), this lifetime is directly connected to the gaγγ value. Hence, we show – for
a general case – in Fig. 4 the DAMA/NaI region allowed in the ”usual” plane gaγγ vs

12



ma (crossed hatched region). The upper bound on gaγγ is given when the Primakoff
effect is largely dominant (that is, if gaēe = gaūu = gad̄d = 0 and only contributions
from other charged fermions are present). All the other values of gaγγ below this
upper bound are allowed depending on the values of all the gaf̄f . Just for example,
two particular (of the many possible) sets of gaf̄f are reported in Fig. 4 as upper black
region and lower black region, respectively: the case of the coupling only to electrons
(gaγγ ≃ gaēeα

πme
) and the case of gaūu and gad̄d according to the scenario of ref. [26] for

the Majoron. This last model assumes that gaf̄f ∝ mf :
gaēe

me
= gad̄d

md
= − gaūu

mu
; same

relations also hold for the other families. Replacing these assumptions in the eq. (8),
we have at the first order:

gaγγ ∼
[

gaēe
me

+
gad̄d
3md

+
4gaūu
3mu

]

∼
[

1 +
1

3
− 4

3

]

∼ 0 (25)

while at the second order:

gaγγ ∼ gaēeα

12πme

m2
a

m2
e

≃ 1.4 10−6 GeV −1 · gaēe ·
( ma

1 keV

)2

. (26)

Fig. 4 also shows the result of Kaluza-Klein axions credited in ref. [30] from
analysis of indirect observations; it is well embedded in the DAMA/NaI allowed region.
Moreover, when considering the existing uncertainties (qualitatively reported in figure
as shaded area), the result of ref. [30] can also be in agreement with the DAMA/NaI
region allowed for the scenario of ref. [26] depicted in the lower black region. Moreover,
the DAMA/NaI allowed region is also comparable with the predictions of ref. [31] of
axion-like particles as UHECR.

The solid line in Fig. 4 corresponds to a particle with lifetime equal to the age
of the Universe; therefore, at least all the configurations with gaγγ below this line
are of cosmological interest. Moreover, in principle, it might be possible that the
configurations above this line would also become of interest in case of some exotic
mechanism of the a particle production.

Thus, a pseudoscalar DM candidate could also account for the DAMA/NaI model
independent result as well as the WIMP solution for several (but still few with the
respect to the possibilities) corollary model dependent quests for the candidate particle
already discussed elsewhere [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

4 Scalar case

The effective Lagrangian of interaction of the scalar particle (we remind that here and
hereafter the scalar particle is named h) is given by the sum of the Yukawa couplings
to the fermions and the effective coupling to photons through a charged fermion loop:

Lint = ghf̄fh f̄f +
ghγγ
4

h FµνF
µν (27)

The corresponding diagrams are similar to those reported in Fig. 2, just replacing
a with h. Also in this case the scalar h particle can decay into photons with lifetime
τh = 64π

g2
hγγ

m3
h

; as regards the decay into pair of fermions similar considerations of sec.

3 still hold.
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The effective coupling constant to two photons ghγγ is for mh << mf [35]:

ghγγ =
∑

f

ghf̄fQ
2
fα

π mf

[

−2

3
− 7

180

m2
h

m2
f

+O

(

m4
h

m4
f

)]

(28)

4.1 Direct detection of the scalar particle

4.1.1 The Compton-like effect

The differential cross section of the Compton-like effect (see also Fig.1) for h particle
impinging on point-like free fermion is given by the sum of two contributions (see the
Appendix):

dσC−l,f

dΩ
≃
αQ2

fg
2
hf̄f

m2
h

8π m4
f |~v|

[

1 + 2
m2

f

m2
h

|~v|2sin2(θ)

]

(29)

The first term is similar than that obtained for the pseudoscalar interaction and, since
it is proportional to the inverse of h velocity, it does not contribute to the modulation
amplitude of the signal; the second term is instead proportional to h velocity and it
does contribute to the modulation part of the signal.

The expected counting rate, RC−l, in a detector can be written as the sum of
RC−l,elect and RC−l,nucl given by the conversion on the atomic electrons and by the
conversion on the nuclei, respectively.

