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Abstract

We propose an algorithm for solving the maximum weighted stable set problem on claw-free graphs
that runs in O(n3)−time, drastically improving the previous best known complexity bound. This
algorithm is based on a novel decomposition theorem for claw-free graphs, which is also introduced
in the present paper. Despite being weaker than the well-known structure result for claw-free graphs
given by Chudnovsky and Seymour [5], our decomposition theorem is, on the other hand, algorithmic,
i.e. it is coupled with an O(n3)−time procedure that actually produces the decomposition. We also
believe that our algorithmic decomposition result is interesting on its own and might be also useful
to solve other kind of problems on claw-free graphs.

1 Introduction

Given a graph G(V,E), a matching is a set of non incident edges of E and a stable set is a set of pairwise
non adjacent vertices of V . Edmonds [6] proved that the weighted matching problem can be solved in
polytime (O(∣V ∣4) for any graph. This worst case complexity was later improved by other authors, the
best bound currently being O(∣V ∣(∣V ∣log∣V ∣+ ∣E∣) [9].

Given a (multi-)graph G, one can define the line-graph H of G as the intersection graph of the edges
of G. G is called a root-graph of H. A graph is then said to be line if it is the line-graph of some
graph G. There is a one-to-one correspondence between matchings in G and stable sets in H. Therefore,
since G can be computed efficiently (this can be done in O(max{∣E∣, ∣V ∣})-time for line-graphs of simple
graphs [18] and line graphs of multi-graphs [10, pp 67-68]), the stable set problem in H is equivalent to
a matching problem and can thus be solved in time O(∣V ∣2log(∣V ∣)) (observe that the root graphs will
have ∣V ∣ edges and O(∣V ∣) vertices). Line graphs have the property that the neighborhood of any vertex
can be covered by two cliques, and the graphs with this latter property are called quasi-line graphs. A
graph is claw-free if no vertex has a stable set of size three in its neighborhood. Claw-free graphs thus
generalize in turn quasi-line graphs. Interestingly, while the stable set problem is NP-hard in general,
it was proven it can be solved in polynomial time for claw-free graphs: Sbihi [19] and later Lovász and
Plummer [12] gave algorithms for the cardinality case, while Minty [13] solved the weighted version. The
Minty algorithm was revised by Nakamura and Tamura [14] and later simplified by Schrijver[20] and
can be implemented to run in time O(∣V ∣6) (Recently Nobili and Sassano [15] reported to us that they
could build upon the main ideas of Minty’s algorithm and solve the problem in time O(∣V ∣4log(∣V ∣), a
significant improvement).

A deep decomposition theorem for claw-free graphs was recently introduced by Chudnovsky and
Seymour [5]. Moreover, in a recent paper Oriolo, Pietropaoli and Stauffer [16] proposed a new approach
to solve the maximum weighted stable set (mwss) problem on graphs that admit a suitable decomposition.
However, the previous two results cannot be combined together as to get an algorithm to solve the mwss
problem on claw-free graphs, since no polynomial time algorithm is known to get the decomposition in
[5], and finding it seems to be quite a challenging open question [10]. Nevertheless, by means of some
graph reductions, and an algorithmic decomposition theorem for a subclass of quasi-line graphs, Oriolo,
Pietropaoli and Stauffer [16] developed a O(∣V ∣6)-time algorithm to solve the problem.

In this paper, we provide a new decomposition theorem for claw-free graphs and a O(n3) algorithm
to actually obtain the decomposition. Namely, we prove that in O(n3)-time we either recognize that a
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claw-free graph G is net-free and quasi-line, or that it has small stability number and a long odd anti-
wheel, or return a suitable decomposition of G. Our theorem is inspired by ideas and tools developed by
Chudnovsky and Seymour (as well as by the weaker decomposition theorem in [16]), but it is a stand-
alone result that, even if less detailed than their theorem, is particularly useful when dealing with the
mwss problem. In fact, building upon a few algorithmic results from the literature, and following the
approach in [16] for finding a mwss on graphs that admit a suitable decomposition, we show that we can
solve the mwss problem in claw-free graphs in O(∣V ∣3) time. This is to the best of our knowledge the
fastest algorithm to solve the problem and this improves drastically upon previous known algorithms.
Moreover it almost closes the algorithmic gap between stable set in claw-free graphs and matching (in
fact, as observed earlier, the mwss problem in line-graphs can be solved in O(∣V ∣2log(∣V ∣)) time).

The paper is organized as follows: in Section 2 we settle notations and give general definitions. In
Section 3, we provide a number of preliminary definitions and related basic results. Section 4 and Section
5 are devoted to provide decomposition theorems and algorithms for quasi-line and claw-free graphs
respectively. In Section 6 we show how to exploit these decomposition results to obtain an algorithm for
the maximum weighted stable set problem on claw-free graphs.

2 Notations and definitions

For a non-negative integer k, we let [k] denote the set {1, 2, . . . , k}.
Let G(V,E) be a simple graph. The complement of G is denoted by G, while G[S] denotes the

subgraph induced by a set S ⊆ V . If S ⊆ V , we let G ∖ S := G[V ∖ S]. A stable set is a set of pairwise
non-adjacent vertices, while a clique is a set of pairwise adjacent vertices. We denote by ®(G) (®w(G))
the maximum size (resp. weighted with respect to w : V 7→ ℝ) stable set in G, and, for a set S ⊆ V , we
let ®(S) = ®(G[S]) (resp. ®w(S) = ®w(G[S])). We denote by N(v) the open neighborhood of a vertex
v ∈ V , i.e. the set of vertices that are adjacent to v; we let N [v] = N(v)∪{v} be the closed neighborhood.
For a set S ⊆ V we let N(S) :=

∪
v∈S N(v) ∖ S and N [S] :=

∪
v∈S N [v]. A vertex u is universal to v if

N [v] ⊆ N [u] and we let U(v) be the set of vertices that are universal to v.
We also denote by Nj(v) the set of vertices that are at distance j (in terms of number of edges) from

v (therefore N1(v) = N(v)). A vertex v ∈ V is simplicial if N(v) is a clique, and we denote by S(G) the
set of simplicial vertices of G.

Definition 2.1. We say that a clique K of a connected graph G is distance simplicial if, for every j,
®(Nj(K)) ≤ 1. In this case, we also say that G is distance simplicial with respect to K.

A k−hole is a chordless cycle with k vertices, and it is odd if k is odd. A k-anti-hole is the complement
of a k−hole, and it is odd if k is odd. A k−wheel is a graph with vertex set {v} ∪ C, where C induces
a k-hole and v is complete to C: v is the center of the wheel. Analogously, a k−anti-wheel is a graph
with vertex set {v} ∪ C, where C induces a k-anti-hole, and v is complete to C: v is the center of the
anti-wheel. Note that a 5-wheel and a 5-anti-wheel define indeed isomorphic graphs.

We say that G is claw-free if none of its vertices has a stable set of size three in its neighborhood. We
say that G is quasi-line if the neighborhood of each v ∈ V can be partitioned into two cliques, that is,
G[N(v)] is bipartite. Note that G is claw-free if it has no 3-anti-wheels, while it is quasi-line if it has no
odd anti-wheels. We say that a k-anti-wheel is long if k > 5. The line graph H = ℒ(G) of a multi-graph
G = (V,E) (i.e. loops, parallel edges are allowed) is defined as follows: we associate a vertex of H to
every edge of G. Then two vertices are adjacent in H if and only if the corresponding edges were incident
in G. We call G a root graph of H. Krausz [11] proved the following characterization of line graphs.

Lemma 2.1. [11] A graph G(V,E) is line if and only if there exists a family of cliques ℱ such that every
edge in E is covered by a clique from the family, and moreover every vertex in V is covered by at most
two cliques from the family.

3 Preliminaries

In this section we present a rather long list of preliminary results and definitions.

3.1 Strips Chudnovsky and Seymour [4] introduced a composition operation in order to define their
decomposition result for claw-free graphs. This composition procedure is general and applies to non-
claw-free graphs as well. We borrow (but slightly change) some definitions from their work.
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Definition 3.1. A strip (G,A) is a graph G (not necessarily connected) with a multi-family A of either
one or two designated non-empty cliques of G.

If A is made of a single clique, then (G,A) is a 1-strip, if A is made of two cliques A1, A2, then
(G,A) is a 2-strip (in this case, possibly A1 = A2 since A is a multi-family). The cliques in A are called
the extremities of the strip, while the core of the strip is made of the vertices that do not belong to the
extremities.

Let G = (G1,A1), . . . , (Gk,Ak) be a family of k vertex disjoint strips; we can compose the strips in
G, according to the operation we define below. Note that we denote by

∪
j∈[k] Aj the multi-set whose

elements are the extremities from each Aj : again, it is a multi-set, as the two extremities of a same strip
need not to be different.

Definition 3.2. Let (G1,A1), . . . , (Gk,Ak) be k vertex disjoint strips and let P := {P1, ..., Pm} be a
partition of the multi-set of the extremities

∪
j∈[k] Aj. The composition of {(Gj ,Aj), j ∈ [k]} w.r.t. the

partition P is the graph G such that:

∙ V (G) =
∪k

j=1 V (Gj);

∙ two vertices u, v ∈ V (G) are adjacent if and only if either u, v ∈ V (Gj) and {u, v} ∈ E(Gj), for
some j ∈ [k], or there exist A ∈ Ai and A′ ∈ Aj, for some 1 ≤ i ≤ j ≤ k, such that u ∈ A, v ∈ A′,
and A and A′ are in the same class of P.

In this case, we say that (ℱ ,P) with ℱ = {(Gj ,Aj), j ∈ [k]}, defines a strip decomposition of
G. Note also that, for each class P ∈ P, the set of vertices

∪
A∈P A is a clique of G, that is called a

partition-clique.

In the following, when we say that G is the composition of some set of strips with respect to some
partition P, we mean that the strips are vertex disjoint and that P gives a partition of the multi-set of
the extremities of these strips. We skip the straightforward proof of the next lemma:

Lemma 3.1. Let G be the composition of some strips (G1,A1), . . . , (Gk,Ak), with respect to some
partition P. Then the following statements hold:

∙ for each j ∈ [k], the core C(Gj) of the strip (Gj ,Aj) is anti-complete to V (G) ∖ V (Gj) and
G[C(Gj)] = Gj [C(Gj)];

∙ for each j ∈ [k], G[V (Gj)] = Gj [V (Gj)] if either Gj is a 1-strip, or it is a 2-strip and its extremities
belong to different classes of P; else G[V (Gj)] is obtained from Gj [V (Gj)] making its extremities
complete to each other.

∙ each edge between different strips Gi and Gj is an edge between their extremities and is induced by
some partition-clique.

One can easily build a graphG that is the composition of strips {(Gj ,Aj), j ∈ [k]} such that eachGj is
claw-free/quasi-line/line but G itself is not claw-free/quasi-line/line. However, this is not possible, as soon
as we require that, for each strip, the property we are interested in (claw-freeness/quasi-lineness/lineness)
holds on an auxiliary graph that we associate to the strip. This leads to the following:

Definition 3.3. We say that a strip (G,A) is claw-free/quasi-line/line if the graph G+ that is obtained
from G as follows:

∙ if G is a 2-strip, with A = {A1, A2}, add two additional vertices a1, a2 such that N(ai) = Ai, for
i = 1, 2;

∙ if G is a 1-strip, with A = {A1}, add one additional vertex a1 such that N(a1) = A1,

is claw-free/quasi-line/line.

We skip the proof of the following simple lemma.

Lemma 3.2. The composition of claw-free/quasi-line strips is a claw-free/quasi-line graph.
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Lemma 3.3. Let G be the composition of k line strips {(Gj ,Aj), j ∈ [k]} with respect to a partition P.
Then G is a line graph.

Proof. (For the sake of completeness we give the proof, which is however similar to the proof of Claim 7
in [16].) From Lemma 2.1, we know that the strips Gj are line if and only if, for all j = 1, ..., k, there
exists a set of cliques ℱ j of Gj

+ such that: every edge from Gj
+ is covered by a clique of ℱ j ; each vertex

in Gj
+ is covered by at most two cliques of ℱ j . In fact, we may assume without loss of generality that

the set ℱ j is also such that the vertices from V (Gj
+) ∖ V (Gj) are covered by exactly one clique of ℱ j

(if a vertex v of V (Gj
+) ∖ V (Gj) is covered by two cliques F1, F2, then we can slightly change ℱj into

ℱj∖(F1∪F2)∪{N [v]}). We denote by F j the set of cliques of ℱ j covering the vertices from V (Gj
+)∖V (Gj)

(F j is of cardinality one if (Gj ,Aj) is a 1-strip and two if (Gj ,Aj) is a 2-strip). Let ℱ̃ j := ℱ j ∖ F j .

