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In recent years, biclique methods have been proposed to construct phylogenetic trees. One of the key steps of
these methods is to find complete sub-matrices (without missing entries) from a species-genes data matrix.
To enumerate all complete sub-matrices, 17 described an exact algorithm, whose running time is exponential.
Furthermore, it generates a large number of complete sub-matrices, many of which may not be used for tree
reconstruction. Further investigating and understanding the characteristics of species-genes data may be
helpful for discovering complete sub-matrices. Therefore, in this paper, we focus on quantitatively studying
and understanding the characteristics of species-genes data, which can be used to guide new algorithm
design for efficient phylogenetic inference. In this paper, a mathematical model is constructed to simulate
the real species-genes data. The results indicate that sequence-availability probability distributions follow
power law, which leads to the skewness and sparseness of the real species-genes data. Moreover, a special
structure, called “ladder structure”, is discovered in the real species-genes data. This ladder structure is
used to identify complete sub-matrices, and more importantly, to reveal overlapping relationships among
complete sub-matrices. To discover the distinct ladder structure in real species-genes data, we propose an
efficient evolutionary dynamical system, called “generalized replicator dynamics”. Two species-genes data
sets from green plants are used to illustrate the effectiveness of our model. Empirical study has shown that
our model is effective and efficient in understanding species-genes data for phylogenetic inference.

1. INTRODUCTION

Phylogenetic inference can be defined as the pro-

cess of determining estimated evolutionary history

by analysis of a given data set 18. The evolution-

ary history of genes and species can be described by

a phylogenetic tree 12, 7. It is widely accepted that

amino acid and/or DNA sequences produce a tree

closest to the true tree 6, 15, 8. As the amount of

molecular sequence data available rapidly increases,

it has spurred a number of phylogenetic analysis

across the tree of life 16. In general, the data pre-

pared for phylogenetic analysis is in the form of

species-genes matrix, where genes refer to any set

of homologous sequences, whether protein coding or

not 17, 5. As species-genes matrix indicates whether

there exist sequences for any species and gene, it is

also called sequence availability matrix. Ideally, this

matrix is complete, which means that every species

has been sequenced for every gene in the matrix.

However, as pointed out by 17, a few species have

been sequenced for many genes; a few genes have

been sequenced for many species; but most of the

potential data available for phylogenetic purposes is

still missing. Therefore, species-genes matrices de-

rived from the available sequence data are “sparse”

and “uneven” 14, 11, 2, 17. The sparseness and skew-

ness of species-genes data have posed serious chal-

lenges for the available phylogenetic methods and

strategies of constructing trees 16, 19.

Recent studies have shown that concatenat-

ing multiple sequences from the same species

can improve the accuracy of phylogenetic infer-

ence 11, 2, 17, 5. Given a large species-genes matrix,

Sanderson et al. (2003) developed an exact algorithm

to find all complete sub-matrices (without missing

data). Once all the complete sub-matrices are dis-

covered, an effective strategy for constructing phy-

logenetic tree is to concatenate the sequences of all

the genes in the complete sub-matrix. The whole

process is illustrated in Fig. 1. In this process, an

important step is the discovery of all complete sub-

matrices. In graph theory, the species-genes matrix

W = (wij)m×n (as right part of Fig. 1) can be rep-

resented as a bipartite graph G(S, G, W ), in which

there are two vertex sets S = {s1, . . . , sm} (si rep-
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resents the i-th species) and G = {g1, . . . , gn} (gj

denotes the j-th gene), and the edge between si and

gj exists if wij = 1 (the gene gj is sequenced for

the species si) and otherwise if wij = 0. There-

fore, a complete sub-matrix of W corresponds to a

complete subgraph of G, typically called ‘biclique’ in

graph theory a. Therefore, in a biclique, all genes are

sequenced for all species. In essence, the discovery

of all complete sub-matrices is equivalent to an NP-

complete graph problem, known as “biclique enumer-

ation” 1, 17, 16. The running time of the “biclique

enumeration” algorithm proposed by Sanderson et

al. (2003) is exponential and may take a long time

to analyze large data sets. Furthermore, it generates

a large number of bicliques, many of which may not

be used for tree reconstruction. Hence, it is time-

consuming for phylogeneticists to determine which

bicliques can build meaningful phylogenetic trees.

Although the sparseness and skewness of species-

genes data is a curse for biclique enumeration, they

may become a blessing for phylogenetic inference if

we study and take advantage of them. Therefore,

in this paper, we focus on quantitatively studying

and understanding the characteristics of real species-

genes data, which can be used to guide new algo-

rithm design for efficient phylogenetic analysis. We

firstly construct a mathematical model to simulate

real species-genes data. Then some underlying and

special features or structures, such as “ladder struc-

ture”, can be discovered in real species-genes data

through the model. This ladder structure can be

used to identify complete sub-matrices, and more im-

portantly, to reveal the distinct overlapping relation-

ships among complete sub-matrices. Finally, to dis-

cover the ladder structure in real data, we propose an

efficient evolutionary dynamical system, called “gen-

eralized replicator dynamics”.