For the conversion on electrons:

RC−l,e = NT

∑

A=Na,I

ρaαZ
2
Ag

2
hēemh

2m4
e

[

1 +
4

3

m2
e

m2
h

〈v2〉
]

F 2
A,el(q) (30)

For the nucleus:

RC−l,nucl = NT

∑

A=Na,I

ρaαZ
2
A,effg

2
hĀA

mh

2m4
A

[

1 +
4

3

m2
A

m2
h

〈v2〉
]

F 2
A,Nucl(q) (31)

The scaling law for the ghĀA has been evaluated considering the coherent contri-
bution of all the quarks: ghĀA = A

[

(ghūu + 2ghd̄d) +
Z
A(ghūu − ghd̄d)

]

. Since the ratio
Z/A is quite similar for the nuclei (0.48 and 0.42 for the 23Na and for the 127I, re-
spectively), we can write without losing generality ghĀA = AghN̄N , where ghN̄N is the
effective coupling constant to a single nucleon. The effective charge of nuclei, ZA,eff ,
takes into account the screening of the inner electrons; a reasonable approximation for
mh ∼ keV is ZNa,eff = 9 and ZI,eff = 35 (see Tab. 1). The form factors for the
nuclei can be considered as one since the nuclei are practically point-like for the energy
of interest.

Finally, the Compton-like effect provides in the present case a counting rate varying
along the year.
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4.1.2 The photoelectric-like effect

The cross section of the photoelectric-like effect of a scalar h particle can be evaluated
as reported in the Appendix and is:

σp−e,nl = g2hēe
2πme

|~k|
|~p|F 2

nl(q) (32)

The counting rate Rp−e can be calculated straighforward as done in sec. 3.1.2 for the
pseudoscalar case.

Rp−e = NT
ρa2πg

2
hēeme

m2
h

∑

b=Na,I

∑

nl

NnlF
2
nl(q) p Θ(mh − Enl) (33)

It is worth to note that the photoelectric-like effect for the scalar case gives contribution
only to S0 part of the signal and does not provide any significant time dependent
contribution.

4.1.3 The Primakoff effect

The cross section and the expected counting rate for the Primakoff effect are equal
than those reported for the pseudoscalar case, with the obvious substitution of the
coupling constant (see Appendix). As in that case, a non-zero modulation term is
expected.

4.1.4 Conclusions

In conclusion, all the kinds of interactions discussed above for the scalar candidate
contribute to the costant part of the signal, while the photoelectric-like interaction does
not contribute to the modulation part of the signal. However, the photoelectric-like
interaction gives a dominant contribution with the respect to the Compton-like process
on the electrons and to the other effects. Therefore, the coupling to the electrons does
not produce any significant time variation of the signal. Thus, in the following we will
investigate the case of a scalar h particle coupled only to the hadronic matter; in this
case, non-zero modulation term of the signal is expected by the contributions of the
Compton-like effect on nuclei and of the Primakoff effect.

4.2 The data analysis and results for the DM scalar candidate

Processes involving DM scalar candidate coupled to electrons do not contribute to the
annual modulation of the signal. Moreover, the upper limit on ghēe, which can be eas-
ily derived from the energy distribution measured by DAMA/NaI (given elsewhere),
ranges from ≃ 3 × 10−16 to ≃ 10−14 for mh between ≃ 0.5 and 10 keV. Thus, in the
following we investigate the case of a scalar h particle coupled only to the hadronic
matter (ghēe << ghūu, ghd̄d). This framework would offer an allowed multi-dimensional
volume in the space defined by mh and by all the ghf̄f coupling constants to quarks.
However, to account for cosmological interesting h particle lifetimes, only the con-
figurations with negligible Primakoff effect contribution can be investigated and only
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the diagrams at the tree level with quarks are considered. Therefore, in this case the
Compton-like effect on nuclei is the major contribution to the cross section. Hence,
according to the scenarios already described in sec. 3.2, we report in Fig. 5 the region
allowed by the DAMA/NaI data in the plane ghN̄N vs mh. This allowed region can
only marginally be affected by the results already presented at low energy by low-
background ionization detectors, which do not rule out h particles with mh <∼ 3 keV

and, for mh >∼ 3 keV, h particles with ghN̄N <∼ 8 × 10−7. Finally, the strongly model
dependent globular cluster constraints [43] only apply to particles with masses much
below few keV.

Figure 5: DAMA/NaI allowed region at 3σ C.L. in the plane ghN̄N vs mh for a scalar
light boson DM candidate coupled only to the hadronic matter in the given frameworks.
To account for cosmological interesting lifetimes, here only the configurations with
negligible Primakoff effect contribution have been selected. See text.

