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Large book–cycle Ramsey numbers

Qizhong Lin∗ and Xing Peng†

Abstract

Let B
(k)
n be the book graph which consists of n copies of Kk+1 all sharing a common

Kk, and let Cm be a cycle of length m. In this paper, we first determine the exact value

of r(B
(2)
n , Cm) for 8

9n + 112 ≤ m ≤ ⌈ 3n
2 ⌉ + 1 and n ≥ 1000. This answers a question of

Faudree, Rousseau and Sheehan (Cycle–book Ramsey numbers, Ars Combin., 31 (1991),
239–248) in a stronger form when m and n are large. Building upon this exact result, we

are able to determine the asymptotic value of r(B
(k)
n , Cn) for each k ≥ 3. Namely, we prove

that for each k ≥ 3, r(B
(k)
n , Cn) = (k + 1 + ok(1))n. This extends a result due to Rousseau

and Sheehan (A class of Ramsey problems involving trees, J. London Math. Soc., 18 (1978),
392–396).

Keywords: Ramsey number; Regularity lemma; Book; Cycle

1 Introduction

For graphs H1 and H2, the Ramsey number r(H1,H2) is the minimum integer N such that

every red-blue edge coloring of the complete graph KN contains either a red H1 or a blue H2.

Let B
(k)
n be the book graph which consists of n copies of Kk+1 all sharing a common Kk. When

k = 2, we write Bn instead of B
(2)
n for convenience. Book Ramsey numbers have attracted a lot

of attention, see [12, 25, 29, 22, 23, 24] and other related references. In particular, answering

a question of Erdős et al. [12], Conlon [8] established an asymptotic version of Thomason’s

conjecture [29] by showing

r(B(k)
n , B(k)

n ) = (2k + ok(1))n.

The upper bound was improved to 2kn + Ok

(

n
(log log logn)1/25

)

by using a different method, see

Conlon, Fox and Wigderson [9].

Let Cm and Tm be a cycle and a tree of order m, respectively. The Ramsey numbers of

book versus tree and book versus cycle also received a great deal of attention. Strengthening a

classical result due to Chvátal [7], Rousseau and Sheehan [26] established that

r(B(k)
n , Tn) = (k + 1)(n − 1) + 1. (1)
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For more book-tree Ramsey numbers, see e.g. [26, 13, 6, 16]. A natural question is whether we

can prove a similar result for book-cycle Ramsey number when they have nearly equal order.

The study of book-cycle Ramsey numbers goes back to [25] by Rousseau and Sheehan. In

particular, they proved r(Bn, C3) = 2n+3 for n > 1. In [15, 17], Faudree, Rousseau and Sheehan

proved some results for r(Bn, C4), and generally,

r(Bn, Cm) =

{

2n + 3 if m ≥ 5 is odd and m ≤ n
4 + 13

4 ,
2m− 1 if m ≥ 2n + 2.

Improving upon the result in [17], Shi [27] obtained that r(Bn, Cm) = 2m − 1 for m > 3n
2 + 7

4 .

In the same paper, the author also obtained r(B
(3)
n , Cm) = 3m − 2 for m > max{6n+7

4 , 70}.

For fixed k ≥ 1 and odd m ≥ 3, Liu and Li [20] proved that r(B
(k)
n , Cm) = 2(n + k − 1) + 1

when n is large. One can easily see that r(Bn, Cm) > 3(n − 1) ≥ max{2m − 1, 2n + 3} for

6 ≤ n ≤ m ≤ 3n
2 − 1, and r(Bn, Cm) > 3(m − 1) ≥ max{2m − 1, 2n + 3} for 2n

3 + 2 ≤ m ≤ n.

This suggests that the formula for r(Bn, Cm) varies when m and n change, especially when m

and n are nearly equal. As mentioned in [17], “the problem of computing r(Bn, Cm) when m is

odd and m and n are nearly equal provides an unanswered test of strength”.

The goal of this paper is to study the Ramsey number r(B
(k)
n , Cm) when n and m are nearly

equal. First, we determine the exact value of r(Bn, Cm) for 8
9n + 112 ≤ m ≤ ⌈3n2 ⌉ + 1 and

n ≥ 1000, which provides an answer to the question by Faudree, Rousseau and Sheehan [17] in

a stronger form when m and n are large.

Theorem 1 For n ≥ 1000,

r(Bn, Cm) =















3m− 2 if 8n
9 + 112 ≤ m ≤ n,

3n− 1 if m = n + 1,
3n if n + 2 ≤ m ≤ 3n+1

2 ,
2m− 1 if m = ⌈3n2 ⌉ + 1.

Remark 1. We observe that the formula for r(Bn, Cm) undergos phase transitions when m ∈
{n, n + 1, n + 2}.

So far, the value of r(Bn, Cm) is known for m ≥ 8n
9 n+112 as well as odd m with m ≤ n

4 + 13
4 .

It requires new ideas to determine the value of r(Bn, Cm) when m and n are in other ranges.

Based on Theorem 1, we extend (1) by showing the asymptotic value of r(B
(k)
n , Cn) for each

fixed integer k ≥ 3 as follows.

Theorem 2 Let k ≥ 3 be a fixed integer. We have

r(B(k)
n , Cn) = (k + 1 + ok(1))n.

It is a challenge to determine the exact value of r(B
(k)
n , Cm) when m and n are nearly equal for

each k ≥ 3.

Throughout this paper, we will use the following notation. Let G be a graph with vertex

set V . For each vertex v ∈ V , we use NG(v) and dG(v) to denote the neighborhood and the

degree, respectively. If U ⊆ V , then G[U ] denotes the subgraph induced by U . Moreover, let

NG(v, U) = NG(v) ∩ U and dG(v, U) = |NG(v, U)|. The graph G − v is the one obtained from

G by deleting the vertex v and all edges incident to v.
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The rest of the paper is organized as follows. In Section 2, we will collect several results

which will be used to prove our results. In Section 3, we will present proofs of Theorem 1 and

Theorem 2.

2 Preliminaries

In this section, we collect a number of previous results which are needed for our proofs.

