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Volume element structure and roton-maxon-phonon excitations in superfluid helium

beyond the Gross-Pitaevskii approximation
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We propose a theory which deals with the structure and interactions of volume elements in
liquid helium II. The approach consists of two nested models linked via parametric space. The
short-wavelength part describes the interior structure of the fluid element using a non-perturbative
approach based on the logarithmic wave equation; it suggests the Gaussian-like behaviour of the
element’s interior density and interparticle interaction potential. The long-wavelength part is the
quantum many-body theory of such elements which deals with their dynamics and interactions.
Our approach leads to a unified description of the phonon, maxon and roton excitations, and has
noteworthy agreement with experiment: with one essential parameter to fit we reproduce at high
accuracy not only the roton minimum but also the neighboring local maximum as well as the sound
velocity and structure factor.

PACS numbers: 03.75.Hh, 67.25.dt, 67.25.dw

1. INTRODUCTION

The microscopical structure of quantum liquids is dif-
ferent from that of classical ones. The latter are discrete
fluids consisting of localized atoms or molecules which
thermal de Broglie length is smaller than the average
atomic or molecular separation. For instance, the ther-
mal de Broglie wavelength of a water molecule at room
temperature is less than the radius of the hydrogen atom.
Therefore, classical liquids can be treated as continuous
media only on the length scales which are larger than
atomic or molecular separation. In quantum liquids it is
other way around: atoms become delocalized in space be-
cause their de Broglie lengths are always larger than the
inter-atomic distance, and overlapping with each other.
As a result, instead of discrete atoms, quantum liquids
must be described in terms of the fluid volume elements
and elementary excitations such that non-locality and
continuity are preserved down to very short scales [1–
3]. Historically, it was Landau [4] who developed the
theory of superfluidity based on the mechanics of contin-
uous media which qualitatively agreed with experiment
[5–7].

However, some questions remain open in this regard -
in particular, those about the interplay between original
degrees of freedom (4He atoms) and emergent collective
ones - such as the fluid volume elements (also called the
fluid particles in the Lagrangian description [8]). Indeed,
the fluid-dynamical description of liquid helium presumes
that usage of the volume element’s notion must be phys-
ically justified before, since it is the volume element, not
the atom itself, which is supposed to be the most ele-
mentary object of the fluid approach. Thus, the under-
standing and describing of this notion in the quantum
fluid theory is more important than in the classical one
because for classical fluids the continuity is just the long-
wavelength approximation whereas for quantum ones it
is an empirically established fact. Therefore, searches for

the most suitable collective degrees of freedom in super-
fluids continue, and the issue of how the formation and
stability of the volume element of liquid helium as a con-
tinuous medium can be explained from first principles
remains a subject of active studies nowadays [9, 10].

The Bose-Einstein condensation (BEC) is another as-
pect of the superfluidity phenomenon which must be
taken into account [11]. Being predicted almost a cen-
tury ago, it was used by London and Tisza [12] to explain
the superfluidity of liquid helium discovered by Kapitsa
and Allen [13]. The existence of BEC in the superfluid
phase has been confirmed by inelastic neutron scattering
[14, 15], thus, the influence of BEC upon the properties
of liquid helium is under current study as well [16–18].

Here we describe the structure of the volume element
of superfluid helium as well as the phenomenological con-
sequences which follow. Among the derived effects is the
famous Landau roton spectrum for which full theoretical
explanation is still pending despite the numerous efforts
made towards its understanding [9, 10, 16–20]. As a mat-
ter of fact, even usage of the term “roton” itself is often a
purely historical one since the explanation of the Landau
spectrum in helium does not necessarily have to be based
on rotating degrees of freedom of helium atoms [9, 18].
Indeed, here we show that it is possible to formulate a
theory without their explicit involvement - yet obtain a
remarkable agreement with experiment.

Throughout the paper we neglect temperature effects
which is a standard assumption for fundamental mod-
els since below the lambda point the thermal effects can
be considered as corrections (the superfluid helium has
almost perfect heat conduction).