Obviously, the region in Fig. 5 does not allow a direct information about the effec-
tive coupling constant to photons, ghγγ , and, therefore, about h lifetime; however, the
large number of free coupling constants allows to expect the existence of a large num-
ber of h configurations of cosmological interest. For example, assuming as reasonable
hypothesis that all the ghq̄q’s would be of the same order of magnitude, τh would be
dominated by the quarks of the first family (see eq. (28)). In this particular case, we
can report in the ghūu vs ghd̄d plane the configurations of cosmological interest allowed
by the results of DAMA/NaI. Fig. 6 shows the shaded regions obtained by requiring
that the configurations: i) are allowed in the plane ghN̄N vs mh as reported in Fig.
5; ii) mh > 0.3 keV; iii) are of a cosmological interest (τh >∼ the age of the Universe).
The uncertainties on the first family quark masses have also been accounted for [43]:
mu ∼ 3.0± 1.5 MeV, md ∼ 6.5± 2.0 MeV.

It is worth to note that we have not included in the presented calculation a possible
contribution due to the scalar interaction of h particle to the gluons, which can natu-
rally explain the pure coupling to the nuclear matter. In principle, this contribution
might increase the configurations of cosmological interest and allowed by DAMA/NaI.

Finally, also a scalar DM candidate could account for the DAMA/NaI model in-
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Figure 6: DAMA/NaI allowed configurations of cosmological interest in the ghūu vs
ghd̄d plane obtained by requiring that they: i) are allowed in the plane ghN̄N vs mh

in Fig. 5; ii) mh > 0.3 keV; iii) τh >∼ the age of the Universe. The uncertainties
on the first family quark masses have also been accounted for: mu ∼ 3.0 ± 1.5 MeV,
md ∼ 6.5 ± 2.0 MeV. In the inset: a magnification of the regions around (0,0). See
text. Thus, also a scalar DM candidate could account for the DAMA/NaI model
independent result as the previous case of pseudoscalar DM candidate and the WIMP
solutions already discussed elsewhere.

dependent result as the previous case of pseudoscalar DM candidate and the WIMP
solutions already discussed elsewhere.

5 Conclusions

In this paper we have discussed in some details another class of DM candidate par-
ticles: the pseudoscalar and scalar light bosonic candidates; particular care has been
devoted to the study of the processes for their detection in a suitable underground ex-
perimental set-up. In future we also plan to explore additional scenarios which can –
in principle – exist such as a particle with mixed pseudoscalar and scalar interaction, a
triplet of (pseudo-)scalar particles (which can “naturally” allow a quasi-stable bosonic
candidate), particles with gluon coupling, spin 1/2 light dark matter candidates such
as those of ref. [49, 50], etc..

Moreover, it is worth to explore also the possibility that (electron coupled) pseu-
doscalar a particles produced by high energy sources in the galactic bulge would – by
interaction either with interstellar medium or with relic a particle – also contribute to
positron production and to the 511 keV annihilation γ rays from the bulge of Galaxy
observed in ref. [44]. Finally, just candidates produced in the early Universe and
decoupled from the primordial Universe have been considered here; other mechanisms
of light bosons production can in principle be considered, such as their production by
a heavier particles decays or “exotic” cosmological evolution of the Universe, etc..
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In conclusion this paper, far to be exhaustive on the topics (e.g. many other
scenarios can be considered for the galactic halo), has however shown that – in addition
to the WIMP cases already discussed by DAMA collaboration elsewhere ([14, 15]
and references therein) – there is also possibility for a bosonic candidate with axion-
like phenomenology and with mass <∼ 6-7 keV to account for the 6.3 σ C.L. model
independent evidence for the presence of a particle DM component in the galactic halo
observed by DAMA/NaI.

The new higher sensitive DAMA/LIBRA set-up now in operation deep under-
ground at the Gran Sasso National Laboratory of I.N.F.N. will allow to restrict the
possibility in the corollary quests for the DM candidate particle as soon as it will have
collected a well competing exposure with the respect to the previous DAMA/NaI.