Crucial tools include a refined version of Szemerédi’s regularity lemma and the (weakly) pancyclic

properties of graphs.

2.1 Regularity method

Szemerédi’s regularity lemma [28] is a powerful tool in extremal graph theory. The regularity

lemma is also called the uniformity lemma, see e.g., Bollobás [3] and Gowers [18]. Applications of

the regularity method are fruitful. We refer the reader to the survey of Komlós and Simonovits

[19] and other related references.

A key tool in the proof of Theorem 2 is a refined version of the Szemerédi’s regularity lemma

by Conlon [8]. We state it and its related results as following.

Let G be a graph defined on vertex set V = V (G). For X,Y ⊆ V , denote eG(X,Y ) by the

number of pairs in X × Y that are edges of G. The ratio

dG(X,Y ) =
eG(X,Y )

|X||Y |

is called the edge density of (X,Y ) in G, which can be understood as the probability that a

random pair (x, y) from X×Y is an edge. If X ∩Y 6= ∅, then edges in X ∩Y are counted twice.

For ǫ > 0, a pair (U,W ) of nonempty sets U,W ⊆ V is called ǫ-regular if

|dG(X,Y ) − dG(U,W )| ≤ ǫ

for every X ⊆ U, Y ⊆ W such that |X| ≥ ǫ|U | and |Y | ≥ ǫ|W |. We say a subset U is ǫ-regular

if the pair (U,U) is ǫ-regular.

An equitable partition of a graph G is a partition V (G) = ⊔m
i=1Vi of the vertex set of G such

that
∣

∣|Vi| − |Vj|
∣

∣ ≤ 1 for all i and j.

We mention two properties for ǫ-regular pairs, see e.g. [19].

Fact 1 Let (U,W ) be an ǫ-regular pair with edge density d. If Y ⊆ W with |Y | ≥ ǫ|W |, then
there exists a subset U ′ ⊆ U with |U ′| ≥ (1 − ǫ)|U | such that each vertex in U ′ is adjacent to at

least (d− ǫ)|Y | vertices in Y .

Fact 2 Let (U,W ) be an ǫ-regular pair in graph G. If X ⊆ U , Y ⊆ W with |X| ≥ γ|U | and
|Y | ≥ γ|W | for some γ > ǫ, then (X,Y ) is ǫ′-regular such that |dG(U,W )−dG(X,Y )| ≤ ǫ, where

ǫ′ = max{ǫ/γ, 2ǫ}.

We need the following refined version of the regularity lemma by Conlon [8, Lemma 3]. In

the same spirit, to prove an induced removal lemma, Alon et. al [1] obtained a result in which

all pairs (Wi,Wj) are ǫ-regular.

3



Lemma 1 For every 0 < ǫ < 1 and natural number m0, there exists a natural number M

such that every graph G with at least m0 vertices has an equitable partition V (G) = ⊔m
i=1Vi

with m0 ≤ m ≤ M parts and subsets Wi ⊂ Vi such that Wi is ǫ-regular for all i and, for

all but ǫm2 pairs (i, j) with 1 ≤ i 6= j ≤ m, (Vi, Vj), (Wi, Vj) and (Wi,Wj) are ǫ-regular with

|dG(Wi, Vj) − dG(Vi, Vj)| ≤ ǫ and |dG(Wi,Wj) − dG(Vi, Vj)| ≤ ǫ.

We will also use the following counting lemma from [8, Lemma 5].

Lemma 2 For any δ > 0 and any natural number k, there is η > 0 such that if U1, . . . , Uk,

Uk+1, . . . , Uk+ℓ are (not necessarily distinct) vertex sets with (Ui, Ui′) η-regular of density di,i′

for all 1 ≤ i < i′ ≤ k and 1 ≤ i ≤ k < i′ ≤ k + ℓ and di,i′ ≥ δ for all 1 ≤ i < i′ ≤ k, then there

is a copy of Kk with vertex ui ∈ Ui for each 1 ≤ i ≤ k which is contained in at least

ℓ
∑

j=1

(

k
∏

i=1

di,k+j − δ

)

|Uk+j |

labeled copies of Kk+1 with vertex uk+1 in ∪ℓ
j=1Uk+j.

The next lemma due to Benevides and Skokan [2] is a stronger version of the original one by

 Luczak [21, Claim 3]. Both have similar proofs by using Fact 1.

Lemma 3 For every 0 < β < 1, there exists an n0 such that for every n > n0 the following holds:

Let G be a bipartite graph with bipartition V (G) = U∪W such that |U | = |W | = n. Furthermore,

let the pair (U,W ) be ǫ-regular with density at least β for some ǫ satisfying 0 < ǫ < β/100. Then

for each ℓ, 1 ≤ ℓ ≤ n− 5ǫn/β, and for each pair of vertices u ∈ U , w ∈ W with dG(u) ≥ 4βn/5

and dG(w) ≥ 4βn/5, G contains a path of length 2ℓ + 1 connecting u and w.

The following lemma will be used to find long odd cycles in graphs.

Lemma 4 Suppose that (A,B) and (B,C) are ǫ-regular pairs with density at least β in a graph

G, here ǫ < β/50 and A,B and C are pairwise disjoint. If |A| = |C| = n and |E(B)| ≥ |B|2/5,

then there is an edge xy ∈ E(B) such that d(x,A) ≥ (β − ǫ)n and d(y,C) ≥ (β − ǫ)n.

Proof: Let H be the 2ǫ|B|-core of the subgraph induced by B, i.e., H is the maximum induced

subgraph of B with minimum degree at least 2ǫ|B|. As |E(B)| ≥ |B|2/5 and ǫ is small enough,

we can see H is not empty and |V (H)| ≥ 2ǫ|B|. Since (A,B) is an ǫ-regular pair, all but at

most ǫ|B| vertices in H have at least (β − ǫ)n neighbors in A from Fact 1. We assume x is such

a vertex. The definition of H gives NH(x) ≥ 2ǫ|B|. Now, (B,C) being an ǫ-regular pair yields

that there is a vertex y ∈ NH(x) having at least (β − ǫ)n neighbors in C. The edge xy is a

desired one and the proof is complete. ✷

The following lemma by  Lucazk [21, Claim 7] is a key ingredient in the proof of Theorem 2.

