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Abstract

The complementarity between the quark and lepton mixing matrices is shown to

provide a robust prediction for the neutrino mixing angle θPMNS
13 . We obtain this

prediction by first showing that the matrix VM , product of the CKM and PMNS

mixing matrices, may have a zero (1,3) entry which is favored by experimental data.

Hence models with bimaximal or tribimaximal forms of the correlation matrix VM

are quite possible. Any theoretical model with a vanishing (1,3) entry of VM that is in

agreement with quark data, solar, and atmospheric mixing angle leads to θPMNS
13 =

(9+1
−2)

◦. This value is consistent with the present 90% CL experimental upper limit.
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1 Introduction

Recent neutrino experiments confirm that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

[1, 2] lepton mixing matrix UPMNS contains large mixing angles. For example the atmo-

spheric mixing θPMNS
23 is compatible with 45◦ [3], and the solar mixing θPMNS

12 is ≈ 34◦ [4].

These results should be compared with the third lepton mixing angle θPMNS
13 which is very

small and even compatible with zero [5, 6], and with the quark mixing angles in the UCKM

matrix [7, 8].

The disparity that nature indicates between quark and lepton mixing angles has been

viewed in terms of a ’quark-lepton complementarity’ (QLC) [9] which can be expressed in

the relations

θPMNS
12 + θCKM

12 ≃ 45◦ ; θPMNS
23 + θCKM

23 ≃ 45◦ . (1)

Possible consequences of QLC have been investigated in the literature [10] and in par-

ticular a simple correspondence between the UPMNS and UCKM matrices has been pro-

posed [9, 11, 12, 13] and analyzed in terms of a correlation matrix [14, 15, 16, 17, 18, 19, 20].

The correlation matrix VM is simply defined as the product of the CKM and PMNS matri-

ces, VM = UCKM · UPMNS, and efforts have been done to obtain the most favorite pattern

for the matrix VM [20, 21]. Unitarity then implies UPMNS = U
†
CKMVM and one may ask

where do the large lepton mixings come from? Is this information implicit in the form

of the VM matrix? This question has been widely investigated in the literature, but its

answer is still open (see our section 2).

Furthermore in some Grand Unification Theories (GUTs) the direct QLC correlation

between the CKM and the PMNS mixing matrix can be obtained. In this class of

models, the VM matrix is determined by the heavy Majorana neutrino mass matrix [12, 22].

Moreover as long as quarks and leptons are inserted in the same representation of the

underlying gauge group, we need to include in our definition of VM arbitrary but non

trivial phases between the quark and lepton matrices. Hence we will generalize the relation

VM = UCKM · UPMNS to

VM = UCKM · Ω · UPMNS (2)

where the quantity Ω is a diagonal matrix Ω = diag(eiωi) and the three phases ωi are free

parameters (in the sense that they are not restricted by present experimental evidence).

The magnitude disparity between the lepton mixing angle θPMNS
13 and the other two

mixings is a rather striking fact. In this paper we carry out the investigation of the

correlation matrix VM based on eq. (2) and prove that it is a zero texture of VM , namely
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VM13
= 0, that implies a small value for θPMNS

13 with a sharp prediction

θPMNS
13 = (9±1

2)
◦. (3)

We use the Wolfenstein parameterization for UCKM [23] in its unitary form [24] and param-

eterize UPMNS with the standard phases and mixing angles. As a zero order approximation

we start inserting by hand the central values of the lepton mixing angles and CKM pa-

rameters. Owing to the uncertainty in the experimental value for θPMNS
13 , the possible

range for the (1,3) entry of matrix VM may or may not include zero. For example using

θPMNS
13 = 3◦ the (1,3) entry range does not include zero in accordance with eq. (23) in

ref. [14]. For other choices of θPMNS
13 a vanishing (1,3) entry is quite possible, as will be

seen in section 2.

It is possible to include bimaximal and tribimaximal forms of the correlation matrix

VM in models with renormalization effects [25, 26, 27] that are relevant, however, only in

particular cases with large tanβ (> 40) and with quasi degenerate neutrino masses [28].

