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Prospects for CFD on Petaflops Systems
David E. Keyes, Dinesh K. Kaushik, and Barry F. Smith

Abstract

With teraflops-scale computational modeling expected to be routine by 2003–04, under the
terms of the Accelerated Strategic Computing Initiative (ASCI) of the U.S. Department of En-
ergy, and with teraflops-capable platforms already available to a small group of users, attention
naturally focuses on the next symbolically important milestone, computing at rates of 1015 float-
ing point operations per second, or “petaflop/s”. For architectural designs that are in any sense
extrapolations of today’s, petaflops-scale computing will require approximately one-million-fold
instruction-level concurrency. Given that cost-effective one-thousand-fold concurrency is chal-
lenging in practical computational fluid dynamics simulations today, algorithms are among the
many possible bottlenecks to CFD on petaflops systems. After a general outline of the problems
and prospects of petaflops computing, we examine the issue of algorithms for PDE computa-
tions in particular. A back-of-the-envelope parallel complexity analysis focuses on the latency of
global synchronization steps in the implicit algorithm. We argue that the latency of synchroniza-
tion steps is a fundamental, but addressable, challenge for PDE computations with static data
structures, which are primarily determined by grids. We provide recent results with encouraging
scalability for parallel implicit Euler simulations using the Newton-Krylov-Schwarz solver in the
PETSc software library. The prospects for PDE simulations with dynamically evolving data
structures are far less clear.
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I. Introduction

Future computing technology in general, and scientific computing technology in partic-
ular, will be characterized by highly parallel, hierarchical designs. This trend in design
is a fairly straightforward consequence of two other trends: a desire to work with in-
creasingly large data sets at increasing speeds and the imperative of cost-effectiveness. A
system possessing large memory without a correspondingly large number of processors to
act concurrently upon it is expensively out-of-balance. Fortunately, data use in most real
programs has sufficient temporal and spatial locality to allow a distributed and hierarchi-
cal memory system, and this locality must be exploited at some level (by a combination of
the applications programmer at the algorithmic level, the system software at the compiler
and runtime levels, and the hardware). Research on petaflops1 systems can be seen as
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paving the way for exploiting hierarchical parallelism at all levels. Indeed, “petaflops”
has come to refer to body of research dealing with very highly parallel computing, since
petaflops computers are likely to have between 104 and 106 processors, with deep memory
hierarchies.

A. Petaflops Numerology

Casting petaflops-scale computing into popular terms is a worthwhile exercise even for
the quantitatively elite, if for no other reason than that this staggering (and staggeringly
expensive) capability must be explained to others. With apologies for drawing significance
to any number with an arbitrary dimension attached (i.e., the second) except for its
mnemonic value, we note that mainstream production scientific computing on workstations
is carried out at approximately the square-root of 1 Pflop/s today:

√
1015 ≈ 31.5 × 106.

The following commodity workstations perform the LINPACK-100 benchmark at a rate
within a few percent of 31.5 Mflop/s [11]:

• SGI Indigo2 (200 MHz)
• IBM RS 6000-560 (50 MHz)
• DEC 3000-500 Alpha AXP (150 MHz)
• Sun Sparc 20 (90 MHz)

A typical sparse PDE computation performs somewhat below the dense LINPACK-100
rates, but with attention to cache residency through variable interleaving and subdomain
blocking, it can come close.

There are also 31.5× 106 seconds in a year, to within one-tenth of a percent. Therefore,
a 1 Pflop/s computer could compute in one second what one of these workstations can
compute in one year.

There are also 31.5 × 106 people presently living in the state of California, to within
a few percent, based on an extrapolation from the 1990 federal census. Therefore, the
processing power of a 1 Pflop/s computer (but not the requisite connectivity!) could be
realized if everyone in California pooled a commodity scientific workstation to the task.
This particular bit of numerology calls to mind that the electrical power consumption of
a 1 Pflop/s computer built from commercial, off-the-shelf (COTS) components would be
impressive.

As a final point of perspective, we note that the human brain has approximately 1012

neurons capable of firing at approximately 1 KHz, and is therefore a specialized peta-op/s
“machine” weighing just three pounds and requiring far less power.

B. Interagency Petaflops Workshops

Since February 1994, there has been a systematic effort to explore the feasibility of and
encourage the development of petaflops-scale computing by an informal interdisciplinary,
interagency working group, subsets of which have met, typically for a week at a time, to
consider:

• petaflops applications — what problems appear to require 1 Pflop/s or beyond for
important benefits not achievable at smaller scales?

• petaflops architectures — how can balanced systems that store, transfer, and process
the data of petaflops applications be supported with conceivable technologies?
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• petaflops software — how can the gap between the complex hardware and the ap-
plication community be spanned with tools that automate program preparation and
execution?

• petaflops algorithms — how much concurrency can be exposed at various levels in
a computational model and what fundamental requirements on capacity, bandwidth,
latency, and processing arise from the underlying physics and mathematics?

The main contents of this report were originally created for, and have been informed by,
the most recent of these meetings, the Petaflops Algorithms workshop in Williamsburg,
VA, April 13-18, 1997. Fifty-five participants from federal agencies, universities, com-
puter vendors, and other private computational organizations attempted to address the
algorithmic research questions presented by potential of “affordable” petaflops systems by
the year 2010.

The principal findings and recommendations have been outlined in [2], which concludes
that petaflops computing is algorithmically feasible, in that at least some of today’s key
algorithms appear to be scalable to petaflops. Issues of interest to algorithmicists include
the following, many of which are shared with the software and hardware communities:

• Concurrency
• Data locality
• Latency and synchronization
• Floating point accuracy (extended wordlength)
• Dynamic (data-adaptive) redistribution of workload
• Detailed performance analysis
• Algorithm improvement metrics
• New languages and constructs
• Role of numerical libraries
• Algorithmic adaptation to hardware failure
Participants made preliminary assessments of algorithm scalability, from as many diverse

areas of high-performance computing as were represented, and applied a “triage”-style
categorization: Class 1 – appearing to be scalable to petaflops systems, given appropriate
effort; Class 2 – appearing scalable, provided certain significant research challenges are
overcome; and Class 3 – appearing to possess major impediments to scalability, from our
present perspective.

Many core algorithms from scientific computing were placed in Class 1 (scalable with
appropriate effort), including: dense linear algebra algorithms; FFT algorithms (given
sufficient global bandwidth); PDE solvers, based on static grids, including explicit and
implicit schemes; sparse symmetric direct solvers, including positive definite and indefinite
cases; sparse iterative solvers (given parallelizable preconditioners); “tree-code” algorithms
for n-body problems and multipole or multiresolution methods; Monte Carlo algorithms for
quantum chromodynamics; radiation transport algorithms; and certain highly concurrent
classified (in the sense of national security) algorithms with a priori specifiable memory
accesses.

Class 2 algorithms (scalable if significant challenges overcome) included a category of
principal interest to CFD practitioners — namely, dynamic unstructured grid methods,
including mesh generation, mesh adaptation and load balancing — along with several oth-
ers: molecular dynamics algorithms; interior point-based linear programming methods;
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data mining, including associativity, clustering, and similarity search; sampling-based op-
timization, search, and genetic algorithms; branch and bound search algorithms; boundary
element algorithms; symbolic algorithms, including Gröbner basis methods; discrete event
simulation; certain further classified algorithms involving random memory accesses.

Into Class 3 (possessing major impediments to scalability) the participants placed:
sparse unsymmetric Gaussian elimination, theorem-proving algorithms; sparse simplex
linear programming algorithms; and integer relation and integer programming algorithms.

