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Abstract Near-infrared spectroscopy (fNIRS) measures concentrations of oxygenated
(HbO) and deoxygenated (HbR) hemoglobin in the brain. Recently, we demonstrated its
potential also for measuring concentrations of cerebral water (cH2O). We performed fNIRS
measurements during rest to study fluctuations in concentrations of cH2O, HbO and HbR
in 33 well-rested healthy control subjects (HC) and 18 acutely sleep-deprived HC. Resting-
state fNIRS signal was filtered in full-band, cardiac, respiratory, low-, and very-low-frequency
bands. The sum of HbO and HbR constitutes the regional cerebral blood volume (CBV). CBV
and cH2O concentrations were analyzed via temporal correlation and phase synchrony. Fluc-
tuation in concentrations of cH2O and CBV was strongly anti-correlated across all frequency
bands in both frontal and parietal cortices. Fluctuation in concentrations of cH2O and CBV
showed neither a completely synchronous nor a random phase relationship in both frontal and
parietal cortices. Acutely sleep-deprived subjects did not show significant differences in tem-
poral correlation or phase synchrony between fluctuations in cH2O and CBV concentrations
compared with well-rested HC. The reciprocal interrelation between fluctuations in CBV
and cH2O concentrations is consistent with the Munro–Kellie doctrine of constant intracra-
nial volume. This coupling may constitute a functional mechanism underlying glymphatic
circulation, which persists despite acutely disturbed sleep patterns.
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1 Introduction

Upon neuronal activation, increases in the oxygenated hemoglobin (HbO) concentration
within the blood vasculature are accompanied by reciprocal decreases in deoxygenated
hemoglobin (HbR) concentration [1]. This hemodynamic response is the basis for inferences
about brain function in several neuroimaging techniques, notably the blood oxygenation level
dependent (BOLD) MR signal. An alternative technique called functional near-infrared spec-
troscopy (fNIRS) is based on light injection and detection on the scalp and reveals fluctuations
in both HbO and HbR concentrations within a cortical sampling volume [2–5]. The sum of
HbO and HbR constitutes the regional cerebral blood volume (CBV), which represents a
surrogate index for altered neuronal activity in brain tissue [6]. The CBV signal may present
a steady time course, but the constituent HbO and HbR signals are typically anticorrelated
[7], with the direction of change in CBV matching that of HbO. On the other hand, the HbR
concentration is determined by venous blood oxygenation, which is strongly modulated by
vasodilation driven by the neuronal tissue [8,9]. Furthermore, cerebral blood flow in gray
matter depends on sleep/wake stage, suggesting a mechanism controlling cerebral circulation
[10].

Much like blood, cerebrospinal fluid (CSF) comprises 10% of the volume within the
human cranium [11]. CSF consists of 99% water, is continuously produced in the choroid
plexus, and flows through the ventricles and the basal cisterns to the subarachnoid space
[12,13]. Fluid production at the choroid plexus is thought to create a pressure gradient that
determines the direction of net fluid flow, but CSF circulation is also driven by factors such as
arterial pulsatility, respiratory venous fluctuations, and slow vasomotion. CSF flow samples
the brain interstitial fluid and eliminates macroscopic neurotoxic waste products such as
degraded proteins, other metabolites, or electrolytes from the brain [14]. This clearance
process is the core function of the intracerebral bulk flow, now known as the “glymphatic
system” [15]

In the context of the glymphatic system theory, investigation of CSF dynamics has attracted
increasing interest. Obtaining parameters that characterize cerebral fluid flow dynamics and
define driving forces of fluid flow in the human brain is a necessary key for understanding
glymphatic system function and dysfunction. This need accounts for the emergence of non-
invasive approaches to simultaneously measure the concentration changes of cerebral water
(cH2O), HbO, and HbR in humans [16,17].

