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Abstract

A matching of a graph is a set of edges without common end vertex. A graph is

called 1-planar if it admits a drawing in the plane such that each edge is crossed at

most once. Recently, Biedl and Wittnebel proved that every 1-planar graph with

minimum degree 3 and n ≥ 7 vertices has a matching of size at least n+12
7 , which

is tight for some graphs. They also provided tight lower bounds for the sizes of

matchings in 1-planar graphs with minimum degree 4 or 5. In this paper, we show

that any 1-planar graph with minimum degree 6 and n ≥ 36 vertices has a matching

of size at least 3n+4
7 , and this lower bound is tight. Our result confirms a conjecture

posed by Biedl and Wittnebel.

Keywords: matching, minimum degree, drawing, 1-planar graph.

1 Introduction

A drawing of a graph G = (V,E) is a mapping D that assigns to each vertex in V a distinct

point in the plane and to each edge uv in E a continuous arc connecting D(u) and D(v).

We often make no distinction between a graph-theoretical object (such as a vertex, or an
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versity, Changsha, Hunan, China and Hunan Provincial Natural Science Foundation of China (No.
2021JJ30169).

†Corresponding author.

1

http://arxiv.org/abs/2207.03747v1


edge) and its drawing. All drawings considered here are such ones that no edge crosses

itself, no two edges cross more than once, and no two edges incident with the same vertex

cross. A graph is planar if it can be drawn in the plane without edge crossings. A drawing

of a graph is 1-planar if each of its edges is crossed at most once. If a graph has a 1-planar

drawing, then it is 1-planar. The notion of 1-planarity was introduced in 1965 by Ringel

[19], and since then many properties of 1-planar graphs have been studied (e.g. see the

survey paper [13]). For example, it is known that [2, 9, 18] any 1-planar graph with n

(≥ 3) vertices has at most 4n− 8 edges, and thus has the minimum degree ≤ 7.

A matching of a graph is a set of edges without common end vertex. The study of

matchings is one of the oldest and best-studied problems in graph theory, for example, see

[15]. An earlier result, due to Nishizeki and Baybars [17], shows that every simple planar

graph with n ≥ X vertices has a matching of size at least Y n+Z, where X, Y, Z depend on

the minimum degree and the connectivity of the graph. In recent years, researchers have

investigated the sizes of the matchings graphs that are “almost” planar. An interesting

example is 1-planar graphs, which is a generalization of planar graphs, in some sense.

Many papers studying the sizes of matchings in 1-planar graphs have been published, for

example, see ([4, 5, 6, 7]). Recently, Biedl and Wittnebel [7] obtained the following results

on the lower bounds of sizes of matchings in 1-planar graphs in terms of their minimum

degrees.

Theorem 1 ([7]). Any n-vertex simple 1-planar graph with minimum degree δ has a

matching M of the following size:

1. |M | ≥ n+12
7

if δ = 3 and n ≥ 7;

2. |M | ≥ n+4
3

if δ = 4 and n ≥ 20; and

3. |M | ≥ 2n+3
5

if δ = 5 and n ≥ 21.

The authors in [7] constructed 1-planar graphs which contain matchings of sizes equal

to the lower bounds in Theorem 1. As for the minimum degree δ = 6, they also constructed

1-planar graphs which contain matchings with a maximum size.

Theorem 2 ([7]). For any positive integer N , there exists a simple 1-planar graph with

minimum degree 6 and n ≥ N vertices in which each matching is of size at most 3
7
n+ 4

7
.

The authors in [7] suspected that this bound in Theorem 2 is tight and posed the

following conjecture.

Conjecture 1 ([7]). Any 1-planar graph with minimum degree 6 and n ≥ N vertices has

a matching of size at least 3
7
n+O(1).

As for the minimum degree δ = 7, both papers [4] and [7] constructively gave the

following result.

Theorem 3 ([4, 7]). For any N , there exists a simple 1-planar graph with minimum

degree 7 and n ≥ N vertices for which any matching has size at most 11
23
n+ 12

23
.
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Similarly, the authors in the papers [4] and [7] wondered whether this bound in The-

orem 3 is tight, but this remains as an open problem.

In this paper we confirm Conjecture 1 above, and have the following result.

Theorem 4. Any simple 1-planar graph with minimum degree 6 and n ≥ 36 vertices has

a matching of size at least 3
7
n+ 4

7
, and this lower bound is tight.

The paper is organized as follows. In Section 2 we explain some terminology and

notations, and in Section 3 we provide some lemmas. The proof of Theorem 4 is given in

Section 4. Some problems worthy of further study are presented in Section 5.

2 Terminology and notation

All graphs considered here are simple, and possibly disconnected. Let V (G) and E(G)

denote the vertex set and edge set of a graph G, respectively.

Let G be a graph. The degree of a vertex v in G, denoted by degG(v), is the number

of edges of G incident to v (a loop edge is counted twice), and the minimum degree of G

is denoted by δ(G). A cycle of G is a closed trail whose origin and internal vertices are

distinct. For any subset A ⊆ V (G), if A 6= V (G), let G\A be the graph obtained from G

by deleting all vertices in A together with their incident edges, and if A 6= ∅, the subgraph
of G induced by A, denoted by G[A], is the graph G\(V (G) \ A).