In section 2 we formulate a general theory of helium
II, in sections 3 and 4 we derive the observable quanti-
ties and compare them with available experimental data.
Conclusions are made in Sec. 5.

http://arxiv.org/abs/1204.4652v2
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2. COLLECTIVE VARIABLE THEORY

We divide a theory into two nested parts. The shorter-
wavelength part describes the interior structure of the
volume element of helium superfluid using the non-
linear logarithmic quantum wave equation. The longer-
wavelength part is the quantum many-body theory of
these elements, treated as new collective degrees of free-
dom. While one assumes them to be effectively point-
like objects in the long-wavelength approximation, their
spatial extent and internal structure are taken into ac-
count by virtue of the nonlocal interaction term. At that,
these two models are not independent: in the shorter-
wavelength part we derive behavior and specific values
of the parameters for the longer-scale one, in accordance
with the “Russian-doll” picture of nesting of scales.
As a starting point, we assume that strongly-correlated

helium atoms can form a bound state characterized by
a single macroscopical wavefunction. The wave equation
describing such object cannot be of the Gross-Pitaevskii
(cubic Schrödinger) type for at least two reasons.
The first one is that the GP approach [21] is a per-

turbative one which takes into account only two-body
interactions and neglects anomalous contributions to self-
energy which is a good approximation for dilute system
like cold gases [22], but unlikely to suffice for liquids. In-
deed, according to aforesaid the atoms in quantum liquid
are delocalized and thus nothing prevents them from get-
ting involved into multiple-body interactions where the
multiplicity can vary from two to the total number of
atoms in the system. An example of multi-body (three
and more) interactions being very important for forming
bound states of bosons at low temperatures is the Efimov
state [23, 24] which has been experimentally observed in
helium [25], a recent review can be found in [26].
The second obstacle is that the ground-state wavefunc-

tion of the free-space GP BEC model does not describe a
localized object. Instead, the free GP condensate tends
to occupy all available volume - as such one needs to ap-
ply an external potential trap to confine the condensate
and stabilize the system. It is difficult to imagine that
upon the transition into a superfluid phase the free he-
lium suddenly becomes surrounded, both in parts and
as a whole, by a hypothetical external potential, not to
mention that the coherent appearance, stability and syn-
chronization of such domains across the bulk would be
impeded by significant volatility of the liquid.
There exists, however, another candidate where these

problems simply do not occur in first place. This is non-
linear Bose liquid defined by virtue of the logarithmic
Schrödinger equation:

[

−i~ ∂t −
~
2

2m
~∇2 − β−1 ln (ã3|Ψ|2)

]

Ψ = 0, (1)

where Ψ = Ψ(~x, t) is the wavefunction of condensate nor-
malized to the number of particles N - such that parti-
cle density is determined as n = |Ψ|2, m is the mass of
the constituent particle (helium-4 atom in our case, i.e.,

m = mHe ≈ 6.64×10−24 g), and β and ã are constant pa-
rameters of interaction. The equation alone received at-
tention a while ago as the simplest U(1)-symmetric wave
equation (apart from the conventional Schrödinger one)
which satisfies the dilatation covariance and separability
properties [27, 28] but for the purposes of theory of quan-
tum liquids it has been applied only recently [29]. While
the second-quantized Hamiltonian which might lead to
such equation is not known yet, the equation itself has
some interesting properties and thus can be used as a
starting point. The equation can be also derived from
the field-theoretical action with the Lagrangian

L =
i~

2
(Ψ∂tΨ

∗ −Ψ∗∂tΨ) +
~
2

2m
|~∇Ψ|2 + Vβ(|Ψ|2), (2)

where the potential is defined as

Vβ(n) = −β−1n
[

ln (nã3)− 1
]

. (3)

The latter opens down and has local non-zero maxima at
next = ã−3 for positive β, see Fig. 1. Despite the poten-
tial not being bounded from below as a function of |Ψ|,
no density divergences arise since the wavefunction can-
not take arbitrarily large values, due to the normalization
constraint.
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FIG. 1: Field potential for the logarithmic BEC (in units

βã3) versus square root of particle density (in units ã−3/2).

It turns out that the logarithmic Bose liquid has a
number of features suitable for our objectives: it im-
plicates not only binary but also multiple-body interac-
tions (when more than two bodies can scatter simultane-
ously), and its ground state is the so-called gausson [28]
- a spherically-symmetric object which is localized and
stable even in absence of a trapping potential, with the
interior density obeying the Gaussian law

n(~x) = n(0) e−(r/a)2 , (4)

where n(0) = N/(π3/2a3) is the central particle density,

r = |~x|, and a = ~
√

β/2m is the characteristic radius.
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In principle, for practical purposes the relation a ≈ ã
can be assumed throughout this paper, which essentially
means that the parameters of the short-scale model are
not entirely independent but must be bound by (at least)
one physical constraint, β−1 ≈ p̃2/2m, where p̃ = ~/ã is
the de Broglie momentum corresponding to the length
scale ã.
It should be emphasized that the object described by

(4) is different from the classical droplet since it does
not have border in a classical sense, therefore, its stabil-
ity is supported not by surface tension but by nonlinear
quantum effects in the bulk [29].
The long-wavelength part can be formulated as follows.