6 Appendix

6.1 Compton-like cross section

6.1.1 Pseudoscalar case

Let us consider the diagram of Fig. 1 where a pseudoscalar a particle with quadrim-
pulse k is absorbed by a charged fermion of quadrimpulse p with the subsequent
emission of a photon with quadrimpulse k′. The outgoing fermion has quadrimpulse
p′. The matrix element for Compton-like conversion is given by the sum of the contri-
butions of this diagram and of the ”crossed” one. We get:

M = ieQfgaf̄f Ū(p′)

[

6ǫ 6p+ 6k +mf

(k + p)2 −m2
f

γ5 + γ5
6p− 6k′ +mf

(p− k′)2 −m2
f

6ǫ
]

U(p) (34)

Using the standard algebra of the γ matrices, the square of matrix element averaged
on the initial fermion polarizations and summed on the final electron polarizations can
be written as:

|M |2 =
−e2Q2

fg
2
af̄f

2 Tr
[

(6p′ +mf )
(

γ5 6 ǫ 6 k
m2

a+2p·k − γ56 ǫ 6 k′

2p·k′

)

(6p+mf )
(

6 k 6 ǫγ5

m2
a+2p·k − 6 k′6 ǫγ5

2p·k′

)]

(35)

After some algebric manipulations and summing on the outgoing photon polarizations,
we obtain:

|M |2 = e2Q2
fg

2
af̄f

[

2 A+B|~k|2sin2(θ)
]

(36)

where:

A =
2k′ · p

m2
a + 2p · k +

2 p · k +m2
a

2 p · k′ − 2 (37)

and

B = − 4

m2
a + 2p · k +

8(k · p)
(m2

a + 2p · k)2 (38)

The cross section is given by (see for example [45])

dσ =
|M |2

|v1 − v2|
1

2p0

1

2k0

d3k′

(2π)32 k′0

d3p′

(2π)32 p′0
(2π)4δ4(p′ + k′ − p− k) (39)
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Formf >> ma and considering that both the a particle and the fermion can be treated

in the non-relativistic limit (Eγ ≃ Ea ≃ ma), we obtain A→ m2
a

m2
f

and B|~k|2 → − |~k|2
m2

f

≃

−m2
a

m2
f

β2 (β ≃ 10−3 is the a particle velocity in the galactic halo). Therefore, the cross

section can be evaluated by considering that the A term is dominant in the squared
matrix element:

dσ

dΩ dEγ
=
αQ2

fg
2
af̄f

mfπ

m3
a

m3
f

1

8|~k|
δ(Eγ − Ea) (40)

and eq. (9) can be inferred.

6.1.2 Scalar case

The matrix element for Compton-like conversion for scalar case can be written, using
the same formulation as in the previous case, as:

M = eQfghf̄f Ū(p′)

[

6ǫ 6p+ 6k +mf

(k + p)2 −m2
f

+
6p− 6k′ +mf

(p− k′)2 −m2
f

6ǫ
]

U(p) (41)

and the square of matrix element averaged on the initial fermion polarizations and
summed on the final electron polarizations:

|M |2 =
e2Q2

fg
2
hf̄f

2 Tr
[

(6p′ +mf ) 6ǫ
(

6 k+2mf

m2
h
+2p·k − 6 k′

2p·k′

)

(6p+mf )
(

6 k+2mf

m2
h
+2p·k − 6 k′

2p·k′

)

6ǫ
]

(42)

After some algebric reductions and summing on the outgoing photon polarizations, we
obtain:

|M |2 = e2Q2
fg

2
hf̄f

[

2 A+ C|~k|2sin2(θ)
]

(43)

where: C = B+
16m2

f

(m2
h
+2p·k)2 . For mf >> ma and in the non-relativistic limit: C|~k|2 →

4|~k|2
m2

a
= 4β2. Hence, on the contrary of the pseudoscalar case, both the A and C

terms in the squared matrix element can contribute at different extent to the total
cross sections depending on the h particle mass and on the considered fermion, either
electrons or nucleons. Therefore, the non-relativistic cross section is:

dσ

dEγdΩ
=
αQ2

fg
2
hf̄f

8πβm2
f

[

m2
h

m2
f

+ 2β2sin2(θ)

]

δ(Eγ − Eh) (44)

from which eq. (29) can be derived.

6.2 Photoelectric-like cross section

6.2.1 Pseudoscalar case, axioelectric process

From the Lagrangian (6) it is possible to obtain in the non-relativistic limit the
Schroedinger-Pauli equation for the electron in presence of the a field and of the
electromagnetic field:

(i∂0 + eA0)ψ +

(

~∇+ ie ~A
)2

2me
ψ − e

2me
~σ · (~∇× ~A)ψ − gaēe

~σ · ~∇(a)

2me
ψ = 0 (45)
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It is evident, therefore, as in the non-relativistic limit, the a particle interaction to
fermions is spin-dependent.