A component F in a graph is called a k-vertex-component if F has exactly k vertices,

and moreover F is called an odd component (even component) if k is odd (even). For

S ⊆ V (G), let odd(G\S) denote the number of odd components of G\S.
For any two disjoint vertex subsets A and B of a graph G, let EG(A,B) denote the

set of edges in G which have one end vertex in A and the other in B, and for v ∈ V (G),

let NG(v, A) be the set of vertices in A which are adjacent to v. Write “G ∼= H” when

graphs G and H are isomorphic.

Let D be a drawing of G. An edge e of G is called clean under D if it does not cross

with any other edge under the drawing D; a cycle C of G is called clean if each edge on

C is clean under D.

Let H be a subgraph of G with a drawing D. The subdrawing D|H of H induced by

D is called a restricted drawing of D.

For any drawing D, the associated plane graph D× of D is the plane graph that is

obtained from D by turning all crossings of D into new vertices of degree four. A cycle C

of D× partitions the plane into two open regions, the bounded one (i.e., the interior of C)

and the unbounded one (i.e., the exterior of C). We denote by intD×(C) and extD×(C)

the interior and exterior of C, respectively.

For other terminology and notations not defined here we refer to [1].
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3 Preliminary results

In this section we give some lemmas. The first one is the well-known Tutter-Berge For-

mula, which gives a formula on the size of a maximum matching of a graph.

Lemma 5 (Tutte-Berge [3]). The size of a maximum matching M of a graph G with n

vertices equals the minimum, over all S ⊆ V (G), of 1
2
(n− (odd(G\S)− |S|)).

Lemma 6. Let G be a 1-planar graph with minimum degree δ(G) ≥ 6, and S be a subset

of V (G) with |S| ≥ 2. Denote by a1 the number of 1-vertex-components of G\S. Then

a1 + 3 ≤ |S|.

Proof. Let T be the set of isolated vertices in G\S, namely, 1-vertex-components of G\S,
and let H be the subgraph of G with vertex set S ∪ T and edge set EG(S, T ). As H is

bipartite and 1-planar, by a result on the maximum size of a bipartite 1-planar graph due

to Karpov [12], we have

|E(H)| ≤ 3|V (H)| − 8 = 3(|S|+ |T |)− 8 = 3|S|+ 3a1 − 8.

Since δ(G) ≥ 6,

6a1 = 6|T | ≤
∑

u∈T

degG(u) = |E(H)| ≤ 3|S|+ 3a1 − 8,

implying that a1 +
8
3
≤ |S|. As both a1 and |S| are integers, the result holds. ✷

The following result in [11] gives an upper bound of the size of a bipartite 1-planar

graph G(X, Y ;E) in terms of |X| and |Y |.

Lemma 7 ([11]). Let G be a bipartite 1-planar graph (possibly disconnected) that has

partite sets of sizes x and y with 2 ≤ x ≤ y. Then we have that |E(G)| ≤ 2|V (G)|+4x−12.

We say that two 1-planar drawings of a graph are isomorphic if there is a homeomor-

phism of the sphere that maps one drawing to the other.

Figure 1: The unique 1-planar drawing of the complete graph K5.
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Lemma 8. The complete graph K5 has exactly one (up to isomorphism) 1-planar drawing

as shown in Figure 1.

Proof. See the proof of Lemma 7 in [14]. ✷

Lemma 9. Let G be a 1-planar graph with minimum degree δ(G) = 6, S ⊆ V (G), and F

be a 5-vertex-component of G\S. Then the following two statements hold:

(a) |EG(V (F ), S)| ≥ 10; and

(b) if |EG(V (F ), S)| = 10 or 11, then F ∼= K5.

Proof. (a). Since |V (F )| = 5, |E(F )| ≤ 10. By the given condition,

30 ≤
∑

u∈V (F )

degG(u) = 2|E(F )|+ |EG(V (F ), S)|. (1)

Thus, |EG(V (F ), S)| ≥ 30− 2× 10 = 10.

(b). If |EG(V (F ), S)| = 10 or 11, then (1) implies that

|E(F )| ≥ 1

2
(30− |EG(V (F ), S)|) ≥ 1

2
(30− 11) = 9.5,

implying that |E(F )| ≥ 10 and so F ∼= K5. ✷

Let D be a 1-planar drawing of a graph G. If L = v1c1v2c2 · · · vℓcℓv1 is a cycle of the

associated plane graph D×, which consists alternately of some vertices of G and crossing

points ofD, then we say that L is a barrier loop ofD (see [16]). We can extend this concept

“barrier loop” to any cycle L in D× which contains some clean edges e1, e2, · · · , ek such

that after removing these edges, each of the remaining sections in L is either an isolated

vertex or is a path in the form vicivi+1ci+1 · · · vr+t−1cr+t−1vr+t consisting alternately of

some vertices vi, vi+1, · · · , vi+t of G and crossing points ci, ci+1, · · · , ci+t−1 of D for some

i and t, where the subindices are taken modulo ℓ.

The following proposition is obvious from the 1-planarity.

Lemma 10. Let L be a barrier loop of a 1-planar drawing D of a graph G. For any

u, v ∈ V (G), if u and v locate in intD×(L) and extD×(L) respectively, then u and v are

not adjacent in G, and every common neighbor of u and v must be on L.