From these lists one may abstract the following contraindications for petaflops:
• Data dependencies that are random in characterization and determinable only at run-

time (input-dependent dependencies);
• Insufficient speculative concurrency;
• Frequent uncoverable global synchronization;
• Multiphase algorithmic structure with disparate mappings of data to memories within

alternating load-balanced phases; and
• Requirement of fast access to huge data sets by all processors.

Computational fluid dynamics as practiced at the contemporary state-of-the-art for prob-
lems with complex physics is sometimes characterized by this list. Adaptive methods
cannot be statically balanced and mapped across processors, making incremental dynamic
balancing and mapping necessary, together with performance monitoring and performance
estimation to make cost-benefit analyses. Hybrid particle-field techniques often have un-
balanced sequential phases when either the particle or the field computation is given
priority over the other in data distribution. Lookup tables for complex state equations,
constitutive relations, and cross-sections or reaction coefficients are often too large to
replicate on each processor, but too nonlocally accessed to partition without sacrifice of
efficiency.

In addition to these readily apparent contraindications, there is another complementary
pair, of relevance to fluid dynamics simulations:

• Work requirements that scale faster than than M4/3, where M is the main memory
capacity; and

• Memory requirements that scale faster than W 3/4, where W is the (arithmetic) work
complexity.

This constraint between memory and work scaling (or, alternatively, between memory and
execution time scaling) is not likely to be as painful an issue for PDE-based computations
as it may be for some others, since it reflects an architectural decision that is largely
influenced to accommodate stencil-type computations on three-dimensional space-time
grids (as we discuss further below). It is however, a new constraint, as applied in a two-
sided manner. CFD practitioners are accustomed to either a memory or a time constraint,
which they play up against — running the largest job that fits in memory for as much
time as required on a dedicated system or running a job up against a temporal deadline
with as much resolution as can be afforded. A tightly-coupled petaflops-capable system
will be delicately balanced in its hardware configuration for a specific memory/processing
rate model. Such systems will be too rare and too expensive to turn over in a dedicated
fashion for an indefinite amount of time. They will also be too expensive to use without
employing the full amount of memory most of the time. Algorithms that can trade space
for time (such as methods that can vary discretization order, and thus the number of
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operations per grid vertex) will therefore extend more gracefully to an architecturally
and economically constrained machine than algorithms that can only be run at a specific
operation-count-to-memory ratio.

C. Technology Outlook

We conclude our introduction with a glimpse at a baseline COTS petaflops machine, and
at a couple of nontraditional architectural directions. As we quote the educated guesses of
others in this section, we begin with a caveat from Yogi Berra, philosopher in Baseball’s
Hall of Fame:

“Prediction is hard. Especially the future. . . ”
In its projections for the year 2007 (the target year of its current ten-year window, as

of this writing) the Semiconductor Industry Association (SIA) anticipates that individual
clock rates will continue their historically gratifying ascent as far as approximately 2GHz
and then level off. This implies that at least 500,000-fold instruction concurrency is re-
quired (to achieve a product of 1015 operations per second), some of which will be found at
the subprocessor level. Based on this number, and informed by other technology extrapo-
lations, Stevens [24] has projected a COTS design. He envisions a 2,000-node system, with
32 processors per node, totaling 64,000 processors. This leaves approximately 8-fold con-
currency to be found within a processor’s own pipelined instruction stream (e.g., through
multiple functional units). With 65 GB of shared memory per node, the system would have
an aggregate of 130 TB. Approximately 80,000 disks (failing at the rate of approximately
one every hour) would back this memory. The overall memory hierarchy (from processor
registers to disks) would have 8 levels. The 2 GHz-clock multifunctional unit processors
would be fed by approximately 240 GB/s of loads and 120 GB/s stores apiece (assuming
dominantly triadic operations, a← b op c). This requires 180 data Bytes per cycle in and
out of Level-1 cache, which would take up about 70% of an overall 2,048-bit wide path
from L1 to CPU. Extrapolating from present pricing trends and practices, such a machine
would cost approximately $32M for the CPUs and $174M for the overall system. Power
consumption would be 11.5 MW and the annual power bill would be approximately $12M.

Sterling has led a design team that is looking well beyond COTS technology. The Hybrid
Technology, Multi-threaded (HTMT) architecture [25] is looking towards a 100 GHz clock
from quantum logic processors. At this rate, there will be a latency to DRAM of approxi-
mately 10,000 clocks. The 7-layer memory hierarchy of HTMT traverses the temperature
spectrum from non-uniform random access (NURA) registers, cryogenic RAM (CRAM), at
liquid helium temperatures, SRAM at liquid nitrogen temperatures, conventional DRAM,
and high density holographic RAM, (HRAM), backed by disk. Programmer-specified
“thread affinity” will reduce data hazards.

The Processor-in-Memory (PIM) design of Kogge et al. [20] will feature 100 TB of
memory in 10,000 to 20,000 chips, each of which contains about 50 embedded “CPUs.”
The memory system will be like a live file with filters attached.

All designs are subject to the so-called “Tyranny of DRAM,” which states that band-
width between memory and the processors must be proportional to processor consump-
tion of operands, even if latency is covered (through prefetching or some other technique).
Many kernels, like the DAXPY and the FFT, do work that is a small constant (or at most
a logarithmic) multiple of the size of the data set. The tyranny implies that progressively
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remote and slower levels of the memory system must provide proportionally wider path-
ways of data towards the CPU, so that the bandwidth product can be maintained during
computational phases that cycle through the entire data set and do little work with each
element.

II. Partial Differential Equation Archetypes and Parallel Complexity

Partial differential equations come in a wide variety, which explains why we have na-
tional laboratories instead of general purpose PDE libraries. Evolution equations come
in time-hyperbolic and time-parabolic flavors, and equilibrium equations come in elliptic
and spatially hyperbolic or parabolic flavors. Generally, hyperbolic equations are challeng-
ing to discretize since they support discontinuities, but easy to solve when addressed in
characteristic form. Conversely, elliptic equations are easy to discretize, but challenging to
solve, since their Green’s functions are global: the solution at each point depends upon the
data at all other points. The algorithms naturally employed for “pure” problems of these
types vary considerably. CFD spans all of these regimes. Its problems can be of mixed
type, varying by region, or of mixed type by virtue of being multicomponent in a single
region (e.g., a parabolic system with an elliptic constraint). In a prospective discussion
such as this one, we cannot afford to be algorithmically comprehensive, and fortunately,
we do not need to be in order to accomplish some computational complexity estimates of
generic value, since PDE computations have a great deal of complexity regularity within
their algorithmic variety, due to their field nature. The resource requirements of a PDE
problem can usually be characterized by the following parameters, for which typical values
are suggested for problems in the ASCI class:

• Nx, spatial grid points (104–109)
• Nt, temporal grid points (1–. . . )
• Nc, components per point (1–102)
• Na, auxiliary storage per point (0–25)
• Ns, grid points in “stencil” (7–30)

In terms of these parameters, typical memory requirements would be some small number
of copies of the fields (successive iterates, overwritten in a shifted or moving-windowed
manner) together with a copy of the current Jacobian: Nx · (Nc + Na) + Nx · N2

c · Ns.
(We assume with the N2

c term in the Jacobian that all components depend upon all other
components). The work for an explicit code, or for an implicit code in which the linear
system is solved through a sparse iterative means, is a small multiple of: Nx ·Nt · (Na +
N2

c ·Ns).
For equilibrium problems solved by “good” implicit methods, work W scales slightly

superlinearly in the problem size (or main memory M); hence the Amdahl-Case Rule
applies: M ∝W For evolutionary problems, work scales with with problem size times the
number of timesteps. CFL-type arguments place the latter on the order of the resolution
of each spatial dimension. For 3D problems, therefore, M ∝ W 3/4, which leads to the
conventional petaflops “memory-thin” scaling rule. The actual constant of proportionality
between M and W can be adjusted over a very wide range by both discretization order
(high-order implies more work per point and per memory transfer) and by algorithmic
tuning. If frequent time frames are to be captured, other resources — disk capacity and
I/O rates — must both scale linearly with W . This is a more stringent scaling than
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for memory. For reasons of scope, we do not further address the scaling of peripherals;
however, we note that significant research remains to be done with archiving data and I/O
to support petaflops computing.