The conclusion for matrix VM is that the possibility of a bimaximal form, or a tribimaximal

one is completely open. So in other words, the correlation between the matrices UCKM

and UPMNS is rather nontrivial.

The investigation we perform for the VM matrix starts from the fundamental equation

VM = UCKM ·Ω·UPMNS and uses the experimental ranges and constraints on lepton mixing

angles. We resort to a Monte Carlo simulation with two-sided Gaussian distributions

around the mean values of the observables. The input information on θPMNS
13 is taken from

the analysis of ref. [3] which uses neutrino data only.

The paper is organized as follows: in section 2 we study the numerical ranges of VM

entries with the aid of a Monte Carlo simulation, emphasizing on specific points of the

experimental data. We will show that the vanishing of the (1, 3) entry is favored by the

data analysis. In section 3 we present the matter from a different point of view: we start

from a zero (1, 3) VM entry (e.g. a bimaximal or tribimaximal matrix) we derive the

consequent prediction for the UPMNS lepton mixing matrix through

UPMNS = (UCKM · Ω)−1 · VM (4)

and the corresponding one for θPMNS
13 in eq. (3). Finally we present a summary and our

conclusions.
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2 Which VM does the phenomenology imply?

In this section we investigate the order of magnitude of the VM matrix entries concentrating

in particular in the (1,3) entry and the important mixing angle θVM

13 to which it is directly

related. We then explicitly study the allowed values of the VM angles, finally concluding

that sin2θVM

13 = 0 is the value most favored by the data. We will be using the Wolfenstein

parameterization [23] of the UCKM matrix in its unitary form [24] where one has the relation

sin θCKM
12 = λ sin θCKM

23 = Aλ2 sin θCKM
13 e−iδCKM

= Aλ3(ρ− iη) (5)

to all orders in λ. The lepton mixing matrix UPMNS is parameterized in the usual way as

UPMNS = U23 · Φ · U13 · Φ† · U12 · Φm. (6)

Here Φ and Φm are diagonal matrices containing the Dirac and Majorana CP violating

phases, respectively Φ = diag(1, 1, eiφ) and Φm = diag(eiφ1, eiφ2 , 1), so that

UPMNS =









eiφ1c12 c13 eiφ2c13 s12 s13e
−iφ

eiφ1

(

−c23 s12 − eiφ c12 s13 s23
)

eiφ2

(

c12 c23 − eiφ s12 s13 s23
)

c13 s23

eiφ1

(

−eiφ c12 c23 s13 + s12 s23
)

eiφ1

(

−eiφ c23 s12 s13 − c12 s23
)

c13 c23









(7)

2.1 Estimation of VM entries

In grand unification models where quarks and leptons belong to the same representation

of the gauge group, the quark and lepton fields must acquire different phases once their

symmetry is broken. Hence one should take into account this phase mismatch at low

energy associated with the form of the CKM and PMNS matrices (5, 7). To this end we

introduced the diagonal matrix Ω

Ω = diag(eiω1 , eiω2, eiω3) (8)

in the commonly used relation2 VM = UCKM · UPMNS. This is therefore generalized to

VM = UCKM · Ω · UPMNS . (9)

We use for the observed CKM mixing parameters the values λ = 0.2237, η = 0.317,

ρ = 0.225, |Vcb| ≈ Aλ2 = 0.041, and for the PMNS mixing angles the values θPMNS
12 = 34◦,

θPMNS
23 = 45◦, θPMNS

13 = 3◦ [14]. For the Ω phases we resort a Monte Carlo simulation with

2see e.g. refs. [9, 14].
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flat distributions in the interval [0, 2π]. We then get the following range of values for the

elements of the VM correlation matrix:

VM =









0.71...0.91 0.41...0.68 0.10...0.22

0.15...0.62 0.40...0.74 0.65...0.75

0.34...0.45 0.54...0.64 0.68...0.72









. (10)