The rest of this paper is organized as follows:

we firstly propose a model in Section 2 to study

the species-genes data. Based on this model, char-

acteristics of the real-world species-genes data can

be quantitatively investigated. Two conclusions are

drawn when we use this model to analyze two real

species-genes data sets collected from green plants.

In Section 3, we formulate the discovery of ladder

structure as a maximization problem. To approach

this problem, in Section 4, we generalize a well-

known population dynamics in the evolutionary biol-

ogy, replicator dynamics, to the general matrix, i.e.

species-genes data matrix, for efficiently estimating

our model 9, 10. We call this new dynamics “gen-

eralized replicator dynamics”. Empirical results in

Section 5 show our model can effectively and effi-

ciently build phylogenetic trees by estimating its dis-

tributions. Finally, conclusions and future works are

presented in Section 6.

2. MODEL OF SPECIES-GENES DATA

Before introducing the model of species-genes data,

we firstly review two characteristics recently ob-

served by phylogeneticists 17, 16:

(1) Sparse and uneven sequence availability

distribution: as shown in Fig. 2(d) that is an

excerpt from 16 and Fig. 2(e), these two matri-

ces are very sparse and uneven. “Many sequences

are available for a few species and a few heavily

sampled genes are available for many species”.

Moreover, these two figures show “the most heav-

ily sampled corner of the species-genes matrix

and the remainder of the matrix is even more

sparse” 5.

(2) Many overlaps of bicliques: as observed and

reported in 17, “many of bicliques overlap, and

for any given biclique there are generally bi-

cliques which have either slightly more species

and slightly fewer genes, or slightly more genes

and fewer species”.

The first characteristic is an empirical observa-

tion of a global data distribution in the whole species-

genes data and the second one indicates relationships

among bicliques. However, they are only qualitative

and rough view of the species-genes data and thus

may not provide further useful guidance and insights

for data analysis algorithm design. Therefore, we

build a model to quantitatively analyze species-genes

data and advance our understanding of species-genes

data from qualitative observations to quantitative in-

vestigations.

aIn the rest of the paper, for simplicity, we use the term ‘biclique’ to denote ‘complete sub-matrix’.
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As a few species are sequenced for many genes

and a few genes are sequenced for many species in

the real-world species-genes data, in the model, we

assign each species si ∈ S a Sequence-Availability

(shortly denoted as SA) probability value pS
i and

each gene gj ∈ G a SA probability value pG
j as well.

The greater the sequence-availability probability of

si or gj is, the larger the number of genes or species

the corresponding species si or gene gj is sequenced

for. Therefore, two sets of SA probabilities are used

in the model: one is species SA probability distribu-

tion pS =
(
pS
1 , pS

2 , . . . , pS
m

)
, and the other is genes

SA probability distribution pG =
(
pG
1 , pG

2 , . . . , pG
n

)
,

where m is the number of species (m = |S|), n is the

number of genes (n = |G|), and pS
i , pG

j ∈ [0, 1]. Then

the species-genes data matrix W = (wij)m×n (or se-

quence availability matrix) can be simulated by the

SA probability distributions pS and pG of m species

and n genes in the model described as follows,

Model of species-genes data (or sequence availabil-

ity data)

Input: species SA distribution pS and genes SA dis-
tribution pG;

Output: species-genes data Wm×n.

1. generate a uniformly random value p ∈ [0, 1];
2. the sequence is available for the species si and the

gene gj (i.e., wij is set 1), if p � pS
i or p � pG

j ;
otherwise, the sequence is missing for si and gj (i.e.,
wij is set 0).

3. iterate step 1 and 2 for all species and genes.

In this model, the larger the pS
i and pG

j are, the

more possible the species si is sequenced for the gene

gj (i.e., the corresponding wij is 1). Therefore, the

SA probability of a species (or gene) determines if

this species (or gene) is sequenced more or less.

With this model, we are interested in quanti-

tatively answering two questions that are already

partially and qualitatively answered in the observed

characteristics mentioned above by Sanderson et al.

(2003): (i). “what are the sequence availability dis-

tributions of species and genes, pS and pG?”. We

already know they are skewed from the first char-

acteristic aforementioned and further want to know

“how skew are they?” (ii). “what are the relation-

ships of bicliques?” We already know many bicliques

overlap in the way described in the second character-

istics aforementioned. But we further want to know

“structures of these overlapping bicliques and to what

extent they overlap?”
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Fig. 1. Construction process of phylogenetic trees from
species-genes data: from a list of genes and the species for
which sequences of those genes are available (as left), to
species-genes matrix (as right), complete sub-matrix(or bi-
clique) discovery, sequence concatenation in biclique, and phy-
logenetric trees construction.

Therefore, to answer the first question, a useful

method is to try different statistical distributions as

SA distributions of species and genes, i.e., pS and

pG in the model, and to compare these simulated

species-genes data with the real data in terms of

both matrix similarity and sequence numbers’ dis-

tributions b. After answering the first question by

determining which statistical distribution the real

species-genes data follows, we can simulate species-

genes data using the model, and then more insights

and understanding of species-genes data for the sec-

ond question may be obtained from the study of the

simulated species-genes data. In the following, we re-

port our results regarding to the above two questions

one by one.