The cross section of the process can be evaluated through the Fermi golden rule:

dσ =
Wif

Ji
= 2π

|Mif |2
Ji

ρf , (46)

when considering the perturbation term in the electron Hamiltonian (see for example

[46]), Va = gaēe
~σ·~∇(a)
2me

.
Considering the a field and the wavefunction of the escaping electron as plane

waves and the wavefunction of initial bounded electron in the nlm shell as ψnlm, the
transition matrix element can be written as:

|Mif | =
∣

∣

∣

∣

∣

∫

e−i~p·~x
√
V

gaēea0e
i~k·~x~σ · ~k

2me
ψnlmd

3x

∣

∣

∣

∣

∣

(47)

The incident flux is: Ji =
∣

∣

∣
−i(a∗~∇a− a~∇a∗)

∣

∣

∣
= 2a20k and the density of states for the

outgoing electron is:

ρf =
V p2dp

(2π)3
dΩδ(Ea − Enl − Ee) =

meV p dEe

(2π)3
dΩδ(Ea − Enl − Ee) (48)

where Enl is the binding energy of the atomic electron in the nl shell. Summing over
the final electron polarizations and averaging on the initial polarizations, we get:

dσ

dEedΩ
= g2aēe

k

4me

∣

∣

∣

∣

∫

e−i(~p−~k)~xψnlmd
3x

∣

∣

∣

∣

2
p

(2π)2
δ(Ea − Enl − Ee) (49)

From this formula, eq. (12) can be deduced straighforward.

6.2.2 Scalar case

The procedure to evaluate the cross section for the scalar photoelectric-like case is
similar to that applied before for the pseudoscalar case. Considering the Lagrangian
given in eq. (27), the last term of the Schroedinger-Pauli equation (45) has to be
replaced by the term ghēehψ = −Vhψ. Therefore, the cross section for the process in
the non relativistic limit can be written as:

dσ

dEedΩ
= g2hēe

me

k

∣

∣

∣

∣

∫

e−i(~p−~k)~xψnlmd
3x

∣

∣

∣

∣

2
p

(2π)2
δ(Eh − Enl − Ee) (50)

and the eq. (32) can be inferred.

6.3 Primakoff cross section

6.3.1 Pseudoscalar case

Let us now consider the case of the Primakoff conversion of the pseudoscalar a particle
of momentum ~k into a photon of momentum ~p in the static atomic field Fρσ(~x). The
S-matrix element is:

|Sfi|2 =

∣

∣

∣

∣

∫

d4x
2gaγγ
8

a εµνρσFµνFρσ(~x)

∣

∣

∣

∣

2

(51)
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where the factor 2 takes into account the two photon crossed diagrams. Let us now
consider the a field and the wavefunction of the outgoing photon as plane waves: a =

a0e
−ik·x andAµ = ǫµ

eip·x√
2 p V

. For the static electric field: εµνρσFρσ(~x) = 2εµν0iEi(~x) =

−2εµν0i∇iΦ(~x).
The cross section is given by (see for example [47]):

dσ = V
d3p

(2π)3
|Sfi|2
T Ji

(52)

As for the previous case, the incident flux is given by: Ji =
∣

∣

∣
−i(a∗~∇a− a~∇a∗)

∣

∣

∣
= 2a20k

and the time integral for a transition in the time T can be obtained following the
prescriptions given in ref. [47]. Summing on the possible polarization of the outgoing
photon, we obtain the differential cross section of the process:

dσ

dΩdEγ
=
g2aγγ
16π2

sin2(θ)E3
γ k

∣

∣

∣

∣

∫

d3xΦ(~x)ei~q·~x
∣

∣

∣

∣

2

δ(Eγ − Ea) (53)

Similar results have been obtained in ref. [48]. It is worth to note that this case
also includes the ultrarelativistic limit, considered for example for the solar axion
investigations. Eq. (21) can be directly achieved by the previous eq. (53).

6.3.2 Scalar case

For a scalar h particle the S-matrix element for Primakoff conversion is:

|Sfi|2 =

∣

∣

∣

∣

∫

d4x
2ghγγ
4

h FµνF
µν(~x)

∣

∣

∣

∣

2

(54)

Using the same procedure as for the pseudoscalar case and reminding that the electric
static field is:

Fµν(~x) = −
[

ηµ0ηiν − ηµiη0ν
]

∇iΦ (55)

one can obtain the differential cross section as for the pseudoscalar case: see eq. (53).
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