A recent study by Myllylä et al. demonstrated the possibility to sense dynamic variations
of cH2O in human using technique based on fNIRS [16]. The changes in brain water signal,
measured by fNIRS, are affected by both dynamics of CSF and blood-bound water. As
presented in this study, the effect of blood-bound water in cH2O signal can be reduced when
volume of blood is measured and supposed that concentration changes of blood-bound water
in blood vessels are negligible when compared to volume changes in CSF. Unraveling the
interrelation of fluctuations in CBV and cH2O concentrations is a fundamental step to gaining
better understanding of the mechanisms of fluid dynamics and their interactions in the human
brain.

The Munro–Kellie doctrine states that, since the skull is a rigid, confined compartment
with a constant intracranial volume, any change in fluid concentration or pressure needs to
be counterbalanced to maintain volume equilibrium [18]. In other words, the sum of the vol-
umes of brain matter, CSF, and blood must be constant. A more current and comprehensive
view on the Munro–Kellie doctrine includes the whole central nervous system and considers
the spinal cord as a viscoelastic extension of the brain. In each cardiac cycle, pulsatile brain
deformations driven by physiological pulsations are being relayed on to the ventricles, forc-
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ing CSF displacement from the confined cranium back and forth into the spinal canal [19].
However, due to fundamental reversed anatomical positioning and viscoelastic differences,
mean diffusion and convective transport of CSF in gray and white matter are likely to differ
between brain and spinal cord [20]. In healthy humans, brain matter is considered to have
a fairly constant volume. Although some oscillations in cerebral tissue occur due to cardio-
vascular and vasomotor pulsations [21], blood and CSF are the major intracranial volume
buffers.

Thus, we hypothesized that concentrations of CBV and cH2O would exhibit (1) temporal
fluctuations and (2) possibly a counteracting relationship. Furthermore, recent advances have
differentiated endogenous brain activity fluctuations that originate from different physiolog-
ical sources [21,22]. We therefore expected that fNIRS measures would exhibit oscillations
in the physiological frequency bands, which previously have been shown to drive CSF pulsa-
tions. To test these linked hypotheses, we used fNIRS to measure the relationships between
fluctuations in hemoglobin and cH2O concentrations in 33 well-rested healthy subjects.

Intriguingly, the glymphatic system is mainly disengaged during wakefulness and is acti-
vated during sleep or anesthesia [23–26]. Accumulating evidence suggests that sleep dis-
ruption interferes with glymphatic clearance and ultimately increases the risk of developing
neurodegenerative diseases [24,26–30]. Furthermore, sleep efficiency in patients with cere-
brovascular diseases correlates inversely with the volume of the perivascular Virchow–Robin
spaces, which are the main channels for glymphatic flow [31]. Given this background, per-
turbation of normal sleep pattern would affect cerebral fluid interactions in an awake resting
state. To test this hypothesis, we studied influences of acute sleep deprivation in 18 healthy
subjects after a night without sleep. We supposed that any perturbations in the interrelation
of CBV and cH2O concentrations in sleep deprivation states would be more pronounced in
well-rested subjects than in acute sleep deprivation.

2 Methods

2.1 Subjects

Two groups of participants were recruited: 33 well-rested healthy control subjects (HC, 15
females, mean age ± standard deviation (s.d.): 29.7 ± 8.1 years) and 18 healthy subjects
performing one night of sleep deprivation (longitudinal design, a subset of the 33 HC, 8
females, mean age: 29.7 ± 6.5 years). Mann–Whitney U test showed no significant differ-
ence in age (p > 0.05). Subjects were recruited from the general population by advertise-
ment and screened for absence of neurological disorders, major cardiovascular or respiratory
diseases, continuous medication, drug abuse, and shift work. Written informed consent was
obtained from each participant prior to testing, in accordance with the Declaration of Helsinki
(1983). The regional Ethical Committee of Northern Ostrobothnia Hospital District in Oulu
University Hospital approved the study protocols.