Conclusion 1: sequence availability prob-

ability distributions of species and genes fol-

low power law. To answer the first question and

determine what SA probability distributions in real

data are, we utilized three types of statistical dis-

tributions, (a) uniform, (b) normal and (c) power

bThe sequence number of a species (or gene) is the total number of sequences available for this species (or gene) across all genes
(or species). Specifically, the sequence number d(si) of the i-th species si is d(si) =

∑n
j=1

wij . Similarly, the sequence number
d(gj) of the j-th gene gj is d(gj) =

∑m
i=1

wij .
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law c. Their skewness increases from type (a) to

type (c). In this paper, we simply let pS = pG

for only emphasizing the difference between distribu-

tion types. In practice, to make the simulated data

closer to the real data, different parameters of the

distribution can be tested for pS and pG. The cor-

responding simulated species-genes matrices of the

distributions (a), (b) and (c) are shown in Fig. 2(a),

2(b) and 2(c), respectively. For comparison, two real-

world species-genes data matrices are also drawn in

Fig. 2(d) and 2(e). All matrices in Fig. 2 are re-

arranged by the decreasing order of sequence num-

bers of species and genes. It can be clearly ob-

served that, with the increase of distribution’s skew-

ness from type (a) to type (c), the first characteris-

tic aforementioned becomes more and more obvious,

e.g., matrices are more and more sparse and skewed.

In addition to comparing simulated and real data

by matrix similarity, we can also compare their se-

quence numbers’ distributions of species and genes.

They are plotted in the form of log-log cumulative

distribution d. We found that in two real data sets

as shown in Fig. 2(d) and 2(e), species and genes’

sequence numbers’ distributions in log-log form are

roughly straight lines and thus follow power law.

When observing three simulated data from type (a)

to type (c), their sequence numbers’ distributions

evolve from curves to lines. Therefore, the data sim-

ulated by the model with the statistical distribution

type (c) is much closer to real species-genes data.

Hence we draw the conclusion that sequence avail-

ability probability distributions of species and genes

in real data follow the statistical distribution type

(c) – power law.

Although this is not a surprising result, it gives

us an idea of how skewed real species-genes data is.

Furthermore, it provides us a way to study the struc-

tures and properties of real species-genes data. Next,

we employ this model with the power law SA dis-

tributions of species and genes to study the second

question.

Conclusion 2: the most distinct overlap-

ping structure of bicliques is a ladder struc-

ture. Based on Conclusion 1, we used our model

with the power law SA distributions of species and

genes to generate a species-genes data matrix with 20

species and 20 genes. After rearranging the simula-

tion matrix with the decreasing order of pS and pG

as shown in Fig. 3, a distinct structure is revealed

to the left-top corner of W . Bicliques are easily

identified and the overlapping relationships among

bicliques are also clearly shown in Fig. 3. Each

box framed by dotted lines is a biclique in Fig. 3.

Therefore, this distinct structure is useful for not

only locating bicliques, but also intuitively revealing

the overlapping relationships among these bicliques.

In this structure, bicliques overlap in the way that

confirms what Sanderson et al. (2003) described,

“many of bicliques overlap, and for any given bi-

clique there are generally bicliques which have ei-

ther slightly more species and slightly fewer genes,

or slightly more genes and fewer species”. As this

structure is like a ladder, we call it “ladder struc-

ture”. It can also be found that the sequence avail-

ability probability actually plays the role of measur-

ing the contribution of each species and gene to the

ladder structure. Therefore, although some species

or genes have small sequence numbers, their sequence

availability probabilities are very high. For exam-

ple, the 10th species has only 4 sequences available,

much smaller than the last (20th) species with 8 se-

quences. Hence, the ladder structure can be iden-

tified in the left-top corner of the species-genes ma-

trix rearranged by the decreasing order of the esti-

mated pS∗ and pG∗, not by the decreasing order of

sequence numbers’ distributions. As this small-size

simulated species-genes data in Fig. 3 is generated

by the same model with the same SA distributions

of species and genes and parameters as the large-size

simulated data in Fig. 2(c), it is reasonable to in-

fer that, in real data, “the most distinct overlap-

ping structure of bicliques is ladder structure”

and “the distinct ladder structure in real data

can be discovered by the estimated SA distri-

butions pS∗ and pG∗”.