Lemma 5 For every 0 < δ < 10−15, α > 2δ and n ≥ exp(δ−16/α) the following holds. Each

graph G on n vertices which contains no odd cycles longer than αn contains subgraphs G′ and

G′′ such that:

(1) V (G′) ∪ V (G′′) = V (G), V (G′) ∩ V (G′′) = ∅ and each of the sets V (G′) and V (G′′) is

either empty or contains at least αδn/2 vertices;

(2) G′ is bipartite;

(3) G′′ contains not more than αn|V (G′′)|/2 edges;

(4) all but at most δn2 edges of G belong to either G′ or G′′.
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2.2 Pancyclic properties of graphs

For a graph G, we use g(G) and c(G) to denote its girth and circumference, i.e., the length

of a shortest cycle and a longest cycle of G. Similarly, the odd girth of G is the length of a

shortest odd cycle in G. A graph is called weakly pancyclic if it contains cycles of every length

between its girth and its circumference. A graph is pancyclic if it is weakly pancyclic with girth

3 and circumference n = |V (G)|. We say a graph is 2-connected if it remains connected after

the deletion of any vertex.

For a graph G, let δ(G) denote the minimum degree of G. The following classical result is

due to Dirac [10].

Lemma 6 Let G be a 2-connected graph of order n with minimum degree δ = δ(G). Then

c(G) ≥ min{2δ, n}.
Dirac’s result tells us that the circumference of a 2-connected graph cannot be too small. In

particular, if δ = δ(G) ≥ n/2, then c(G) = n. This is a well-known result for a graph being

hamiltonian. For the special case of δ ≥ n/2, the following result due to Bondy [4] tells us more

about the structure of the graph.

Lemma 7 If a graph G with n vertices satisfies δ(G) ≥ n/2, then G is pancyclic unless n = 2r

and G = Kr,r.

The following is an elegant extension on graphs being weakly pancyclic by Brandt, Faudree

and Goddard [5], which is a key ingredient in the proofs of Theorem 1 and Theorem 2 for k = 3.

Lemma 8 Let G be a 2-connected nonbipartite graph of order n with δ(G) ≥ n/4 + 250. Then

G is weakly pancyclic unless G has odd girth 7, in which case it has every cycle from 4 up to its

circumference except the 5-cycle.

We will also need the following simple fact which can be seen using the Breadth-First-Search.

Fact 3 If a graph G with n vertices satisfies δ(G) ≥ cn for some constant c > 0, then g(G) ≤ 4

provided n > c−2.

3 Proofs of Theorems 1 and 2

In this section, we will give proofs for our main results. Throughout the proof, when con-

sidering a red-blue edge coloring of KN , we always use R and B to denote subgraphs formed

by red and blue edges, respectively. We also suppose that n ≥ 1000 for Theorem 1 and n is

sufficiently large for Theorem 2.

3.1 Proof of Theorem 1

We first give the following simple fact.

Fact 4 Let G be a graph which consists of three connected components V1, V2 and V3.

(i) If the largest connected component has at least n vertices, then the complement G contains

a Bn.

(ii) If one of sets V1, V2 and V3 contains a non-edge while the other two sets have at least n

vertices in total, then the complement G contains a Bn.
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The proof of Theorem 1 contains three parts.

(I) 8
9n + 112 ≤ m ≤ n

The lower bound r(Bn, Cm) > 3m − 3 holds since the graph with three disjoint copies of

Km−1 contains no Cm and its complement contains no Bn. Thus it suffices to prove the upper

bound. Let N = 3m− 2, and consider a red-blue edge coloring of KN on vertex set V .

Case 1. There is a vertex v ∈ V with dR(v) ≥ 2n.

We choose a subset X ⊆ NR(v) with |X| = 2n. If there is a vertex x ∈ X with dR(x,X) ≥ n,

then the red subgraph induced by x and v together with their common neighbors in X contains

a Bn. Thus we assume dB(x,X) ≥ n for each x ∈ X, i.e. δ(B[X]) ≥ n. By Lemma 7, B[X]

is pancyclic or B[X] = Kn,n. There will be a blue Cm if B[X] is pancyclic, so we assume

B[X] = Kn,n with color classes X1 and X2. If there exists a vertex y ∈ V \ (X ∪ {v}) such that

dB(y,Xi) ≥ 1 for each i ∈ {1, 2}, then B[X ∪ {y}] contains blue cycles of length between 3 and

2n + 1 and it definitely contains a blue Cm. Thus each vertex of V \ (X ∪ {v}) is completely

red-adjacent to X1 or X2. Suppose that z ∈ V \ (X ∪{v}) is red-adjacent to X1. It follows that

R[X1 ∪ {z, v}] contains a red Kn+2 − e and definitely a red Bn. We are through in this case.

Case 2. For each vertex v ∈ V , dR(v) ≤ 2n − 1. i.e., δ(B) ≥ 3m− 2n− 2.

If B is bipartite, then the larger color class of B contains at least 3m−2
2 ≥ n+ 2 vertices and

induces a red clique of size at least n + 2. Therefore, there is a red Bn.

If B is 2-connected, then we can find a blue Cm as follows. Since

δ(B) ≥ 3m− 2n− 2 ≥ 3m− 2

4
+ 250

provided m ≥ (8n+1006)/9 which is guaranteed by the assumption that m ≥ 8n
9 +112, it follows

from Lemma 8 that B is weakly pancyclic unless B has odd girth 7, in which case it contains every

cycle of length from 4 up to its circumference c(B) except the 5-cycle. Moreover, by Lemma 6,

c(B) ≥ 2(3m−2n−2) ≥ m. Note that Fact 3 implies g(B) ≤ 4 since δ(B) ≥ 3m−2n−2 > N/4.

Thus there is a blue Cm.

In the following, we assume that B is nonbipartite and not 2-connected. Suppose that B−u

is disconnected for some vertex u ∈ V , here it includes the case where B is disconnected. Since

δ(B − u) ≥ 3m − 2n − 3, we have that each connected component has at least 3m − 2n − 2

vertices. So there are at most three connected components in B−u. Otherwise, 4(3m−2n−2) >

3m− 3 = (N − 1), which is a contradiction.