As long as we have established that the nucleation and
stability of volume elements of the Gaussian type is justi-
fied on quantum-mechanical grounds, it is natural to as-
sume that below the critical temperature the atoms tend
to form the fluid elements of this kind. Therefore, new
collective degrees of freedom arise, so a theory must be
formulated in terms of the volume elements rather than
of the helium atoms themselves [10]. Besides, as long
as the bosonic liquid can no longer be assumed homo-
geneous one cannot use all the results of section 4 from
[29]. Thus, we use the following Hamiltonian

Ĥ =

∫

d3x ψ̂†(~x)

(

− ~
2

2M
~∇2

)

ψ̂(~x) + Ĥint, (5)

where M is the mass of the volume element and ψ̂ is the
corresponding field operator. The interaction is defined
via the nonlocal term

Ĥint =
1
2

∫ ∫

d3x d3x′ ψ̂†(~x)ψ̂†(~x′)U(|~x− ~x′|) ψ̂(~x′)ψ̂(~x),

where U(r) is the energy of interaction between volume
elements. This energy can be estimated in the following
way. Using (4) one can derive that the Gaussian volume
element of size r ∼ a stores an amount of internal bulk
mass-energy

ǫ(r) ∝
∫ r

0

n(r′)r′2dr′ ∝ 1

a
(r−r0) e−(r/a)2 [1 +O (r − a)] ,

where the value r0 = a [1/2 + 1/(e
√
π erf(1))] ≈ 0.75 a

refers to the point where the dominant term of ǫ(r)
changes sign. Since each element has been shown to
be stable with respect to small perturbations, it tries to
maintain its size and mass when interacting with immedi-
ate environment, therefore, to alter these values one has
to supply the amount of energy which is proportional to
ǫ(r). In absence of strong external fields this energy can
come only via interaction with other volume elements
hence we can conclude that U(|~x− ~x′|) ∝ ǫ(|~x− ~x′|).
Thus we can introduce the proportionality factor U0(~x),
assume it to be a constant in a leading-order approxima-
tion, and estimate the interparticle potential as:

U(r) =
U0

a
(r − r0) e

−(r/a)2 , (6)

up to the terms of order O (r − a) which are assumed
to be small. These terms can be safely omitted unless
interaction deforms the elements so strongly that their
interior structure cannot be neglected anymore; but then
the element’s spherical symmetry becomes deformed as
well. The quantity U0 = −aU(0)/r0 ≈ −1.34U(0) be-
comes the free parameter of the long-wavelength part of
the theory. If U0 is positive then the critical radius r0 de-
termines the inter-element separation below which a pair
of neighboring volume elements becomes unstable against
coalescence. In principle, any possible effects of the de-
formations of elements can be accounted for by further
upgrading the constant U0 to a correspondingly derived
function U0(~x) but for the purposes of our current study
the approximation U0(~x) ≈ U0 will do the job, as will be
shown below.

3. OBSERVABLES

In this section we derive the analytical expressions for
the main observables of the theory: energy of excitations,
structure factor and speed of sound.

3.1. Energy of excitations

To derive the energy spectrum of excitations one can
use three alternative approaches. The first one is based
on the perturbation theory [16], second is the standard
Bogoliubov transform [30], and third is about analyzing
small perturbations of the equation of motion for the field
operator - as shown in [18] by the example of the semi-
transparent sphere model. In our case one can check
that all three approaches yield the same spectrum in the
leading approximation. The Bogoliubov’s method is the
most straightforward and simple one, hence it will be
used from now on. After some algebra we arrive at the
following N -body Hamiltonian operator