Let D be a 1-planar drawing of G which has the minimum number of crossings and

let Q be a restricted drawing of D. Let F (Q×) denote the set of faces of Q×. For any

vertex u in Q, let Fu(Q
×) be the set of faces F in F (Q×) such that either u is on the

boundary of F , or u is on the boundary of some face F0 ∈ F (Q×) whose boundary shares

an edge e with the boundary of F , where e is neither clean under D and nor crossed in

Q. Then, we can prove the following conclusion.

Lemma 11. Let D be a 1-planar drawing of G and let Q be a restricted drawing of D.

For any u ∈ V (Q) and any v ∈ NG(u) \ V (Q), v must be within some face of Fu(Q
×).
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Proof. As v /∈ V (Q), v is within some face F of F (Q×).

LetQ′ be the restricted drawing ofD obtained fromQ by adding a curve C representing

edge uv. As D is a 1-planar drawing, C is crossed at most once. If C is not crossed in

Q′, then u must be on the boundary of F and so F ∈ Fu(Q
×).

If C is crossed once in Q′ with some edge e′ in Q, then e′ is neither clean under D

nor crossed in Q. In Q, e′ is on the common boundary of face F and another face F0

in F (Q×). As e′ is crossed once only, u must be on the boundary of F0, implying that

F0 ∈ Fu(Q
×). Hence F ∈ Fu(Q

×) in this case. ✷

u0u1

u2

u3

c

Figure 2: Both u1u2 and u1u3 are clean edges.

Lemma 12. Let D be a 1-planar drawing of G which has the minimum number of cross-

ings and let Q be a restricted drawing of D. Assume that u1u2u3u1 is a 3-cycle in Q. If

u2u3 is crossed with an edge which is incident with u1, as shown in Figure 2, then both

u1u2 and u1u3 are clean edges with the drawing D.

Proof. Suppose that u1u2 is not a clean edge. Then we redraw the edge u1u2 “most

near” to one side of the sections u1c and cu2 so as to make no crossings, contradicting to

the choice of D which has the minimum number of crossings. ✷

4 The Proof of Theorem 4

We only prove the former part of Theorem 4, because the tightness of the lower bound is

direct from [7]. We first establish the following result for proving Theorem 4.

Proposition 13. Theorem 4 is true if for every 1-planar graph G of order at least 36

and every S ⊆ V (G) with |S| ≥ 2, the following inequality holds:

3a1 + 2a3 + a5 + 4 ≤ 4|S|, (*)

where ai is the number of i-vertex components of G\S for i ∈ {1, 3, 5}.

Proof. Let G be a 1-planar graph with δ(G) = 6 and n ≥ 36 vertices, and let M(G) be a

maximum matching of G. In order to prove Theorem 4, i.e., |M(G)| ≥ 3
7
n+ 4

7
, by Lemma

5, it suffices to prove that, for each subset S ⊆ V (G),

odd(G\S)− |S| ≤ n− 8

7
. (2)
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If |S| = 1, because δ(G) = 6, each odd component of G\S has at least 7 vertices.

Therefore, G\S has at most n−1
7

odd components. So,

odd(G\S)− |S| ≤ n− 1

7
− 1 =

n− 8

7
.

Thus, (2) holds when |S| = 1.

If |S| = 0, because δ(G) = 6 and the complete graph K7 is not 1-planar (see [8], for

example), each odd components of G (= G\S) has at least 9 vertices. Hence G has at

most n
9
odd components. Thus, for n ≥ 36 we have

odd(G\S)− |S| ≤ n

9
≤ n− 8

7
.

(2) holds as well when |S| = 0.

In the following we focus on the case that |S| ≥ 2. For i ≥ 1, let a2i−1 denote the

number of components of G\S with 2i − 1 vertices, and let a0 be the number of even

components of G\S. Noting that n ≥ |S|+ 2a0 +
∑

i≥1

(2i− 1)a2i−1, in order to prove (2),

we only need to prove

∑

i≥1

a2i−1 − |S| ≤ 1

7

(

|S|+ 2a0 +
∑

i≥1

(2i− 1)a2i−1 − 8
)

. (3)

Because a2i−1 ≤ 2i−1
7

a2i−1 for each i ≥ 4, in order to prove (3), we only need to prove

(a1 + a3 + a5)− |S| ≤ 1

7
(|S|+ a1 + 3a3 + 5a5 − 8), (4)

namely 3a1 + 2a3 + a5 + 4 ≤ 4|S|.
Thus the result is proven. ✷

In the following, we always assume that G is a 1-planar graph of order at least 36 and S

is a subset of V (G) with |S| ≥ 2. For each 5-vertex-component F ofG\S, |EG(V (F ), S)| ≥
10 by Lemma 9 (a). A 5-vertex component F of G\S is called bad, if |EG(V (F ), S)| = 10

or 11; otherwise, good.

The remainder of the proof of Theorem 4 consists of three subsections. In Subsec-

tion 4.1, we shall establish some properties on a bad 5-vertex component F of G\S; in
Subsection 4.2, a 1-planar bipartite graph G∗ will be obtained from G by contracting or

deleting some edges in G; and in the the last subsection, we will apply G∗ to show that

(*) holds and hence Theorem 4 follows.

4.1 Local properties of bad 5-vertex-components of G\S
Let D be a 1-planar drawing of G such that D has the minimum number of crossings.

In this subsection, we shall find some properties of the local structure of a bad 5-vertex-
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component of G\S under the drawing D. Let F be a bad 5-vertex-component of G\S
with V (F ) = {v0, v1, v2, v3, v4}. For each vertex vi ∈ V (F ), obviously,

4
∑

i=0

|NG(vi, S)| =
|EG(V (F ), S)| by the simplicity of G. Again, since F is a bad 5-vertex-component of

G\S, it follows from Lemma 9 (b) that F ∼= K5.