2.2 Experimental design

Our custom-made MRI-compatible fNIRS using four wavelengths (660 nm, 740 nm, 830
nm, 980 nm) is presented in [16]. In this device, four NIRS channels were mounted on
a DC electroencephalography (EEG) cap with 256 electrodes (manufactured by Electrical
Geodesic Incorporation, USA). Two channels were positioned on the left forehead above the
eyebrow around the Fp1 electrode (according to the international 10–20 system used for EEG)

123



  497 Page 4 of 14 Eur. Phys. J. Plus         (2021) 136:497 

and the other two on the mid parietal cortex near the Pz electrode. The distances between
light source and long-range detector and between light source and short-range detector were
3–3.5 cm and 1–1.5 cm, respectively. Optodes were fixed in place with adhesive tape, and a
black spacer protected the eyes from laser reflections.

Subjects assumed a supine position in a 3 Tesla MRI scanner and were asked to lie still,
think of nothing specific, and fixate their eyes on a cross displayed on a screen. Hearing
was protected via earplugs, and head motion was minimized using soft pads fitted over the
ears. For all participants, resting-state fNIRS was measured for 10 min. Well-rested HC were
measured in the afternoon. For the sleep-deprivation condition, some of the HC subjects
repeated the measurement in the early morning after one night without sleep. During this
measurement, the room was not illuminated, and subjects could keep their eyes closed.

2.3 fNIRS device and measurements

fNIRS allows the detection of various chemical components of biological tissue based on
the absorbance and scattering of light by organic molecules. Light is projected on the tissue,
and the back-scattered light at wavelengths ranging from 650 to 1000 nm can be recorded
when using high-sensitive photodetectors for detailed qualitative spectroscopic analysis of
chemical structures in the brain. Conventional fNIRS devices usually use two wavelengths
to measure blood-flow-related changes in hemoglobin saturation, more precisely HbO and
HbR.

Modifications in this technique enable measurement of other chromophores in the human
tissue, for example cytochrome oxidase, fat, or water [32,33]. An isosbestic point corresponds
to a specific wavelength at which the absorption spectra of two chromophores cross each
other and thus have equal absorbance. To quantify concentrations of two chromophores, it is
advisable to select two wavelengths on both sides of the respective isosbestic point, whereas
three or more wavelengths are required for the measurement of three chromophores. In this
study, we measured HbO, HbR, and water concentrations. We selected 660 nm and 830 nm,
thus to either side of the isosbestic point (800 nm) of the HbO and HbR absorption spectrum
[34]. We chose 980 nm to probe water activity, since the isosbestic point for water and HbO
is approximately at 930 nm [35,36]. To correct for the respective photosensitivity of each
optode, the light intensities were multiplied with the wavelength-dependent photosensitivity.

We note that the measured water signal is potentially comprised of intracellular and extra-
cellular compartments in the measurement volume underneath the optodes. However, intra-
cellular water is not expected to display significant fluctuations in concentration during a
10-min measurement in a resting subject. Dynamics in the calculated water signal are there-
fore assumed to be caused by the composite concentration changes in CSF and blood-bound
water, here referred to as cerebral water (cH2O).

The additional short-range fNIRS sensor captured mainly dynamics from skin and skull
due to its lower penetration depth. Since water and hemoglobin are not thought to cause
significant signal fluctuations in skin and skull, the short-range sensor captured extracerebral
artifacts and its signal were used to improve quality of the long-range signal [37].

In total, 102 fNIRS datasets were acquired (33 well-rested and 18 acutely sleep-deprived,
each in two cortical regions). The raw fNIRS signals were visually inspected to assure quality.
In case of a saturated signal or large artifacts, the corrupted part of the signal was removed and
only the artifact-free part was used for analysis. The minimum length of signal recordings was
5 min. Four datasets were excluded (two of the well-rested HC and two of the sleep-deprived
group due to malfunctioning frontal laser). After completing two-thirds of the measurements,
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the frontal laser failed and had to be replaced with a laser at 940 nm that was available at that
time.