Consider the family of cliques ℱ̃ of G made of the union of ℱ̃ j for all j and the partition-cliques defined
by P. By definition of composition, ℱ̃ covers all edges in G and moreover every vertex in G is covered
by at most two cliques. The result follows then again from Lemma 2.1.

(We point out that one might impose properties on the strips {(Gj ,Aj), j ∈ [k]} in order to avoid
using the artifact of additional vertices, and still get an analogous of Lemma 3.2 and Lemma 3.3, see [5]:
for our purpose, this unnecessarily complicates the exposition.)

In the next section we show an algorithm to decompose quasi-line graphs. Articulation cliques are
the main tool for getting this decomposition; however it is convenient to introduce them in the more
general framework of claw-free graphs as we will also make use of this concept in claw-free graphs.

3.2 Articulation cliques Let G(V,E) be a claw-free graph. A vertex v ∈ V such that N [v] can be
covered by two maximal cliques K1 and K2 (not necessarily different) is called regular, and it is called
strongly regular when this covering is unique: in this case, we also say that K1 and K2 are crucial for v.
A vertex such that N [v] cannot be covered by two maximal cliques K1 and K2 is called irregular.

Note that each irregular vertex of G is the center of an odd k-anti-wheel with k ≥ 5, and that G is
quasi-line if every vertex is regular. Moreover, if G is a line graph, then every vertex is strongly regular
(however, this condition is not sufficient to define line graphs).

Definition 3.4. A maximal clique K of a claw-free graph G is an articulation clique if, for each v ∈ K,
K is crucial for v.

The following lemmas show two first families of articulation cliques. We omit the easy proof of the
first one.

Lemma 3.4. Let G(V,E) be a claw-free graph. Let v be a simplicial vertex of G (i.e. v ∈ S(G)). Then
N [v] is an articulation clique.

Lemma 3.5. Let G be a claw-free graph and let K be a maximal clique of G and v ∈ K. If N(v) ∖K ∕= ∅
and

(1) either N(v) ∖K is anti-complete to some vertex in K,

(2) or v is regular, K ∖ U [v] can be partitioned into two non empty cliques X1 and X2 and N(v) ∖K
can be partitioned into two non empty cliques Y1 and Y2, such that X1 is anti-complete to Y2, X2

is anticomplete to Y1, and there is a missing edge between X1 and Y1,

then K is crucial for v. In particular, if K has no simplicial vertex and for each v ∈ K condition (1) or
(2) is satisfied, then K is an articulation clique.

Proof. For each v ∈ K, we show that if (1) or (2) holds, then v is strongly regular and K is crucial for
v. Let us first assume that v satisfies condition (1), i.e. there exists a vertex w ∈ K such that N(v) ∖K
is anticomplete to w. This implies that N(v) ∖ K is a clique, otherwise any stable set of size two in
N(v) ∖K, say {t, z}, would cause the claw (v;w, t, z). Thus, v is regular. Then, in each covering of N [v]
with two maximal cliques K1,K2, we can assume w.l.o.g that w ∈ K1 and N(v) ∖ K ⊆ K2. We have
U [v] ⊆ K since ∀u ∈ N(v)∖K, uw ∕∈ E. Moreover U [v] = K1∩K2. Now since ∀u ∈ K ∖U [v], there exists
zu ∈ N(v) ∖K : uzu ∕∈ E, it follows that K ∖U [v] ⊆ K1. Therefore K ⊆ K1 and by maximality K = K1.
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Now suppose v ∈ K satisfies condition (2); in particular v is regular. Let K1,K2 be again a covering
of N [v] with two maximal cliques. Then we can assume w.l.o.g. that X1 ⊆ K1 and Y2 ⊆ K2. By
hypothesis, a vertex y ∈ Y1 is non-complete to X1: then, y ∈ K2, which implies X2 ⊆ K1. Last, as
Y1 is anticomplete to X2, Y1 ⊆ K2. Summing up, we showed that X1 ∪ X2 ⊆ K1 Y1 ∪ Y2 ⊆ K2. As
K = U [v] ∪ X1 ∪ X2 and U [v] = K1 ∩ K2, it follows that K ⊆ K1 and by maximality, K = K1. We
conclude that v is strongly regular and K is crucial for v.

The next lemma shows that we may easily characterize the vertices of a claw-free graph, as well as
find the set of all articulation cliques.

Lemma 3.6. Let G(V,E) be a claw-free graph. (i) For each vertex ∈ V , we may check in time O(∣V ∣2)
if v is either regular, or strongly regular (and find its crucial cliques), or irregular (and find an odd
k-anti-wheel centered in v, k ≥ 5). (ii) We can list all articulation cliques of G in time O(∣V ∣3).
Proof. (For the sake of completeness we give the proof, which is however similar to the proof of Lemma
20 in [16].) Let n = ∣V ∣. (i) For each v ∈ V , consider the graph H = G[N(v) ∖ U(v)]. Then v is regular
if H is bipartite and is irregular otherwise. If H is bipartite, then v is strongly regular if and only H is
connected: in this case, S1 ∪ U(v) ∪ {v} and S2 ∪ U(v) ∪ {v} are the crucial cliques for v, where S1 and
S2 are the classes of the unique coloring of H. If H is not bipartite, then the vertices of any chordless
cycle of H together with v induce an odd k-anti-wheel on G, with k ≥ 5, since H has no triangles. The
statement trivially follows.

(ii) It follows from (i) that we may build in time O(n3) the set R of strongly regular vertices and, for
each vertex v ∈ R, its crucial cliques. Altogether, the family K, that is made of cliques that are crucial
for some strongly regular vertex, has size at most 2n, as no vertex either has two crucial cliques, or it has
none. Now, an articulation clique of G is a clique K such that: K ∈ K; every v ∈ K is strongly regular
and K is crucial for v. The statement follows.

We will show later that every claw-free graph G, that has some articulation clique, admits a strip
decomposition where each partition-clique is indeed an articulation clique of G. In order to produce this
decomposition, we need to“reverse” the composition operation defined earlier. We start with G quasi-line.

4 An algorithm to decompose quasi-line graphs

4.1 Ungluing articulation cliques in quasi-line graphs An interesting class of articulation cliques
in quasi-line graphs are those generated by nets. A net {v1, v2, v3; s1, s2, s3} is the graph with vertices
v1, v2, v3, s1, s2, s3 and edges v1v2, v1v3, v2v3, and visi for i = 1, 2, 3. We say that G is net-free if no
induced subgraph of G is isomorphic to a net and call net clique every maximal clique of G that contains
v1, v2, v3.

Lemma 4.1. In a quasi-line graph every net clique is an articulation clique.

Proof. (For the sake of completeness we give the proof, which is however similar to the proof of Lemma
22 in [16].) Let K be a net clique: we must show that K is crucial for every vertex v ∈ K. For i = 1, 2, 3,
let Ki be the set of vertices from K that are adjacent to si, and K4 := K ∖ (K1 ∪K2 ∪K3). Note that
{K1,K2,K3,K4} is a partition of K, since a vertex v ∈ K that is adjacent to two vertices from s1, s2, s3,
say s1 and s2, implies the claw (v; s1, s2, v3).

First, suppose v ∈ K1. Let (Q1, Q2) be a pair of maximal cliques such that N [v] = Q1 ∪Q2 (such a
pair exists, since the graph is quasi-line). Assume w.l.o.g. that s1 ∈ Q1, it follows that K ∖K1 ⊆ Q2. We
now show that every vertex z ∈ N(v)∖K is not complete to K ∖K1. Suppose the contrary, i.e. there exists
z ∈ N(v) ∖K that is complete to K ∖K1. Since K is maximal, there exists w ∈ K1, w ∕= v, such that
wz ∕∈ E. Since z is adjacent to v, it cannot be adjacent to both s2 and s3 (otherwise there would be the
claw (z; s2, s3, v)). Assume w.l.o.g. z is not linked to s3. Let z3 be a vertex in K3. Then by construction
z3z ∈ E, ws3 /∈ E, and (z3; s3, w, z) is a claw, a contradiction. Therefore, every vertex in z ∈ N(v) ∖K is
not complete to K ∖K1 and so it must belong to Q1. It follows that Q1 = (N(v) ∖K) ∪ {v} ∪ U(v) and
Q2 = K, that is, (Q1,K) is the unique covering of N(v) into two maximal cliques, thus K is crucial for
v. The same holds for any vertex v in K2 or K3.

Now suppose that v ∈ K4. If v is a simplicial vertex, then the statement is trivial. Now suppose that
there exists w ∕∈ K such that wv ∈ E. Observe that w is adjacent to at most one vertex of {s1, s2, s3}:
if the contrary, assume w.l.o.g. s1, s2 ∈ N(w), there would be the claw (w; v, s1, s2). Hence there exists
a stable set of size three in {w, s1, s2, s3} containing w and we are back to the previous case.
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Let K be an articulation clique of a quasi-line graph G. The ungluing of K requires a partition of
the vertices of K into suitable classes. These classes are the equivalence classes defined by an equivalence
relation ℛ on the vertices of K. Call bound a vertex of K that belongs to two articulation cliques of G
(note that no vertex belongs to more than two articulation cliques). Then, for u, v ∈ K, uℛv if and only
if:

(i) either u = v;

(ii) or both u and v are bound and they belong to the same articulation cliques;

(iii) or u and v are neither simplicial nor bound and (N(v) ∖K) ∪ (N(u) ∖K) is a clique.

We claim that ℛ define an equivalence relation on the vertices of K. In fact, while symmetry and
reflexivity of ℛ are by definition, transitivity follows either from definition or from the next lemma.

Lemma 4.2. Let G(V,E) be a quasi-line graph, K an articulation clique with three distinct non-simplicial
vertices u, v, z ∈ K. If (N(u) ∖ K) ∪ (N(z) ∖ K) and (N(v) ∖ K) ∪ (N(z) ∖ K) are cliques, then also
(N(u) ∖K) ∪ (N(v) ∖K) is a clique.

Proof. In the following, for y ∈ K, we let Ñ(y) = N(y) ∖ K. Since u, v, z are non simplicial, it follows

that Ñ(u), Ñ(v) and Ñ(z) are non-empty. Now suppose the statement is false; therefore there exist w1

and w2 ∈ Ñ(u) ∪ Ñ(v) that are non-adjacent. Since Ñ(u) and Ñ(v) are cliques, it follows that w.l.o.g.

w1 ∈ Ñ(u) ∖ Ñ(v) and w2 ∈ Ñ(v) ∖ Ñ(u). Furthermore, note that w1, w2 /∈ Ñ(z), since this would

contradict the hypothesis. Then pick any vertex t from Ñ(z): tz, tw1, tw2 ∈ E, and w1z, w2z /∈ E hold;
thus, (t; z, w1, w2) is a claw, a contradiction.

The above discussion leads to the following:

Definition 4.1. Let G be quasi-line and K an articulation clique. We denote by Q(K) the family of
the equivalence classes defined by ℛ and call each class of Q(K) a spike of K.

We are now ready to introduce the operation of ungluing for the articulation cliques of a quasi-line
graph.

Definition 4.2. Let G be a quasi-line graph and K(G) the family of all articulation cliques of G. The
ungluing of the cliques in K(G) consists of removing, for each clique K ∈ K(G), the edges between
different spikes of Q(K). We denote the resulting graph by G∣K(G).

In the following, we denote by K(G) the family of all articulation cliques of G and let Q(K(G)) =∪
K∈K(G) Q(K), i.e. the family of all spikes of cliques in K(G).

Lemma 4.3. Let G(V,E) be a quasi-line graph. We can build the graph G∣K(G) and the family Q(K(G))
in time O(∣V ∣3).
Proof. As we proved in Lemma 3.6, we can list all cliques in K(G) in time ∣V ∣3 and ∣K(G)∣ ≤ 2n. We are
going to show that given an articulation clique K ∈ K(G), Q(K) can be computed in time O(∣K∣n2). As
a result, and since each vertex of G is in at most two articulation cliques, the time required to compute
Q(K(G)) is then

∑
K∈K(G) O(∣K∣n2) = O(n3). The algorithm consists of a preprocessing phase plus three

steps. In the preprocessing we compute and remove from K all the simplicial and bound vertices, while
at the same time recording them in the corresponding spikes of Q(K); note that this does not affect the
remaining spikes from Q(K). Suppose then that K is an articulation clique of G without bound and

simplicial vertices: this implies that two vertices u, v ∈ K are in the same spike if and only if Ñ(u)∪Ñ(v)

is a clique, where we used again the notation Ñ(u) := N(u)∖K. In the first step, we construct a bipartite

graph G′(K ∪ N(K), E′) such that u ∈ K and v ∈ N(K) are adjacent if and only if either v ∈ Ñ(u)

or v is complete to Ñ(u). In the second step, we construct, building on G′, a graph G′′(K,E′′) where

u, v ∈ K are adjacent if and only if Ñ(u)∪ Ñ(v) is a clique. By construction, two vertices from K belong
to the same spike of Q(K) if and only if they are in the same component of G′′. Thus, in the last phase
we compute the components of G′′, and we are done.