From the above model analysis of species-genes

data, two conclusions are useful for effective and effi-

cient phylogenetic tree inference. Especially, the lad-

cPower law distribution follows the rule P (x) = αx−β . It can be seen as a straight line on log-log figure. More detail refers to
http://en.wikipedia.org/wiki/Power law.
dFor a species (or gene) sequence number k, how many species (or genes) have sequence number higher than k.
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Fig. 2. Comparison of matrices and sequence numbers’ distributions among real and simulated species-genes data. In species-
genes matrices, a dot indicates the existence of a sequence for that species and genes. And species are sorted vertically by their
number of sequences, and genes are sorted horizontally by the number of taxa for which they have been sequenced. Sequence
numbers’ log-log cumulative distributions of species and genes are plotted in the bottom of each species-genes data matrix. In
the plot, the x-axis is the sequence number of a species (or gene) k, and the y-axis is the number of how many species (or
genes) have sequence number higher than k. (a), (b), and (c): simulated data by the model with uniform, normal and power
law distributions of sequence-availability probabilities of species and genes. (d) GenBank data: The most-represented species
(Arabidopsis thaliana) is at the top, and the most heavily sequenced gene (rbcL) is on the left. (d) SwissProt data. Images in
(d) and (e) show the most heavily skewed corner of the species-genes matrix and the remainder of the matrix is very sparse.

der structure in the second conclusion, which was not

discovered before, can be helpful for biclique discov-

ery and tree reconstruction. Once the ladder struc-

ture is discovered, bicliques can be easily identified

(as illustrated in Fig. 3). In the rest of the paper, we

will focus on discovering the distinct ladder struc-

ture in real species-genes data by estimating its SA

distributions.

3. PROBLEM OF ESTIMATING SA

PROBABILITY DISTRIBUTIONS

According to the model introduced above, the esti-

mated sequence-availability distributions of species

and genes are key to the discovery of the ladder

structure. To estimate SA distributions in the real

species-genes data, we introduce an availability prob-

ability pij = pS
i pG

j for the sequence existence in the

i-th species si and the j-th gene gj . Then, a sequence

availability probability matrix P = (pij)m×n can

be constructed. To measure how well this sequence

availability probability matrix P approximates the

actual sequence availability matrix (real data W ),

we introduce a function called “Accumulated Proba-

bility Function of Sequence Availability”, denoted as

P (pS ,pG, W ) =
∑m

i=1

∑n

j=1 wijp
S
i pG

j , to count all

the availability probabilities of sequences existing in

the real species-genes data W . Intuitively, pS∗ and

pG∗ that can maximize P (pS ,pG, W ) will make the

matrix P approximate the matrix W to the maxi-

mal extent. Therefore, by maximizing the function

P (pS ,pG, W ), we can obtain the estimated pS∗ and

pG∗ for the real species-genes data W . Then the

distinct ladder structure hidden in the real species-

genes data W can be discovered in the left-top corner

of W reordered by the decreasing orders of pS∗ and

pG∗. In practice, to limit the value range of the func-

tion P (pS ,pG, W ), the constraints on pS and pG are

added to the problem formulation. The constraints

are only the normalization of pS and pG and thus

will not affect the discovery of ladder structure. It is

formally expressed as follows,

arg max
pS∈∆m

+
,pG∈∆n

+

P (x,y, W ) (1)

where ∆n
+ ={

x ∈ R
n
∣∣∣ ∑n

i=1 xi = 1, and xi � 0 (i = 1, . . . , n)
}

denotes a superplane in n-dimensional non-negative

vector space.

In the next section, we will propose an efficient

algorithm to efficiently maximize P (pS ,pG.W ).

4. ALGORITHM OF ESTIMATING SA

PROBABILITY DISTRIBUTIONS:

GENERALIZED REPLICATOR

DYNAMICS

In this section, to simplify the denotations, we re-

place pS as x and pG as y. In the case of symmetric
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matrix, let pS = pG = x.

As proved in 9, in the case that W is symmet-

ric, replicator dynamics is able to approximate the

maximization problem of P (x,x, W ) in Eq.(1). In

this section, we firstly introduce replicator dynamics

and then propose a novel discrete dynamical system,

which generalize replicator dynamics from symmet-

ric matrix to general matrix. Therefore, this new

dynamical system is called “Generalized Replicator

Dynamics” (shortly denoted as GRD). As GRD is

developed based on all the evolutionary concepts of

replicator dynamics, e.g., natural selection model,

GRD can efficiently approximate the maximization

problem of P (x,y, W ) in Eq.(1). Like replicator dy-

namics, we also provide the concrete proof to guar-

antee the optimization ability of GRD.

4.1. Replicator Dynamics

Replicator dynamics is one of the population dynam-

ical methods, which is also a kind of discrete dynam-

ical system. It was first introduced and studied in

evolutionary game theory to model the evolution of

animal behavior 10. Motivated by population evo-

lution, the idea of replicator dynamics has been in-

dependently studied in many fields, such as popu-

lation genetics 4, mathematical ecology 3, computer

vision 13. Replicator dynamics is based on the classi-

cal selection model by studying the effect of selection

upon a population. The differential viabilities of the

genotypes are the key of selection.

Consider a single chromosomal locus with n al-

leles A1, . . . , An. Let x
(t)
1 , . . . , x

(t)
n denote the gene

frequencies at the mating stage in the parental gen-

eration (the t-th generation). The assumption of

random mating leads to x
(t)
i x

(t)
j for the probability

that a zygote carries the gene pair (Ai, Aj). Let wij

be the probability that an (Ai, Aj)-individual sur-

vives to adult age. Since the gene pairs (Ai, Aj) and

(Aj , Ai) belong to the same genotype, the selective

value wij � 0 and wij = wji. The selection matrix

W = (wij)n×n is therefore symmetric.