Since D is a 1-planar drawing of G, the restricted drawing D|F is also a 1-planar

drawing of F . Therefore, D|F is unique up to isomorphism by Lemma 8. Without loss of

generality, in the following, we assume that the 1-planar drawing D|F of F is depicted in

Figure 3, where v1v3 and v2v4 are two crossed edges with the crossing point c.

At this time we say that the 4-cycle C = v1v2v3v4v1 is a central cycle of F , and v0 is

the central vertex of F .

Next we prove Propositions 14 and 15.

Proposition 14. For a bad 5-vertex-component F of G\S with its central vertex v0 and

central cycle C = v1v2v3v4v1, we have

(a) |NG(vi, S)| ≥ 2 for each 0 ≤ i ≤ 4;

(b) C is a clean cycle under the drawing D;

(c)
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ ≥ 3; and

(d) if
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3, then some edge v0vi, where 1 ≤ i ≤ 4, is clean under the

drawing D.

v1 v2

v4 v3

v0 c

Figure 3: The unique 1-planar drawing of F of G\S.

Proof. Let the restricted drawing D|F be as shown in Figure 3, where edges v1v3 and

v2v4 cross each other at point c (see Figure 3).

(a) follows immediately from the facts that G is simple with δ(G) = 6 and F ∼= K5.

Now prove (b). Assume to the contrary that there exists an edge of C, say v1v2, is

a crossed edge under the drawing D. Then we redraw the edge v1v2 “most near” to one
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side of the sections v1c and cv2 so as to make no crossings, contradicting to the choice of

D with the minimum number of crossings. This proves (b).

Then prove (c). Obviously,
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ ≥ 2 by Proposition 14 (a). Assume to the

contrary that
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ 6≥ 3. Then
4
⋃

i=1

NG(vi, S) = {x1, x2} for two vertices x1, x2

in S. Observe that G[{v0, v1, v2, v3, v4, x1, x2}] contains a subgraph that is isomorphic to

K7\K3 (the complete graph K7 by deleting three edges of a 3-cycle). However, it is proved

in [14] that K7\K3 is not 1-planar, a contradiction. This proves (c).

Finally prove (d). By the assumption, set
4
⋃

i=1

NG(vi, S) = {x1, x2, x3} ⊆ S. For

1 ≤ j ≤ 3, let ℓ(xj) = |NG(xj , {v1, v2, v3, v4})|. It follows from Proposition 14 (a) that

3
∑

j=1

ℓ(xj) =

4
∑

i=1

|NG(vi, S)| ≥ 4× 2 = 8.

So there exists a vertex in {x1, x2, x3}, say x1, such that ℓ(x1) ≥ 3, implying that NG(x1)∩
{vi, vi+1} 6= ∅ for i = 1, 2, 3, 4, where v5 represents the vertex v1.

Note that L1 : v3v4cv3, L2 : v1v4cv1, L3 : v1v2cv1 and L4 : v2v3cv2 are barrier loops.

As v2, v3 locate in intD×(L2), by Lemma 10, x1 must be in intD×(L2). For i = 1, 3, 4, as

vi, vi+1 locate in extD×(Li), by Lemma 10, x1 must be in extD×(Li), where v5 represents

the vertex v1. Thus, x1 must lie in one of the four regions bounded by the 3-cycles

v1v2v0v1, v2v3v0v2, v3v4v0v3, and v4v1v0v4 (see Figure 3). Without loss of generality, let

x1 lie in the region bounded by the 3-cycle v4v1v0v4. As ℓ(x1) ≥ 3, x1 is adjacent to either

v2 or v3, say v2, implying that x1v2 crosses v0v1. By Lemma 12, edge v0v2 is a clean edge

under the drawing D.

This proves (d). ✷

By Proposition 14 (c),
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ ≥ 3. Now we continue to describe the local struc-

ture of F under the assumption that
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3 and NG(v0, S) ⊆
4
⋃

i=1

NG(vi, S).

Now we are going to prove the following conclusion.

Proposition 15. For a bad 5-vertex component F of G\S with its central vertex v0 and

central cycle C : v1v2v3v4v1, if NG(v0, S) ⊆ {x1, x2, x3} =
4
⋃

i=1

NG(vi, S), then there exist

two non-adjacent edges e = vj1vj2 and e′ = vj3vj4 on C such that

|NG(vj1) ∩NG(vj2) ∩ {x1, x2, x3}| ≤ 1 and |NG(vj3) ∩NG(vj4) ∩ {x1, x2, x3}| ≤ 1.

Proof. By assumption, NG(v0, S) ⊆
4
⋃

i=1

NG(vi, S) = {x1, x2, x3} ⊆ S. For j = 1, 2, 3, let

ℓ(xj) = |NG(xj , V (F ))|. By the simplicity of G, we have that ℓ(xj) ≤ 5 for 1 ≤ j ≤ 3,

9



and
4

∑

i=0

|NG(vi, S)| = |EG(V (F ), S)| =
3

∑

j=1

ℓ(xj).