A. PDE Archetypes and Software Toolchain

The Computational Archetypes project at Caltech [9] has identified PDE archetypes
according to the following classification:

• Local mesh computations
– Concurrent
∗ Explicit update schemes, diagonal relaxation schemes
∗ Sparse matrix-vector multiplications

– Sequential
∗ Triangular relaxation schemes
∗ Sparse approximate factorization schemes

• Global dimensionally-split computations
– spectral schemes
– ADI-like schemes

• Direct linear algebraic computations
– Gaussian elimination in various orderings

With due respect to the importance of the latter, we concentrate on the prime archetypes
for parallel CFD: concurrent local mesh computations, explicit and iterative implicit.

Before confining our attention to a few quantitative aspects of the solution algorithm,
we note that solvers are just one link in a “toolchain” [19] for PDE computations worth
doing at petaflops scales. This toolchain involves:

• Geometric modeling and grid generation
• Discretization (and automated code generation)
• Error estimation and adaptive refinement (h- and/or p-type)
• Task assignment
– Domain partitioning
– Subdomain-to-processor mapping

• Solution
– Grid and operator “coarsening”
– Automated or interactive steering

• Visualization, postprocessing, and application interfacing
• Parallel performance analysis

The toolchain metaphor is useful in reminding that the solver is not all there is to a
parallel computation, and may not be the most difficult part. Furthermore, the difficulty
of one link may be affected by decisions in another, e.g., a solver may have to work harder
in conjunction with a poor grid generator. The overall outcome of a computation may
be limited by any weak link, making it difficult to attach relative merits to individual
components. The toolchain metaphor is possibly misleading in that not all links are
important in all problems, and not all important relationships are between links adjacent
in list.

We make a few additional remarks on the toolchain, abstracting CFD-relevant remarks
from [19]. Software components of the chain tend to be modular, with well-defined inter-
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faces, because of both good design principles and the impossibility of any one individual
or team being expert in all components. A few full, vertically integrated parallel toolchain
environments exist today. Amdahl’s “rake” eventually forces parallelization of all compo-
nents; certainly, at least, for petaflops. As one tool is perfected, the parallel bottleneck
shifts to another. Significant sharing and reuse of components occurs horizontally (across
groups) at the “low” end of the toolchain. For instance grid generators and partitioners
are easy to share since they interface to the rest of the environment through intermediate
disk files. At higher levels, the compatibility of inner data structures becomes an issue,
which limits sharing. Some reuse of software between components occurs vertically, such as
between mesh generation and improvement algorithms, and between these and the solver.
Though data-structure-specific, common operations are sufficiently generic to become can-
didates for vertical software reuse within a group (e.g., intermesh transfer operators, error
estimators, and solvers for error estimators and for actual solution updates). The parallel
scalability requirement discourages the use of graph algorithms that make frequent use
of global information, such as eigenvectors. Instead, heavy use is made of maximal inde-
pendent sets, which can be constructed primarily by a local, greedy algorithm, with local
mediation at subdomain interfaces. Trees are generally avoided as primary data struc-
tures in important inner-loop nearest-neighbor operations of PDE-based codes. Crucial
trade-offs exist between time to access grid and geometry information and total memory
usage; redundant data structures can reduce indirection at the price of extra storage.

B. Algorithms for PDEs

An explicit PDE solution algorithm has the following algebraic structure in moving from
iterate `− 1 to iterate `:

u` = u`−1 −∆t` · f(u`−1),

or, for higher temporal order schemes, a more general, fully known right-hand side:

u` = F(u`−1,u`−2, . . .).

Let N be the discrete dimension of a 3D problem and P the number of processors. Assume
that the domain is of unit aspect ratio so that the number of degrees of freedom along
an edge is N1/3, and that the subdomain-to-processor assignment is isotropic, as well.
The concurrency is pointwise, O(N). Since the stencil is localized, the communication-

to-computation ratio enjoys surface-to-volume scaling: O
(
(N

P
)−1/3

)
. The communica-

tion range is nearest-neighbor, except for timestep selection, which typically involves a
global CFL stability check. The synchronization frequency is therefore once per timestep,

O
(
(N

P
)−1

)
. Storage per point is low — just a small multiple of N , itself. The data locality

in the stencil update operations can be exploited both “horizontally” (across processors)
and “vertically” (in cache). Load balancing is a straightforward matter of equipartitioning
gridpoints while cutting the minimal number of edges, for static quasi-uniform meshes.
Load balance becomes nontrivial when grid adaptivity is combined with the synchroniza-
tion step of timestep selection.

The discrete framework for an implicit PDE solution algorithm has the form:

u`

∆t`
+ f(u`) =

u`−1

∆t`
,
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with ∆t` →∞ as `→∞. We assume that pseudo-timestepping is used to advance towards
a steady state. An implicit method may also be time-accurate, which generally leads to
an easier problem than the steady-state problem, since the Jacobian matrix for the left-
hand side is more diagonally dominant when the timestep is small. The sequence of
nonlinear problems, ` = 1, 2, . . ., is solved with an inexact Newton method. The resulting
Jacobian systems for the Newton corrections are solved with a Krylov method, relying only
on matrix-vector multiplications, so the stencil-based sparsity is not destroyed by fill-in.
The Krylov method needs to be preconditioned for acceptable inner iteration convergence
rates, and the preconditioning is the “make-or-break” aspect of an implicit code. The other
phases parallelize well already, being made up of DAXPYs, DDOTs, and sparse MATVECs.

The job of the preconditioner is to approximate the action of the Jacobian inverse in
a way that does not make it the dominant consumer of memory or cycles in the overall
algorithm. The true inverse A−1 is usually dense, reflecting the global Green’s function
of the continuous PDE operator approximated by A. Given Ax = b, we want B approxi-
mating A−1 and a rescaled system BAx = Bb (left preconditioning) or ABy = b, x = By
(right preconditioning). Though formally expressible as a matrix, the preconditioner is
usually implemented as a vector-in, vector-out subroutine. A good preconditioner saves
both time and space by permitting fewer iterations in the innermost loop, smaller storage
for Krylov subspace. An Additive Schwarz preconditioner [6] accomplishes this in a local-
ized manner, with an approximate solve in each subdomain of a partitioning of the global
PDE domain. Optimal Schwarz methods also require solution of a global problem of small
discrete dimension. Applying a preconditioner in an Additive Schwarz manner increases
flop rates over a global preconditioner, since the smaller subdomain blocks maintain better
cache residency.

Newton Krylov Schwarz

The pioneers of NKS methods.

Combining a Schwarz preconditioner with a Krylov iteration method inside an inexact
Newton method leads to a recently assembled synergistic parallelizable nonlinear boundary
value problem solver with a classical name: Newton-Krylov-Schwarz (NKS).