We start with the preprocessing phase. For each u ∈ K, we can build Ñ(u), and check whether u is
simplicial or it belongs to a second articulation clique, in time O(n) (thanks to the list K(G)), inserting
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those at the same time in the corresponding spikes. We then discard those vertices from K and move
to the first step of the algorithm. Since the set Ñ(u) is available for each u ∈ K, the graph G′ can be
now built in time O(∣K∣n2). Now, in order to build the graph G′′ that is defined in the second step, it is

enough to consider each pair of vertices u, v ∈ K and simply check whether ut ∈ E′ for each t ∈ Ñ(v).
Hence, the graph G′′ can be built in time O(∣K∣2n). Finally, in the third step, we can compute the
components of G′′ in time O(n2).

Thus, Q(K(G)) can be computed in O(n3)−time. Last, observe that O(n2)−time suffices in order to
build the graph G∣K(G) from G.

Lemma 4.4. Let G be a connected quasi-line graph such that K(G) is non-empty. Let C be the connected
components of G∣K(G). Then:

(i) G∣K(G) is quasi-line.

(ii) If Q ∈ Q(K(G)), then Q ⊆ V (C) for some C ∈ C, and C is distance simplicial w.r.t. Q.

(iii) For each C ∈ C, there are either one or two spikes from Q(K(G)) that belong to C. Therefore, if
we let A(C) be the family of these spikes (possibly a multi-set), then (C,A(C)) is a strip.

(iv) G is the composition of the strips {(C,A(C)) : C ∈ C} with respect to the partition P that puts two
extremities in the same class if and only if they are spikes from a same articulation clique.

The long proof of this lemma is postponed to the appendix. Meanwhile, we observe the following:

Observation 1. Observe that, by definition, every simplicial vertex defines a spike of N [v] on its own,
i.e. {v} is a spike of N [v] (recall that N [v] is an articulation clique, by Lemma 3.4). Therefore, every
simplicial vertex v in S(G) will appear in a 1-strip on its own i.e. there will be a strip ({v}, {{v}}) in
the strip decomposition of G provided by Lemma 4.4.

4.2 Quasi-line graphs without articulation cliques We are now ready to give our main decom-
position result on quasi-line graphs.

Theorem 4.1. Let G(V,E) be a connected quasi-line graph with n vertices. In time O(∣V ∣3) Algorithm
1:

(i) either recognizes that G is net-free;

(ii) or provides a decomposition into k ≤ n strips (G1,A1), . . . , (Gk,Ak), with respect to a partition P,
such that each graph Gj is distance simplicial with respect to each clique A ∈ Aj. Moreover, the
partition-cliques are the articulation cliques of G.

Algorithm 1

Require: A connected quasi-line graph G.
Ensure: The algorithm either recognizes that G is net-free, or returns a strip decomposition of G as to

satisfy (ii).

1: Find the family K(G) of all articulation cliques of G. If K is empty, then G has no net cliques and
then it is net-free, stop.

2: Unglue the articulation cliques in K(G) as to build the graph G∣K(G).
3: Let C be the components of G∣K(G). For each component C ∈ C, let A(C) be the (multi-)set of spikes

in C.
4: Return the family of strips {(C,A(C)) : C ∈ C} and the partition P of

∪
C∈C A(C) that puts two

extremities in the same class if and only if they are spikes from a same articulation clique.

Proof of Theorem 4.1. We first show that the algorithm is correct. If K(G) = ∅, it follows from
Lemma 4.1 that G is net-free. Otherwise, by part (iv) of Lemma 4.4, we know that G is the composition
of strips {(C,A(C)) : C ∈ C} w.r.t. the partition of

∪
C∈C A(C) that puts two extremities in the same

class if and only if they are spikes from a same articulation clique. As edges between different spikes
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of any articulation cliques of G are removed in G∣K(G), this implies that the partition cliques are the
articulation cliques of G. Moreover, as ∪{V (C) : C ∈ C} partitions V , those strips are at most n. Last,
observe that each C ∈ C is distance simplicial with respect to each A ∈ A(C) by part (ii) of Lemma 4.4.

We now move to complexity issues. We can find all articulation cliques of G in time O(n3), thanks
to Lemma 3.6. Moreover, we can build the graph G∣K(G) and the family Q(K(G)) in time O(n3), thanks
to Lemma 4.3; this also immediately gives the partition P. In order to compute C and the sets A(C) for
each C ∈ C, a breadth-first algorithm suffices. □

5 An algorithm to decompose claw-free graphs

The main result of this section is the following theorem (Algorithm 2 is presented later):

Theorem 5.1. Let G(V,E) be a connected claw-free graph with n vertices. In time O(∣V ∣3) Algorithm
2:

(i) either recognizes that G is quasi-line and net-free;

(ii) or recognizes that G has an odd anti-wheel and stability number at most 3;

(iii) or provides a decomposition into k+t ≤ n strips (F 1,A1), . . . , (F k,Ak), (H1,ℬ1), . . . , (Ht,ℬt), with
respect to a partition P, such that each graph F j is distance simplicial with respect to each clique
A ∈ Aj and each Hj has an induced 5-wheel and stability number at most 3. Moreover, the set of
partition-cliques is a subset of the set of articulation cliques of G.

Even if Theorem 5.1 resembles Theorem 4.1 (note however that for Theorem 5.1 the partition-cliques
are a subset of the articulation cliques of G), the way we build the strip decomposition for claw-free graphs
is slightly different than for quasi-line graphs. In fact, in Algorithm 1 the strips are produced all together
(in a way, simultaneously) from the ungluing of the articulation cliques of G. Algorithm 2 will instead
first find and “remove” a family ℋ of suitable non-quasi-line strips of G, that we call hyper-line strips, as
to produce a quasi-line graph G∣ℋ. Then it will proceed as Algorithm 1 and build a strip decomposition
(ℱ ,P) of G∣ℋ. Finally, it will suitably “combine” the strips in ℱ ∪ ℋ and the partition P to derive a
strip decomposition of G.

We start therefore with the crucial definition of hyper-line strips. In the following, we say that a strip
(H,A) has disjoint extremities if A is either made of a single clique, or is made of two vertex disjoint
cliques.

Definition 5.1. Let G(V,E) be a claw-free graph and (H,A) a strip with disjoint extremities. We say
that H is an hyper-line strip of G if:

∙ H is an induced subgraph of G, i.e. H = G[V (H)];

∙ the core C(H,A) of the strip (H,A) is anti-complete to V ∖ V (H);

∙ for each A ∈ A, A ∪K(A) is an articulation clique of G, where K(A) := N(A) ∖ V (H).

Observe that, if (H,A) is an hyper-line strip of G, then G is the composition of the strips (H,A) and
(G ∖ V (H),K(A)), with respect to the partition {{A,K(A)}, A ∈ A}, where we let K(A) := {K(A), A ∈
A}. Observe also that by definition, no vertex of A2 (resp. A1) is complete to A1 ∪ K(A1) (resp.
A2 ∪K(A2)).

As we discussed above, in order to get a strip decomposition of a claw-free graph G, we will suitably
“remove” hyper-line strips from G as to end up with a quasi-line graph. This leads to the following
definition.

Definition 5.2. Let G(V,E) be a claw-free graph and ℋ a family of vertex disjoint hyper-line strips of
G. We denote by G∣ℋ the graph obtained from G by deleting the vertices in the core of the strips and the
edges between the extremities of the 2-strips, that is:

∙ V (G∣ℋ) = V (G) ∖∪(H,A)∈ℋ C(H,A);

∙ E(G∣ℋ) = {uv ∈ E : u, v ∈ V (G∣ℋ)} ∖ {uv : u ∈ A1, v ∈ A2, A1 ∕= A2 ∈ A, (H,A) ∈ ℋ}.



9

The next lemma shows some properties of the graph G∣ℋ that will be very useful for combining the
strips in ℋ with the strips coming from the decomposition of G∣ℋ.

Lemma 5.1. Let G be a claw-free graph, ℋ a family of vertex disjoint hyper-line strips of G and
A an extremity of a strip (H,A) ∈ ℋ. In the graph G∣ℋ, each vertex v ∈ A is simplicial and
NG∣ℋ [v] = A ∪K(A); moreover, each articulation clique of G∣ℋ is an articulation clique of G.

The proof of Lemma 5.1 is a bit technical, and we prefer to postpone it to the Appendix. The
same applies with the proof of the following theorem, that is the crucial tool for the decomposition of a
claw-free graph.

Theorem 5.2. Let G0 be a connected claw-free but not quasi-line graph with n vertices. In time O(n3)
we may:

(i) either recognize that G0 has stability number at most 3;

(ii) or build a family ℋ of vertex disjoint hyper-line strips of G such that:

– each strip in ℋ contains a 5-wheel of G and has stability number at most 3;

– G∣ℋ is quasi-line and non-empty, i.e. V (G∣ℋ) ∕= ∅.

So suppose that G is claw-free and that by Lemma 5.1 we have found a family ℋ of vertex disjoint
hyper-line strips of G such that G∣ℋ is quasi-line. Following Algorithm 1, we decompose G∣ℋ and get a
strip decomposition (ℱ ,P). We now show how to “combine” the strips in ℱ ∪ℋ and the partition P as
to derive a strip decomposition of G.

Let A be an extremity of a strip (H,A) ∈ ℋ. It follows from Lemma 5.1 and Lemma 3.4 that A∪K(A)
is an articulation clique of G∣ℋ, and therefore (see Theorem 4.1) a partition-clique of G∣ℋ. In particular,
each vertex v ∈ A will determine a 1-strip ({v}, {{v}}) of ℱ (see Observation 1), and, therefore, the class
P (A) ∈ P corresponding to the partition-clique A ∪K(A) is such that {{v}, v ∈ A} ⊆ P (A).

Now we build upon (ℱ ,P) and get a strip decomposition for G: we simply remove from ℱ all 1-strips
of the form ({v}, {{v}}), with v ∈ A, A being an extremity of a strip (H,A) ∈ ℋ, and “replace” them
with the strips in ℋ. Analogously, for each A being an extremity of a strip (H,A) ∈ ℋ, we replace in
the class P (A) the set of extremities {{v}, v ∈ A} ⊆ P (A), with A.

We summarize the procedure outlined above in the following algorithm:

Algorithm 2

Require: A connected claw-free but not quasi-line graph G.
Ensure: The algorithm either recognizes that G has stability number at most 3, or returns a strip

decomposition of G as to satisfy statement (iii) of Theorem 5.1.

1: By Theorem 5.2, either conclude that G has stability number at most 3: stop, or build a family ℋ
of vertex disjoint hyper-line strips of G such that G∣ℋ is quasi-line, and each strip contains a 5-wheel
of G and has stability number at most 3.

2: Use Algorithm 1 to find a strip decomposition (ℱ ,P) of G∣ℋ. Let ℱ ′ = ℱ and P ′ = P.
3: For each A being an extremity of a strip (H,A) ∈ ℋ do:

remove from ℱ ′ all 1-strips made of vertices from A, i.e. ℱ ′ = ℱ ′ ∖ {({v}, {{v}}), v ∈ A};
replace the class P (A) ∈ P ′ with the class P ′(A), i.e. P ′ = (P ′ ∪ P ′(A)) ∖ P (A), where:
P (A) is the class of P that contains the set of extremities {{v}, v ∈ A};
P ′(A) = (P (A) ∪A) ∖ {{v}, v ∈ A}

4: Return the family of strips ℱ ′ ∪ℋ and the partition P ′.

Proof of Theorem 5.1. Correctness of Algorithm 2 easily follows from the above discussion. Note
also that the algorithm runs in O(n3)-time, as its crucial steps 1 and 2 can be performed in O(n3)-time.
The statement then immediately follows, as soon as we use Theorem 4.1 for characterizing the quasi-line
strip of ℱ ′, and Lemma 5.1 to conclude that each articulation clique of G∣ℋ is an articulation clique of
G. □
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6 The maximum weighted stable set problem in claw-free graphs

In this section, we are going to use our algorithmic decomposition result to derive a simple algorithm for
the maximum weighted stable set problem in a claw-free graph G. We start by defining a simple graph
reduction for composition of strips that only “shift” the weighted stability number ®w(G).