These values are in good agreement with [14]. The small differences are due to the fact

that we use the full mixing matrix given in eq. (5) and not the parameterization given in

eq. (21) of Ref. [14]. Notice that the (1, 3) entry of the matrix VM above cannot be zero,

so VM cannot be bimaximal, i.e. of the form








1√
2

1√
2

0
1
2

1
2

1√
2

1
2

1
2

1√
2









≃









0.71 0.71 0.00

0.50 0.50 0.71

0.50 0.50 0.71









, (11)

nor tribimaximal, namely








√

2
3

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

1√
2









≃









0.82 0.58 0.00

0.41 0.58 0.71

0.41 0.58 0.71









, (12)

where only the absolute values have been considered. The result of eq. (10) however

depends on the assumption about the values used for the mixing angles. For example if

we use a different value for θPMNS
13 , namely θPMNS

13 = 9.2◦ (see Ref. [3] or our eq. (18) for

the allowed range of θPMNS
13 ), we get

VM =









0.69...0.88 0.39...0.67 0.00...0.32

0.09...0.67 0.36...0.78 0.62...0.75

0.28...0.51 0.49...0.68 0.67...0.73









. (13)

For these values the result is in agreement with the statement that VM has the (1, 3)

entry equal to zero. It is clear that we need a better investigation of the situation before

establishing what are the allowed values of the entries of the correlation matrix VM that

can be deduced from the experimental data. We next investigate the important entry (1, 3)

as it overwhelmingly affects the θPMNS
13 prediction as will be seen in section 3.

We parameterize the VM correlation matrix as the PMNS lepton mixing matrix, i.e.

VM ≡ U23 · Φ · U13 · Φ† · U12 (14)

where Uijs are functions of the mixing angles θVM

ij .
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At first non trivial orders in λ we have

sin2 θVM

13 =

∣

∣

∣

∣

∣

(

1− λ2

2

)

ei(ω1−ω2−φ) sin θPMNS
13 + λ sin θPMNS

23 cos θPMNS
13 +O(λ3)

∣

∣

∣

∣

∣

2

(15)

It is seen from this expression that the first two terms can cancel each other implying a

vanishing (1, 3) entry of the VM matrix. In order to better investigate this issue we plot

in fig.1 the quantity sin2 θVM

13 as a function of sin2 θPMNS
13 . All other observables are fixed

at their best fit points [3, 4, 29] and we allowed the Dirac lepton phase φ, the Majorana

ones φ1 and φ2, and the unphysical phases of Ω to vary in the interval [0, 2 π] with a flat

distribution.

As shown in the figure, for the central value of θPMNS
13 given in [3] the entry (1,3) of

VM cannot be zero. However there is a small region (θPMNS
13 ≈ 9.2◦) for which θVM

13 can be

zero. This fact has the very important consequence of providing a sharp prediction for the

unknown mixing angle θPMNS
13 . We will investigate this point in detail in the section 3.

2.2 The allowed values for tan2 θVM

23 , tan2 θVM

12 , and sin2 θVM

13

Here we further investigate the possibility of VM to be bimaximal or tribimaximal using

the fundamental equation (9). We start with a Monte Carlo simulation for the UCKM

parameters, the UPMNS mixing angles, the Ω and CP phases.

We use the updated values for the CKM and PMNS mixing matrix, given at 95%CL

by [29]

λ = 0.2265+0.0040
−0.0041 , A = 0.801+0.066

−0.041 ,

η = 0.189+0.182
−0.114 , ρ = 0.358+0.086

−0.085 ,

(16)

with

ρ+ iη =

√
1−A2λ4(ρ+ iη)√

1− λ2 [1− A2λ4(ρ+ iη)]
; (17)

and 3 [3, 4]

sin2 θPMNS
23 = 0.44×

(

1+0.41
−0.22

)

, sin2 θPMNS
12 = 0.314×

(

1+0.18
−0.15

)

,

sin2 θPMNS
13 =

(

0.9+2.3
−0.9

)

× 10−2 .