When nested within a pseudo-transient continuation scheme to globalize the Newton
method [18], the implicit framework has four levels:
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do l = 1, n_time

SELECT TIME-STEP

do k = 1, n_Newton

compute nonlinear residual and Jacobian

do j = 1, n_Krylov

do i = 1, n_Precon

solve subdomain problems concurrently

enddo

perform Jacobian-vector product

ENFORCE KRYLOV BASIS CONDITIONS

update optimal coefficients

CHECK LINEAR CONVERGENCE

enddo

perform DAXPY update

CHECK NONLINEAR CONVERGENCE

enddo

enddo

The operations written in uppercase customarily involve global synchronizations.
The concurrency is pointwise, O(N), in most algorithmic phases but only subdomain-

wise, O(P ), in the preconditioner phase. The communication-to-computation ratio is still

mainly surface-to-volume, O
(
(N

P
)−1/3

)
. Communication is still mainly nearest-neighbor

in range, but convergence checking, orthogonalization/conjugation steps in the Krylov
method, and the optional global problems add nonlocal communication. The synchroniza-
tion frequency is often more than once per mesh-sweep, up to the Krylov dimension (K),

O
(
K(N

P
)−1

)
. Similarly, storage per point is higher by a factor of O(K). Locality can still

be fully exploited horizontally and vertically, and load balance is still straightforward for
any static mesh.

C. Parallel Complexity Analysis

Given complexity estimates of the leading terms of:
• the concurrent computation,
• the communication-to-computation ratio, and
• the synchronization frequency,

and a model of the architecture including:
• internode communication (network topology and protocol reflecting horizontal memory

structure), and
• on-node computation (effective performance parameters including vertical memory

structure),
one can formulate optimal concurrency and optimal execution time estimates for parallel
PDE computations, on per-iteration basis or overall (by taking into account any granu-
larity dependence in the convergence rate).

For an algebraically simple example that is sufficient to elucidate the main issues in
algorithm design, we consider a 2D stencil-based PDE simulation and construct a model
for its parallel performance based on computation and communication costs. The basic
parameters are as follows:
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• n grid points in each direction, total memory N = O(n2),
• p processors in each direction, total processors P = p2,
• memory per node requirements O(n2/p2),
• execution time per iteration An2/p2 (A includes factors like number of components

at each point, number of points in stencil, number of auxiliary arrays, amount of
subdomain overlap),

• n/p grid points on a side of a single processor’s subdomain,
• neighbor communication per iteration (neglecting latency) Bn/p, and
• cost of an individual reduction per iteration (assumed to be logarithmic in p with the

frequency of global reductions included in the coefficient) C log p.
A, B, and C are all expressed in the same dimensionless units, for instance, multiples of
the scalar floating point multiply-add.

Putting the components together, the total wall-clock time per iteration is

T (n, p) = A
n2

p2
+ B

n

p
+ C log p.

The first two terms fall as p increases; the last term rises slowly. An optimal p is found
where ∂T

∂p
= 0, or

−2A
n2

p3
−B

n

p2
+

C

p
= 0,

or

popt =
B

2C

[
1 +

√
1 + 8AC/B2

]
· n.

Observe that p can usefully grow proportionally to n without limitation. The larger the
problem size, the more processors that can be employed with the effect of reducing the
execution time. In this limited sense, stencil-based PDE computations are scalable to
arbitrary problem sizes and numbers of processors. The optimal running time is

T (n, popt(n)) =
A

ρ2
+

B

ρ
+ C log(ρn),

where ρ = B
2C

[
1 +

√
1 + 8AC/B2

]
. This optimal time is not constant as the problem size

(and number of processors) increases, but it degrades only logarithmically.
To simplify, consider the limit of infinite bandwidth so that the (asynchronous) nearest-

neighbor exchanges take no time. Then,

popt =
√

2A/C · n,

and

T (n, popt(n)) = C
[
1

2
+ log(

√
2A/C · n)

]
.

This simple analysis is on a per-iteration basis; a fuller analysis would multiply this cost
by an iteration count estimate that generally depends upon n and p. We observe that
although an algorithm made up of this mix of operations is formally scalable, the number
of processors amongst which the problem should be divided varies inversely with C, the
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coefficient of the global synchronization term, and running time varies proportionally.
Recall that the main difference in complexity per iteration between explicit and implicit
methods in this context is the much greater frequency of synchronization for implicit
methods. One of the main benefits provided in return for this synchronization is freedom
from CFL limitations, and hence the prospect of an iteration count that is not constrained
by the resolution of the grid.

The synchronization cost is made of two parts: the hardware and software latency of
accessing remote data when the data is, in fact, ready, and the synchronization delay when
the data is not ready. Since they are difficult to distinguish in practice, we lump them
together under the term “latency” and consider strategies for latency tolerance.

D. Latency Tolerance

From an architect’s perspective [10], there are two classes of strategies for tolerating
latency: amortization (block data transfers) and hiding or covering (precommunication,
proceeding past an outstanding communication in the same thread, and multithreading).
The requirements for tolerating latency are excess concurrency in the program (beyond the
number of processors being used) and excess capacity in the memory and communication
architecture, in order to stage operands near the processors.

Any architectural strategy has an algorithmic counterpart, which can be expressed in
a sufficiently rich high-level language. For instance, prefetching is partially under pro-
grammer control in some recent commercially available language extensions. In addition,
however, algorithmicists have a unique strategy, not available to architects by definition:
reformulation of the problem to create concurrency. Algorithmicists may note that not all
nonzeros are created equal, and can create additional concurrency by neglecting nonzero
couplings in a system matrix when they stand in the way. Algorithmicists may also accept
a (sufficiently rapidly converging) outer iteration that restores the coupling in a less syn-
chronous way, if it improves the concurrency of the iteration body. The reduction in the
cost per iteration must more than offset the cost of the restorative outer iterations. An
understanding of the convergence behavior of the problem, especially the dependence of
the convergence behavior on special exploitable structure, such as heterogeneity (region-
dependent variation) and anisotropy (direction-dependent variation), is required in order
to intelligently suppress nonzero data dependencies. We briefly mention some ideas for
latency-tolerant preconditioners, latency-tolerant accelerators, and latency-tolerant for-
mulations.

The Additive Schwarz method (ASM) named above as the innermost component of the
implicit NKS method is a perfect illustration of latency-tolerant preconditioner. We take
a closer look at the construction of this method.

The operator B is formed out of (approximate) local solves on overlapping subdomains.
The figure below shows a domain Ω decomposed into nine subdomains Ωi, which are
extended into overlapping subdomains Ω′

i that are cut off at the original boundary. The
fine mesh spacing is indicated in one of the overlapping subdomains. This example is for
a matching discretization in the overlapping subdomains, but nonmatching discretizations
can be accommodated.
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Let Ri and RT
i be Boolean gather and scatter operations, mapping between a global

vector discretized on the fine mesh and its ith subdomain support, and let

B =
∑

i

RT
i Ãi

−1
Ri.

The concurrency thus created is proportional to the number of subdomains. Part of the
action of the Ri is indicated schematically in the figure below. The bold right segment of Ωi

and the bold left segment of Ωj are the same physical points. The overlapping subdomains
are shown pulled apart, and the padding of each with interior data of the other is indicated
by the arrows and dashed rectangles. (The width of the overlap is exaggerated for clarity
in this illustration.)

�

-

Ωi Ωj

Ω
′
i Ω

′
j

The amount of overlap obviously determines the amount of communication and the
amount of redundant computation (on non-owned, buffered points).



14

A two-level form of Additive Schwarz is provably optimal in convergence rate for some
problems [23], but requires an exact solve on a coarsened grid. Convergence theorems for
scalar 3D elliptically dominated systems may be summarized as follows, where I estimates
the number of iterations as a function of problem size N and number of subdomains (and
processors) P :

• No preconditioning: I ∝ N1/3

• Zero-overlap Schwarz preconditioning: I ∝ (NP )1/6

• Generous-overlap Schwarz preconditioning: I ∝ (P )1/3

• Two-level, generous overlap Schwarz preconditioning: I = O(1)
The PETSc library [3], [4] includes portable parallel parameterized implementations of
Schwarz preconditioners, including the new, more communication efficient, Restricted Ad-
ditive Schwarz (RAS) method [8].