6.1 The maximum weighted stable set problem in composition of strips Let G(V,E) be the
composition of k ≥ 1 strips H1 = (G1,A1), . . . , Hk = (Gk,Ak), with respect to a partition P and let
w : V (G) 7→ ℝ. We now show that we can always substitute H1 with a simple gadget strip H ′

1 and reduce
the problem of finding a maximum weighted stable set (mwss) on G to the same problem on a graph G′

that is the composition of H ′
1,H2, . . . ,Hk with respect to a partition P ′.

The main idea is the following. Observe that the only possible obstruction to combine a stable set T
of G ∖ V (G1) and a stable set U of G1 into a stable set of G are the adjacencies in the partition-cliques
involving the extremities ofH1. Because those extremities are cliques, there are four ways U may intersect
the extremities of H1 (by now assume that H1 is a 2-strip): U contains a vertex in both extremities; U
contains a vertex in one or the other extremity; U does not contain any vertex in the extremities. When
one is interested in the mwss for G then, given a stable set for G ∖ V (G1), one obviously wants to pick
the mwss among those from configurations that are compatible with respect to T . Hence, we can replace
H1 with another strip H ′

1 as long as H1 and H ′
1 agree on the values of a few crucial stable sets.

Because the composition (and thus the adjacencies between G ∖ V (G1) and G1) is slightly different
if (i) H1 is a 1-strip (in this case A1 = {A1}, and there exists P ∈ P : A1 ∈ P ); (ii) H1 is a 2-strip
(i.e. A1 = {A1, A2}) and its extremities are in the same class of the partition P (i.e. there exists
P ∈ P : A1, A2 ⊆ P ) or (iii) H1 is a 2-strip and its extremities are in different classes of the partition P
(i.e. there exist P1 ∕= P2 ∈ P : Ai ∈ Pi i = 1, 2), we need to distinguish those cases.

Let us define w′(v) = w(v) for all v /∈ V (G1) and let us denote by Ck the complete graph on k ≥ 1
vertices labeled c1, ..., ck: C1 is the trivial graph with a single vertex while C3 is a triangle.

Moreover:

∙ In case (i), we define H ′
1 = (C1, {c1}); ±1 = ®w(G

1 ∖ A1); w′(c1) = ®w(G
1) − ±1; P ′ :=

(P ∪ (P ∪ {c1} ∖A1)) ∖ P .

∙ In case (ii), we define H ′
1 = (C1, {c1}); ±1 = ®w(G

1∖(A1∪A2)); w
′(c1) = max{®w(G

1∖A1), ®w(G
1∖

A2), ®w(G
1 ∖A1ΔA2)} − ±1; P ′ := (P ∪ (P ∪ {c1} ∖ {A1, A2})) ∖ P .

∙ In case (iii): we define H ′
1 = (C3, {{c1, c3}, {c2, c3}}); ±1 = ®w(G

1 ∖ (A1 ∪ A2)); w′(c1) =
®w(G

1 ∖ A2) − ±1, w
′(c2) = ®w(G

1 ∖ A1) − ±1 and w′(c3) = ®w(G
1) − ±1; P ′ := (P ∖ (P1 ∪ P2)) ∪

((P1 ∖A1) ∪ {c1, c3}) ∪ ((P2 ∖A2) ∪ {c2, c3}).
The next lemma follows easily from the above discussion.

Lemma 6.1. Let G′ be the composition of H ′
1,H2, . . . ,Hk with respect to the partition P ′, with w′ :

V (G′) 7→ ℝ and ±1 as defined above. Then ®w(G) − ±1 = ®w′(G′). Moreover any mwss of G′ (with
respect to w′) can be converted into a mwss of G (with respect to w) if the following stable sets are
known: a mwss of G1; a mwss of G1 not intersecting A, for each A ∈ A1; a mwss of G1 not intersecting
A1ΔA2 (only if A1 = {A1, A2} and A1, A2 are in the same class of P); a mwss of G1 not intersecting∪

A∈A1 A.

Proof. (For the sake of completeness we give the proof, which is however similar to the proof of Lemma 5
in [16].) We first show that ®w(G)−±1 = ®w′(G′). (i) Let S be a maximum weighted stable set of G. First
suppose that S picks a vertex in A1. Then S ∩V (G1) is a maximum weighted stable set in G1 (otherwise
we would swap with a better one in G1). Also S is not picking any vertex belonging to an extremity in
P other than A1, and therefore S′ = (S ∖ V (G1))∪ {c1} is a stable set of G′. Moreover ®w(G) = w(S) =
w′(S′)−w′(c1)+w(S∩V (G1)) = w′(S′)−w′(c1)+®w(G

1) = w′(S′)+±1 ≤ ®w′(G′)+±1. Suppose now that
S does not pick any vertex from A1. Then S ∩V (G1) is a maximum weighted stable set in G1 ∖A1, while
S ∖V (G1) is a stable set of G′. Therefore, ®w(G) = w(S) = w(S∩V (G1))+w(S ∖V (G1)) ≤ ±1+®w′(G′).

Conversely, let S′ be a maximum weighted stable set of G′. First suppose that S′ picks c1. In this
case, for any stable set S of G1, (S′∖c1)∪S is a stable set of G. Therefore, if in particular we choose S as a
maximum weighted stable set of G1, ®w(G) ≥ w((S′ ∖c1)∪S) = w′(S′)−w′(c1)+®w(G

1) = ®w′(G′)+±1.
Now suppose that S′ does not pick c1. In this case, for any stable set S of G1 ∖ A1, S′ ∪ S is a
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stable set of G. Therefore, if in particular we choose S as a maximum weighted stable set of G1 ∖ A1,
®w(G) ≥ w(S′ ∪ S) = w′(S′) + ®w(G

1 ∖A1) = ®w′(G′) + ±1.

(ii). This case easily reduces to the previous one. In fact, let G
1
be the graph obtained from G1

making A1 complete to A2, H1 be the 1-strip (G
1
, A1 ∪A2), and finally P be the partition obtained from

P by replacing P with P ∪ {A1 ∪ A2} ∖ {A1, A2}. Then G is the composition of H1, H2, . . . , Hk with
respect to the partition P. Now the statement follows from the previous case, as soon as we observe that

®w(G
1
) = max{®w(G

1 ∖A1), ®w(G
1 ∖A2), ®w(G

1 ∖A1ΔA2)} and ®w(G
1 ∖A1 ∪A2) = ®w(G

1 ∖A1 ∪A2).

(iii). Let S be a maximum weighted stable set of G. First suppose that S intersects both A1 and
A2. Then S ∩ V (G1) is a maximum weighted stable set in G1. Also S′ = (S ∖ V (G1)) ∪ {c3} is a stable
set of G′. Moreover ®w(G) = w(S) = w′(S′) − w′(c3) + w(S ∩ V (G1)) = w′(S′) − w′(c3) + ®w(G

1) =
w′(S′) + ±1 ≤ ®w′(G′) + ±1. Suppose now that S picks a vertex in A1 but no vertex in A2. Then
S ∩ V (G1) is a maximum weighted stable set in G1 ∖ A2. Also S′ = (S ∖ V (G1)) ∪ {c1} is a stable set
of G′. Moreover ®w(G) = w(S) = w′(S′) − w′(c1) + w(S ∩ V (G1)) = w′(S′) − w′(c1) + ®w(G

1 ∖ A2) =
w′(S′) + ±1 ≤ ®w′(G′) + ±1. The case where S picks a vertex in A2 but no vertex in A1 goes along
the same lines. Finally suppose now that S does not pick any vertex from A1 ∪ A2. Then S ∩ V (G1)
is a maximum weighted stable set in G1 ∖ (A1 ∪ A2), while S ∖ V (G1) is a stable set of G′. Therefore,
®w(G) = w(S) = w(S ∩ V (G1)) + w(S ∖ V (G1)) ≤ ±1 + ®w′(G′).

Conversely, let S′ be a maximum weighted stable set of G′. First suppose that S′ picks c3. In this
case, for any stable set S of G1, (S′∖c3)∪S is a stable set of G. Therefore, if in particular we choose S as a
maximum weighted stable set of G1, ®w(G) ≥ w((S′ ∖c3)∪S) = w′(S′)−w′(c3)+®w(G

1) = ®w′(G′)+±1.
Now suppose that S′ picks c1. In this case, for any stable set S of G1 ∖ A2, (S

′ ∖ c1) ∪ S is a stable
set of G. Therefore, if in particular we choose S as a maximum weighted stable set of G1 ∖ A2,
®w(G) ≥ w((S′ ∖c1)∪S) = w′(S′)−w′(c1)+®w(G

1 ∖A2) = ®w′(G′)+±1. The case where S
′ picks c2 goes

along the same lines. Finally suppose that S′ does not pick any vertex from C3. In this case, for any stable
set S of G1 ∖ (A1 ∪A2), S

′ ∪S is a stable set of G. Therefore, if in particular we choose S as a maximum
weighted stable set of G1 ∖ (A1 ∪A2), ®w(G) ≥ w(S′ ∪S) = w′(S′) +®w(G

1 ∖ (A1 ∪A2)) = ®w′(G′) + ±1.

Finally observe that it follows from above that we may immediately derive from S′ a maximum
weighted stable set of G if we are given: a mwss of G1; a mwss of G1 not intersecting A, for each
A ∈ A1; a mwss of G1 not intersecting A1ΔA2 (only if A1 = {A1, A2} and A1, A2 are in the same class
of P); a mwss of G1 not intersecting

∪
A∈A1 A.

Trivially, we can apply the above procedure iteratively to each strip Hi. The problem of finding
a mwss on G reduces therefore to the same problem on the graph G′ that is the composition of
H ′

1,H
′
2, . . . , H

′
k with respect to a partition P ′. The following lemma shows some key properties of G′.

Corollary 6.1. G′ is a line graph and in time O(k) we can built a root graph G̃ with O(k) vertices and
edges.

Proof. The strips H ′
j , j = 1, ..., k are line strips and therefore it follows from Lemma 3.3 that G′ is a line

graph. (Note also that by construction G′ has at most 3k vertices). Moreover, the proof of the same
lemma suggests how to build a root graph for G′ with O(k) vertices and edges in O(k)-time: we skip the
details.

Since the number k of strips is bounded by O(∣V (G)∣), it follows that we have reduced, provided we
can efficiently compute the weights w′ for the vertices of each strip H ′

i, the maximum weighted stable set
problem on G to a weighted matching problem on the graph G̃, that has O(∣V (G)∣) vertices and edges.
This latter problem can be solved in time O(∣V (G)∣2 log ∣V (G)∣) by [9]. Also note that the computation of
the weights w′ for the vertices of some strip H ′

i requires the solution of some mwss problems on induced
subgraphs of Gi. Thus, we have proved the following:

Theorem 6.1. The maximum weighted stable set problem on a graph G, that is the composition of some
set of strips (G1,A1), . . . , (Gk,Ak), can be solved in O(∣V (G)∣2 log ∣V (G)∣+∑

i=1,...,k pi(∣V (Gi)∣))-time,

if each Gi belongs to some class of graphs, where the same problem can be solved in time O(pi(∣V (Gi)∣)).

6.2 The maximum weighted stable set problem in quasi-line net free graphs and distance-
simplicial graphs It follows from Theorem 5.1 and Theorem 6.1 that, in order to get an algorithm for
the mwss problem on a claw-free graph G, we are left with showing: (i) how to find a mwss in a graph
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G that is quasi-line and net-free; (ii) how to find a mwss in a graph G that is distance simplicial with
respect to some clique (assuming that we will use enumeration for finding a mwss in a graph that has
stability number at most 3).

The construction and the algorithm given by Pulleyblank and Shepherd in [17] for solving the mwss
in distance claw-free graphs can be used to solve (i) in time O(∣V (G)∣4) and (ii) in time O(∣V (G)∣2). In
the following, we build upon their technique and get an O(∣V (G)∣3)-time algorithm for (i).

First, we need a definition. Recall (see Definition 2.1) that a vertex v of a connected graph G is
distance simplicial if, for every j, ®(Nj(v)) ≤ 1.

Definition 6.1. A vertex v of a connected graph G is almost distance-simplicial if ®(Nj(v)) ≤ 1 for
every j ≥ 2, and ®(N(v) ∪ N2(v)) ≤ 2. A graph is almost distance-simplicial if there exists v that is
distance simplicial.

The next two lemmas directly follow from the results in [17]. For the sake of completeness, we show
a proof for the first lemma; the proof of the second lemma goes along the same lines and so we skip it.