Subcase 2.1. B − u contains three connected components.

Let V1, V2 and V3 be the vertex sets of these three connected components of B − u. We

assume that V3 is the largest one. If |V3| ≥ m, then we can find a blue Cm as follows. Since

each connected component has size at least 3m− 2n − 2, we have

|V3| ≤ (3m− 3) − 2(3m− 2n− 2) = 4n − 3m + 1.

Since δ(B[V3]) ≥ δ(B)− 1 ≥ 3m− 2n− 3 > |V3|/2, Lemma 7 implies that B[V3] is pancyclic and

contains a blue Cm. Thus we assume |V3| ≤ m − 1. As V3 is the largest connected component

and |V \ {u}| = 3m− 3, we get |Vi| = m− 1 for each 1 ≤ i ≤ 3.

6



We claim that each Vi induces a blue clique Km−1. Otherwise, R[V1 ∪V2∪V3] contains a Bn

by Fact 4(ii) since 2m − 2 ≥ n. Because dB(u) ≥ 3m − 2n − 2 ≥ 4, we get that u has at least

two blue neighbors in Vi for some 1 ≤ i ≤ 3, say V1. Therefore, B[V1 ∪ {u}] contains a Cm.

Subcase 2.2. B − u contains exactly two connected components.

Let V1 and V2 be the vertex sets of these two connected components with |V1| ≤ |V2|. Clearly,

|V1| ≤ 3m−3
2 . If |V1| ≥ m, then B[V1] contains a Cm. Indeed, Lemma 7 implies that B[V1] is

pancyclic as δ(B[V1]) ≥ 3m− 2n − 3 > |V1|/2 . Hence, we assume 3m− 2n − 2 ≤ |V1| ≤ m− 1

as each connected component has at least 3m− 2n− 2 vertices. Clearly, 2m− 2 ≤ |V2| ≤ 2n− 1.

If B[V2] is bipartite with color classes X and Y satisfying |X| ≥ |Y |, then we can find a red

Bn as following. We notice

|V1| + |X| ≥ |V1| +
|V2|
2

>
|V1| + |V2|

2
≥ 3m− 3

2
≥ n + 2.

Since X induces a red clique with |X| ≥ 2 and all edges between V1 and X are red, R[V1 ∪X]

contains a Bn.

If B[V2] is 2-connected, then we have δ(B[V2]) ≥ 3m− 2n− 3 ≥ 2n−1
4 + 250 ≥ |V2|

4 + 250 by

noting that m ≥ 8n
9 + 112 and n ≥ 1000. Lemma 6, Lemma 8 and Fact 3 imply that there is a

blue Cm in B[V2].

Therefore, we are left to consider the case where B[V2] is nonbipartite and contains a cut

vertex. Suppose that B[V2]−w is disconnected for some vertex w ∈ V2, here it includes the case

where B[V2] is not connected. As δ(B[V2]) ≥ 3m − 2n − 3, it follows that B[V2] − w contains

exactly two connected components, denoted by V ′
2 and V ′′

2 .

Note that |V ′
2 |, |V ′′

2 | ≤ |V2| − (3m− 2n − 3) ≤ 4n − 3m + 2. If either |V ′
2 | ≥ m or |V ′′

2 | ≥ m,

say |V ′
2 | ≥ m, then Lemma 7 implies that B[V ′

2 ] is pancyclic and contains a blue Cm since

δ(B[V ′
2 ]) ≥ 3m − 2n − 4 > |V ′

2 |/2. Thus we assume |V ′
2 | ≤ m− 1 and |V ′′

2 | ≤ m− 1. Note that

|V1 ∪ V ′
2 ∪ V ′′

2 | = 3m− 4 and max{|V1|, |V ′
2 |, |V ′′

2 |} ≤ m− 1. We get

m− 2 ≤ |V1|, |V ′
2 |, |V ′′

2 | ≤ m− 1.

We claim that each of V1, V
′
2 and V ′′

2 induces a blue clique. Otherwise, Fact 4(ii) implies

that R[V1 ∪ V ′
2 ∪ V ′′

2 ] contains a Bn by noting 2m− 3 ≥ n.

If |V1| = m− 2, then |V ′
2 | = |V ′′

2 | = m− 1. Since δ(B[V2]) ≥ 3m− 2n− 3 ≥ 4, we have either

dB(w, V ′
2) ≥ 2 or dB(w, V ′′

2 ) ≥ 2 and so either B[V ′
2 ∪ {w}] or B[V ′′

2 ∪ {w}] contains a Cm.

If |V1| = m−1, then we can assume |V ′
2 | = m−1 and |V ′′

2 | = m−2 without loss of generality.

If dB(u, V1) ≥ 2, then B[V1 ∪ {u}] contains a Cm. Hence dB(u, V1) ≤ 1. Similarly, we have

dB(u, V ′
2) ≤ 1. Thus dB(u, V ′′

2 ) ≥ 3 by noting that δ(B) ≥ 3m − 2n − 2 ≥ 6. Repeating the

argument above, we can show that dB(w, V ′′
2 ) ≥ 3. Now, B[V ′′

2 ∪ {u,w}] contains a Cm as

desired.

We proved part I of Theorem 1. ✷

(II) m = n + 1

Let G be the graph which consists of three Kn sharing a common vertex. The lower bound

r(Bn, Cn+1) > 3n−2 follows from the fact that G contains no Cn+1 and its complement contains

no Bn. To show the upper bound r(Bn, Cn+1) ≤ 3n− 1, we consider a red-blue edge coloring of

K3n−1 on vertex set V .
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We follow the proof for Part I step by step. We will end up with the case which corresponds

to Subcase 2.1 of the proof for Part I. In the following, we suppose δ(B) ≥ n − 1. If there is a

vertex u ∈ V such that B−u has three connected components, then we can easily find a red Bn

by Fact 4(i) since the largest connected component must have order at least ⌈(3n − 2)/3⌉ = n.