2.4 fNIRS data processing

Raw fNIRS optical intensities were converted into time courses representing concentration
fluctuations based on the modified Beer–Lambert law [38–40]. The following extinction
coefficients were used: for 660nm: HbR: 3.4408, HbO: 0.3346, H2O: 0.0166; for 830 nm:
HbR: 0.7804, HbO: 1.0507, H2O: 0.1459; for 940 nm: HbR: 0.7874, HbO: 1.3520, H2O:
0.8804; and for 980 nm: HbR: 0.4233, HbO: 1.2513, H2O: 2.1491 [41]. The differential
path length factor was 5.93 [42]. Distances measured between optodes were used in each
individual calculation. Calculated mean concentrations for HbR, HbO, and cH2O reflect the
total measurement volume underneath the optode.

The time course of signals from the short-range skin detector was subtracted from that of
long-range detector to improve detection of signal dynamics in deeper cortical layers [43].
The remaining dynamics in the signals are attributable to physiological events occurring
below the skull layer. All signals were separately despiked using interpolation [44], linearly
detrended, and low-pass filtered at 0-5 Hz. Total hemoglobin concentration (HbT, equivalent
to CBV representing a surrogate index for neuronal activity) was derived by adding HbR and
HbO concentrations. To account for differences in signal amplitudes between subjects, the
signals were scaled in the range of [0, 1]. Time courses were additionally band-pass-filtered
into four physiological frequency bands, which have been the focus of several previous fNIRS
studies [45]: the cardiac band (0.7–1.5 Hz), the respiratory band (0.12–0.4 Hz), the range of
low-frequency fluctuations (0.01–0.1 Hz), and very-low-frequency fluctuations (0.001–0.01
Hz).

2.5 Data analysis and statistical analysis

Frontal and parietal measurements were considered separately because they are independent
datasets. All calculations were performed in MATLAB R2017b. fNIRS data from well-rested
HC were used to replicate the previously established relationships between HbO, HbR, and
CBV. To investigate the relationships between hemoglobin and cH2O, the CBV signals were
pairwise-correlated in time with the cH2O signals.

Correlations between fluctuations in CBV and cH2O concentrations were calculated in
five frequency bands. Group differences between well-rested and sleep-deprived HC in the
temporal relationship between amplitude fluctuations in cH2O and CBV concentrations were
calculated using two-sample t tests.

Phase synchrony between CBV and cH2O signals was estimated by calculating the phase-
locking value (PLV) based on cardiac, respiratory, and low-frequency bands, because esti-
mation of phase-synchrony requires a filtered signal [46]. PLV is a measure of consistency of
phase differences of two signals at a given frequency, where the phase component is obtained
separately from the amplitude component. PLV has values in the range of [0 1], where unity
represents absolute phase synchrony. A Hilbert transform was used to compute phases of the
signals using customized code from the NBT toolbox ([47], RRID: SCR_009612). PLV was
calculated in a sliding-window manner with an overlap of 75% between windows. The length
of the windows was adapted to the respective frequency band (window length for cardiac
band: 2 s; respiratory band: 10 s; low-frequencies: 120 s). For each band, the PLVs were
averaged across windows to obtain an optimal compromise between statistical accuracy and
stationarity.
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Fig. 1 Filtered fNIRS signals of cerebral water (blue, cH2O) and total cerebral blood volume (black, CBV)
concentrations in five frequency bands in both frontal (left panel) and parietal (right panel) cortices depicted for
one exemplary well-rested healthy subject. Individual correlation coefficients between temporal fluctuations
in cH2O and CBV are given in the title of each subplot

Intra-individual variation was assessed by calculating the absolute difference in correlation
coefficients as well as PLV between conditions and paired t-tests were used to compare the
intra-individual variations in correlation of cH2O and CBV.