(18)

3The lower uncertainty for sin2 θ13 is purely formal, and correspond to the positivity constraint

sin2 θ13 ≥ 0.
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With the aid of a MonteCarlo program we generated the values for each variable: for

the sine square of the lepton mixing angles and for the quark parameters A, λ, ρ̄, η̄ we

took two sided Gaussian distributions with central values and standard deviations taken

from eqs. (16-18). For the unknown phases we took flat random distributions in the

interval [0, 2π]. We divided each variable range into short bins and counted the number

of occurences in each bin for all the variables, having run the program 106 times. In

this way the corresponding histogram is smooth and the number of occurences in each

bin is identified with the probability density at that particular value. A comparatively

high value of this probability density extending over a wide range in the variable domain

means a high probability for the variable to lie in this range, therefore that such range

is ’favoured’ by the data being used as MonteCarlo input. Conversely higher probability

implies better compatibility with experimental data, while lower probability means poor

or no compatibility with data.

In figs 2 and 3 we report the results of this simulation. The distributions of tan2 θVM

23

and tan2 θVM

12 are shown in fig 2. It is seen that the range for which the value of tan2 θVM

23 is

compatible with experiments at 90%CL is the interval [0.35, 1.4], so that tan2 θVM

23 = 1.0 is

consistent with data. For tan2 θVM

12 we obtain a range between 0.25 and 1.1 at 90%CL and

so tan2 θVM

12 = 1.0 (which corresponds to a bimaximal matrix) only within 3σ. Moreover

the value tan2 θVM

12 = 0.5 (which corresponds to a tribimaximal matrix), is well inside

the allowed range. Finally in fig.3 we plot the distribution for sin2 θVM

13 . We see that

sin2 θVM

13 = 0 is not only allowed by the experimental data, but also it is the preferred

value. In the next section we will see that this has important consequences in the model

building of flavor physics.

3 Prediction for θPMNS
13

In this section we investigate the consequences of a VM correlation matrix with zero (1,3)

entry on the still experimentally undetermined θPMNS
13 mixing angle. In particular we will

see that the θPMNS
13 prediction arising from eq. (9) or, equivalently,

UPMNS = (UCKM · Ω)−1 · VM (19)

is quite stable against variations in the form of VM allowed by the data.

As previously shown (see section 2.2), the data favours a vanishing (1,3) entry in VM .

So in the whole following analysis we fix sin2 θVM

13 = 0. We allow the UCKM parameters

to vary, with a two-sided Gaussian distribution, within the experimental ranges given in

eq. (16), while for the Ω phases in eq. (8) we take flat distributions in the interval [0, 2π].
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We make Monte Carlo simulations for different values of θVM

12 and θVM

23 mixing angles, al-

lowing tan2 θVM

12 and tan2 θVM

23 to vary respectively within the intervals [0.3, 1.0] and [0.5, 1.4]

in consistency with the lepton and quark mixing angles (see section 2.2 and fig. 2).

In fig.4(left) we plot the distribution of tan2 θPMNS
12 for values of the correlation matrix

VM corresponding to tan2 θVM

12 ∈ {0.3, 0.5, 1.0} with tan2 θVM

23 = 1.0. From the figure we

can check that for tan2 θVM

12 = 0.3, and 0.5 the resulting distribution for tan2 θPMNS
12 is

compatible with the experimental data. Instead maximal θVM

12 and θVM

23 taken together are

disfavoured, as the solar angle is hardly compatible with the corresponding allowed interval

(dot-dashed line).

In fig.4(right) we plot the distribution of tan2 θPMNS
23 for tan2 θVM

23 ∈ {0.5, 1.0, 1.4} with

tan2 θVM

12 = 0.5. Also in these cases we see that the resulting distributions for tan2 θPMNS
23

are compatible with the experimental data.