Ĥ ≈ 1

2
n2
0Ū0V +

∑

~p6=0

Epâ
†
pâp, (7)

where â†p and âp are the creation and annihilation opera-
tors of the quasi-particle with momentum ~p, n0 = N/V =
ρHe/M is the background particle density of the liquid of
N elements occupying the volume V , ρHe ≈ 0.145 g/cm3

is the liquid helium-4 density, Ūp =
∫

U(x) ei~p·~x/~d3x is
the Fourier transform of the interaction potential (6), and
Ep is the quasi-particle’s energy counted from a ground
state. The energy obeys the following dispersion relation:

Ep =
p2

2M

√

1 +
4n0MŪp

p2
, (8)

with the Fourier transform being calculated as

Ūp = πa3U0

(

1−
√
πfk e

−(ak/2)2
)

, (9)
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where fk = r0/a+
[

1
2ak − (ak)−1

]

erfi(ak/2) and ~k = ~p/~
is the wave vector.
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FIG. 2: Energy of quasi-particles Ep versus momentum (in
units of Ea and pa, respectively) for different values of u0.
Below the value 11.43 the roton minimum disappears, and
above 25.98 energy becomes complex-valued.

Introducing the volume element’s de Broglie momen-
tum scale pa = 2~/a and corresponding energy scale
Ea = p2a/2M , one can re-write the dispersion relation
(8) in the dimensionless form which shows that the dy-
namics of the quasi-particle depends on just one essential
(non-scale) parameter

u0 = 2πn0a
5MU0/~

2. (10)

Numerical analysis shows that admissible values of this
parameter lie between 11.43 and 25.98 where the local
(so-called roton) minimum appears, see Fig. 2. In its
vicinity the dispersion relation can be written in the Lan-

dau form, Ep ≈ ∆+ (p−p0)
2

2µ , where ∆ is the roton energy

gap, p0 is the minimum value of momentum, µ is the
effective roton mass. The corresponding profiles for dif-
ferent values of u0 are given in Fig. 3 from where one
can see that the roton mass diverges at the lower bound
(the local minimum becomes a saddle point) whereas the
energy becomes complex-valued above the upper bound.

We can also plot the quasi-particle’s velocity ~v = v~ℓ

where v = ∂Ep/∂p and ~ℓ = ~p/p. From Fig. 4 one can
see that within the above-mentioned range of the param-
eter u0 the liquid indeed exhibits the superfluidity fea-
ture - an interval of momentum and energy over which
the effective mass p/v turns negative always exists, thus
indicating that the production of dissipative excitations
is suppressed. As a matter of fact, this is just a restate-
ment of the original Landau idea of introducing the roton
minimum into the excitation spectrum to explain the su-
perfluidity - since a negative p/v range always appears if
a positive-definite function has the local minimum pre-
ceded by a local maximum. One can also notice that at
small momenta (phonon regime) the velocity varies very
slowly as a function of frequency ω = Ep/~, as if there is
no dispersion at all.

12 14 16 18 20 22 24 26

u0

0.2

0.4

0.6

0.8

1

1.2

FIG. 3: Local minimum’s values of momentum p0/pa (dashed
curve), roton energy gap ∆/Ea (solid) and mass µ/M (dotted)
versus the interaction coupling constant taken between u0 ≈
11.43 and 25.98.

3.2. Speed of sound

By sound here we understand the conventional acous-
tic oscillations, the heat transfer and second sound are
not considered since the temperature effects are neglected
throughout the paper, as mentioned in the introduction.

0.25 0.5 0.75 1 1.25 1.5 1.75

p, E

0.5

0

0.5

1

1.5

v

FIG. 4: Quasi-particle’s velocity v (in units of v|p=0) versus
momentum (in units of p0, dashed curve) and energy (in units
of ∆, solid curve). It is plotted at u0 ≈ 20.6 (then v|p=0 ≈ 273
m/s) but such behavior holds qualitatively for u0 between
11.43 and 25.98.

Thus, our observable of interest is a mean value of the
sound velocity 〈vs〉 which can be estimated as follows.
If size and interior structure of volume elements are ne-
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glected then the speed of sound would be given just by
the standard formula [22]

v(0)s =
√

n0Ū0/M = lim
p→0

v. (11)

However, in general one should take into account that
sound propagation is affected by the volume element’s
“interior” which is described by the logarithmic Bose liq-
uid in a ground state, and speed of sound inside the latter

is known to be

cs = 1/
√

m|β|, (12)

in the leading approximation [29]. The mean speed of
sound thus can be estimated as an averaged sum of the
background and excitation contributions taken with the
weights controlled by the interior density of a volume
element (4),

〈vs〉 = ā−1

ā
∫

0

[

χcs + (1− χ) v(0)s

]

dr = v(0)s

[

1−
√
π

4

a

ā
erf(ā/a)

(

1− cs

v
(0)
s

)]

, (13)

where χ = (1/2)n(~x)/n(0) = 1
2e

−(r/a)2 is the weight

factor, 4
3πā

3 = 1/n0 = M/ρHe is the effective packing
volume of an element. The numeric coefficient inside the
weight factor has been chosen in such a way as to satisfy

the following limit case properties: if a→ 0 then the v
(0)
s

term dominates (zero-size limit), and if a→ ∞ then both
terms contribute equally.