Lemma 6.2. Let G(V,E) be a connected graph and z an almost distance-simplicial vertex of G. The
maximum weighted stable set problem in G can be solved in time O(∣V ∣2).
Proof. We are given a weight function w : V (G) 7→ ℝ. We build upon a construction and an algorithm
from Pulleyblank and Shepherd [17] for distance-claw-free graphs. Let p ∈ ℕ minimum such that
Ni(z) = ∅. We denote N0(z) = {z} and Si, i = 0, ..., p the set of all stables set in G[Ni(z)] (including the
empty set).

Let us now define an auxiliary directed graph D(G). The vertices of D(G) consist of {viS : S ∈
Si, i = 0, ..., p} together with two special nodes u∗, v∗. The arc set A of D(G) is defined as follows. For
each S ∈ Sp, (v

p
S , v

∗) ∈ A; (u∗, v0∅), (u
∗, v0{z}) ∈ A and for all i = 0, ..., p − 1 and each stable set S of

G[Ni(z) ∪Ni+1(z)], (v
i
S∩Ni(z)

, viS∩Ni+1(z)
) ∈ A. We assign weights w′ to the arcs of D(G) as follows: for

each arc a = (x, v∗), w′
a = 0 and for each arc a = (x, viS), w

′
a =

∑
y∈S wy. The maximum weighted

stable set problem in G is equivalent to the longest directed (u∗, v∗)-path in the acyclic graph D(G)
and can thus be solved in time O(∣E(D(G))∣) (see e.g. [1]). By hypothesis,

∑p
j=2 ∣Si∣ = O(V (G)) and

∣S1 ∪ S2∣ = O(∣V (G)∣2). Therefore, from the handshaking lemma, ∣E(D(G))∣ = O(∣V (G)∣2) and thus the
results follows.

Lemma 6.3. Let G(V,E) be a connected graph and K a clique of G such that G is distance simplicial
with respect to K. The maximum weighted stable set problem in G can be solved in time O(∣V ∣2).

It follows from Lemma 6.3 and Theorem 6.1 that the mwss problem in a graph G that is the
composition of a set of (given) distance simplicial strips can be solved in time O(∣V (G)∣2 log ∣V (G)∣). The
O(∣V (G)∣3)-time algorithm for a quasi-line and net-free graph G requires more results from the literature.

Definition 6.2. A triple {x, y, z} of vertices of a graph G is an asteroidal triple (AT) if for every two
of these vertices there is a path between them avoiding the closed neighborhood of the third. A graph G is
called asteroidal triple-free (AT-free) if it has no asteroidal triple.

Brandstadt and Dragan [2] proved the following.

Lemma 6.4. For every vertex v in a {claw,net}-free graph G(V,E), G(V ∖N [v]) is {claw,AT}-free.
Now using the celebrated 2LexBFS algorithm, Hempel and Krastch [8] proved the additional following

result (Lemma 6 in [8]).

Lemma 6.5. Given a {claw,AT}-free graph G(V,E), one can find in O(∣E∣) an almost distance simplicial
vertex in G.

Corollary 6.2. The maximum weighted stable set problem in a {claw,net}-free graph can be solved in
time O(∣V ∣3).
Proof. For each v ∈ V we compute the maximum weighted stable set picking v by solving the maximum
weighted stable problem on G(V ∖N [v]). This can be done in O(∣V ∣2) time because of Lemma 6.4, Lemma
6.5 and Lemma 6.2. We choose the best stable set over those ∣V ∣ choices (and the empty set in case
where w : V 7→ ℝ−). The results follows.
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6.3 The algorithm for the maximum weighted stable set problem in claw-free graphs We
are now ready to put all the bricks together and present our O(∣V (G)∣3) time algorithm for the weighted
stable set problem in claw-free graphs.

Algorithm 3

Require: A connected claw-free graph G and a function w : V (G) 7→ ℝ.
Ensure: The algorithm find a maximum weighted stable set in G with respect to w.

1: Use Algorithm 2 to detect in O(∣V ∣3) time if ®(G) ≤ 3, G is {claw,net}-free or provide a decomposition
of G that obeys Theorem 5.1.

2: If ®(G) ≤ 3, solve the problem by enumeration in O(∣V ∣3) time;
3: if G is {claw,net}-free, then use Corollary 6.2 to solve the problem in O(∣V ∣3) time;
4: if G is the composition of k strip H1, ..., Hk, then apply Theorem 6.1 to solve the problem. Observe

that in this case: if Hi is a distance simplicial strip, then the maximum weighted stable set problems
can be solved in time O(∣V (Hi)∣2) (use Lemma 6.3); if Hi is a 5-wheel strip , then the maximum
weighted stable set problems can be solved in time O(∣V (Hi)∣3) (by enumeration). Then a maximum
weighted stable set in G can be computed in time O(∣V (G)∣3) from Theorem 6.1.
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A Proof of Lemma 4.4

Before starting with the proof of Lemma 4.4 itself, we give an intermediate structural result.

Lemma A.1. Let G(V,E) be a connected quasi-line net-free graph, and let K be a non-empty clique of
G such that N(K) is a clique, but K ∪N(K) is not a clique. Then G is distance simplicial with respect
to K.
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Proof. Suppose by contradiction that there exists j ≥ 2 such that ®(Nj(K)) ≥ 2: we choose j to be
minimal, i.e. for all ℎ < j, ®(Nℎ(K)) = 1. Let {s1, s2} be a stable set of size 2 in Nj(K). For i = 1, 2,
define the non-empty sets Si = N(si) ∩ Nj−1(K), and note that S1 ∩ S2 = ∅. In fact, suppose to the
contrary there exists v ∈ S1∩S2; then, (v;u, s1, s2) is a claw, for each u in N(v)∩Nj−2(K). This implies
that (S, S1, S2) is a partition on Nj−1(K), where we defined S = Nj−1(K) ∖ (S1 ∪ S2).

Claim 1. For i = 1, 2, if v ∈ Si and u /∈ Si, then N(v) ∩Nj−2(K) ⊆ N(u) ∩Nj−2(K).

Proof. Suppose there exists a vertex w in Nj−2(K) adjacent to v but not u, then (v;w, u, si) is a claw, a
contradiction.

Claim 2. ∪i=1,2(Si ∪ (N(Si) ∩Nj−2(K))) is a clique.

Proof. As Nj−1(K) and Nj−2(K) are cliques by construction, it suffices to show that for any pair
u, v ∈ S1 ∪ S2, N(u) ∩Nj−2(K) = N(v) ∩Nj−2(K). This immediately follows from Claim 1 for u ∈ S1,
v ∈ S2. Thus assume w.l.o.g. that u, v ∈ S1, and let w ∈ N(u)∩Nj−2(K), and pick x ∈ S2. By applying
twice Claim 1, it first follows that xw ∈ E, and then that vw ∈ E, concluding the proof.

Claim 3. j = 2.

Proof. Trivially j ≥ 2, as N(K) is a clique. Now suppose j ≥ 3, and let v ∈ S1, u ∈ S2,
w ∈ N(v) ∩ Nj−2(K) and s3 ∈ N(w) ∩ Nj−3(K). We already argued that vs2, us1 /∈ E: moreover,
by Claim 2, w ∈ N(u) and by construction s3 is non-adjacent to u, v, s1, s2, while w is non-adjacent to
s1, s2. Thus, {v, u, w; s1, s2, s3} is a net, contradicting the hypothesis.

We conclude the proof by showing that, if j = 2, all vertices from K are simplicial (i.e. K ∪N(K) is
a clique), contradicting the hypothesis. Pick u, v ∈ K, and suppose there exists w ∈ N [u] ∖N [v]. Recall
that N(K) = S1∪S2∪S. Suppose first that w ∈ S1∪S2. Then, by Claim 2, v is anticomplete to S1∪S2,
while u is complete to S1 ∪ S2. This implies that (u, v1, v2; s1, s2, v) is a net, for some vertices v1 ∈ S1

and v2 ∈ S2, i.e. a contradiction. Now let w ∈ S. Then, by Claim 1, v is also anticomplete to S1 ∪ S2.
Recall that, by Claim 2, u is either complete or anticomplete to S1 ∪ S2. If the former holds, then we
can construct a net as done for the previous case. If conversely the latter holds, (w, v1, v2;u, s1, s2) is a
net. In both cases, we derive a contradiction. This shows that N [u] = N [v] for arbitrary u, v ∈ K. As
N(K) = S1 ∪ S2 ∪ S is a clique, we conclude that K ∪N(K) is a clique.

We now move to the proof of Lemma 4.4.

Claim 4. If Q1∩Q2 ∕= ∅ for some spikes Q1, Q2 ∈ Q(G), then Q1 = Q2 = K1∩K2 for some articulation
cliques K1,K2 ∈ K(G).

Proof. Let v be a vertex that is contained in two spikes Q1, Q2 ∈ Q(G). Since Q(K) partitions V (K) for
each articulation clique K, Q1, Q2 are spikes of different articulation cliques K1,K2. This implies that
v is contained into two articulation cliques and thus, by definition, Q1 = K1 ∩K2 = Q2, concluding the
proof.

It is convenient to define the following three families of spikes from Q(G).

(i) those formed by simplicial vertices of G;

(ii) those formed by vertices that belong to two articulation cliques of G, i.e. those formed by bound
vertices;

(iii) those formed by vertices that belong to exactly one articulation clique, say K, and have a neighbor
that is not in K.

One immediately checks that the three classes above provide a partition of Q(G) and thus, using
Claim 4, induce a partition of vertices from V (∪K∈K(G)K).

Similarly to what it was done in the proof of Lemma 4.2, for an articulation clique K, a vertex v ∈ K,
and a set Q ∈ Q(K), we use the notation ÑK(v) := N(v) ∖K and ÑK(Q) := N(Q) ∖K. We omit the
subscript K when it is clear from the context. Note that with N(), Q(),. . . we denote those sets in the
graph G, while we add the subscript G∣K(G) when we refer to the corresponding sets in the graph G∣K(G).
We start with some basic facts on articulation cliques.
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Claim 5. Let Q1 be a spike of an articulation clique K ∈ K(G).

(i) if Q1 is a spike of type (ii), then all vertices from Q1 are copies, and N [Q1] = K ∪K ′, K ′ ∈ K(G)
being the other articulation clique Q1 is contained into;

(ii) if Q1 is a spike of type (iii), then ÑK(Q1) is a clique;

(iii) if Q1 is a spike of type (iii) and Q2 is a different spike of K ∈ K(G) such that ÑK(Q1) ⊆ ÑK(Q2),
then Q2 is of type (ii), and there exits K ′ ∈ K(G) distinct from K such that N [Q2] = K ∪K ′ and
ÑK(Q1) ⊆ K ′.

(iv) if Q1 is a spike of type (iii) and Q2 is a different spike of K ∈ K(G) also of type (iii), then for

each q1 ∈ Q1 and q2 ∈ Q2, there exists a vertex v ∈ ÑK(q1) ∖NK(q2), w ∈ ÑK(q2) ∖ ÑK(q1) such

that vw /∈ E. Moreover, v ∈ ÑK(Q1) ∖ ÑK(Q2), w ∈ ÑK(Q2) ∖ ÑK(Q1).

(v) if Q1 is a spike of type (ii) or (iii) for each v ∈ Q1 the unique pair of cliques covering N(v) is

K, ÑK(v) ∪ U [v]. In case Q1 is a spike of type (ii), U [v] = Q1.

Proof. (i) Pick q ∈ Q1, and recall that, by definition, both K and K ′ are crucial for v. Thus, K,K ′ is the
unique pair of maximal cliques covering N [q], and consequently N [q] = K ∪K ′. Moreover, all vertices
from Q1 are copies, since they have the same closed neighborhood.
(ii) Suppose not: then u, v are not adjacent, for some u, v ∈ ÑK(Q1). Since ÑK(t) is a clique for each
t ∈ Q1, this implies that N(u) ∩ Q1 is distinct from N(v) ∩ Q1. Let q ∈ N(u) ∩ Q1, q

′ ∈ N(v) ∩ Q1.

Then, ÑK(q) is not complete to ÑK(q′), contradicting the definition of spike.