Therefore, we suppose that there is a vertex u such that B − u has exactly two connected

components V1 and V2 with |V1| ≤ |V2|. Furthermore, similar to Subcase 2.2, we can assume

that B[V2] is nonbipartite and there is some vertex w ∈ V2 such that B[V2] −w is disconnected.

The assumption δ(B − u) ≥ n − 2 yields that |V1|, |V2| ≥ n − 1. Similarly, B[V2] − w has two

connected components, say V ′
2 and V ′′

2 , which satisfy |V ′
2 | ≥ |V ′′

2 | ≥ n− 2.

If |V1| ≥ n, then we can definitely find a red Bn by Fact 4(i). Thus we assume |V1| = n− 1.

As |V ′
2 ∪ V ′′

2 | = 2n − 2 and |V ′
2 | ≥ |V ′′

2 | ≥ n − 2, we get either |V ′
2 | = n and |V ′′

2 | = n − 2, or

|V ′
2 | = |V ′′

2 | = n − 1. In the former case, a red Bn is ensured again by Fact 4(i). In the latter

case, we have that each of V1, V
′
2 and V ′′

2 induces a blue clique Kn−1. Otherwise, Fact 4(ii) gives

a red Bn by noting 2n − 2 ≥ n.

Since u is a cut-vertex and w ∈ V2, we get w is completely red-adjacent to V1. Let x ∈ V1

be a red neighbor of w. If w has another red neighbor y in either V ′
2 or V ′′

2 , say V ′
2 , then

R[V ′′
2 ∪{x, y, w}] contains a Bn, where xy is the edge shared by n triangles. Hence w is completely

blue-adjacent to V ′
2∪V ′′

2 . If dB(u, V ′
2) ≥ 2 or dB(u, V ′′

2 ) ≥ 2, say V ′
2 , then B[V ′

2∪{u,w}] contains

a Cn+1. Otherwise, we take two red neighbors a and b of u, where a ∈ V ′
2 and b ∈ V ′′

2 . Clearly,

R[V1 ∪ {a, b, u}] contains a Bn, where ab is the edge shared by n triangles.

The proof of Part II is complete.

(III) n + 2 ≤ m ≤ 3n+1
2

The lower bound r(Bn, Cm) > 3n − 1 can be seen as follows. Let Kn−1,n−1,n−1 be the

complete tripartite graph with color classes U1, U2 and U3. Let s and t be two new vertices. If

G is a graph obtained from Kn−1,n−1,n−1 by adding all edges between s and U1, and all edges

between t and U3, then G contains no Bn and its complement contains no Cm. The lower bound

follows. To show the upper bound r(Bn, Cm) ≤ 3n, we consider a red-blue edge coloring of K3n

on vertex set V .

We assume δ(B) ≥ n, since the proof is similar to Case 1 of Part I if there is a vertex u with

dR(u) ≥ 2n.

If the blue graph B is bipartite, then the larger color class of B induces a red clique of size

at least n + 2 and hence there is a red Bn. So we assume B is nonbipartite. If further the blue

graph B is 2-connected, then the existence of a blue Cm follows from Lemma 6, Lemma 8 and

Fact 3 since δ(B) ≥ n ≥ 3n
4 + 250 for n ≥ 1000.

Therefore, we need only to consider the case where B is nonbipartite and not 2-connected.

Let u ∈ V be a vertex such that B − u is disconnected. Since δ(B − u) ≥ n− 1, each connected

component of B−u has at least n vertices and hence B−u has exactly two connected components.

Let V1 and V2 be the vertex sets of these two connected components with |V1| ≤ |V2|.
If |V1| ≥ m, then we can find a blue Cm as following. Note that |V1| ≤ 3n−1

2 . We have

δ(B[V1]) ≥ n − 1 > |V1|/2 for n ≥ 6. Lemma 7 again implies that B[V1] is pancyclic, and so

there is a blue Cm. Thus we assume n ≤ |V1| ≤ m− 1 and 3n−m ≤ |V2| ≤ 2n− 1.

If B[V2] is bipartite with bipartition (X,Y ), where |X| ≥ |Y |, then we claim R[V1 ∪ X]

8



contains a Bn. To see this, we notice

|V1| + |X| ≥ |V1| +
|V2|
2

≥ |V1| + |V | − 1

2
≥ 4n− 1

2
≥ n + 2.

Since X induces a red clique and all edges between V1 and X are red and |X| ≥ 2, there is a

red Bn in R[V1 ∪X] as claimed.

Moreover, if B[V2] is 2-connected, then the existence of a blue Cm in B[V2] again follows

from Lemma 6, Lemma 8 and Fact 3 since δ(B[V2]) ≥ n − 1 ≥ 2n−1
4 + 250 ≥ |V2|

4 + 250 for

n ≥ 502.

Therefore, we assume B[V2] is nonbiparite and not 2-connected. Let w ∈ V2 be a vertex

such that B[V2] −w is disconnected. This means that the blue subgraph induced by V \ {u,w}
contains three connected components exactly since δ(B[V \ {u,w}]) ≥ n − 2 > |V \ {u,w}|/4.

Now, as the largest connected component has at least ⌈(3n − 2)/3⌉ ≥ n vertices, we can find a

desired red Bn in V \ {u,w} by Fact 4(i).

This completes the proof for part III. ✷

(IV) m = ⌈3n2 ⌉ + 1

The lower bound r(Bn, Cm) > 2m−2 is clear since the graph with two disjoint Km−1 contains

no Cm and its complement contains no Bn. For the upper bounds r(Bn, Cm) ≤ 2m− 1 = 3n+ 1

if n is even and r(Bn, Cm) ≤ 2m− 1 = 3n+ 2 if n is odd, one can easily follow the proof of Part

III step by step apart from a few modifications.

This completes the proof for part IV and hence the proof of Theorem 1. ✷

3.2 Proof of Theorem 2

We note for k ≥ 3, the graph with k + 1 disjoint copies of Kn−1 contains no Cn and its

complement contains no B
(k)
n , so we have r(B

(k)
n , Cn) ≥ (k + 1)(n− 1) + 1. Therefore, it suffices

to establish the upper bound. The proof is by induction on k ≥ 3. The base case where k = 3

is built upon an induction idea and the case of k = 2.