3 Results

3.1 Relationship between cerebral water and blood volume in well-rested subjects

We initially inspected the signals of CBV and cH2O on a single subject level (Fig. 1). CBV
and cH2O concentrations exhibited opposing time courses in both cortical locations and
across all frequency bands.

We replicated previously established relationships between HbO, HbR, and CBV in the
group of well-rested HC subjects (Fig. 2). As expected, fluctuations in HbO and CBV con-
centrations were strongly correlated (frontal cortex: mean = 0.88 ± 0.32, parietal cortex:
mean = 0.79 ± 0.38), while the relationship between HbR and HbO showed moderate anti-
correlations (frontal cortex: mean = −0.37 ± 0.51, parietal cortex: mean = −0.47 ± 0.46).
Fluctuations in HbR and CBV concentration were uncorrelated (frontal cortex: mean =
−0.08 ± 0.55, parietal cortex: mean = −0.06 ± 0.54). The temporal relationship between
amplitude fluctuations in cH2O and CBV concentrations revealed strong anti-correlations
(frontal cortex: mean = −0.76 ± 0.24, parietal cortex: mean = −0.72 ± 0.28).

The anti-correlations between amplitude fluctuations in cH2O and CBV concentrations
were present also in cardiac (frontal cortex: mean = −0.53 ± 0.46, parietal cortex: mean =
−0.76 ± 0.31), respiratory (frontal cortex: mean = −0.66 ± 0.30, parietal cortex: mean =
−0.75±0.27), low-frequency (frontal cortex: mean = −0.77±0.25, parietal cortex: mean =
−0.67±0.39), and very-low-frequency bands (frontal cortex: mean = −0.80±0.22, parietal
cortex: mean = −0.60 ± 0.43, Fig. 3).
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Fig. 2 Correlations between fluctuations in hemoglobin and cerebral water concentrations in both frontal
and parietal cortices in the full-band (0–5 Hz) in healthy well-rested subjects. On each box, the central line
indicates the median, and the bottom and top edges indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points and outliers are plotted as red crosses. HbO: oxygenated
hemoglobin, HbR: deoxygenated hemoglobin

Next, we investigated phase synchrony between CBV and cH2O across cardiac, respira-
tory, and low-frequency bands. CBV and cH2O concentrations had median phase locking
values reflecting neither a completely synchronous nor a random relationship and were similar
for frontal and parietal cortices (Fig. 4). Phase synchrony between CBV and cH2O concentra-
tions was constant across frequency bands (frontal cortex: cardiac: mean = 0.57±0.22, res-
piratory: mean = 0.58±0.18, low frequencies: mean = 0.62±0.17; parietal cortex: cardiac:
mean = 0.68±0.20, respiratory: mean = 0.66±0.18, low frequencies: mean = 0.59±0.24,
Fig. 4).

3.2 Effect of acute sleep deprivation on relationship between cerebral water and
hemoglobin

To investigate the effect of acute sleep deprivation on the relationship between cH2O and CBV
concentrations, individual correlation coefficients were compared between the well-rested
and acutely sleep-deprived states.

Also in the sleep-deprived state, the temporal relationship between amplitude fluctuations
in cH2O and CBV concentrations revealed anti-correlations (frontal cortex: mean = −0.57±
0.40, parietal cortex: mean = −0.66 ± 0.37, Fig. 5). Group differences between well-
rested and sleep-deprived HC in the temporal relationship between amplitude fluctuations
in cH2O and CBV concentrations were not significantly altered (frontal cortex: p = 0.052,
parietal cortex: p = 0.63). Subjects showed variations in their individual direction of change,
i.e., increases or decreases, from well-rested to acutely sleep-deprived state. However, a
significant effect of acute sleep deprivation in intra-individual variations between cH2O and
CBV concentrations was not found (all p > 0.05, Table 1).