(iii) Q2 is not of type (i), since ÑK(Q2) is non-empty. Suppose now Q2 is of type (iii), and pick q1 ∈ Q1,

q2 ∈ Q2. By hypothesis ÑK(q2) ⊆ ÑK(Q2) and ÑK(q1) ⊆ ÑK(Q1) ⊆ ÑK(Q2) are complete to each

other, since they contained in the ÑK(Q2), which is a clique by part (ii). This implies that q1, q2 belong
to the same spike ofK, a contradiction. Thus, Q2 is a spike of type (ii), and consequently N [Q2] = K∪K ′

for some K ′ ∈ K(G) from part (i). Moreover, since ÑK(Q1) ∩K = ∅, ÑK(Q1) ⊆ K ′.
(iv). ÑK(q1) ∪ ÑK(q2) is not a clique, since this would contradict the fact that q1, q2 belong to the

different spikes. Thus, there exists a missing edge vw. By definition of articulation clique, ÑK(q1) and

ÑK(q2) are cliques, thus we can assume w.l.o.g. that v ∈ ÑK(q1), w ∈ ÑK(q2). Moreover, since Ñ(Q1)

is a clique, w /∈ Ñ(Q1). Similarly v /∈ Ñ(Q2).
(v). Since K is crucial for v, there exists a unique pair of maximal cliques K,H that cover N [v]. Recall

that N [v] = K ∪ ÑK(v), with ÑK(v) ∩K = ∅. Thus, ÑK(v) ⊆ H. Moreover, a vertex v ∈ K belongs to

H if and only if it is complete to ÑK(v), and thus universal to v. Suppose now that Q1 is of type (ii).
H is then an articulation clique and by definition, Q1 = K ∩ H and thus by maximality of K and H,
Q1 = U [v].

Claim 6. Let Q ∈ Q(K)∖Q(K ′) for some K,K ′ ∈ K(G). Then ÑK(Q)∩K ′ ⊆ Q′ for some Q′ ∈ Q(K ′).

Proof. By Claim 4, Q ∩K ′ = ∅. Now suppose, by contradiction, that ÑK(Q) ∩Q′, ÑK(Q) ∩Q′′ ∕= ∅, for
some distinct Q′, Q′′ ∈ Q(K ′). We first argue that Q′, Q′′ are spikes of type (iii). They are not of type
(i), since they are adjacent to Q, which we argued lie outside K ′. Suppose now that Q′′ is of type (ii),
i.e. it is also contained in some articulation clique K ′′. By Claim 5, N [Q′′] = K ′∪K ′′. Since Q∩K ′ = ∅,
it follows Q ∩N(Q′′) ⊆ K ′′, and thus Q ⊂ K ′′, since in this case Q belongs to two articulation cliques,
and all its vertices are copies. Consequently N [Q] = K ∪ K ′′. By construction, Q′ does not intersect
K,K ′′, contradicting the fact that Q is adjacent to Q′. Thus, both Q′ and Q′′ are spikes of type (iii). By
Claim 5, there exists u ∈ ÑK′(Q′) ∖ ÑK′(Q′′) and v ∈ ÑK′(Q′′) ∖ ÑK′(Q′) such that uv /∈ E. At least one

between u and v does not belong to K, say w.l.o.g. u. As Q ∩ ÑK′(Q′) ∕= ∅ by hypothesis, and ÑK′(Q′)
is a clique, then u is a vertex outside K that is adjacent to some vertex of Q, i.e. u ∈ ÑK(Q). This leads

to contradiction, since ÑK(Q) is a clique by Claim 5 and u is anticomplete to Q′′.

Claim 7. For each K ∈ K(G), for each Q ∈ Q(K) of type (iii), we have NG∣K(G)
(q) ∖Q = ÑK(q) for all

q ∈ Q. In particular NG∣K(G)
(Q) = ÑK(Q), and moreover NG∣K(G)

(Q) is a (non empty) clique in G∣K(G).
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Proof. NG∣K(G)
(q)∖Q = ÑK(q) follows from the fact that vertices ofQ are in exactly one articulation clique

and thus adjacencies are removed only with vertices in K. Moreover, ÑK(Q) is a clique in G. Suppose
NG∣K(G)

(Q) is not a clique in GK(G): this implies that there exists an articulation clique K ′ ∈ K(G) and

two distinct sets Q′, Q′′ ∈ Q(K ′) such that Q′ ∩ ÑK(Q), Q′′ ∩ ÑK(Q) ∕= ∅. Moreover, K ′ ∕= K since

ÑK(Q) ∩K = ∅ by definition, and consequently Q /∈ Q(K ′), since Q is a spike of type (iii). But the we
contradict Claim 6.

Claim 8. Let K ∈ K(G), Q1, Q2 different sets of Q(K), and v ∈ Ñ(Q1)∩Ñ(Q2). Then for each covering
of N [v] with two maximal cliques H1, H2, we can assume w.l.o.g. Q1 ∩N(v) ⊆ H1 and Q2 ∩N(v) ⊆ H2.
Thus, in particular, v is adjacent to at most two spikes from Q(K). In case where both Q1 and Q2 are
of type (iii) we can assume w.l.o.g. that, Q1 ∩N(v) ⊆ H1 ∖H2 and Q2 ∩N(v) ⊆ H2 ∖H1.

Proof. Let ui ∈ Qi ∩ N(v), for i = 1, 2. Note that u1 (resp. u2) is not simplicial, since Ñ(u1) ∕= ∅
(resp. Ñ(u2) ∕= ∅). First suppose that both spikes Q1 and Q2 are of type (iii): by Claim 5, there exist

z1 ∈ Ñ(u1) ∖ Ñ(u2) and z2 ∈ Ñ(u2) ∖ Ñ(u1) such that z1z2 ∕∈ E. Note that z1, z2 ∈ N(v). It follows that
any covering of N [v] with two maximal cliques H1, H2 is such that w.l.o.g. u1, z1 ∈ H1 and u2, z2 ∈ H2.

But since z1 is anticomplete to Q2 (else {z1, z2} ⊆ Ñ(Q2) is not a clique contradicting Claim 5 (ii) ) and
similarly z2 is anticomplete to Q1, the results follows.

Now suppose that at least one of Q1, Q2 is also a spike of a second articulation clique K ′, say w.l.o.g.
Q1. As N [Q1] = Γ[Q1] = K ∪K ′, we have N(v) ∩Q1 = Q1 and since v /∈ K, then v ∈ K ′. Moreover, by
definition of spikes, for all w ∈ N(v) ∩Q2, w /∈ K ′. Thus the unique pair of maximal cliques that cover
N [v] is K ′, H, with Q1 ⊆ K ′, N(v) ∩Q2 ⊆ H, the result follows.

Claim 9. Let v ∈ V ∖V (K(G)), then v is regular in G∣K(G). Moreover, if v is strongly regular in G∣K(G),
it is also strongly regular in G and if H ′

1, H
′
2 is the unique pair of maximal cliques in G∣K(G) that cover

NG∣K(G)
(v), H ′

1,H
′
2 is the unique pair of maximal cliques in G that cover N(v).

Proof. Let v be a vertex of V ∖ V (K(G)) and H1,H2 a pair of maximal cliques that cover N(v) (G is
quasi-line so every vertex is regular). By Claim 8, for each articulation clique K ∈ K(G), v is adjacent to
at most two spikes from K. Let K1, ...,Km (possibly m = 0) be the articulation cliques from K(G) such
that N(v) intersects each of K1, ...,Km in exactly two spikes, and denote those spikes by Q1

i , Q
2
i . Note

that all these spikes are of type (iii) (recall that v belongs to no articulation clique of G), thus they are
pairwise non-intersecting by Claim 4. By Claim 8, we can assume w.l.o.g. that Q1

1, . . . , Q
1
m ⊆ H1 ∖H2,

Q2
1, . . . , Q

2
m ⊆ H2 ∖H1. Observe that since v ∈ V ∖V (K(G)), we have NG∣K(G)

[v] = N [v] = H1 ∪H2. But

H1 and H2 are still maximal cliques of G∣K(G) since adjacencies are removed only between Q1
i and Q2

i

during ungluing and Q1
i ⊆ H1 ∖H2 and Q2

i ⊆ H2 ∖H1. Thus v is regular in G∣K(G).
This shows that if H1,H2, H

′
1,H

′
2 are two different pairs of maximal cliques that cover N(v), H1, H2,

H ′
1, H

′
2 are also two different pairs of maximal cliques that cover N∣GK(G)

(v) and thus strongly regularity
of v in G∣K(G) implies strong regularity of v in G. Moreover the unique pair of cliques covering the
neighborhood of v in G and GK(G) are the same.

Claim 10. G∣K(G) is quasi-line.

Proof. We show that each vertex is regular in G∣K(G). Let vinV (K(G)), this follows from Claim 7 for
vertices of type (iii) and it is immediate for vertices of type (i) and (ii). For vertices in V ∖V (K(G)), this
follows from Claim 9.

Claim 11. For each K ∈ K(G), for each Q ∈ Q(K) of type (iii), if Q ∪ ÑK(Q) is a clique in G, then

Q ∪ ÑK(Q) = Q ∪NG∣K(G)
(Q) induces a (clique) connected component of G∣K(G).

Proof. Let K ∈ K(G), Q ∈ Q(K) of type (iii) such that Q ∪ ÑK(Q) is a clique. From Claim 7 it follows

that NG∣K(G)
(Q) = ÑK(Q) is a clique, and thus Q∪NG∣K(G)

(Q) is also a clique in G∣K(G) with NG∣K(G)
(Q)

non-empty (no edge between Q and NG∣K(G)
(Q) is removed in the ungluing since it would mean that a

vertex of Q is in a second articulation clique, a contradiction).

Suppose first that there exists a vertex w ∈ K∖Q that is complete to ÑK(Q). By Claim 5, w ∈ K∩K1

for some K1 ∈ K(G) with K1 ∕= K, N [w] = K ∪ K1, and ÑK(Q) ⊆ K1. First, note that all vertices

from ÑK(Q) must be in the same spike Q1 from Q(K1), otherwise NG∣K(G)
(Q) = ÑK(Q) would not be a
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clique in G∣K(G), contradicting Claim 7. Observe that Q1 does not intersect K, otherwise Q1 = K ∩K1.
Moreover Q1 is of type (iii). Indeed, the vertices in Q are neither in K1, nor in any other clique other than

K (otherwise they would be bounds) and thus Q ⊆ ÑK1
(Q1). Since Q ∕= ∅ it follows that the vertices

of Q1 are not simplicial and moreover they are not bounds, since in this case, this would imply that the
vertices from Q belong to two different articulation cliques and are thus also bounds, a contradiction.
We now argue that actually ÑK1

(Q1) = Q. Using again Claim 7, NG∣K(G)
(Q1) = ÑK1

(Q1) and it is a

clique in G∣K(G). Since Q ⊆ ÑK1(Q1), all vertices from ÑK1(Q1) are complete to Q in G∣K(G). But

NG∣K(G)
(Q) = ÑK(Q) ⊆ Q1, thus it follows that ÑK1(Q1) ∖ K = ∅. But ÑK1(Q1) ∩ K ⊆ Q′ with

Q′ ∈ Q(K), else NG∣K(G)
(Q1) = ÑK1

(Q1) would not be a clique in G∣K(G)(Q) contradicting Claim 7.

It follows that Q = Q′ and thus ÑK1
(Q1) = Q. Moreover, for each t ∈ Q1, ÑK1

(t) is non-empty

and contained in Q, which implies t ∈ ÑK(Q). Thus, Q1 = ÑK(Q). Summing up, we have that

NG∣K(G)
(Q) = ÑK(Q), and NG∣K(G)

(ÑK(Q)) = NG∣K(G)
(Q1) = ÑK1(Q1) = Q. The results follows.

Thus, we can suppose there exists no w ∈ K ∖Q that is complete to ÑK(Q). We now prove that this

case leads to contradiction, by showing that Q∪ ÑK(Q) is an articulation clique in G, and thus Q is not

a spike of type (iii). Note first that, in this case, Q ∪ ÑK(Q) is a maximal clique in G, and it is crucial

for all vertices in Q by Claim 5 (v). We now show it is also crucial for all vertices from ÑK(Q). For each

v ∈ ÑK(Q), let Tv := N(v) ∖ (Q∪ ÑK(Q)). If Tv = ∅, then v is simplicial and Q∪ ÑK(Q) is crucial for v.
Now suppose that Tv ∩ K = ∅, and note that this implies that Tv is anticomplete to Q, since

N [Q] = K ∪ ÑK(Q). Applying Lemma 3.5 (1), it follows that Q ∪ ÑK(Q) is crucial for v.
Last, we suppose Tv ∩ K ∕= ∅. Let S := (N(v) ∩ K) ∖ Q (note S ∕= ∅ by hypothesis). By Claim 8,

S ⊆ Q′ for some Q′ ∈ Q(K) distinct from Q, and for each bipartition H1,H2 of N [v] into two maximal
cliques, w.l.o.g. Q ⊆ H1, S ⊆ H2. Now, since we are in the case where no w ∈ K ∖ Q is complete to

ÑK(Q), in particular no vertex in S is complete to ÑK(Q), thus S ∩ H1 = ∅. Note that the unique

maximal clique that contains Q in N [v] ∖ S is Q ∪ ÑK(Q). Thus, also in this case Q ∪ ÑK(Q) is crucial
for v.