Step 1: B
(3)
n versus Cn

Let 0 < ξ < 1/10 and N = ⌊(4 + ξ)n⌋. Consider a red-blue edge coloring of KN on vertex

set V . If there exists a vertex v ∈ V with dR(v) ≥ 3n−2, then by Theorem 1, we can find either

a blue Cn or a red Bn in the red neighborhood of v. We are done if there is a blue Cn, so we

assume that there is a red Bn in the red neighborhood of v. Now, this red Bn together with v

form a red B
(3)
n . Thus we are left to consider the case where δ(B) > (1 + ξ)n. Fact 3 implies

g(B) ≤ 4.

We claim B is nonbipartite. Otherwise, one of its color classes induces a red clique of size

at least N/2 ≥ n + 3, which will give us a red B
(3)
n .

Moreover, we can assume that B is 2-connected. Otherwise, suppose that there exists a

vertex u such that B − u is disconnected. Then B − u has two or three connected components

as δ(B) > (1 + ξ)n. Let V1 ⊆ V be the smallest connected component of B − u. Recall the

assumption δ(B) > (1 + ξ)n. It is clear that

(1 + ξ)n ≤ |V1| ≤ (N − 1)/2 ≤ (2 + ξ/2)n.

9



Since δ(B[V1]) ≥ (1 + ξ)n− 1 > |V1|/2, it follows from Lemma 7 that B[V1] is pancyclic, which

implies that there is a blue Cn.

Now, for any 0 < ξ < 1/10, if we take n0 = ⌈1000/(3ξ)⌉, then δ(B) ≥ (1 + ξ)n ≥ N
4 + 250

for all n ≥ n0. Therefore, we can find a blue Cn by Lemma 6, Lemma 8 and Fact 3. The proof

for k = 3 is complete. ✷

Step 2: B
(k)
n versus Cn for k ≥ 4

For k = 3, the result has been verified for sufficiently large n in Step 1. We now suppose

that the assertion holds for some k ≥ 3 and prove it for k + 1.

Let 0 < ξ < 1/10 be fixed and N = ⌊(k + 2)(1 + ξ)n⌋. We consider a red-blue edge coloring

of KN on vertex set V . In the following, we will omit the ceiling and floor as it will not affect

the result. We choose δ sufficiently small. To be precise,

0 < δ < min

{

10−15,
ξ2

600(k + 2)2

}

. (2)

Lemma 2 with δ and k + 1 gives us a constant η. Let β and ǫ be sufficiently small such that

β =
ξ

20(k + 2)2
and 0 < ǫ < min

{

η, β2
}

. (3)

Set

α =
1

k + 2
− β −√

ǫ. (4)

Let M be given by Lemma 1 with ǫ and large m0 = ⌈1
ǫ
⌉. We apply Lemma 1 to the red

subgraph R and obtain an equitable partition V (G) = ⊔m
i=1Vi and subsets Wi ⊂ Vi such that

Wi is ǫ-regular for all i and, for all but ǫm2 pairs (i, j) with 1 ≤ i 6= j ≤ m, (Vi, Vj) and

(Wi, Vj) are ǫ-regular with |dR(Wi, Vj) − dR(Vi, Vj)| ≤ ǫ. Here we do not require pairs (Wi,Wj)

for 1 ≤ i, j ≤ m to be ǫ-regular. For convenience, we will assume |Vi| = N
m

for all 1 ≤ i ≤ m. If

n is large enough, then N
m

≥ N
M

≥ max{n1, n2}, where n1 is given by Lemma 3 with β − ǫ, and

n2 is given by Lemma 5 with δ and α. Note that a partition obtained by applying Theorem 1

to R is also such a partition for B.

Let F be the reduced graph defined on {v1, v2, . . . , vm}, in which vi and vj are non-adjacent

in F if the pairs (Vi, Vj) and (Wi, Vj) are not all ǫ-regular with |dR(Wi, Vj) − dR(Vi, Vj)| ≤ ǫ.

Then the number of edges of F is at least (1−ǫ)m2. Therefore, by deleting at most
√
ǫm vertices,

we may assume that each vertex is adjacent to at least (1 − √
ǫ)m vertices. In what follows,

when referring to the reduced graph, we will assume that these vertices have been removed.

For each remaining vertex vi, we color vi red if the density of the red subgraph induced by

Wi satisfies that dR(Wi) ≥ 1/2, and we color vi blue otherwise. We color an edge vivj red if

dR(Vi, Vj) ≥ 1 − β, or blue if dB(Vi, Vj) ≥ β. Let FR and FB be the subgraphs formed by red

edges and blue edges of F , respectively.

For a blue vertex va in F , suppose dFR
(va) ≥ m1 := (k+1

k+2 + β)m. Recall an edge vivj in F

is red if and only if dR(Vi, Vj) ≥ 1 − β. By averaging, there exists a vertex u ∈ Va such that

dR(u) ≥ (1 − β)
N

m
·m1 = (1 − β)(k + 2)(1 + ξ)

(

k + 1

k + 2
+ β

)

n > (k + 1)(1 + ξ)n,
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here we used the assumption (3). Thus, by the induction hypothesis, there is either a blue Cn

or a red B
(k)
n in NR(u). In the former case, we are through. In the latter case, the red B

(k)
n

together with u gives a red B
(k+1)
n . We are done with this case. Therefore, we assume that each

blue vertex va in the reduced graph F satisfies

dFB
(va) ≥ m2 :=

(

1

k + 2
− β −√

ǫ

)

m. (5)

For a red vertex va in F , if dFR
(va) ≥ (1−0.5ξ)m

k+2 , then we can apply Lemma 2 to find a red

B
(k+1)
n . Recall the red density dR(Wa) ≥ 1/2 > δ, where Wa ⊆ Va. We apply Lemma 2 with

Ui = Wa for 1 ≤ i ≤ k + 1 and Uk+1+s equal to each of the Vs for which (Wa, Vs) is ǫ-regular

and the edge vavs is red. We conclude that there is a red Kk+1 which is contained in at least