123



  497 Page 8 of 14 Eur. Phys. J. Plus         (2021) 136:497 

Fig. 3 Correlations between fluctuation in cerebral water (cH2O) and cerebral blood volume (CBV) concen-
trations in five physiological frequency bands in both frontal (upper panel) and parietal cortices (lower panel)
in well-rested healthy subjects. On each box, the central line indicates the median, and the bottom and top
edges indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points
and outliers are plotted as black crosses. CBV: cerebral blood volume; cH2O: cerebral water

Fig. 4 Phase synchrony of fluctuations between cerebral water (cH2O) and cerebral blood volume (CBV) in
three physiological frequency bands (cardiac band (0.7–1.5 Hz), respiratory band (0.12–0.4 Hz), low-frequent
fluctuations (0.01–0.1 Hz)) in both frontal and parietal cortices in well-rested healthy subjects. On each box,
the central line indicates the median, and the bottom and top edges indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points and outliers are plotted as black crosses
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Fig. 5 Effects of acute sleep deprivation on temporal correlation between cerebral water (cH2O) and cerebral
blood volume (CBV) in the full frequency band (0–5 Hz) in both frontal and parietal cortices. Every colored
circle represents data from one subject (blue: well-rested subjects, red: acutely sleep-deprived subjects). On
each box, the central line indicates the median, the black star the mean, and the bottom and top edges indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points and outliers
are plotted as white crosses

Table 1 Intra-individual variation expressed as absolute difference (|�|) in correlation coefficient and results
of paired t tests between well-rested versus acutely sleep-deprived states in HC subjects in five frequency
bands and both frontal and parietal cortices

|�corr(cH2O,CBV )|, p value of paired t test

Full-band Cardiac Respiratory Low frequencies Very low frequencies

Frontal 5.22, p = 0.18 6.70, p = 0.39 6.89, p = 0.51 4.23, p = 0.37 4.64, p = 0.30

Parietal 4.53, p = 0.76 4.54, p = 0.38 4.64, p = 0.56 7.90, p = 0.99 7.51, p = 0.037

Table 2 Intra-individual variation expressed as absolute difference (|�|) in PLV and results of paired t tests
between well-rested versus acutely sleep-deprived states in HC subjects in five frequency bands and both
frontal and parietal cortices

|�PLV(cH2O, CBV)|, p value of paired t test

Cardiac Respiratory Low frequencies

Frontal 4.14, p = 0.84 3.72, p = 0.91 4.37, p = 0.50

Parietal 3.26, p = 0.46 2.71, p = 0.67 4.29, p = 0.88

Subjects showed individual variations (i.e., increases or decreases) in their PLV between
well-rested and acutely sleep-deprived states (Table 2), but no significant effects of acute
sleep deprivation on intra-individual variations between cH2O and CBV concentrations were
observed across cardiac, respiratory and low-frequency bands (all p > 0.05, Table 2).
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4 Discussion

The presented results are significant in at least two major aspects and in consequence with
the previously shown findings presented in [16]. This is the first report of non-invasively
measured fluctuations in the concentration of cH2O in the human brain, entailing a total of
102 human datasets to provide robust statistical inferences. Second, our inferences on relation
between CBV and cH2O were drawn based on two cortical locations, which showed similar
patterns. The most interesting finding that fNIRS measurements revealed is that fluctuations
in cH2O concentration in the human brain were strongly anti-correlated with CBV across five
physiological frequency bands. There was no evidence for phase synchrony between cH2O
and CBV concentrations, as PLVs consistently fell between absolute synchrony and random-
ness, which indicates that their time courses were out of phase across the five frequency
bands.

Acutely sleep-deprived subjects did not show significant differences in the interrelation
of cH2O and CBV when compared to well-rested healthy subjects, during resting-state mea-
surement. However, HC subjects with acute sleep deprivation showed high intra-individual
variability in the direction of change in the correlation, indicating a heterogeneous response
to acute sleep deprivation across subjects.