Since Q ∪ ÑK(Q) is a maximal clique in G and it is crucial for all its vertices, it is an articulation
clique of G, and this concludes the proof.

Claim 12. G∣K(G) contains no net cliques.

Proof. Let K be an articulation clique of G∣K(G). We will show in the following that K cannot be a net
clique. Since E(G∣K(G)) ⊆ E, K is a clique in G. By construction, K is not an articulation clique of G,
unless K is a made of a unique spike, but then, the statement is trivial for spikes of type (i) or (ii) and
it follows from Claim 7 for spike of type (iii), thus we can suppose that this does not hold.

Suppose first K is not maximal in G: then there exists a vertex w that is complete to K in G, while it
is not complete to K in G∣K(G). This implies that there exist spikes Q′

1 ∕= Q′
2 of some articulation clique

K ′ ∈ K(G) such that w ∈ Q′
2, Q

′
1 ∩K ∕= ∅. This also implies that w is anticomplete to Q′

1 in G∣K(G) and
that Q′

2 ∩K = ∅, otherwise K is not a clique in G∣K(G). Now suppose that K is a net clique in G∣K(G),
this implies that there exists vertices a1, a2, a3 ∈ K, v1, v2, v3 /∈ K such that aivj ∈ EK(G) if and only
if i = j, and vivj /∈ EK(G) for each i ∕= j. Recall (cfr. the proof of Lemma 4.1) that (S1, S2, S3, S) is a
partition of the vertices of K, for Si = NG∣K(G)

(vi)∩K, and S = K ∖(S1∪S2∪S3). Since Q
′
1 is a clique in

G∣K(G) and NG∣K(G)
(Q′

1) is a clique in G∣K(G) (trivial if Q
′
1 is of type (i) or (ii) and by Claim 7 if of type

(iii)), Q′
1 intersects at most one set among S1, S2, S3. Thus, we can suppose Q′

1 ∩ (S1 ∪ S2) = ∅, which
implies that Q′

1 ∩K is anticomplete to {v1, v2} in G∣K(G). Now we show that w is complete to S1 and S2

in G∣K(G). Suppose to the contrary that w.l.o.g. it is not complete to S1. Then S′
1 = S1 ∖NG∣K(G)

(w) ∕= ∅
and there exist spikes Q′′

1 ∕= Q′′
2 of some articulation clique K ′′ ∈ K(G) such that w ∈ Q′′

2 , S
′
1 ⊆ Q′′

1 (S′
1 is

not in different spikes of K ′′, since else K would not be a clique of G∣K(G)). Also K ′′ ∕= K ′ since otherwise
some edges between S′

1 and Q′
1∩K would be missing in G∣K(G). It follows that w ∈ K ′′∩K ′ is a vertex of

type (ii) and N [w] = K ′′ ∪K ′. But again since Q′′
1 and NG∣K(G)

(Q′′
1) are cliques in G∣K(G), Q

′′
1 intersects

at most one set among S1, S2, S3 and thus this set is S1. Therefore w is anticomplete to S2 in G since
no other spikes of K ′,K ′′ intersect K (again otherwise K would not be a clique in G∣K(G)), but this is a
contradiction. We can conclude in particular that w ∕= v1, v2. Note now that w is adjacent to v1, v2 in
G∣K(G) otherwise, for instance, (a1; v1, w, q) is a claw in G∣K(G) for any q ∈ Q1 ∩K, contradicting Claim
10. Thus wv1, wv2 ∈ E(G∣K(G)), while v1v2 /∈ E(G∣K(G)) by hypothesis. Recall that w belongs to some
spike Q′

2 from K ′, K ′ being an articulation clique of K(G). Again, both Q′
2 and NG∣K(G)

(Q′
2) are cliques

in G∣K(G). So either v1 or v2 ∈ Q′
2, but not both: say w.l.o.g. v2 ∈ Q′

2. Now as we already observed,
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Q′
2 ∩K = ∅ and thus a2 /∈ Q′

2. Therefore a2, v1 is a stable set of size 2 in NG∣K(G)
(Q′

2), contradicting the
fact that NG∣K(G)

(Q′
2) is a clique.

Thus, K is maximal in G. This implies that, for each u ∈ K, U [v] ⊆ K. We show now thatK ∈ K(G).
Indeed suppose not: by maximality of K this means that K is non-crucial in G for some vertex v ∈ K.
Note that it must be that v ∈ V (K(G)). Indeed for each u /∈ V (K(G)), u is strongly regular in G∣K(G) (K
is an articulation clique in G∣K(G)) and thus K is crucial in G by Claim 9. Thus, v ∈ K1 ∩Q1 for some
K1 ∈ K(G), Q1 ∈ Q(K1). We haveK1 ∕= K, otherwise we already haveK = K1 ∈ K(G), and we also have
K1∩K ⊆ Q1, else K is not a clique in G∣K(G). Moreover Q1 is of type (iii) since else K ⊆ NG∣K(G)

[v] = Q1,
contradicting the fact that K is not contained in a spike. Let K1,H be the unique pair of maximal cliques
that cover N [v] in G. Note that ÑK1(v) ⊇ K ∖ Q1. Suppose first that ÑK1(v) = K ∖ Q1 (in particular

ÑK1
(v) ∕= ∅ else K = Q1). Then by Claim 5 (v), (K ∖ Q1) ∪ U [v] = K ∪ U [v],K1 is the unique pair of

maximal cliques covering N [v]. As U [v] ⊆ K, this implies that K is crucial for v in G, a contradiction.

Thus ÑK1(v) ∖K ∕= ∅. Since ÑK1(v) = NG∣K(G)
(v) ∖Q1 is a clique in GK(G) by Claim 7, ÑK1(v), Q1 is a

pair of cliques that cover NG∣K(G)
(v). Expand them respectively to K ′,K ′′, as to be maximal in G∣K(G).

Observe that since K is crucial for v in G∣K(G), one of K ′ or K ′′ is equal to K. But since we assumed

ÑK1
(v)∖K ∕= ∅ and K is maximal in G, this implies that K = K ′′ and thus Q1 ⊆ K. Because we already

observed K1 ∩K ⊆ Q1, it follows Q1 = K1 ∩K.
Now suppose that K is a net clique in G∣K(G). This implies again that there exist vertices

a1, a2, a3 ∈ K, v1, v2, v3 /∈ K such that aivj ∈ EK(G) if and only if i = j, and vivj /∈ EK(G) for
each i ∕= j and that (S1, S2, S3, S) is a partition of the vertices of K, for Si = NG∣K(G)

(vi) ∩ K, and
S = K ∖ (S1 ∪ S2 ∪ S3). Since Q1, NG∣K(G)

(Q1) are cliques in G∣K(G), Q1 again intersects at most one
of the sets S1, S2, S3 and thus w.l.o.g. Q1 ∩ (S1 ∪ S2) = ∅. But since Q1 ⊆ K, no vertex of S3 belongs
to Q1, else v3, a1 is a stable set of size 2 in NG∣K(G)

(Q1). Thus, Q1 ⊆ S is anticomplete to {v1, v2, v3}.
Let w ∈ ÑK1(v) ∖ K = NG∣K(G)

(v) ∖ K, which we assumed non-empty. Note that w ∕= v1, v2, v3 and w
is non-complete to K in G, since otherwise we contradict the maximality of K. Since w is complete to
K ∖Q1 in G∣K(G) by Claim 7), it follows that wq /∈ EK(G) for some q ∈ Q1, and wa1, wa2, wa3 ∈ EK(G).
Moreover, wv1, wv2, wv3 ∈ E since otherwise, for instance, (a1; v1, q, w) is a claw in G∣K(G), contradicting
Claim 10. But then (w; v1, v2, v3) is also a claw in G∣K(G), again a contradiction. This shows that K
is maximal and crucial for each of its vertices in G, and thus K ∈ K(G). This is a contradiction, and
concludes the proof.

Claim 10 implies part (i) of the statement.

We now show part (ii). Let Q ∈ Q(K) for some K ∈ K(G). By definition of ungluing, Q ⊂ V (C) for
some component C of G∣K(G). If the component coincides with Q, the statement is trivial, thus suppose
that Q has non-empty neighborhood in G∣K(G). This implies that Q is of type (iii). If Q∪NG∣K(G)

(Q) is
a clique, Claim 11 implies that it is a clique-component of G∣K(G), and again the statement is trivial. So
suppose it is not; as C is quasi-line, it has no net clique (by Claim 12) and thus no nets, and NG∣K(G)

(Q)
is a clique (by Claim 7), we use Lemma A.1 and conclude that part (ii) holds true.

We now show part (iii). Let C ∈ C. If C contains no spikes, then it is a connected component of G,
contradicting the fact that G is connected. Thus C contains at least one spike. Now suppose it has at
least three, say A1, A2,..., Al for l ≥ 3. Recall that, by Claim 4 and by definition of ungluing, they are
disjoint. Moreover, again by definition of ungluing, we can assume they all are of type (iii).

Claim 13. C is not a clique.

Proof. Suppose the contrary. By construction, A1, A2, ..., Al are spikes from l different articulation cliques
K1,K2, ...,Kl ∈ K(G), else C would not be a clique. Let Al+1 := V (C) ∖ (A1 ∪ ... ∪ Al). Since

NG∣K(G)
(Ai) = ÑKi(Ai) for i = 1, ..., l, this implies that for i = 1, ..., l, ÑKi(Ai) = ∪j=1,...,l+1;j ∕=iAj .

Now suppose there exists some vertex w ∈ K1 ∖ A1 that is complete to ÑKi(A1) = A2 ∪ ... ∪ Al+1.
w ∈ Q′

1 for some Q′
1 ∈ Q(K1). Then by Claim 5 (iii), Q′

1 is a spike of type (ii), i.e. Q′
1 = K1 ∩ K ′

for some K ′ ∈ K(G) ∕= K1. In particular, A2, A3 are in the intersection of two different articulation
cliques (K ′ ∕= K2,K3 since A2 ∪ A3 ⊆ K ′ but A2 ∪ A3 ∕⊆ K2,K3), contradicting the fact that they are
spikes of type (iii). A similar argument works for w ∈ Kj ∖ Aj , for all j = 1, ..., l. Thus, by Claim 5
(v), for i = 1, ..., l, for each v ∈ Ai, the unique bipartition of N [v] into two maximal cliques is given
by (Ki,∪i=1,...,l+1Ai) and consequently ∪i=1,...,l+1Ai is crucial for v in G. We now argue that it is also
crucial in G for vertices of Al+1. Pick v ∈ Al+1, by definition, it does not belong to any articulation clique
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from K(G): then N [v] = NG∣K(G)
[v] = ∪i=1,...,l+1Ai, thus v is simplicial and consequently ∪i=1,...,l+1Ai

is crucial for v in G. This shows that ∪i=1,...,l+1Ai is an articulation clique in G, a contradiction.

We now conclude the proof of part (iii) by showing that one among A1, A2, A3 is such that
NG∣K(G)

[Ai] = Ai ∪ NG∣K(G)
(Ai) is a clique and thus by Claim 11, C is a clique, contradicting Claim

13. Recall that, by definition, A1, A2, A3 are disjoint, and by part (ii), C is distance simplicial w.r.t. A1,
A2 and A3. For i = 2, 3, let ji be the maximum integer such that Nji(A1)∩Ai ∕= ∅, where Nj(A1) is the
j−th neighborhood of A1 in G∣K(G). Observe that Ai ∩Nji−k(A1) = ∅ for all i = 2, 3 and ji ≥ k ≥ 2.

Claim 14. j2 ∕= j3.

Proof. Suppose j2 = j3: then A2 ⊆ Nj2(A1); this is trivial (by disjointness ) if j2 = 1, and if j2 > 1, then
the neighborhood of A2 in C would contain a vertex from Nj2−2(A1) and a vertex from A3 ∩ Nj2(A1),
contradicting the fact that NG∣K(G)

(A2) is a clique. Similarly, A3 ⊆ Nj2(A1). Thus, A2 ∪ A3 is a clique.
As NG∣K(G)

(A2), NG∣K(G)
(A3) are cliques, NG∣K(G)

(A2) ∖ A3 is complete to A3 and NG∣K(G)
(A3) ∖ A2 is

complete to A2. In particular this implies that N(A2)∩Nj2+1(A1) = ∅ and N(A3)∩Nj2+1(A1) = ∅, that
NG∣K(G)

[A2] = NG∣K(G)
[A3], thus NG∣K(G)

[A2] is a clique, a contradiction.