Another example of a latency-tolerant preconditioner is the form of the Sparse Approx-
imate Inverse (SPAI) recently developed in [14]. Here B is formed in explicit, forward-
multiply form by performing a sparsity-constrained norm minimization of ||AB−I||F . The
minimization decouples into N independent least squares problems, one for each row of B.

An adaptively chosen sparsity pattern, such that ||Abk−ek||2 < ε leads to κ(AB) ≤
√

1+δ
1−δ

,

where δ ∝ Nε2. ε chosen as a compromise between storage and convergence rate. The
requirement on the smallness of ε appears pessimistic (in that B becomes denser as ε
becomes smaller), but SPAI is worthwhile beyond the hypotheses of the theorem, just as
Additive Schwarz is worthwhile with overlaps much smaller than required by the theory
for optimality.

The concurrency created by SPAI is pointwise, in both the construction and the applica-
tion of B. A parallel implementation of SPAI is described in [5]. (The next public release
of PETSc will contain an interface to this package.) The sparsity profiles of an original
matrix A and its SPAI, with a comparable number of differently positioned nonzeros are
shown below (from [14]):

Modified forms of the classical Krylov accelerators of conjugate gradients (CG) and
generalized minimal residuals (GMRES) can provide latency-tolerant accelerators. Krylov
methods find the best solution to an N -dimensional problem in a K-dimensional Krylov
space (K � N). Conventional Krylov methods orthogonalize (or conjugate) at every step
to build up a well conditioned Krylov basis and to update the expansion coefficients of the
solution in the enlarged basis. In infinite precision, this orthogonalization can be delayed
for many steps at a time and “made up” in one multicomponent global reduction [12], some
options for which are available in PETSc. In finite precision, delayed orthogonalization
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may be destabilizing, but for the low-accuracy requirements of an inner loop of a Newton
method it may be tolerable, since the basis is flushed before it gets large. Furthermore, the
requirement of performing all pairwise orthogonalizations may be avoided by construction
during part of the iteration if the bases are generated from sparse seed vectors with sparse
system matrices A. Many other tradeoffs of stability for reduced synchronization frequency
have yet to be carefully investigated on realistic problems. Petaflops scale CFD will require
a systematic assault on the synchronicity of Krylov basis generation.

The formulations of PDE algorithms, themselves may be made more latency-tolerant in
ways that do not compromise the ultimate accuracy of the result, but only the minimal
number of iterations required to achieve it. Many synchronization steps in conventional
algorithms (e.g., convergence tests, global timestep selection) can be hidden by speculative
computation of the next step based on a conservative prediction of the outcome. Such
conservative predictions (that an iteration has not converged, or that a timestep cannot be
increased) allow by-passing tests that would be recommended for minimal computational
complexity if communication were free; but their communication costs may not justify the
resulting instant adaptation.

Much work in PDE codes with complex physical models is related to updating aux-
iliary quantities used in Jacobian assembly, such as flop-intensive constitutive laws or
communication-intensive table lookups. These can be “lagged” to slightly stale (or very
stale) values with latency savings and acceptable convergence rate consequences.

Message-number versus message-volume trade-offs can be resolved in architecturally
optimal ways, given latency and bandwidth models.

Furthermore, a “neighbor-computes” paradigm may sometimes be better than an “owner-
computes” in cases in which the output of the computation is small but the inputs (residing
on the neighbors) are large.

III. Case Study in the Parallel Port of an NKS-based CFD Code

Discussions of petaflops-scale computing ring hollow if not accompanied by experiences
on contemporary parallel platforms that demonstrate that the currently provided tech-
nology has been absorbed. We therefore include in this report some parallel performance
results for a NASA unstructured grid CFD code that is used to study the high-lift, low-
speed behavior of aircraft in take-off and landing configurations. Our primary test case,
possessing only 1.4 million degrees of freedom, is miniscule on the petaflops scale, but we
will show scalability of algorithmic convergence rate and per-iteration performance over
a wide range of numbers of processors, which we have every reason to believe can be
extended as the hardware becomes available.

The demonstration code, FUN3D [1], is a tetrahedral vertex-centered unstructured grid
code developed by W. K. Anderson of the NASA Langley Research Center for compress-
ible and incompressible Euler and Navier-Stokes equations. FUN3D uses a control volume
discretization with variable-order Roe schemes for approximating the convective fluxes and
and a Galerkin discretization for the viscous terms. Our parallel experience with FUN3D
is with the incompressible Euler subset thus far, but nothing in the solution algorithms
or software changes for the other cases. Of course, convergence rate will vary with condi-
tioning, as determined by Mach and Reynolds numbers and the correspondingly induced
grid adaptivity. Furthermore, robustness becomes more of an issue in problems admitting
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shocks or making use of turbulence models. The lack of nonlinear robustness is a fact of
life that is largely outside of the domain of parallel scalability. In fact, when nonlinear
robustness is restored in the usual manner, through pseudo-transient continuation, the
conditioning of the linear inner iterations is enhanced, and parallel scalability may be
improved. In some sense, the Euler code, with its smaller number of flops per point per
iteration and its aggressive trajectory towards the steady state limit may be a more, not
less, severe test of scalability.

The solution algorithm we employ is pseudo-transient Newton-Krylov-Schwarz (ΨNKS),

with point-block ILU(0) on the subdomains for the action of Ãi
−1

(in the customary
Schwarz notation; see above). The original code possesses a pseudo-transient Newton-
Krylov solver already. Our reformulation of the global point-block ILU(0) of the original
FUN3D into the Schwarz framework of the PETSc version is the primary source of ad-
ditional concurrency. The timestep grows from an initial CFL of 10 towards infinity
according to the switched evolution/relaxation (SER) heuristic of Van Leer & Mulder
[21]. Our ΨNKS solver operates in a matrix-free, split-discretization mode, whereby the
Jacobian-vector MATVEC operations required by the GMRES method are approximated
by finite-differenced Fréchet derivatives of the nonlinear residual vector. The action of
the Jacobian is therefore always “fresh.” However, the submatrices used to construct the
point-block ILU(0) factors on the subdomains as part of the Schwarz preconditioning are
based on a lower-order discretization than the one used in the residual vector, itself. This
is a common approach in practical codes, and the requisite distinctions within the residual
and Jacobian subroutine calling sequences were available already in the FUN3D legacy
version.

Conversion of the legacy FUN3D into the distributed memory PETSc version was begun
in October 1996 and first demonstrated in March 1997. It has been undergoing continual
enhancement since, largely with respect to single-node aspects, namely blocking, vari-
able interlacing, and edge-reordering for higher cache efficiency. The original five-month,
part-time effort included: learning about FUN3D and its mesh preprocessor, learning
the MeTiS unstructured grid partitioning tool, adding and testing new functionality in
PETSc (which had heretofore been used with structured grid codes; see, e.g. [13]), and
restructuring FUN3D from a vector to a cache orientation. Porting a legacy unstructured
code into the PETSc framework would take considerably less time today. Approximately
3,300 of the original 14,400 lines (primarily in FORTRAN77) of FUN3D are retained in the
PETSc version. The retained lines are primarily SPMD “node code” for flux and Jacobian
evaluations, plus some file I/O routines. PETSc solvers replace the rest. Parallel I/O and
post-processing are challenges that remain.