If N is the number of zygotes in the new genera-

tion, the (t+1)-th generation, then x
(t)
i x

(t)
j N of them

carry the gene pair (Ai, Aj) of which wijx
(t)
i x

(t)
j N

survive to adulthood. Therefore, the total num-

ber of individuals reaching the mating stage is

∑n

r,s=1 wrsx
(t)
r x

(t)
s N . Let fij denote the frequency

of the gene pair (Ai, Aj) in the adult stage of the

(t + 1)-th generation, we can obtain,
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matrix, a miniature of species-genes data. Its SA probability
distributions of species and genes follow the power law distri-
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value in both matrices. It can be seen that the ladder struc-
ture (framed by solid thick grey lines) exists in the simulated
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fij =
wijx

(t)
i x

(t)
j N

∑n

r,s=1 wrsx
(t)
r x

(t)
s N

(2)

Since x
(t+1)
i is the frequency of the allele Ai in the

adult stage of the (t + 1)-th generation, we have

x
(t+1)
i =

∑n
j=1 fij . This leads to the relation

x
(t+1)
i = x

(t)
i

∑n

j=1 wijx
(t)
j∑n

r,s=1 wrsx
(t)
r x

(t)
s

i = 1, . . . , n

(3)

Eq.(3) is the selection model. It can be rewritten in

the matrix form as follows,

x
(t+1)
i = x

(t)
i

(Wx(t))i

x(t)T Wx(t)
i = 1, 2, . . . , n (4)

where (Wx(t))i denotes the i-th component of the

vector Wx(t), and the state of the gene pool of

the t-th generation is given by the vector x(t) =

(x
(t)
1 , . . . , x

(t)
n )T of gene frequencies. x(t) has non-

negative components summing up to one, and be-

longs to the simplex ∆n
+. Eq.(4) describes the ac-
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tion of selection from one generation to the next,

and therefore the map sending x(t) to x(t+1) defines

a discrete dynamical system on the space ∆n
+, called

Replicator Dynamics.

A2

A3

A4

A1
A5

An

...
...

wij

A1 B1

B2A2

BnAm

... ...wij

(a) replicator dynamics (b) generalized replicator dynamics

Fig. 4. Alleles Ai or Bj as vertices and their mating survival
probabilities wij as edge weights in replicator dynamics and

generalized replicator dynamics.

Definition 4.1 (Replicator Dynamics). Let

Wn×n be a non-negative symmetric matrix. Given

the vector x(t) = (x
(t)
1 , . . . , x

(t)
n )T ∈ ∆n

+ being the

status of the system in the t-th iteration, we define

the dynamical system as Eq.(4).

Since the selection model from evolutionary bi-

ology defines a discrete dynamical system replicator

dynamics, we are interested in its stationary states

and the optimization ability. Before that, we first

introduce the average fitness of the population.

Definition 4.2. (Average Fitness of Population

in Selection Model). Given x
(t)
i x

(t)
j the frequency

of the zygote of (Ai, Aj) and the selective value wij

the probability that it survives to adult age, we define∑n
i,j=1 wijx

(t)
i x

(t)
j is the average fitness (or average

selective value) of the population in the (t)-th gen-

eration. The average fitness can be written in the

matrix form as P (x(t),x(t), W ) = x(t)T Wx(t).

The fundamental theorem of natural selection

tells us that under selection model, the average fit-

ness increases from generation to generation. Refer

to 9, 10 for detailed proof of this theorem.

Theorem 4.1. (Fundamental Theorem of Natu-

ral Selection by Replicator Dynamics). For the

replicator dynamics given by Eq.(4), the average fit-

ness P (x(t),x(t), W ) increases with the generation t

increasing in the sense that

P (x(t+1),x(t+1), W ) � P (x(t),x(t), W ) (5)

with equality if and only if x(t) is an equilibrium point

x∗.

4.2. Generalized Replicator Dynamics

The selection model above is based on the selection

matrix Wn×n that describes the survival probability

of the zygotes of any two alleles (Ai, Aj). There-

fore, W is symmetric and the adjacency matrix of a

weighted graph G(A, W ), whose vertex set A is alle-

les and edge weight is wij in W . This weighted graph

is shown in Fig.4(a). In this section, we generalize

the replicator dynamics to a more general selection

matrix Wm×n that denotes the probability of the zy-

gotes of any two alleles (Ai, Bj) from allele types A

and B. We suppose that there are two types (or sets)

of alleles A = {A1, . . . , Am} and B = {B1, . . . , Bn}.
There are restrictions of mating in these two types

of alleles: the mating can only happen between dif-

ferent types of alleles. For example, the allele Ai can

mate with any B-type allele Bj , but always fail with

any other A-type allele. Therefore, the selection ma-

trix Wm×n and two sets of alleles A and B forms a

bipartite graph as shown in Fig.4(b).