It follows from Proposition 14 (a) that

10 = 5× 2 ≤
4

∑

i=0

|NG(vi, S)| =
3

∑

j=1

ℓ(xj) = |EG(V (F ), S)| ≤ 11, (5)

where the last inequality follows from the assumption that F is a bad 5-vertex component

of G\S.
Assume that ℓ(x1) ≥ ℓ(xi) for i = 2, 3. By (5), ℓ(x1) ≥ 4. Note that L1 : v3v4cv3,

L2 : v1v4cv1, L3 : v1v2cv1 and L4 : v2v3cv2 are barrier loops. As v0, v2, v3 locate in

intD×(L2), by Lemma 10, x1 must be in intD×(L2). For i = 1, 3, 4, as v0, vi, vi+1 locate

in extD×(Li), by Lemma 10, x1 must be in extD×(Li), where v5 represents the vertex v1.

Thus, x1 must lie in one of the four regions bounded by the 3-cycles v1v2v0v1, v2v3v0v2,

v3v4v0v3, and v4v1v0v4 (see Figure 3). Without loss of generality, in the following we always

assume that x1 lies in the region bounded by the 3-cycle v4v1v0v4 (for it is completely

analogous for other cases). Then there are six possible subdrawings (B1)-(B6), as shown

in Figure 4, where the first five subdrawings (B1)-(B5) correspond to that ℓ(x1) = 4, and

the last subdrawing (B6) corresponds to that ℓ(x1) = 5.

v4 v3

v1 v2

v0

v4 v3

v1 v2

v0

v4 v3

v1 v2

v0

v4 v3

v1 v2

v0

v4 v3

v1 v2

v0

(B1) (B2) (B3)

(B4) (B5)

x1 x1 x1

x1x1

c
c′

c′′
c

c′

c′′
c

c′

c′′

c

c′
c

c′

v4 v3

v1 v2

v0

(B6)

x1 c
c′

c′′

Figure 4: The possible subdrawings involving x1
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We shall prove the following claims to complete the proof.

Claim 1. For 0 ≤ i ≤ 4 and 1 ≤ t ≤ 3, NG(vi) ∩ ({x1, x2, x3} \ {xt}) 6= ∅, and if

xt /∈ NG(vi), then {x1, x2, x3} \ {xt} ⊆ NG(vi).

Proof. For 0 ≤ i ≤ 4, by the given condition and Proposition 14 (a),

|NG(vi) ∩ {x1, x2, x3}| = |NG(vi) ∩ S| ≥ 2.

Thus, Claim 1 follows. ✷

Claim 2. Subdrawings (B1), (B2) and (B3) cannot occur.

Proof. Since (B2) and (B3) are symmetric, we consider (B1) and (B2) only.

Observe that in both (B1) and (B2), C1 = x1c
′v2cv3c

′′x1 is a barrier loop of D, and v0

locates in intD×(C1) while v1 and v4 locate in extD×(C1).

In (B1), as x1v0 /∈ E(G), by Claim 1, {x2, x3} ⊆ NG(v0). As v0 is in intD×(C1), by

Lemma 10, both x2 and x3 are in intD×(C1). Since v1 locates in extD×(C1), by Lemma 10

again, we have NG(v1) ∩ {x1, x2, x3} ⊆ {x1}, a contradiction to Proposition 14 (a).

In (B2), as x1v1 /∈ E(G), by Claim 1, {x2, x3} ⊆ NG(v1). As v1 is in extD×(C1), by

Lemma 10, both x2 and x3 are in extD×(C1). Since v0 is in intD×(C1), by Lemma 10

again, we have NG(v0) ∩ {x1, x2, x3} = {x1}, a contradiction to Proposition 14 (a).

Hence Claim 2 holds. ✷

Claim 3. Proposition 15 holds if subdrawing (B4) or (B5) occurs.

Proof. We only consider (B4) because of the symmetry. Suppose (B4) happens.

Note that in (B4), x1 /∈ NG(v2). By Claim 1, NG(v2) ∩ {x1, x2, x3} = {x2, x3}. By

Claim 1 again, {x2, x3} ∩NG(v4) 6= ∅. Assume that x2 ∈ NG(v4). Then x2 is adjacent to

both v2 and v4. We shall show that

x2 /∈ NG(v3) and x3 /∈ NG(v1) ∪NG(v4). (6)

As x2 is adjacent to both v2 and v4, by Lemma 11, x2 is within a common face F of

Fv2(Q
×) and Fv4(Q

×), where Q is the restricted drawing of D shown in Figure 5 (B4).

It can be verified that Fv2(Q
×) and Fv4(Q

×) have exactly one common face, denoted

by F1, whose interior is intD×(C2), where C2 is the cycle v1x1v0v1. Thus, x2 must be within

intD×(C2), as shown in Figure 5 (B4-1), where c′′ is the crossing point involving the two

edges x2v2 and v0v1. As F1 does not belong to Fv3(Q
×), x2 /∈ NG(v3) by Lemma 11.

As x1 /∈ NG(v2) and x2 /∈ NG(v3), by Claim 1, x3 ∈ NG(v2) ∩NG(v3).

Note that C3 = v0c
′′v2cv4c

′v0 is a barrier loop, and v3 is in intD×(C3) while v1 is in

extD×(C3) (See Figure 5(B4-1)). As x3 ∈ NG(v3), by Lemma 10, we have x3 /∈ NG(v1).

Similarly, we know that C4 = v0c
′′v1cv3c

′v0 is a barrier loop, and v2 is in intD×(C4)
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while v4 is in extD×(C4) (See Figure 5(B4-1)). As x3 ∈ NG(v2), by Lemma 10, we have

x3 /∈ NG(v4). Hence (6) holds.