A. Summary of Results on the Cray T3E and the IBM SP

We excerpt from a fuller report to appear elsewhere a pair of tables for a 1.4-million
degree-of-freedom problem converged to near machine precision in approximately 6.5 min-
utes, using approximately 1600 global fine-grid flux balance operations (or “work units”
in the multigrid sense) on 128 processors of a T3E or 80 processors of an SP. Relative
efficiencies of 75% to 85% are obtained over this range The physical configuration is a
three-dimensional ONERA M6 wing up against a symmetry plane. This configuration
has been extensively studied by our colleagues at NASA and ICASE, and throughout



17

the international aerospace industry generally, as a standard case. Our tetrahedral Euler
grids were generated by D. Mavriplis of ICASE. The grid of the problem most thoroughly
reported on herein contains 357,900 vertices, which implies that vector of four unknowns
per vertex has dimension 1,431,600. We also present some results for a problem eight
times larger, containing approximately 11 million degrees of freedom. (We can run this
largest case only on the largest configurations of processors, which does not permit wide
scalability studies at present.) We used a maximum Krylov dimension of 20 vectors per
pseudo-timestep. The maximum CFL used in the SER pseudo-timestepping strategy is
10,000. The pseudo-timestepping is a nontrivial feature of the algorithm, since the norm
of the steady state residual does not decrease monotonically in the largest grid case. (In
practice, we might employ mesh sequencing so that the largest grid case is initialized from
the converged solution on a coarser grid. In the limit, such sequencing permits the finer
grid simulation to be initialized within the domain of convergence of Newton’s method.)

The first table, for the Cray T3E, shows a relative efficiency in going from the smallest
processor number for which the problem fits (16 nodes) to the largest available (128 nodes),
of 85%. Each iteration represents one pseudo-timestep, including one Newton correction,
and up to 20 Schwarz-preconditioned GMRES steps.

Cray T3E Performance (357,900 vertices)
procs its exe speedup ηalg ηimpl ηoverall

16 77 2587.95s 1.00 1.00 1.00 1.00
24 78 1792.34s 1.44 0.99 0.97 0.96
32 75 1262.01s 2.05 1.03 1.00 1.03
40 75 1043.55s 2.48 1.03 0.97 0.99
48 76 885.91s 2.92 1.01 0.96 0.97
64 75 662.06s 3.91 1.03 0.95 0.98
80 78 559.93s 4.62 0.99 0.94 0.92
96 79 491.40s 5.27 0.97 0.90 0.88

128 82 382.30s 6.77 0.94 0.90 0.85

Convergence is defined as a relative reduction in the norm of the steady-state nonlinear
residual of the conservation laws by a factor of 10−10. The convergence rate typically
degrades slightly as number of processors is increased, due to introduction of increased
concurrency in the preconditioner, which is partition-dependent, in general. We briefly
explain the efficiency metrics in the last three columns of the tables.

Conflicting definitions of parallel efficiency abound, depending upon two choices:
• What scaling is to be used as the number of processors is varied?
– overall fixed-size problem
– varying size problem with fixed memory per processor
– varying size problem with fixed work per processor

• What form of the algorithm is to be used as number of processor is varied?
– reproduce the sequential arithmetic exactly
– adjust parameters to perform best on each given number of processors

In our implementations of NKS, we always adjust the subdomain blocking parameter
to match the number of processors, one subdomain per processor; this causes the number
of iterations to vary, especially since our subdomain partitionings are not nested. The
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effect of the changing-strength preconditioner should be examined independently of the
general effect of parallel overhead, by considering separate algorithmic and implementation
efficiency factors.

The customary definition of relative efficiency in going from q to p processors (p > q) is

η(p|q) =
q · T (q)

p · T (p)
,

where T (p) is the overall execution time on p processors (directly measurable). Factoring
T (p) into I(p), the number of iterations, and C(p), the average cost per iteration, the
algorithmic efficiency is an indicator of preconditioning quality (directly measurable):

ηalg(p|q) =
I(q)

I(p)
.

Implementation efficiency is the remaining (inferred) factor:

ηimpl(p|q) =
q · C(q)

p · C(p)
.

The second table, for the IBM SP2, shows a relative efficiency of 75% in going from 8 to
80 nodes. The SP has 32-bit integers, rather than the 64-bit integers of the T3E, so the
integer-intensive unstructured-grid problem fits on just eight nodes. The average per node
computation rate of the SP is about 50% greater than that of the T3E for the current
cache-optimized version of the code.

IBM SP Performance (357,900 vertices)
procs its exe speedup ηalg ηimpl ηoverall

8 70 2897.46s 1.00 1.00 1.00 1.00
10 73 2405.66s 1.20 0.96 1.00 0.96
16 78 1670.67s 1.73 0.90 0.97 0.87
20 73 1233.06s 2.35 0.96 0.98 0.94
32 74 797.46s 3.63 0.95 0.96 0.91
40 75 672.90s 4.31 0.93 0.92 0.86
48 75 569.94s 5.08 0.93 0.91 0.85
64 74 437.72s 6.62 0.95 0.87 0.83
80 77 386.83s 7.49 0.91 0.82 0.75

Algorithmic efficiency (ratio of iteration count of the less decomposed domain to the
more decomposed domain – using the “best” algorithm for each processor granularity) is
in excess of 90% over this range. The main reason that the iteration count is only weakly
dependent upon granularity is that the pseudo-timestepping over the early part of the
iteration provides some parabolicity.

Implementation efficiency is in excess of 82% over the experimental range, and maintains
unitarity over the early part of the range. Implementation efficiency is a balance of two

2The configuration consists, more precisely, of 80 120MHz P2SC nodes with two 128 MB memory cards each
connected by a TB3 switch, and is available at Argonne National Lab.
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opposing effects in modern distributed memory architectures. It may improve slightly
as processors are added, due to smaller workingsets on each processor, with resulting
better cache residency. Implementation efficiency ultimately degrades as communication-
to-computation ratio increases for a fixed-size problem after the benefits of cache residency
saturate.

The low (82%) implementation efficiency for the 80-processor SP can be accounted
for almost completely by communication overhead. PETSc provides detailed profiling
capabilities that provide the communication timings. The percentage of wallclock time
spent in communication and synchronization on 80 processors of the SP is:

• 6% on nearest-neighbor communication to set ghostpoint values needed in function and
Jacobian stencil computation (implemented using PETSc’s vector scatter operations);

• 13% on globally synchronized reduction operations, further subdivided into:
– 5% on norms, required in convergence tests, in vector normalizations in GMRES,

and in differencing parameter selection in matrix-free MATVECs, and
– 8% on groups of inner products, required in the classical Gram-Schmidt orthogonal-

ization in GMRES. (Note that the percentage lost to inner products would be much
higher if the modified Gram-Schmidt (recommended in [22] for numerical stability
reasons but not needed in this application) were used, since the modified version
synchronizes on each individual inner product.)

The effect on efficiency of the neighbor and global communications required in implicit
methods for the parallel solution of PDEs is clearly seen from this profiling. There is, of
course, some concurrency available in the scatter, norm, and inner product operations, so
the overall efficiency deficit is not quite as large as the percentage occupied by these three
main contributors. However, reducing them would sharply increase efficiency. We would
expect an explicit code that was tuned to synchronize only rarely on timestep updates to
obtain upwards of 90% fixed-size efficiency on the SP, instead of 82%.

The IBM SP has communications performance (in both bandwidth and latency) that
is particularly poor in relation to its excellent computational performance. However, on
any parallel computer with thousands of processors, algorithms requiring frequent global
reductions will be of major concern.