3.3. Structure factor

According to (4), our volume elements are essentially
quantum states of delocalized atoms which do not have
a border or interface in a classical sense. Therefore, their
presence in the liquid helium can be judged only indi-
rectly - via the structure factor Sk which determines the
scattering of neutrons (or x-rays, after multiplication by
the atomic structure factor) and can be measured exper-
imentally. This situation, however, is not something ex-
traordinary: the microscopical objects employed in pre-
vious models of liquid helium, such as vortex rings [19],
hard spheres [17, 18] or stochastic clusters [9], were never
claimed to be “directly seen” (whatever it could mean in
our essentially quantum context) either. Instead, if a
selected model’s predictions, e.g. for the excitation en-
ergy and structure factor, coincide with experimentally
observed values then the corresponding microscopical in-
terpretation can be adopted - at least, until the better
one arrives.

The computation of the structure factor is slightly
more difficult than that of the energy of excitations: as
shown in the previous section, the computation of Ep re-
quires, basically, the knowledge of the inter-element inter-
action potential, such as (6), only. By contrast, to derive
the structure factor one should derive the excited-state
wavefunction of the liquid helium which can be done only
approximately under certain simplifying assumptions. If
one considers the “bare” helium atoms to be the fun-

damental degrees of freedom then the structure factor
would be given by the formula derived in [19]. In our
case it would yield

S
(0)
k = p2/2MEp =

(

1 +
4n0MŪp

p2

)−1/2

, (14)

where all quantities have been defined in the previous sec-
tion. However, this formula can not be blindly applied
to our case since we use the collective degrees of free-
dom which are not “bare” helium atoms but their bound
states. Besides, the logarithmic non-linearity affects not
only the energy of excitations but also the correlation
functions themselves. Therefore, one needs to slightly re-
vise the Feynman’s derivation by taking these effects into
account - especially if one considers that Feynman and
Cohen’s theory gives only a qualitative agreement with
experiment. Fortunately, the computation is straight-
forward and necessary corrections are minimal (yet im-
portant). We begin by assuming that the total energy
of the system of N fluid elements comes from minimiz-
ing the integral E =

∫

ψ∗Hψ d3Nx, subject to the fixed
normalization integral J =

∫

ψ∗ψ d3Nx, where ψ is the
excited-state wavefunction. Throughout this section we
use ~xN to denote the set of coordinates ~xi of all the el-
ements, and

∫

d3Nx to represent the integral over all of
them. The Hamiltonian of the system is given by a stan-
dard expression,

H = H0 + V = − ~
2

2M

∑

i

~∇2
i + V, (15)

where V is the potential energy of the system and Latin
indices run from 1 to N . Following Feynman, for the
excited-state wavefunction we assume the Bijl ansatz
[31]:

ψ = Fψ0 =
∑

i

f(~xi)ψ0, f(~x) ≡ ei
~k·~x, (16)
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with the only difference that ψ0 = ψ0(~x
N ) is now the

ground-state wavefunction of one-particle states of loga-
rithmic quantum liquid (not plain atoms as was in the
original Feynman derivation). Due to the separability
property of the logarithmic Schrödinger equation, they
satisfy its stationary many-body analogue:

H0ψ0 =
m

M

[

NE0 + β−1 ln (ã3N |ψ0|2)
]

ψ0, (17)

where the logarithmic term has replaced the potential
part, according to the two-scale structure of our the-

ory (we remind also that throughout the paper the ex-
ternal potential is neglected). With the use of the
separability property the N -particle equation (17) can
be analytically solved for the case of a ground state,
cf. section 2. One thus obtains the eigenvalue E0 =
3β−1 [1 + ln (

√
πa/ã)] ≈ 3β−1

(

1 + 1
2 lnπ

)

and ψ0 ∝
∏

i

Ψ(~xi) ∝
∏

i

exp (−|~xi|2/2a2), cf. [28].