These present observations are difficult to compare to the first presentation of concentration
levels of cH2O (Figure 7 in [16]), because the subject in that study had been examined in
sitting position with the fNIRS channel placed on the occiput. In that study, the fNIRS
cerebral water signal showed a positive correlation with the blood oxygen level-dependent
(BOLD) signal measured using functional magnetic resonance imaging (fMRI) [16]. There
is no previous research utilizing fNIRS to study the interaction of cH2O and CBV.

In light of the Munro–Kellie doctrine, we expected an anticorrelation between amplitude
fluctuations in the concentration of CBV and cH2O, which are together the major buffers in
the cranial compartment. The doctrine assumes that the brain matter is incompressible and has
a constant volume in healthy humans [18]. If the concentration of one constituent increases in
a space of fixed volume, the concentration of another constituent must necessarily decrease
to maintain volume equilibrium. Given the long-known anti-correlation between HbO and
HbR concentrations, one could expect opposing relationships with cH2O. As known from the
fMRI BOLD literature [8], local neuronal activity entails hyperemia and dilation of arteries
and veins containing relatively more oxygenated blood. At the same time, concentrations
of cerebral water and HbR are substituted. Upon neuronal deactivation, the venous volume
declines, thus increasing the HbR concentration. In this situation, the available space is filled
with CSF, thus raising and thereby re-establishing cH2O. This scenario predicts for an anti-
correlation with cH2O, as depicted schematically in Fig. 6.

CBV did not show phase synchrony with cH2O, which indicates that these signals do not
engage in direct oscillatory coupling with a preferred phase difference. This might exclude
any functional relevance of their phase relationship. Alternatively, there may be relationships
that are not fully uncovered by the measures employed in this study. Relevant information
might be hidden in dynamic lag structures, and it is conceivable that dynamic alterations
might exist in water exchange between different CSF compartments of the whole central
nervous system, i.e., spinal and intracranial spaces [48]. For example, the venous blood
compartment has been considered to have a balloon effect during activation-driven increases
in blood flow [8]. Also, in contrast to the scull, the venous structures around the spinal
canal are not surrounded by bones and may therefore enable a markedly stronger cushioning
effect compared to intra-cranial veins. This cushioning effect may well alter the time domain
signals measured by NIRS in a nonlinear dynamic way, which can make direct time signal
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Fig. 6 Schematic representation of the observed relationships in the context of the Munro–Kellie doctrine.
The skull frames a confined space, which is 80% filled with incompressible brain matter, and with 10%
volume fraction for blood and cerebrospinal fluid. If the volume within the skull is constant [18], any change
in component volume or concentration is met by a change to maintain equilibrium. Cerebral blood volume
(CBV) comprises the sum of oxygenated (HbO) and deoxygenated hemoglobin (HbR) concentrations. CBV
and cerebral water volume functionally counteract, which is depicted by the curved line representing opposite
fluctuations in concentrations of CBV and cH2O at physiological frequencies measured using non-invasive
fNIRS

correlations with constant lag difficult. Furthermore, the spinal canal CSF siphoning of flow is
likely to add another source of delay into the correlation analysis. Further multimodal studies
to assess these signals during execution of cognitive, affective, or sensory tasks should help
resolve this issue.

The observed relationships between CBV and cH2O concentrations were similar in all
tested physiological frequency bands, hinting towards the absence of specific influences of
any frequency range. Therefore, it seems that the interrelation between CBV and cH2O is
not driven by any specific oscillation frequency. This observation is consistent with previ-
ous evidence for a contribution of these physiological frequencies to glymphatic pulsation
mechanisms [21].