By (6) and the fact that x1 /∈ NG(v2), we have

NG(v1) ∩NG(v2) ∩ {x1, x3} = ∅ and NG(v3) ∩NG(v4) ∩ {x2, x3} = ∅,

implying that Proposition 15 holds with e = v1v2 and e′ = v3v4 and Claim 3 is proven. ✷

v4 v3

v1 v2

v0

(B4) Q

x1 c

c′

v4 v3

v1 v2

v0

(B4-1) Q′

x1

x2

c

c′′

c′

Figure 5: Restricted drawing Q and the one Q′ obtained after adding a vertex x2 and
edges joining x2 to both v2 and v4

Claim 4. Proposition 15 holds if subdrawing (B6) occurs.

Proof. Assume that (B6) happens. We first show that for both i = 2, 3,

{v1, v3} 6⊆ NG(xi) and {v2, v4} 6⊆ NG(xi). (7)

Let C5 be the barrier loop v0c
′v2cv4c

′′v0. Observe that v1 is in extD×(C5) and v3 is

in intD×(C5). By Lemma 10, {v1, v3} 6⊆ NG(xi) for both i = 2, 3. Similarly, it can be

proved that {v2, v4} 6⊆ NG(xi) for both i = 2, 3. Thus, (7) holds. It implies that each xi

is adjacent to at most two consecutive vertices on C for both i = 2, 3. On the other hand,

by Claim 1,

{v1, v2, v3, v4} ⊆ NG(x2) ∪NG(x3), (8)

Hence, for i = 2, 3, xi is adjacent to exactly two consecutive vertices on C and x2, x3

together are adjacent to all four vertives on C. Equivalently, one of the two cases below

happens for some t ∈ {2, 3}:

(i) NG(xt) ∩ {v1, v2, v3, v4} = {v1, v2} and NG(x5−t) ∩ {v1, v2, v3, v4} = {v3, v4}, or

(ii) NG(xt) ∩ {v1, v2, v3, v4} = {v1, v4} and NG(x5−t) ∩ {v1, v2, v3, v4} = {v2, v3}.

But we can show that Case (i) above cannot happen. Note that C6 : x1c
′v2cv3c

′′x1 is

a barrier loop, and v0 is in intD(C6) while both v1 and v4 are in extD(C6). If Case (i)

12



happens, then NG(xt) ∩ {v1, v4} 6= ∅ for both t = 2, 3. By Lemma 10, xt /∈ NG(v0) for

both t = 2, 3, a contradiction to Claim 1.

Thus, Case (ii) above happens, and

NG(v1) ∩NG(v2) ∩ {x2, x3} = ∅ = NG(v3) ∩NG(v4) ∩ {x2, x3},

implying that Proposition 15 holds with e = v1v2 and e′ = v3v4.

Hence Claim 4 holds. ✷

By Claims 2, 3 and 4, Proposition 15 is proven. ✷

4.2 To form a bipartite 1-planar graph G∗ from G

In this section, associated with the given 1-planar graph G and 1-planar drawing D of

G with the minimum number of crossings, we perform several operations on G so as to

obtain a desired bipartite 1-planar (simple) graph G∗, in which one bipartite set is S and

the other consists of some original vertices in V (G)\S and some new vertices.

Let F be a bad 5-vertex-component of G\S with V (F ) = {v0, v1, v2, v3, v4}, its central
cycle C = v1v2v3v4v1 and its central vertex v0. Then we know that C is clean under the

drawing D by Proposition 14 (a). Then
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ ≥ 3 by Proposition 14(c).

In the following, we define three operations on F according to the value of
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣

and whether NG(v0, S) is a subset of
4
⋃

i=1

NG(vi, S).

Operation A (When
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ ≥ 4) Contract all the edges of C such that the

four vertices of C are merged into a new vertex v∗, and delete all loops and all possible par-

allel edges but one for each pair of distinct vertices which appear after edge-contraction.

Since C is clean under the drawing D, the edge contraction in Operation A is per-

formable and does not affect the 1-planarity. After performing Operation A, F is trans-

formed into a 2-vertex graph F ′′ with V (F ′′) = {v∗, v0}. Moreover, we easily know that v∗

is still adjacent to each vertex in
4
⋃

i=1

NG(vi, S). Let ω(F
′′, S) denote the number of edges

with one end in V (F ′′) and the other end in S after performing Operation A. Because

|NG(v0, S)| ≥ 2 by Proposition 14 (a), we get that

ω(F ′′, S) =

∣

∣

∣

∣

4
⋃

i=1

NG(vi, S)

∣

∣

∣

∣

+ |NG(v0, S)| ≥ 6. (9)

If
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3, it then follows from Proposition 14(d) that there exists a clean

edge e under the drawing D which joins v0 to some vertex in C. Without loss of generality,

13



let e = v0v1. We shall distinguish the two cases below: NG(v0, S) 6⊆
4
⋃

i=1

NG(vi, S) and

NG(v0, S) ⊆
4
⋃

i=1

NG(vi, S).

Operation B
(

When |
4
⋃

i=1

NG(vi, S)| = 3 and NG(v0, S) 6⊆
4
⋃

i=1

NG(vi, S)
)

. First con-

tract all the edges of C such that the four vertices of C are merged into a new vertex v∗;

then contract the edge e = v0v1 (= v0v
∗) such that the two end vertices of e are merged

into a new vertex v∗∗; finally delete all loops and all parallel edges but one for each pair

of distinct vertices which appear after edge-contraction.