Since we possess a sequence of unstructured Euler grids, we can perform a Gustafson-
style scalability study by varying the number of processors and the discrete problem dimen-
sion in proportion. We note that the concept of Gustafson-style scalability does not extend
perfectly cleanly to nonlinear PDEs, since added resolution brings out added physics and
(generally) poorer conditioning, which may cause a shift in the “market basket” of kernel
operations as the work in the nonlinear and linear phases varies. However, our shockless
Euler simulation is a reasonably clean setting for this study, if corrected for iteration count.
The table below shows three computations on the T3E over a range of 40 in problem and
processor size, while maintaining approximately 4500 vertices per processor.

Cray T3E Performance — Gustafson scaling
vert procs vert/proc its exe exe/it

357,900 80 4474 78 559.93s 7.18s
53,961 12 4497 36 265.72s 7.38s
9,428 2 4714 19 131.07s 6.89s
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The good news in this experiment is contained in the final column, which shows the
average time per parallelized pseudo-time NKS outer iteration for problems with similarly
sized local workingsets. Less than a 7% variation in performance occurs over a factor
of nearly 40 in scale. Provided that synchronization latency can be controlled as the
number of processors is increased, via the ideas discussed in the previous section and
many others not yet invented, we expect that indefinite scaling is possible. We insert the
caveat that most petaflops-scale PDE computations will not be homogeneous, but will
consist of interacting tasks with different types of physics and algorithmics. Predictions of
scalability are invariably problem-dependent when such interactions need to be taken into
account. Furthermore, most petaflops-scale PDE computations will require dynamically
adaptive gridding, and the adaptivity phase may not scale anywhere near as gracefully as
the solution phase exhibits here.

We have concentrated in this report on distributed aspects of high performance com-
puting — specifically on potential limits to attainable computational rates coming from
bottlenecks to concurrency exploitation. From a processor perspective we have looked
outward rather than inward. Since the aggregate computational rate is a product of the
concurrency and the rate at which computation occurs in a single active thread, we should
discuss the per-node performance of the code. On the 80-node IBM SP the sustained
floating point performance of the PDE solver (excluding the initial I/O and grid setup
and excluding terminal I/O) is 5.5 Gflop/s — or 69 Mflop/s per node in sustained par-
allel implicit mode. We claim that this is excellent performance for a sparse matrix code
and we know of only a handful of highly tuned CFD codes that are claimed by others to
execute with comparable per-node performance on the same hardware. Nevertheless, it is
only 14% of the machine’s peak performance.3 It required considerable effort to get the
per-node performance this high. Compiling and running the FUN3D code — which was
written for vector machines, not cache-based microprocessors — out of the box on the
same hardware, in serial, yields only 2% of peak performance. Like most codes that are
not tuned for cache locality, it runs closer to the speed of the memory system than to the
speed of the processor.

On 8 processors the sustained performance of the cache-tuned FUN3D is about 16%
percent of peak, and extrapolating to one processor (by means of comparison of 1- and 8-
processor performance on a smaller problem), the sustained performance on one processor
would be about 18% of peak. We conclude from this that improved per-node performance
of sparse PDE applications on cache-based microprocessors represents an opportunity for
a factor of four or five, apart from replication of processors. The problem is a familiar
one with a welcome cause — iterative solution algorithms are themselves highly efficient
in terms of the total number of operations performed per word of storage. However, algo-
rithms, compilers, and runtime systems must now be coordinated to minimize the number
of times a word is transferred between cache and main memory. The 18% extrapolated
peak per-node performance is obtained after code optimizations including blocking, ge-
ometric reordering (of gridpoints), algebraic reordering (field interlacing), and unrolling,
which are beyond the scope of this chapter and will be described in detail elsewhere.

3Each 120MHz processor issues up to four floating point instructions per clock for a theoretical peak of 480
Mflop/s per processor. However, the particular configuration at Argonne is “thin”, possessing only half of the
maximum possible processor-memory bandwidth.
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The degradation of per-node performance with increasing numbers of processors (from
18% to 14% of peak in going from 1 to 80 processors) stands in contrast to our early
experiences with the code, before the four optimizations just mentioned. Previously, we
routinely obtained superunitary parallel efficiencies powered by better cache locality due
simply to smaller workingsets per node. A dubious (in the parallel context) reward for
cache optimization is that it improves the single-processor (large memory per node) per-
formance more than the multi-processor performance. However, the effect of the cache
is so important that it is not insightful to quote parallel efficiencies on anything but a
cache-tuned code. Only after a code is tuned for good cache performance, can the effect
of surface-to-volume (communication-to-computation) ratio be measured. For instance,
on 64 SP processors, the case with 1.4 million degrees of freedom executed at a sustained
aggregate 4.9 Gflop/s, whereas the case with 11 million degrees of freedom executed at a
sustained aggregate rate of 5.5 Gflop/s.

Though a factor of 1.25 in processor number is a very inconclusive range over which to
perform scaling studies, we conclude this section by presenting a near-perfect fixed-size
scaling for the finest grid case that we have run to date.

IBM SP Performance (2,761,774 vertices)
procs its exe speedup ηalg ηimpl ηoverall Gflop/s

64 163 9,160.91s 1.00 1.00 1.00 1.00 5.48
80 162 7,330.73s 1.25 1.01 0.99 1.00 6.81

As a point of humility, we note that the performance of this code on one of the best
hardware platforms available as of the date of writing is a factor of approximately 147,000
shy of 1 Petaflop/s.

IV. Parallel Implementation Using PETSc

The parallelization paradigm we illustrate above in approaching a legacy code is a com-
promise between the “compiler does all” and the “hand-coded by expert” approaches.
We employ the “Portable, Extensible Toolkit for Scientific Computing” (PETSc) [3], [4],
a library that attempts to handle in a highly efficient way, through a uniform interface,
the low-level details of the distributed memory hierarchy. Examples of such details in-
clude striking the right balance between buffering messages and minimizing buffer copies,
overlapping communication and computation, organizing node code for strong cache lo-
cality, preallocating memory in sizable chunks rather than incrementally, and separating
tasks into one-time and every-time subtasks using the inspector/executor paradigm. The
benefits to be gained from these and from other numerically neutral but architecturally
sensitive techniques are so significant that it is efficient in both the programmer-time and
execution-time senses to express them in general purpose code.

PETSc is a large and versatile package integrating distributed vectors, distributed ma-
trices in several sparse storage formats, Krylov subspace methods, preconditioners, and
Newton-like nonlinear methods with built-in trust region or linesearch strategies and con-
tinuation for robustness. It has been designed to provide the numerical infrastructure for
application codes involving the implicit numerical solution of PDEs, and it sits atop MPI
for portability to most parallel machines. The PETSc library is written in C, but may be
accessed from user codes written in C, FORTRAN, and C++. PETSc version 2, first released
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in June 1995, has been downloaded thousands of times by users worldwide. PETSc has fea-
tures relevant to computational fluid dynamicists, including matrix-free Krylov methods,
blocked forms of parallel preconditioners, and various types of time-stepping.

A diagram of the calling tree of a typical ΨNKS application appears below. The ar-
rows represent calls that cross the boundary between application-specific code and PETSc
library code; all other details are suppressed. The top-level user routine performs I/O re-
lated to initialization, restart, and post-processing and calls PETSc subroutines to create
data structures for vectors and matrices and to initiate the nonlinear solver. PETSc calls
user routines for function evaluations f(u) and (approximate) Jacobian evaluations f ′(u)
at given state vectors. Auxiliary information required for the evaluation of f and f ′(u) that
is not carried as part of u is communicated through PETSc via a user-defined “context”
that encapsulates application-specific data. (Such information typically includes dimen-
sioning data, grid data, physical parameters, and quantities that could be derived from
the state u, but are most conveniently stored instead of recalculated, such as constitutive
quantities.)