Further, with the ansatz (16) in hand the energy per
particle of the system can be approximately written as

Ep + E0 =

∫

[

~
2

2M
1
N

∑

i

~∇iF
∗ · ~∇iF + m

M |F |2
(

E0 + β−1 ln (ã3ρ
1/N
N )

)

]

ρNd
3Nx

∫

|F |2ρNd3Nx
, (18)

where

ρN =

(

1

π3/2a3

)N

e
−

∑

i

|~xi|
2/a2

(19)

is the ground-state density function. By construction, excitation energy Ep takes into account also the inter-element
interaction, see Sec. 3.1. Further, using the fact that logarithm varies significantly slower than the Gaussian, we
obtain

Ep + E0 −
m

M

[

E0 + β−1 ln (ã3ρ
1/N
N (0))

]

=
~
2

2M

1
N

∑

i

∫

~∇iF
∗ · ~∇iFρNd

3Nx

∫

|F |2ρNd3Nx
, (20)

which after integration reduces to

Ep +Σ =
~
2

2M

∫

~∇f∗(~x) · ~∇f(~x)d3x
∫

f∗(~x1)f(~x2)P (~x1 − ~x2)d3x1d3x2
, (21)

where P (~x1 − ~x2) is the probability of finding an element at ~x2 per unit volume if one is known to be at ~x1, and we
denoted

Σ ≈ E0 −
m

βM
(3 + lnπ) ≈ 3β−1

[

1− m

M
+

1

2

(

1− 2

3

m

M

)

lnπ

]

.

The variation with respect to f∗ yields the equation

(Ep +Σ)

∫

f(~x2)P (~x1 − ~x2)d
3x2 +

~
2

2M
~∇2f(~x1) = 0,

(22)
and upon remembering (16) this gives us the final for-

mula for the structure factor Sk ≡
∫

P (~x)ei
~k·~xd3x in a

logarithmic theory:

Sk =
p2

2M (Ep +Σ)
=





√

1 +
4n0MŪp

p2
+

2MΣ

p2





−1

.

(23)
Thus, the only difference from the “non-logarithmic” for-
mula (14) is the appearance of an additive constant term

in the denominator which is induced by the logarithmic
nonlinearity.

4. THEORY VERSUS EXPERIMENT

In this section we compare the derived observables of
our model with available experimental data. If we choose
the value u0 ≈ 20.6 then the established experimental
data for energy of excitations (see, for instance [5]) can
be successfully fit. When fitting, we do not use the least-
squares techniques but rather aim at the precise position
of the roton minimum - so as to estimate the magnitude
of deviations from experiment at the neighboring local
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maximum Emax at p = pmax also known as the maxon

peak. It turns out that our theory can reproduce the
maximum with accuracy which is better than three per-
cent, see the cumulative comparison between theory and
experiment given in Fig.5 and Table I. The other val-
ues of primary and secondary parameters of the theory
computed at u0 ≈ 20.6 turn out to be the following:

ā ≈ 2.37 Å, M/m ≈ 1.228, U0/∆ ≈ 69,

a ≈ 1.25 Å, pa/p0 ≈ 0.84, Ea/∆ ≈ 1.46, (24)

β−1/kB ≈ 3.84 K, β−1/Ea ≈ 0.31,

hence this set will be used for further comparisons with
experiments in this paper. For instance, using (24) the
velocity-related quantities from section 3.2 are evaluated

as cs ≈ 89 m/s and v
(0)
s ≈ 273 m/s, therefore, the mean

value of the speed of sound (13) can be estimated as

〈vs〉 ≈ 231 m/s, (25)

which is in a good agreement with experiment as well
[32].
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FIG. 5: Energy of quasi-particles Ep versus wave vector. Solid
curve is a theoretical prediction, dots denote experimental
data [5].