∑

s

(

[dR(Wa, Vs)]
k+1 − δ

)

|Vs| ≥
(

(1 − β − ǫ)k+1 − δ
) N

m
· (1 − 0.5ξ)

k + 2
m

≥
(

(1 − β − ǫ)k+1 − δ
)

(

1 +
ξ

3

)

n

≥
(

1 +
ξ

3
− 2(k + 1)(β + ǫ) − 2δ

)

n

red Kk+2. We notice this quantity is at least n since β, ǫ and δ are sufficiently small in terms of

1/k and ξ from (2) and (3), so we are through as there is a red B
(k+1)
n . Therefore, for the rest

of the proof, we assume that each red vertex va satisfies

dFB
(va) ≥

(

k + 1 + 0.5ξ

k + 2
−√

ǫ

)

m. (6)

From (5) and (6), we have dFB
(va) ≥ m2 := ( 1

k+2 −β−√
ǫ)m no matter which color a vertex

va has received. We separate the proof into two cases depending on the parity of n.

Case 1. n is even.

We apply the techniques used by  Luczak [21] and Lemma 3 to show that the blue graph

B contains a Cn. By Erdős–Gallai theorem [14], FB contains a path v1v2 · · · vℓ, here ℓ ≥ m2.

For each 1 ≤ i ≤ ℓ, we split Vi corresponding to the vertex vi into two subsets V ′
i and V ′′

i ,

where |V ′
i |, |V ′′

i | ≥ |Vi|/2 = N
2m . We have an even “fat” cycle V ′

1V
′
2 · · ·V ′

ℓV
′′
ℓ−1V

′′
ℓ−2 · · ·V ′′

2 V
′
1 . For

convenience, we relabel it as U1U2 · · ·UℓUℓ+1Uℓ+2 · · ·U2ℓ−2U1. Note that Fact 2 implies that

(Ui, Ui+1) is 3ǫ-regular with blue density at least β− ǫ for 1 ≤ i ≤ 2ℓ− 2, where the sums of the

indices are taken modulo 2ℓ− 2. By Fact 1, there are at least (1 − 6ǫ)|Ui| vertices of Ui having

(β − 4ǫ) N
2m neighbors in each sets of Ui−1 and Ui+1. Therefore, for each 1 ≤ i ≤ 2ℓ− 2, we can

choose a vertex ui ∈ Ui such that u1u2 · · · u2ℓ−2u1 form an even cycle satisfying dB(ui, Ui−1) ≥
4β/5 · N

2m and dB(ui, Ui+1) ≥ 4β/5 · N
2m . By Lemma 3, for each 1 ≤ i ≤ ℓ− 1, we can replace the

edge u2i−1u2i by an odd path with endpoints u2i−1 and u2i using vertices from U2i−1 and U2i,

here the length of the path can vary from 1 to (1 − 5ǫ/β) · N
2m . Therefore, we can enlarge this

even cycle to all even cycles of length from 2ℓ− 2 to (2ℓ− 2)(1 − 5ǫ/β) N
2m . Recall assumptions

(3), m ≥ m0 = ⌈1
ǫ
⌉ and ℓ ≥ m2 =

(

1
k+2 − β −√

ǫ
)

m. We have (2ℓ − 2)(1 − 5ǫ/β) N
2m ≥ n.

11



Therefore, there is a blue Cn as desired.

Case 2. n is odd.

First, we suppose that FB contains an odd cycle v1v2 . . . v2ℓ+1v1 such that 2ℓ + 1 ≥ m2.

Similarly, by Fact 2, we can find an odd cycle u1u2 . . . u2ℓ+1u1 such that ui ∈ Vi , dB(ui, Vi−1) ≥
4β/5 · |Vi−1|, and dB(ui, Vi+1) ≥ 4β/5 · |Vi+1| for each 1 ≤ i ≤ 2ℓ + 1. Now, applying Lemma 3,

for each 1 ≤ i ≤ ℓ, we replace the edge u2i−1u2i by odd path using vertices from Vi−1 and Vi to

enlarge this odd cycle to odd cycles of length from 2ℓ + 1 to 2ℓ(1 − 5ǫ/β)N
m

in the blue graph

B. We can definitely find an odd cycle Cn as 2ℓ(1 − 5ǫ/β)N
m

≥ n.

It remains to consider the case where FB contains no odd cycles of length at least m2. Erdős–

Gallai theorem [14] already implies that FB contains an even cycle of length at least m2. We

assume that C := v1v2, · · · v2sv1 is such an even cycle, here 2s ≥ m2.

Subcase 2.1. There exists a blue vertex in C, say v2s.

Recall the definition of W2s. We note (V2s−1,W2s) and (W2s, V1) are ǫ-regular pairs. More-

over, dB(V2s−1,W2s) ≥ β − ǫ and dB(W2s, V1) ≥ β − ǫ. We apply Lemma 4 with A =

V2s−1, B = W2s, C = V1 and β′ = β − ǫ to get a blue edge xy in W2s which satisfies

dB(x, V2s−1) ≥ (β′ − ǫ) · N
m

≥ 4β/5 · N
m

and dB(y, V1) ≥ (β′ − ǫ)N
m

. Similar to the case

where FB contains an odd blue cycle of length at least m2, we can find a blue odd cycle

u1u2u3 . . . u2s+1u1, where ui ∈ Vi for 1 ≤ i ≤ 2s − 1, u2s = x, and u2s+1 = y. Furthermore,

we have dB(u1, V2) ≥ 4β/5 · N
m

. For each 2 ≤ i ≤ 2s − 1, it satisfies dB(ui, Vi−1) ≥ 4β/5 · N
m

and dB(ui, Vi+1) ≥ 4β/5 · N
m

. For each 1 ≤ i ≤ s, we again apply Lemma 3 to replace each blue

edge u2i−1u2i by an odd blue path. When we enlarge the edge u2s−1u2s, we use vertices from

V2s−1 ∪ (V2s \ {y}) to avoid the vertex u2s+1 = y ∈ V2s. Thus FB contains odd cycles of length

from 2s + 1 to 2s(1 − 5ǫ/β)N
m

and there is a blue Cn as 2s(1 − 5ǫ/β)N
m

≥ n.