Similarly, the edge contraction in Operation B is performable and does not affect the

1-planarity. After performing Operation B, F is transformed into a 1-vertex graph F ′

with V (F ′) = {v∗∗}. Similarly, we also easily see that v∗∗ is still adjacent to each vertex

in
4
⋃

i=1

NG(vi, S) ∪NG(v0, S) after performing Operation B.

Let ω(F ′, S) denote the number of edges with one end in V (F ′) (= {v∗∗}) and the

other end in S. Because of the assumption that
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3 and NG(v0, S) 6⊆
4
⋃

i=1

NG(vi, S), we therefore get that

ω(F ′, S) =

∣

∣

∣

∣

4
⋃

i=0

NG(vi, S)

∣

∣

∣

∣

≥
∣

∣

∣

∣

4
⋃

i=1

NG(vi, S)

∣

∣

∣

∣

+ 1 = 4. (10)

If
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3 and NG(v0, S) ⊆
4
⋃

i=1

NG(vi, S), let
4
⋃

i=1

NG(vi, S) = {x1, x2, x3},
where x1, x2, x3 ∈ S. Then, by Proposition 15, there are two non-adjacent edges e and e′

on C such that the two end vertices of e (resp. e′) have at most one common neighbor x

(resp. x′) in {x1, x2, x3}.
At this time we define the following operation.

Operation C
(

When
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3 and NG(v0, S) ⊆
4
⋃

i=1

NG(vi, S)
)

. Contract

the edge e (resp. e′) such that its two end vertices are merged into a new vertex v′ (resp.

v′′), and then delete all parallel edges but one for each pair of distinct vertices which appear

after edge-contraction.

Similarly, the edge contraction in Operation C can be implemented and does not

change the 1-planarity. After finishing Operation C, F is transformed into a 3-vertex

graph F ′′′ with V (F ′′′) = {v′, v′′

, v0}. By the reasons as just stated before Operation C,

we know that performing Operation C yields at most two multiple edges with one end

vertex is in {v′, v′′} and the other end vertex in S.

Let ω(F
′′′

, S) denote the number of edges with one end in V (F ′′) and the other end
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in S after performing Operation C. Therefore, by Proposition 14 (a), we get that

ω(F
′′′

, S) ≥ |NG(v0, S)|+
(

4
∑

i=1

|NG(vi, S)| − 2
)

≥ 8. (11)

Now we are going to construct the desired graph G∗ from G by going through all the

following steps.

Step 0. (deleting components). Delete from G\S all even components and all i-vertex

odd components with i ≥ 7 (deleting a vertex must also delete its all incident edges).

Step 1. Perform Operation A at every bad 5-vertex-component F ofG\S if
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣

≥ 4. By the definition of Operation A, each F is changed into a 2-vertex graph F ′′.

Step 2. Perform Operation B at every bad 5-vertex-component F ofG\S if
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣

= 3 and NG(v0, S) 6⊆
4
⋃

i=1

NG(vi, S). By the definition of Operation B, F is changed

into a 1-vertex graph F ′.

Step 3. Perform Operation C at every bad 5-vertex-components F ofG\S if
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣

= 3 and NG(v0, S) ⊆
4
⋃

i=1

NG(vi, S). By the definition of Operation C, F is changed

into a 3-vertex graph F ′′′.

Step 4. (deleting edges) Delete the edges in all 3-vertex-components and all good 5-

vertex-components of G\S; delete the edge in every 2-vertex graph F ′′ obtained in

Step 1, and all edges in each 3-vertex graph F ′′′ obtained by Step 3; and delete all

edges which joint two vertices in S.

After doing all the steps above, we see that the resulting graph G∗ is a bipartite

1-planar (simple) graph with bipartite sets |S| and |T |, where T = V (G∗)\S.
Remark: The edge contraction in Steps 1-3 may cause two adjacent edges to cross

with each other in the resulting 1-planar drawing of G∗. If this phenomenon appears, we

can modify the drawing so that this two adjacent edges are no longer crossed.

4.3 Applying G∗ to prove Theorem 4

From the previous subsection, we know that G∗ is a 1-planar bipartite graph with bipartite

set S and T . Now we compute the sizes of |T | and |E(G∗)|. Form the process of obtaining

G∗ from G, we have the following facts on T and EG∗(S, T ).

Fact (1). Each 1-vertex-component F of G\S exactly contributes one vertex to T , and

at least 6 edges to G∗.
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Fact (2). Each 3-vertex-component F of G\S exactly contributes 3 vertices to T and at

least 12 edges to G∗, because |EG(V (F ), S)| ≥ 3× (δ(G)− 2) ≥ 3× 4 = 12.

Fact (3). Each good 5-vertex-component F of G\S exactly contributes 5 vertices to T

and at least 12 edges to G∗, because |EG(V (F ), S)| ≥ 12 by the definition of good

5-vertex-components of G\S.

Fact (4). Each bad 5-vertex-component F of G\S with
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ ≥ 4 exactly con-

tributes 2 vertices to T and at least 6 edges to G∗ by (9).

Fact (5). Each bad 5-vertex-component F ofG\S with
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3 andNG(v0, S) 6⊆
4
⋃

i=1

NG(vi, S) exactly contributes one vertex to T and at least 4 edges to G∗ by (10).