Let x
(t)
1 , . . . , x

(t)
m denote the gene frequencies of

A-type alleles A1, . . . , Am, and y
(t)
1 , . . . , y

(t)
n the gene

frequencies of B-type alleles B1, . . . , Bn, at the mat-

ing stage in the parental generation (the t-th gen-

eration). The assumption of random mating leads

to x
(t)
i y

(t)
j for the probability that a zygote carries

the gene pair (Ai, Bj). If N is the number of zy-

gotes in the new generation, the (t+1)-th generation,

then x
(t)
i y

(t)
j N of them carry the gene pair (Ai, Bj) of

which wijx
(t)
i y

(t)
j N survive to adulthood. Therefore,

the total number of individuals reaching the mating

stage is
∑m

r=1

∑n

s=1 wrsx
(t)
r y

(t)
s N . Let fij denote the

frequency of the gene pair (Ai, Bj) in the adult stage

of the (t + 1)-th generation, we can obtain,

fij =
wijx

(t)
i y

(t)
j N

∑m

r=1

∑n

s=1 wrsx
(t)
r y

(t)
s N

(6)

Since x
(t+1)
i is the frequency of the allele Ai in the

adult stage of the (t + 1)-th generation, we have

x
(t+1)
i =

∑m

j=1 fij . This leads to the relation

x
(t+1)
i = x

(t)
i

∑n
j=1 wijy

(t)
j∑m

r=1

∑n
s=1 wrsx

(t)
r y

(t)
s

i = 1, . . . , m
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It can be rewritten in the matrix form as follows,

x
(t+1)
i = x

(t)
i

(Wy(t))i

x(t)T Wy(t)
i = 1, 2, . . . , m (7)

For B-type alleles, since y
(t+1)
j is the frequency

of the allele Bj in the adult stage of the (t + 1)-th

generation, we have y
(t+1)
j =

∑m

i=1 f ′
ij , where f ′

ij is

computed according to Eq.(6) by substituting x
(t)
i

with x
(t+1)
i . This leads to the relation

y
(t+1)
j = y

(t)
j

∑m

i=1 wijx
(t+1)
i∑m

r=1

∑n

s=1 wrsx
(t+1)
r y

(t)
s

j = 1, . . . , n

Its matrix form is,

y
(t+1)
j = y

(t)
j

(WTx(t+1))j

y(t)T WTx(t+1)
j = 1, 2, . . . , n (8)

The state of the gene pool of the t-th generation

is given by the vector x(t) = (x
(t)
1 , . . . , x

(t)
m )T of

gene frequencies in A-type alleles and the vector

y(t) = (y
(t)
1 , . . . , y

(t)
n )T of gene frequencies in B-type

alleles. x(t) and y(t) have non-negative components

summing up to one, and belong to the simplex ∆m
+

and ∆n
+ respectively. Eq.(7) and Eq.(8) are the gen-

eralized selection model for two types of alleles A

and B. It describes the action of selection between

two types of alleles from one generation to the next,

and therefore the map sending x(t) and y(t) to x(t+1)

y(t+1) defines a discrete dynamical system on the

spaces ∆m
+ and ∆n

+, called Generalized Replicator

Dynamics (GRD).

Definition 4.3. (Generalized Replicator Dynam-

ics). Let Wm×n be a non-negative matrix. Given the

vector x(t) = (x
(t)
1 , . . . , x

(t)
m )T ∈ ∆m

+ and the vector

y(t) = (y
(t)
1 , . . . , y

(t)
n )T ∈ ∆n

+ being the status of the

system in the t-th iteration, we define the discrete

dynamical system as Eq.(7) and Eq.(8).

Correspondingly, we studied the the fixed points

and optimization ability of the generalized replicator

dynamics. Next the average fitness of the population

and the fundamental theorem of natural selection in

the generalized selection model are given.

Definition 4.4. (Average Fitness of Population

in Generalized Selection Model). Given x
(t)
i y

(t)
j

the frequency of the zygote of (Ai, Bj) and the se-

lective value wij the probability that it survives to

adult age, we define
∑m

i=1

∑n

j=1 wijx
(t)
i y

(t)
j is the av-

erage fitness (or average selective value) of the popu-

lation in the (t)-th generation. The average fitness in

the matrix form is P (x(t),y(t), W ) = x(t)T Wy(t) =

y(t)T WTx(t) and therefore the same as the form of

accumulated probability function introduced in Sec-

tion 3 of a bipartite graph G(A, B, W ), where A and

B are two sets of alleles representing the vertices.

Theorem 4.2. (Fundamental Theorem of Nat-

ural Selection by Generalized Replicator Dy-

namics). For the generalized replicator dynam-

ics given by Eq.(7) and Eq.(8), the average fitness

P (x(t),y(t), W ) increases with the generation t in-

creasing in the sense that

P (x(t+1),y(t+1), W ) � P (x(t),y(t), W ) (9)

with equality if and only if x(t) and y(t) are two equi-

librium points x∗ and y∗ respectively.

Proof. See Appendix A.