A previous fNIRS study showed that one night of sleep deprivation in healthy subjects
reduced the wavelet-based phase coherence between left and right prefrontal oxyhemoglobin
oscillations [49]. Another fNIRS study on phase and amplitude of oscillatory components of
cerebral hemodynamics during sleep in human subjects showed that blood volume and flow
velocity oscillations maintained their relative phase difference during sleep, although their
amplitudes were attenuated during non-REM sleep [45]. If sleep disruption indeed altered
the coupling pattern in our subjects, we might have expected a higher correlation between
fluctuations in cH2O and CBV. But the interrelation showed a stable pattern despite acute
sleep deprivation, albeit of higher variance. Whether deep sleep alters the observed correla-
tion/anticorrelation patterns remains a question for future research requiring measurements
performed also during sleep.

Of note, the novelty of our methodology calls for caution in the interpretation of our
results. For example, the analyzed cH2O signal may consist of intracellular and extracellular
(containing interstitial fluid, CSF, and blood plasma) water compartments in the cortical
area underneath the optode. However, these affect mainly the DC level of the measured
signals. Thus, shown cH2O dynamics are assumed to be caused by concentration changes
in CSF, interstitial fluid, and blood-bound water. Due to the current limitations in the spatial
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resolution of fNIRS, it is not possible to localize the exact source of the signal contributing
to the cH2O concentration. Currently, validation studies for the method are conducted using
animal models. For instance, an animal model utilizing thinned skull technique, the similar
measurements can be repeated in the absence of light penetrance problems in extracerebral
layers.

We emphasize that our present fNIRS methods do not measure whole-brain water content,
which are 80–85% (w/v) in adults [50]. While the brain water content is higher and shows
a high variability in infants due to physiological maturation processes and flexibility in the
presence of open fontanels, it is nearly constant in adults [51,52]. With fNIRS, the abso-
lute concentration changes in hemoglobin cannot be quantified, and the precise correlation
between the fNIRS signal and neural activity remains to be fully understood [2]. These reser-
vations notwithstanding, our present data processing pipeline included removal of artifactual
signals from extracerebral tissue as suggested by [37], which greatly improved signal quality
and increases the validity of derived inferences. Interregional comparisons of NIRS signal
amplitudes are not as reliable as those of hemodynamic changes, because of its vulnerability
to spatial variation in skull and subarachnoideal space thickness [53,54].

The present repeated fNIRS measurements in HC subjects had small variations in optode
positioning between the two acquisitions, which would result in uncertainty regarding signal
localization. However, since the analysis of the relation between cH2O and CBV with high
temporal resolution is the main interest of this study, the exact positioning of the optodes is
less of an issue.

In this experimental arm of a larger multimodal assessment of brain function, subjects
were measured while lying in an MRI scanner. Since a third of subjects likely fall asleep
within 3 min of resting-state fMRI studies [55], it is likely that vigilance declined during the
measurements in our subjects. Especially for the cases of sleep-deprived HC subjects, we
cannot exclude possible interference of light sleep intervals. A detailed evaluation of sleep
stages is outside the scope of the current work. Since fNIRS supports essentially unlimited
measurement time, future studies may investigate possible effects on vigilance fluctuations
on the functional interrelation between cH2O and CBV fluctuations based on 24-hour mea-
surements during normal sleep, sleep deprivation, or sleep restriction, and pharmaco-fNIRS.

The current approach could be applied for clinical research in other patient datasets,
for example in Alzheimer’s dementia patients, in whom disrupted sleep architecture and
glymphatic failure may contribute to neurodegeneration [56]. Indeed, recent glymphatic
research showed reduced CSF pressure in patients suffering from Alzheimer’s disease [19],
which could predict for altered relationships between cerebral water and CBV. Another
interesting clinical relationship is intracranial pressure changes occurring in patients with
so-called normal pressure hydrocephalus. However, measurement of intracranial pressure is
invasive and hence not advisable in healthy volunteers.

Based on the previous proof-of-concept study, we show that fNIRS measurements of cH2O
and CBV are technically feasible in patients. No study has hitherto supported an analysis of
fluctuations in cerebral water concentration. The observed anti-correlation between CBV and
cH2O may constitute a fundamental functional mechanism underlying glymphatic circulation
in the human brain.
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