Fact (6). Each bad 5-vertex-component F ofG\S with
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3 andNG(v0, S) ⊆
4
⋃

i=1

NG(vi, S) exactly contributes 3 vertices to T and at least 8 edges to G∗ by (11).

Now we are ready to prove Theorem 4.

Proof of Theorem 4: Denote by a
′

5 the number of bad 5-vertex-components F of G\S
with

∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3 and NG(v0, S) 6⊆
4
⋃

i=1

NG(vi, S), a
′′

5 the number of bad 5-vertex-

components F of G\S with
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ ≥ 4, and a
′′′

5 the number of bad 5-vertex-

components F of G\S with
∣

∣

4
⋃

i=1

NG(vi, S)
∣

∣ = 3 and NG(v0, S) ⊆
4
⋃

i=1

NG(vi, S).

Therefore, based on Facts (1)-(6) above it follows that

|T | = a1 + 3a3 + 5(a5 − a
′

5 − a
′′

5 − a
′′′

5 ) + a
′

5 + 2a
′′

5 + 3a
′′′

5

= a1 + 3a3 + 5a5 − 4a
′

5 − 3a
′′

5 − 2a
′′′

5 , (12)

|E(G∗)| ≥ 6a1 + 12a3 + 12(a5 − a
′

5 − a
′′

5 − a
′′′

5 ) + 4a
′

5 + 6a
′′

5 + 8a
′′′

5

= 6a1 + 12a3 + 12a5 − 8a
′

5 − 6a
′′

5 − 4a
′′′

5 . (13)

Case 1. |S| ≥ |T |+ 1.

Noting a5 ≥ a
′

5 + a
′′

5 + a
′′′

5 , we have

|S| ≥ (a1 + 3a3 + 5a5 − 4a
′

5 − 3a
′′

5 − 2a
′′′

5 ) + 1 ≥ a1 + 3a3 + a5 + 1.

Therefore,

4|S| ≥ 4(a1 + 3a3 + a5 + 1) ≥ 3a1 + 2a3 + a5 + 4. (14)
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Theorem 4 follows directly from (14) and Proposition 13.

Case 2. |S| ≤ |T |.
Because G∗ is a bipartite 1-planar (simple) graph with bipartite sets |S| and |T |, where

|S| ≥ 2, from Lemma 7, we have

|E(G∗)| ≤ 2(|T |+ |S|) + 4|S| − 12

= 2(a1 + 3a3 + 5a5 − 4a
′

5 − 3a
′′

5 − 2a
′′′

5 + |S|) + 4|S| − 12

= 6|S|+ 2a1 + 6a3 + 10a5 − 8a
′

5 − 6a
′′

5 − 4a
′′′

5 − 12. (15)

By (13) and (15), we have 3|S| ≥ 2a1 + 3a3 + a5 + 6. On the other hand, |S| ≥ a1 + 3 by

Lemma 6. Therefore,

4|S| ≥ (2a1 + 3a3 + a5 + 6) + (a1 + 3) = 3a1 + 3a3 + a5 + 9 > 3a1 + 2a3 + a5 + 4. (16)

Theorem 4 follows directly from (16) and Proposition 13. ✷

5 Further study

For each 1-planar graph G, as |E(G)| ≤ 4|V (G)| − 8, we have δ(G) ≤ 7. For any positive

integer n and δ, where 3 ≤ δ ≤ 7, let νn,δ be the maximum number such that every

1-planar graph G of order n and minimum degree δ has a matching of size νn,δ.

Theorem 1 shows that νn,3 ≥ n+12
7

when n ≥ 7, νn,4 ≥ n+4
3

when n ≥ 20, and

νn,5 ≥ 2n+3
5

when n ≥ 21, while Theorem 4 shows that νn,6 ≥ 3n+4
7

when n ≥ 36.

Regarding νn,7, the following conjecture posed by Biedl and Wittnebel [7] is still open.

Conjecture 2. There exists an integer N such that νn,7 ≥ 11n+12
23

when n ≥ N .

Biedl [4] studied the maximum size of matchings in 4-connected (resp. 5-connected)

1-planar graphs, and obtained the following results.

Theorem 16 ([4]). (a). For any integer N , there exists a 4-connected 1-planar graph G

with n ≥ N vertices in which every matching has its size at most n+4
3
.

(b). For any integer N , there exists a 5-connected 1-planar graph G with n ≥ N vertices

in which every matching has its size at most n−2
2
.

Biedl [4] conjectured that every 5-connected 1-planar graph with n vertices has a

matching of size n
2
− O(1). Recently this conjecture was disapproved by Huang [10] who

shows that for any integer N , there exists a 5-connected 1-planar graph G with n ≥ N

vertices such that every matching in G has its size at most n
2
− 3

8

√
n.

We end this article with the following problem on the study of maximum matchings

in t-connected 1-planar graphs, where t ≤ 7.
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Problem 1. Let G be a t-connected 1-planar graph with n vertices, where t ≤ 7, and let

M(G) be a maximum matching of G. Study the lower bound of |M(G)|. In particular,

(a). for t = 5, is there a constant b such that |M(G)| ≥ n
2
− b

√
n when n ≥ N for some

integer N?

(b). for t = 6 or 7, does G have a near-perfect matching, namely, |M(G)| =
⌊

n
2

⌋

when

n ≥ N for some integer N?
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