If let W be symmetric, x and y are associated

with the same set of vertices and thus equal to each

other. Hence Eq.(7) and Eq.(8) are reduced to Eq.(4)

and therefore the replicator dynamics become a spe-

cial instance of the generalized replicator dynam-

ics. In practice, the iteration of about 50 is enough

for the generalized replicator dynamics to get con-

verged. Therefore, its computational complexity is

O(k(2h+m+n)), where k is the number of iterations,

h, m and n are the number of non-zeros, numbers of

rows and columns in W respectively. If ignoring k,

the final complexity is O(2h + m + n). Therefore,

the generalized replicator dynamics is very efficient.

5. EMPIRICAL STUDY

To test if GRD is able to estimate the sequence-

availability distributions for discovering the target

pattern we proposed – ladder structure, we ap-

ply GRD to two data sets collected from GenBank

and Swiss-Prot e respectively, which were published

in 5. Their species-genes data matrices are shown in

Fig. 2(d) and 2(e). To validate the effectiveness of

phylogenetic inference of ladder structure, bicliques

eboth are available at http://ginger.ucdavis.edu/sandlab/www data
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Fig. 5. GenBank: the phylogenetic trees of selected bicliques obtained from the submatrix 100 × 100 computed by the general-
ized replicator. The numbers on the branches of pylogenetic trees are bootstrap support. A black dot in (a) indicates a non-zero
value in the matrix. The ladder structure (framed by solid thick grey lines) in (a) can be clearly seen.

in this overlapping structure are manually selected

for investigation. This process has been illustrated

in Fig. 1. In detail, given a biclique, following steps

described in 5, sequences in bicliques are firstly con-

catenated and aligned using CLUSTALW with de-

fault options. Protein parsimony is used to construct

trees, then bootstrap analysis (500 replicates) is ap-

plied to assess the reliability of trees, and finally the

consensus tree is the eventual output. We imple-

mented generalized replicator dynamics in MATLAB

and all the experiments are performed in the com-

puter system with Pentium 4 CPU 1.80GHZ, 512MB

of RAM.

GenBank data is extracted from GenBank

database. It contains 16,348 species and 59,144

genes. According to the result published in 5, there

are 5587 bicliques with at least four species and two

genes in the data. However, in this published result,

the most distinct overlapping relationship (i.e., lad-

der structure) of bicliques among the 5587 bicliques

is not revealed. It took GRD less than 1 second to

discover the distinct ladder structure from GenBank

data, while it took the biclique enumeration algo-

rithm more than 900 seconds to find bicliques. Af-

ter obtaining estimated SA distributions of species

and genes, i.e., pS∗ and pG∗, we reorder the species-

genes data matrix by the decreasing order of pS∗

and pG∗. According to our analysis in Section 2, the

most distinct ladder structure is collected to the left-

top corner of the reordered matrix. Therefore, as the

original matrix is very large, we only show the first

100 species and 100 genes in the left-top corner of

the reordered matrix in Fig.5(a). From this figure, a

distinct ladder structure can be clearly seen and a lot

of bicliques overlap in this ladder structure. Among

these overlapping bicliques, we select three types of

bicliques with different sizes: few species and many

genes, balanced numbers of species and genes, and

many species and few genes. They are 11×51, 20×21

and 33× 5, and are framed in different types of dot-

ted lines in Fig. 5(a). Their corresponding phylo-

genetic trees are also shown in Fig. 5(b–d). When
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Fig. 6. SwissProt: the phylogenetic trees of selected bicliques obtained from the submatrix 100 × 100 computed by the gener-
alized replicator dynamics. The numbers on the branches of pylogenetic trees are bootstrap support. A black dot in (a) indicates

a non-zero value in the matrix. The ladder structure (framed by solid thick grey lines) in (a) can be clearly seen.

investigating these three trees, we found that the

phylogenetic tree in Fig. 5(c) provides strong sup-

port for major clades within green plants, such as

eudicots, flowering plants, seed plants, and vascular

plants. In contrast, the trees in Fig.5(b) and 5(d) are

not so informative. Phylogenetic trees from other bi-

cliques with balanced numbers of species and genes

in the same ladder structure also have similar results

as shown in Fig. 5(c). We found that the relative po-

sitions of different organisms on these trees are not

affected. In other words, organisms within the same

genus are closely clustered together, e.g. Rosids,

Asterids, Monocots, Conifers, Ferns and Green al-

gae. This indicates that bicliques from the distinct

ladder structure keep the stable inference of phylo-

genetic trees. This result shows that the distinct

ladder structure is easy to discover and useful for

phylogenetic inference. Furthermore, our model can

not only locate many overlapping bicliques efficiently

and effectively, but also reveal that these overlap-

ping bicliques keep similar and stable phylogenetic

structure, which provides more useful information to

phylogeneticists for comparing and evaluating phy-

logenetic trees from species-genes data. This is not

what the biclique enumeration method can get.

SwissProt data is extracted from Swiss-Prot

database. It contains 7449 species and 64,712 genes.