Initialization
Application

PETSc

KSPPC

Linear Solver (SLES)

Matrix VectorNonlinear Solver (SNES)

Main Routine

DA

Function Jacobian Post-
Evaluation Evaluation Processing

From our experience in writing and rewriting PDE codes for cache-based distributed
memory machines, we have the following recommendations, which will undoubtedly con-
tinue to be relevant as codes are written in anticipation of an ultimate petaflops port.

• Replace global vector-based disk-striped data orderings (e.g., node colorings) with
cache-based data orderings (e.g., subblocks) at the outer level.

• Interlace unknown fields so that most rapid ordering is within a point, not between
points.

• Use the most convenient naming (global or local) for each given task, maintaining
translation capability:

– Physical boundary conditions rely on global names.
– Many interior operations can be carried over from the uniprocessor code to SPMD

node code by a simple “1-to-n” loop, with remapped entity relations (e.g., “vertices
of edges”, “edges of cells”).

• Apply memory conservation aggressively; consider recomputation in cache rather than
storage in memory.
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• Micromanage storage based on knowledge of horizontal (e.g., network node) and ver-
tical (e.g., cache) boundaries.

These recommendations do not provide explicit recognition for parallelism at the multiple
functional unit level within a processor (and therefore within a cache). Within this level,
vertex colorings can be applied to provide more fine-grained concurrency in local stencil
updates.

V. Nontraditional Sources of Concurrency

We step back briefly from our narrow focus on data parallelism through spatial decom-
position of a PDE grid to consider less traditional means of discovering the million-fold
concurrency that will be required for petaflops-scale computing.

Time-parallelism is a counterintuitive but demonstrably interesting source of concur-
rency, even in evolutionary, causal simulations. A key idea of time-parallelism is that not
all of the work that goes into producing a converged solution at time level ` is sequentially
captive to a converged solution at time level `−1. When an iterative method is employed,
different components of the error may converge at different stages, and useful work may
conceivably begin at level ` before the solution at `− 1 is completely globally converged.
This is particularly true in nonlinear problems. The direction, volume, and granularity of
interprocessor communications in temporal parallelism are different from those of spatial
parallelism, as are the memory scalings, since multiple time-frames of the problem propor-
tional to the temporary concurrency must be kept in fast memory. For reasons of scope,
we do not pursue the corresponding parallel complexities here, but refer to [16], [17].

In addition to the data parallelism within an individual PDE analysis, there is data
parallelism between PDE analyses when the analyses are evaluations of objective functions
or enforcements of state variable constraints within a computational optimization context.
Computational fluid dynamics is not about individual large-scale analyses, done fast and
well-resolved and “thrown over the wall.” Both the results and their sensitivities are
desired. Often multiple forcings (right-hand sides) are available a priori, rather than
sequentially, which permits concurrent evaluation. Petaflops-scale computing for CFD
will mean 100 analyses running on 10,000 1Gflop/s processors earlier than it means 1
analysis running on 1,000,000 1Gflop/s processors.

Finally, we recall that computational fluid dynamics is not bound to a PDE formulation.
The continuum approach is convenient, but not fundamental. In a flat, global memory
system, it is natural to solve Poisson equations; in a hierarchical, distributed memory
system, it is less natural. Nature is statistical, and enforces elliptic constraints like in-
compressibility through fast local collision processes. Among major phenomena in CFD
only radiation is fundamentally “action at a distance.” Lattice gas models have had a
discouraging history, perhaps because they are too highly quantized, requiring massive
statistics, and because their fundamental operations cannot exploit floating point hard-
ware. Lattice Boltzmann models, on the other hand, seem highly promising. They are
still quantized in space and time, but not in particle number, as quantized particles are
replaced with continuous probability distribution functions. Lattice Boltzmann models
possess ideal petaflops-scale concurrency properties: their two phases or relaxation and
advection are alternatively completely local and nearest-neighbor in nature. There is no
inherent global synchronization, except for assembling a visualization.
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VI. Summary Observations

The PDE-based algorithms for general purpose CFD simulations that we use today will
in theory4 scale to petaflops, particularly as the equilibrium simulations that are prevalent
today go over to evolutionary simulations, with the superior linear conditioning proper-
ties of the latter in implicit contexts. The pressure to find latency tolerant algorithms
intensifies. Longer word lengths (e.g., 128-bit floats) anticipated for petaflops-scale ar-
chitectures, for more finely resolved — and typically worse-conditioned — problems, can
assist in those forms of latency toleration, such as delayed orthogonalization, that are
destabilizing. Solution algorithms are, in some sense, the “easy” part of highly parallel
computing, and thornier issues such as parallel I/O and parallel dynamic redistribution
schemes may ultimately determine the practical limits to scalability.

Summarizing the “state-of-the-art” of architectures and programming environments, as
they affect parallel CFD, we believe that:

• Vector-awareness is out; cache-awareness is in; but vector-awareness will return in
subtle ways having to do with highly multiple-issue processors.

• Except for the Tera machine and the presently installed vector base, near-term large-
scale computer acquisitions will be based on commodity cache-based processors.

• Driven by ASCI, large-scale systems will be of distributed-shared memory (DSM) type:
shared in local clusters on a node, with the nodes connected by a fast network.

• Codes written for the Message Passing Interface (MPI) are considered “legacy” already
and will therefore continue to be supported in the DSM environment; MPI-2 will
gracefully extend MPI to effective use of DSM and to parallel I/O.

• High-performance Fortran (HPF) and parallel compilers are not yet up to the perfor-
mance of message-passing codes, except in limited settings with lots of structure to
the memory addressing [15]. Hybrid HPF/MPI codes are possible steps along the evo-
lutionary process, with high-level languages automating the expression and compiler
detection of structured-address concurrency at lower levels of the PDE modeling.

• Automated source-to-source parallel translators, such as the University of Greenwich
CAPTools project (which adds MPI calls to a sequential F77 input) may attain 80–
95% of the benefits of the best manual practice [27], but the result is limited to the
concurrency extractable from the original algorithm, like HPF. In many cases, the
legacy algorithm should, itself, be replaced.

• Computational steering will be an important aspect of petaflops-scale simulations and
will appear in the form of interpreted scripts that control SPMD compiled executables.

With respect to algorithms, we believe that:
• Explicit time integration is solved problem, except for dynamic mesh adaptivity.
• Implicit methods remain a major challenge, since:
– Today’s algorithms leave something to be desired in convergence rate, and
– All “good” implicit algorithms have some global synchronization.

• Data parallelism from domain decomposition is unquestionably the main source of
locality-preserving concurrency, but optimal smoothers and preconditioners violate
strict data locality.

• New forms of algorithmic latency tolerance must be found.

4We are warned by Philosopher Berra: “In theory there is no difference between theory and practice. In practice,
there is.”
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• Exotic methods should be considered at petaflops scales.
With respect to the interaction of algorithms with applications we believe that the ripest

remaining advances are interdisciplinary:
• Ordering, partitioning, and coarsening must adapt to coefficients (grid spacing and

flow magnitude and direction) for convergence rate improvement.
• Trade-offs between pseudo-time iteration, nonlinear iteration, linear iteration, and

preconditioner iteration must be understood and exploited.
With respect to the interaction of algorithms with architecture, we believe that:
• Algorithmicists must learn to think natively in parallel and avoid introducing unnec-

essary sequential constraints.
• Algorithmicists should inform their choices with a detailed knowledge of the memory

hierarchy and interconnection network of their target architecture. It should be pos-
sible to develop very portable software, but that software will have tuning parameters
that are determined by hardware thresholds.
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