Subcase 2.2. Each vertex of C is red.

Write d = 2s for the length of the cycle C. Recalling (6), we have a lower bound on the

number of edges in FB as follows:

|E(FB)| ≥
d
∑

i=1

dFB
(vi) −

(

d

2

)

≥
(

k + 1 + 0.5ξ

k + 2
−√

ǫ

)

dm−
(

d

2

)

.

Since d ≥ m2 and the right hand side above is an increasing function of d when d ≥ m2, it

follows that

|E(FB)| ≥
(

k + 1 + 0.5ξ

k + 2
−√

ǫ

)(

1

k + 2
− β −√

ǫ

)

m2 − 1

2

(

1

k + 2
− β −√

ǫ

)2

m2

≥
(

2k + 1

2(k + 2)2
+

0.5ξ

(k + 2)2
− β −√

ǫ−
√
ǫ

k + 2

)

m2

≥
(

2k + 1

2(k + 2)2
+

ξ

3(k + 2)2

)

m2, (7)

here we note that β and
√
ǫ are sufficiently small in terms of 1/k2 and ξ from (3).

We next apply Lemma 5 to obtain an upper bound on |E(FB)|. Actually, we will apply

Lemma 5 with G = FB , δ and α = 1
k+2 − β −√

ǫ. Since FB contains no odd cycles of length at
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least m2 = αm, there are two subgraphs G′ = F ′
B and G′′ = F ′′

B satisfying all properties listed

in the lemma. If F ′
B is empty, then we get |E(FB)| ≤ 1

2( 1
k+2 − β −√

ǫ)m2 + δm2, which clearly

is a contradiction to the lower bound on |E(FB)| from (7). If F ′
B is not empty, then we assume

that X and Y are two color classes of F ′
B .

Claim. We have max{|X|, |Y |} ≤ k + 1 + (1−0.5ξ)m
k+2 .

Proof. Suppose |X| ≥ k + 1 + (1−0.5ξ)m
k+2 without loss of generality. We aim to find a book

B
(k+1)
n in the red graph. Since all but at most δm2 edges of FB belong to either F ′

B or F ′′
B by

(4) of Lemma 5, it follows that X contains at least
(

|X|
2

)

− (ǫ + δ)m2 ≥ (1 − γ)
(

|X|
2

)

red edges,

where 0 ≤ γ < 3(k + 2)2(ǫ + δ). By deleting at most
√
γ|X| vertices, we may assume that each

vertex of X is red-adjacent to at least (1 −√
γ)|X| vertices in X. We notice

(1 − (k + 1)
√
γ)|X| ≥ m3 :=

(1 − 0.6ξ)m

k + 2
,

here we note ǫ, δ < ξ2

600(k+2)2
from (2) and (3). Therefore, we can choose vertices v1, . . . , vk+1

from X step by step such that v1, . . . , vk+1 form a red clique in the reduced graph F and

v1, . . . , vk+1 have at least m3 common red neighbors, say vk+2, . . . , vk+1+m3
. i.e., X contains a

red book B
(k+1)
m3

. We apply Lemma 2 with Ui = Vi for 1 ≤ i ≤ k + 1 and Uk+1+j = Vk+1+j for

1 ≤ j ≤ m3, and conclude that there is a red Kk+1 which is contained in at least

m3
∑

j=1

(

k
∏

i=1

dR(Vi, Vk+1+j) − δ

)

|Vk+1+j| ≥
(

(1 − β)k+1 − δ
) N

m
· (1 − 0.6ξ)

k + 2
m

≥
(

(1 − β)k+1 − δ
)

(

1 +
ξ

3

)

n

red Kk+2. This quantity is at least n since β and δ are sufficiently small in terms of 1/k and ξ

from (2) and (3). We found a red B
(k+1)
n as desired. ✷

Consequently, |E(F ′
B)| ≤

(

k + 1 + (1−0.5ξ)m
k+2

)2
from the above claim. The number of edges

in FB can be bounded from above as follows:

|E(FB)| ≤
(

k + 1 +
(1 − 0.5ξ)m

k + 2

)2

+
1

2

(

1

k + 2
− β −√

ǫ

)

m2 + δm2

≤
(

k + 4

2(k + 2)2
− ξ

(k + 2)2
+ δ

)

m2 + 2m + (k + 1)2

≤
(

k + 4

2(k + 2)2
− ξ

2(k + 2)2

)

m2,

here we note that m ≥ m0 ≥ 1/ǫ, ǫ and δ are sufficiently small in terms of 1/k2 and ξ from (2)

and (3). Recalling the inequality (7), we obtained

(

2k + 1

2(k + 2)2
+

ξ

3(k + 2)2

)

m2 ≤ |E(FB)| ≤
(

k + 4

2(k + 2)2
− ξ

2(k + 2)2

)

m2. (8)

This is a contradiction provided k ≥ 3.
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This completes the proof of the induction step and hence Theorem 2. ✷

Remark 2: For k = 2, the inequality (8) indeed holds and there is no contradiction. Thus we

are not able to prove r(B
(3)
n , Cn) = (4 + o(1))n by induction and we provide a separated proof

for this case.
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[13] P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, The book–tree Ramsey numbers,

Scientia, Series A: Mathematical Sciences, 1 (1988), 111–117.

[14] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad.

Sci. Hungar., 10 (1959), 337–356.

[15] R. J. Faudree, C. C. Rousseau and J. Sheehan, More from the good book, In: Proceedings

of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing,

Florida Atlantic Univ., Boca Raton, Fla., 1978, 289–299. Congress. Numer., XXI, Utilitas

Math., Winnipeg, Man., 1978.

14



[16] R. J. Faudree, C. C. Rousseau and J. Sheehan, Strongly regular graphs and finite Ramsey

theory, Linear Algebra Appl., 46 (1982), 221–241.

[17] R. J. Faudree, C. C. Rousseau and J. Sheehan, Cycle–book Ramsey numbers, Ars Combin.,

31 (1991), 239–248.

[18] W. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma,
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