Finally we report in fig.5 the results of our simulation for the quantity sin2 θPMNS
13 . From

eq. (19), the parameterization of the CKM mixing matrix in eq. (5) and the definition of

the phase matrix Ω in eq. (8) we get

(UPMNS)13 = e−iω1

[

(

1− λ2

2

)

sin θVM

13 e−iφVM − λ sin θVM

23 cos θVM

13

+Aλ3(−ρ+ i η + 1) cos θVM

23 cos θVM

13 +O(λ4)
]

, (20)

so that

sin2 θPMNS
13 = sin2 θVM

23 λ2 +O(λ3) , (21)

where we have used the fact that sin2 θVM

13 = 0 and A ≈ O(1).

From eq. (19) and the parameterization used for VM in eq. (14) we see that sin2 θPMNS
13

does not depend on tan2 θVM

12 . For this reason the parameter sin2 θPMNS
13 needs to be studied

as a function of tan2 θVM

23 only. Fixing for definiteness tan2 θVM

12 = 0.5 and taking the three

different values tan2 θVM

23 ∈ {0.5, 1.0, 1.4}, we plot in fig.6 the corresponding distributions

of sin2 θPMNS
13 . We note that these values of tan2 θVM

23 practically cover the whole range

consistent with the data (see fig.2).

From fig. 5 it is seen that the sin2 θPMNS
13 distributions are quite sharply peaked around

maxima of 7.3◦, 8.9◦ and 9.8◦. Recalling that the shift of this maximum is effectively

determined by the parameter tan2 θVM

23 which was chosen to span most of its physically

allowed range, it is clear that we have a stable prediction for θPMNS
13 .

In order to better clarify this stability, we show in fig. 6 the mean and the standard

deviation of sin2 θPMNS
13 obtained with our Monte Carlo simulation for the three chosen
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values of tan2 θVM

23 . In addition we plot the analytic dependence of sin2 θPMNS
13 given by

eq. (21) with the central value of λ, the best fit point of sin2 θPMNS
13 and its 1σ, 2σ and 3σ

from the analysis of ref.[3]. Our prediction for θPMNS
13 then follows from the experimental

data on λ ,A, ρ, η, tan2 θPMNS
12 and tan2 θPMNS

23 and the values of tan2 θVM

12 , tan2 θVM

23

are taken in the intervals [0.3, 1.0], [0.5, 1.4] respectively, as allowed by the data. For a

vanishing (1, 3) entry of the matrix VM we finally find θPMNS
13 in the interval [7◦, 10◦].

To conclude this section we note that another prediction for a small θPMNS
13 has recently

been derived [20]

θPMNS
13 = 9◦ +O(sin3θCKM

12 ). (22)

This follows from an assumed bimaximality of a matrix relating Dirac to Majorana neutrino

states together with the assumption that neutrino mixing is described by the CKM matrix

at the grand unification scale. Our approach on the other hand is free from any ad hoc

assumptions. We show that it is a zero texture of the VM correlation matrix, namely

VM13
= 0, together with all the experimental values of the quark and lepton mixing angles,

that predicts θPMNS
13 = (9±1

2)
◦. More importantly we show that the vanishing of this entry

is favored by the data. Condition VM13
= 0 is compatible with VM being bimaximal (i.e.

with two angles of 45◦ and a vanishing one), tribimaximal (i.e. with one angle of 45◦, one

with tan2 θ = 0.5 and a third vanishing one) or of any other form. Furthermore we make

use of a phase matrix Ω, see eqs. (8-9), that takes account of the mismatch between the

quark and lepton phases and consider Majorana phases in the UPMNS matrix with a flat

random distribution.

4 Summary and Conclusions

In summary, we have investigated the correlation between the CKM quark and PMNS

lepton mixing matrices, arising in a large class of GUT seesaw models with specific flavor

symmetries. The detailed analysis developed here uses the fact that the correlation matrix

is phenomenologically compatible with a tribimaximal pattern, and marginally with a

bimaximal pattern. This conclusion is different from the one obtained in previous studies

[14] and is in agreement with other qualitative arguments that favor the CKM matrix to

measure the deviation of the PMNS matrix from exact bimaximal mixing [21].

In our analysis we found that the mixing parameters tan2 θVM

12 and tan2 θVM

23 vary re-

spectively within the intervals [0.3, 1.0] and [0.5, 1.4], while sin2 θVM

13 varies in the range

[0.0, 0.2]. Moreover the preferred value for sin2 θVM

13 is zero.