In this data set, we obtained similar results as those

of Genbank data. They are shown in Fig. 6. Like

GenBank data, the ladder structure can also be dis-

covered in SwissProt data as shown in Fig. 6(a). Sim-

ilarly, three bicliques are easily selected for build-

ing phylogenetic trees. These trees are presented in

Fig. 6(b–d). The results in SwissProt data further

verify the conclusions and efficiencies of our model.

6. CONCLUSIONS AND FUTURE WORKS

To better infer the evolutionary history of species,

we build a model to understand and analyze species-

genes data, also called sequence availability data.

As previous works on species-genes data can pro-

vide only qualitative and rough view of this type

of data, in this paper, we built a model to analyze
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it in a quantitative way. Through this model, two

conclusions are obtained: (1) It is the skewness of

the sequence-availability probability distributions of

species and genes that contribute to the sparseness

and skewness real-world species-genes data. Further,

the sequence-availability probability distributions of

species and genes follow power law. (2) By estimat-

ing sequence-availability probability distributions of

species and genes in real data, a distinct ladder struc-

ture is discovered, that is an overlapping structure

of bicliques. To estimate sequence-availability prob-

ability distributions of species and genes in real data

for finding the distinct ladder structure, we pro-

posed a novel evolutionary dynamical system, called

“generalized replicator dynamics”, that is general-

ized from a popular biological system replicator dy-

namics. It is based on the fundamental theorem of

natural selection and it can converge and approxi-

mate the solution of the maximization problem we

formulated for the model estimation. We have con-

ducted experiments on two species-genes data sets

and the results have shown the effectiveness of our

model in understanding and analyzing species-genes

data for efficient phylogenetic inference.

There are a number of venues in the future

works. Because there are not only one ladder struc-

ture in the real data, algorithms based on the model

need to be developed to find more other ladder struc-

tures. Besides the aspect of algorithms, more exper-

iments of our model in other species-genes data are

needed for observing more properties and character-

istics of the data for effective phylogenetic inference.
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APPENDIX A: PROOF OF

THEOREM 4.2

For simplicity, Eq.(7) and Eq. (8) are rewritten as,

x′
i = xi

(Wy)i

xT Wy
(10)

y′
i = yi

(WT x′)i

yT WTx′ (11)

where x and x′ represent x(t) and x(t+1), and simi-

larly for y and y′. Correspondingly, Eq.(9) is rewrit-

ten as,

P (x′,y′, W ) � P (x,y, W ) (12)

It is clearly seen that P (x,y, W ) = xT Wy =

yT WTx =
∑

ij xiwijyj . We will prove the following

two inequalities step by step,

x′T Wy′
� x′T Wy (13)

x′T Wy � xT Wy (14)

Proof of Inequality (13)

Since we assume x′T Wy > 0, we have to show that

(x′T Wy)(x′T Wy′) � (x′T Wy)2 (15)

Clearly,

(x′T Wy)(x′T Wy′) = (x′T Wy)
∑
ij

x′
iwijy

′
j (16)

On replacing y′
j by the expression in Eq. (11) we ob-

tain

(x′T Wy)(x′T Wy′) = (x′T Wy)
∑
ij

x′
iwij(yj

(WTx′)j

yT WTx′ )

=
x′T Wy

yT WTx′

∑
ij

x′
iwijyj(W

T x′)j

=
∑
ij

x′
iwijyj(W

T x′)j

=
∑
ij

x′
iwijyj

∑
k

wkjx
′
k (17)

Here, we use the inequality of Cauchy-Schwarz-

Bunyakowski

(
n∑

i=1

aibi)
2

� (
n∑

i=1

a2
i )(

n∑
i=1

b2
i ) for all ai, bi � 0

(18)

with equality iff there is some value c such that
aj

bj
= c for all j. By (18), we obtain

(x′T Wy)2 = (
∑
ij

x′
iwijyj)

2

=
[∑

j

yj(
∑

i

x′
iwij)

]2

=
[∑

j

(
√

yj)(
√

yj

∑
i

x′
iwij)

]2

�

[∑
j

yj

][ ∑
j

yj(
∑

i

x′
iwij)

2
]

=
∑

j

yj(
∑

i

x′
iwij)

2

=
∑

j

yj

∑
i

x′
iwij(

∑
k

x′
kwkj)

=
∑
ij

yjx
′
iwij(

∑
k

x′
kwkj) (19)

Combining Eq.(17) and Inequality (19), we prove

Inequality (15). If LW (x′,y′) = LW (x′,y) in In-

equality (13), the last estimate must be an equality,

i.e. there must be a value c such that
√

yj

∑
i x′

iwij√
yj

=

(WT x′)j = c in Eq.(19) for all j. This means that

x′ is an equilibrium.

Proof of Inequality (14)

Similarly, we can follow the proof methodology of

Inequality (13) to prove,

(xT Wy)(x′T Wy) � (xT Wy)2 (20)

If LW (x′,y) = LW (x,y) in Inequality (14),

there must be a value d such that (Wy)j = d in

Eq.(19) for all j. This means that y is an equilib-

rium.
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