Finally, the structure factor (23) is also evaluated us-
ing the values (24). We compare the theoretical curve
with the neutron scattering data in Fig. 6 (the neutron
scattering is the most relevant method here since it is the
one which is being used for measuring Ep as well). One
can see that the asymptotic behaviour of the structure
factor, both at small and large momenta, is compatible
with known experimental data, see also the discussion in
the concluding section. For instance, from the scattering
data one can not surely conclude that at small momenta
Sk must tend to zero as a linear function of p. Indeed,
as one can see from [7] (see also the first figure from
the Feynman-Cohen paper in [19]), Sk is not a straight
line near origin but rather a curve which resembles more
of a parabola and thus agrees with the asymptotic be-
haviour of (23) at p → 0. Though, one can not a priori

exclude that in real scattering experiments some side ef-
fects might appear and introduce the asymptotic correc-
tions proportional to p and thus override the non-linear
asymptotics; however, these additional effects are not a
subject of our study at this stage.

1 2 3 4 5 6

p
1

0

0.5

1

1.5

2

FIG. 6: Structure factor Sk versus wave vector. Solid curve is
a theoretical prediction given by (23) evaluated at the values
(24), triangles denote the experimental data [7]. For the sake
of comparison, the result of the formula (14) is being plotted
as well (dashed curve).

5. CONCLUSION

The superfluidity of liquid helium II is the complex
phenomenon exhibiting a unique feature of the Landau
spectrum of excitations which successfully explains the
behavior of specific heat, viscosity and sound velocity.
The microscopical theory of this phenomenon must ad-
dress many different aspects such as the Bose-Einstein
condensation, appearance of collective degrees of free-
dom, non-locality and continuity, formation of the vol-
ume element of the liquid, its structure and stability.
Here we proposed a concise analytical theory of struc-

ture and excitations in superfluid helium which elabo-
rates on these aspects. It consists of two models which act
on different length scales, but are connected via the para-
metric space: the behaviour of quantities and the values

TABLE I: Theory versus experiment

Quantity Theory Experiment Difference,%

∆/kB , K 8.65 (fit) 8.65±0.04 0±0.4

p0/~, Å
−1 1.91 (fit) 1.91±0.01 0±0.5

µ/m 0.16 0.16±0.01 0±6

Emax/kB , K 14.3 13.92±0.1 2.7∓0.7

pmax/~, Å
−1 1.08 1.11±0.04 2.6±3.6

〈vs〉, m/s 231 237±2 2.6±0.08
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of parameters in the long-wavelength model are derived
from the short-wavelength part. The latter advocates
the appearance of the collective degrees of freedom which
justify the possibility of the fluid-dynamical description
and can be used for characterize the volume elements of
the quantum liquid. The “interior” structure of a fluid
volume element is described using the non-perturbative
approach based on the logarithmic wave equation. It
turns out that the interior density of the element obeys
the Gaussian distribution.
The long-wavelength part is the quantum many-body

theory of the volume elements as effectively point-like
objects - yet their spatial extent and internal structure
are taken into account by virtue of the nonlocal inter-
action term. The corresponding interparticle interac-
tion potential (6) was not postulated but derived from
the short-wavelength part, and it appeared to be very
simple as compared to the empirical and semi-empirical
inter-molecular potentials widely used in perturbative
approaches [20]. On the other hand, more fundamen-
tal approaches, such as those based on vortex rings [19],
hard spheres [17, 18] or stochastic clusters [9], either have
shown so far only the qualitative agreement with exper-
iment, to our best knowledge, or some of observables
in those models were not computed. In our theory the
quantitative agreement with various experimental data
has been achieved: with only one essential parameter in
hand, u0, we reproduced at high accuracy (better than
three per cent) not only the roton minimum but also the
neighboring local (maxon) maximum. The velocity of
sound and structure factor are also computed and found
to be in a very good agreement with experiment. Slight
deviations of the energy spectrum and structure factor

curves from experimentally observed ones at large values
of momenta p & 2~ Å−1 come due to the scattering parti-
cles begin to probe the interior of fluid elements and thus
affect the corresponding wavefunctions. At even higher
momenta, p & 4~ Å−1, the agreement will eventually re-
cover since the contributions from kinetic energy come to
predominate those from interaction.

To conclude, the collective variables we have been
using ultimately provide a unified description of the
phonon, maxon and roton excitations. In future it would
be interesting to study the applications of the mod-
els with the non-polynomial ground-state wave equa-
tions and Gaussian-like interparticle potentials, like (1)
and (6), in the physical situations when superfluid be-
comes effectively low-dimensional (cigar- or disk-shaped)
and/or subjected to external fields or admixtures. A par-
allel direction of research would be to take into account
temperature effects (see the introductory section), such
as heat transfer, second sound, etc., which is necessary
for a number of practical applications.
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