Using these results we investigated the phenomenological consequences of correlation
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matrices VM with zero (1, 3) entry. The main conclusion of this study is that this large

class of models is not only compatible with the experimental data, but also that they give

a robust prediction for θPMNS
13 mixing angle

θPMNS
13 = (9+1

−2)
◦ . (23)

Whereas the author of ref.[20] obtains a prediction for θPMNS
13 in a similar range, our result

cannot be regarded as a straightforward extension or generalization. In fact the condition

VM13
= 0, which is favored by the data, is the only requirement for the prediction (23).

Furthermore we modified the correlation between the CKM and PMNS mixing matrices

to take account of a phase matrix Ω between the quark and lepton fields. Eq. (23) will

be checked with great accuracy in the next generation of precision neutrino experiments

(DCHOOZ and others).

We studied GUT models with flavor symmetry that predict a relation of the type

VM = UCKM · Ω · UPMNS with VM13
= 0. Since in supersymmetric models with tanβ ≤ 40

radiative corrections are small [25, 26, 27, 28], this relation can in such cases be used at low

energy as in the present paper. Hence if future dedicated experiments exclude θPMNS
13 ≃ 9◦

and supersymmetry is discovered with tanβ ≤ 40, such models would be ruled out. On

the other hand, a positive result from θPMNS
13 dedicated experiments and tanβ ≤ 40 would

be a strong hint for these flavor symmetry models and its specific Higgs pattern.
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Figure 1: The minimum value allowed for sin2 θVM

13 as a function of sin2 θPMNS
13 . All the

other CKM and PMNS mixing parameters are fixed at their best fit points given in eq. (16-

18). The unknown phases ω1, ω2, and ω3 of Ω, the Majorana phases φ1, and φ2, and the

Dirac one φ are taken to vary within the interval [0, 2 π] with a flat distribution. We also

report the values of θPMNS
13 = 3.0◦ and 9.2◦ used in the text.
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Figure 2: The distributions, normalized to one at the maximum, of tan2 θVM

12 (solid), and

tan2 θVM

23 (dot-dashed) obtained from the definition of the correlation mixing matrix VM

given in eq. (9) by using a Monte Carlo simulation of all the experimental data.
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Figure 3: The distribution, normalized to one at the maximum, of sin2 θVM

13 obtained from

the definition of the correlation mixing matrix VM given in eq. (9) by using a Monte Carlo

simulation of all the experimental data. We also plot the 1σ and the 2σ lines.
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Figure 4: The distribution of tan2 θPMNS
12 (left), and tan2 θPMNS

23 (right) for the CKM

experimental data and for values of the correlation matrix VM respectively given by (left)

tan2 θVM

12 = 0.3 (dashed), 0.5 (solid), 1.0 (dot-dashed), tan2 θVM

23 = 1.0, and sin2 θVM

13 = 0;

(right) tan2 θVM

23 = 0.5 (dashed), 1.0 (solid), 1.4 (dot-dashed), tan2 θVM

12 = 0.5, sin2 θVM

13 = 0.

The shaded areas represent the experimentally allowed regions at 2σ for each case.
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Figure 5: The distribution of sin2 θPMNS
13 for the CKM experimental data and for values of

the correlation matrix VM given by tan2 θVM

12 = 0.5, sin2 θVM

13 = 0, tan2 θVM

23 = 0.5 (dashed),

1.0 (solid), 1.4 (dot-dashed). The shaded area represents the experimentally allowed region

at 2σ.
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Figure 6: The allowed values for sin2 θPMNS
13 as a function of tan2 θVM

23 under the assumption

that sin2 θVM

13 = 0. We report the central and 3σ values obtained from fig.5, and the

approximate analytical dependence given in eq. (21). We also plot the experimental central

value, the 1σ, the 2σ, and the 3σ from [3]. We fixed tan2 θVM

12 = 0.5 for definiteness.
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