From the previous claim, we can assume w.l.o.g. j2 ≤ j3 − 1. As NG∣K(G)
(A2) is a clique, A2

is anticomplete to Nj2+1(A1); as Nj2+1(A1) is non-empty, also Nj2(A1) ∖ A2 is non-empty, and it is
complete to A2. But because Nj2(A1) ∖ A2 is non-empty, A2 ∩ Nj2−1(A1) = ∅, else NG∣K(G)

(A2) is not
a clique (it has 2 non adjacent neighbors in Nj2−2(A1) and in Nj2(A1) ∖ A2). Using again the fact that
NG∣K(G)

(A2) is a clique, we conclude that Nj2−1(A1) ∩NG∣K(G)
(A2) is complete to Nj2(A1) ∖A2.

Moreover, Nj2−1(A1) ⊆ N(A2), otherwise N2(A2) picks two non adjacent vertices in Nj2−1(A1) and
Nj2+1(A1), contradicting the fact that A2 is distance simplicial. Thus, Nj2(A1) ∖ A2 is complete to
Nj2−1(A1).

We now show that NG∣K(G)
[A2] is a clique, thus concluding the proof of part (iii). Suppose it is not:

from what argued above, the only possibility is that there exists u ∈ A2, w ∈ Nj2−1(A1) ⊆ NG∣K(G)
(A2)

with uw /∈ E(C). Now pick z ∈ Nj2+1(A1) and t ∈ Nj2(A1)∩NG∣K(G)
(z). By construction, wz, uz /∈ E(C),

while tu, tw, tz ∈ E(C), thus (t;u,w, z) is a claw, a contradiction.

We are left with part (iv). First observe that the set of strips {(C,A(C)), C ∈ C} is well-defined, since
by part (iii) for each C ∈ C, A(C) is a multi-set with one or two cliques. Let G′ be the graph obtained
by composing {(C,A(C)), C ∈ C(G∣K(G))} with respect to the partition P that puts two extremities in
the same class if and only if they are spikes from a same articulation clique. By definition of ungluing,
∪{V (C) : C ∈ C} partitions V , thus V (G) = V (G′). By definition of composition, two vertices u, v of G′

are adjacent if and only if uv ∈ E(C) for some C, or u ∈ A1, v ∈ A2 and A1, A2 belong to the same set
of the partition P. By the definition of P, this implies that uv ∈ E(G′) if and only if uv ∈ E(G). Thus
G′ = G and we conclude the proof.

B Proofs of Section 5

(We point out that Theorem 5.2 builds in a non-trivial way upon Lemma 12 in [16].) Both the proof of
Lemma 5.1 and Theorem 5.2 require a few preliminary lemmas about the iterative removal of hyper-line
strips from a claw-free graph G.

So let G be a claw-free graph and (H,A) an hyper-line strip of G. Following Definition 5.2 (and with
a little abuse of notation, as we should write G∣{(H,A)}), we let G∣(H,A) be the graph such that:

∙ V (G∣(H,A)) = V (G) ∖ C(H,A);

∙ E(G∣(H,A)) = {uv ∈ E : u, v ∈ V (G∣(H,A))} ∖ {uv ∈ E : u ∈ A1, v ∈ A2, A1 ∕= A2 ∈ A}.
The following lemma summarizes a few properties of the graph G∣(H,A).

Lemma B.1. Let G be a graph and (H,A) an hyper-line strip of G. Then:

(i) G∣(H,A) is claw-free.

(ii) A vertex of G that is regular and belongs to G∣(H,A) remains regular.

(iii) A vertex of G that is irregular and belongs to G∣(H,A) remains irregular. In particular, if W is a
5-wheel of G centered in a /∈ C(H,A), then W is also a 5-wheel of G∣(H,A).
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(iv) The set of simplicial vertices of G∣(H,A) is given by S(G) ∪ {v ∈ A,A ∈ A}. Moreover, if v is a
simplicial vertex of G, then its neighborhood is the same in G and G∣(H,A).

(v) If K is an articulation clique of G that does not take vertices from C(H,A), then K is an articulation
clique of G∣(H,A).

(vi) If K is an articulation clique of G∣(H,A), then it is also an articulation clique of G.

(vii) If (H,A) is an hyper-line strip of G∣(H,A) that is vertex disjoint from (H,A), then it is also an an
hyper-line strip of G.

(viii) If (H,A) is an hyper-line strip of G that is vertex disjoint from (H,A), then it is also an an
hyper-line strip of G∣(H,A).

Proof. The statements easily follow from a few remarks. First of all, the vertices that belong to an
extremity A ∈ A are simplicial vertices of G∣(H,A). As for a vertex v of G∣(H,A) that does not belong to
any extremity A ∈ A, note that it has the same neighborhood in G and G∣(H,A). In particular, if (H,A) is
a 1-strip, also the adjacencies between vertices in N(v) are unchanged; if (H,A) is a 2-strip with disjoint
extremities, then the adjacencies between vertices in N(v) change only if v ∈ K(A1) ∩ K(A2). In this
case, v is a strongly regular (non-simplicial) vertex of G, and it is also a strongly regular (non-simplicial)
vertex of G∣(H,A), as it is still adjacent to vertices of A1 and A2, that are simplicial and therefore define
articulation cliques of G∣(H,A). Statements (i)− (iv) easily follow.

Consider now an articulation clique K of G. As we already pointed out, if K ∈ {A ∪K(A), A ∈ A},
then K is still an articulation cliques of G∣(H,A). Now suppose that K /∈ {A ∪ K(A), A ∈ A}; as we
discussed above, the adjacencies between vertices in N(v) change only if v ∈ K(A1)∩K(A2). Clearly, no
such a vertex belong to K, as in this case it will belongs to three articulation cliques of G. Therefore K
is also an articulation cliques of G∣(H,A). So statement (v) follows, and by reversing this argument also

statement (vi) holds. Finally, let (H,A) be an hyper-line strip of G∣(H,A) that is vertex disjoint from

(H,A). Observe that the vertices of H induce the same subgraph in G and G∣(H,A), and therefore H is

an induced subgraph of G. Then, the fact that (H,A) is also an an hyper-line strip of G, i.e. statement
(vii), easily follows from statement (vi). Analogously, statement (viii) easily follows from statement (v).

Observation 2. Let ℋ = {(H1,A1), . . . , (Ht,At)} be a family of vertex disjoint hyper-line strips of a
claw-free graph G0. For i = 1, ...t,, let Gi = Gi−1∣(Hi,Ai) (note that each (Hi,Ai) is an hyper-line strip
of Gi−1 because of the last statement in Lemma B.1). Define G∣ℋ according to Definition 5.2. It is easy
to check that then the graph Gt ≡ G∣ℋ.

In other words, either we simultaneously remove a set of strip, or we remove them sequentially, we
get the same graph.

Proof of Lemma 5.1. Given the above observation, the proof of the lemma easily follows by induction
from statements (iv) and (vi) of Lemma B.1. □

We now move to the proof of Theorem 5.2. We start with a couple of classical lemmas.

Lemma B.2. [7] Let G be a connected claw-free graph G with ®(G) ≥ 4. For each vertex v ∈ V (G), each
odd-hole in G[N(v)] has length five. In particular, if G does not contain a 5-wheel, it is quasi-line.

Lemma B.3. [12] Let G(V,E) be a claw-free graph with an induced 5-wheel centered in a ∈ V . Then
®(a ∪N(a) ∪N2(a)) ≤ 3.

The next lemma then easily follows.

Lemma B.4. Let G be a connected claw-free graph but not quasi-line graph with n vertices. In time O(n3)
we may either recognize that ®(G) ≤ 3, or build, for each irregular vertex, a 5-wheel W (a) centered in a.

Proof. We know from Lemma 3.6 that in time O(n3) we may find, for each irregular vertex v, an odd
k-anti-wheel W (a) centered in v, k ≥ 5. If there exists a vertex a such that W (a) is a long odd anti-wheel,
then ®(G) ≤ 3 by Lemma B.2.
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The core of the proof is the following fundamental lemma, that investigates the structure of a claw-free
graph with a 5−wheel.

Lemma B.5. Let G(V,E) be a connected and claw-free graph and a ∈ V the center of a 5-wheel W of G.
Then

(i) either G has no simplicial vertex and ®(G) ≤ 3;

(ii) or there exists an hyper-line strip (H,A) such that a ∈ V (H), no vertex of H is simplicial and
®(H) ≤ 3.

Moreover, if we are given the set S(G), we can decide whether G satisfies (i) or find the hyper-line strip
(H,A) from point (ii) in time O(n2).

Proof. We postpone the complexity issues to the end of the proof, and start by showing that each graph
G that fulfills the hypothesis, satisfies conditions (i) or (ii) of the statement. In order to do that, we have
to gather some more information on the structure of G. In the following, we denote the 5-wheel centered
in a by W = (a;u1, u2, u3, u4, u5). Also, for i ∈ [5], we denote by Si the set of vertices in N2(a) whose
adjacent vertices in W are exactly ui, ui+1 (where we identify u6 with u1) and such that they either have

a neighbor in N3(a), or they are simplicial. We also let Ñ2(a) be the set of vertices in N2(a) ∖
∪

i=1..5 Si.
We now investigate some properties of the graph G in the first three neighborhoods of the irregular

vertex a.

Claim 15. Let v be a vertex of N2(a). The following statements hold:

(i) The vertices of {u1, u2, u3, u4, u5} that are adjacent to v are at least two and they have consecutive
indices.

(ii) If v has a neighbor in N3(a) or is simplicial, then v has exactly two neighbors in {u1, u2, u3, u4,
u5}, and they have consecutive indices.

Proof. We first prove that v has at least one neighbor in {u1, u2, u3, u4, u5}. By contradiction, suppose
there exists v ∈ N2(a) that is anticomplete to {u1, u2, u3, u4, u5}. Since v ∈ N2(a), there exists u ∕∈ W
such that au ∈ E and uv ∈ E. Such a u must be adjacent to at least three consecutive vertices in
{u1, u2, u3, u4, u5}, otherwise there would exist a claw centered in a and picking u and two non-adjacent
vertices. Thus w.l.o.g. let uu1 ∈ E, uu2 ∈ E, uu3 ∈ E. But then there is a claw: (u;u1, v, u3).

Now observe that if v is adjacent to some vertex in {u1, u2, u3, u4, u5}, say u1, then it is adjacent
to u5 or u2 too, otherwise there would exist a claw: (u1; v, u2, u5). Statement (i) easily follows.

Now suppose that v has a neighbor x ∈ N3(a). Observe that v cannot be adjacent to two non-adjacent
vertices in {u1, u2, u3, u4, u5}, say u1 and u3, otherwise there would exist a claw: (v;x, u1, u3). It follows
that v has exactly two neighbors in {u1, u2, u3, u4, u5}, and they have consecutive indices. Similarly if v
is simplicial it cannot be adjacent to two non-adjacent vertices in {u1, u2, u3, u4, u5} and thus it follows
that v has exactly two neighbors in {u1, u2, u3, u4, u5}, and they have consecutive indices

From Claim 15, it follows that the only vertices from N2(a) with an adjacent in N3(a) are those from∪
i=1..5 Si.

Claim 16. If v is a simplicial vertex in a claw-free graph G, and G has an induced 5−wheel W with
center a, then v /∈ {a} ∪N(a) ∪ Ñ2(a).

Proof. First observe that all vertices of a 5−wheel are non-simplicial. Now let u ∈ N(a) ∖ W . In
order to prevent claws, u is adjacent to two non-consecutive vertices in the 5−wheel, and thus it is not
simplicial. Last, take a simplicial vertex v ∈ N2(a); since it has to be adjacent to at least two vertices
from u1, . . . , u5 by Claim 15, in order to be simplicial it must be adjacent to exactly two consecutive
vertices from u1, . . . , u5, say u1, u2. Then, by definition, v ∈ S1, which implies v /∈ Ñ2(a).

Claim 17. If
∪

i=1..5 Si = ∅, we are in case (i) of the statement.

Proof. In this case, V = {a} ∪N(a)∪ Ñ2(a). By Claim 16, G has no simplicial vertices; By Lemma B.3,
G has stability number at most 3.
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Thus, in the following, we can suppose that
∪

i=1,...,5 Si ∕= ∅.

Claim 18. For i = 1, 2, . . . , 5, the set Si ∪ Si+1 is a clique.

Proof. Suppose the contrary, that is, there exist x, y ∈ Si∪Si+1 that are not adjacent. Then, there would
be the claw: (ui+1; a, x, y).

Claim 19. For i = 1, . . . , 5, the set Si ∪ (N(Si) ∩ (N(a) ∪ Ñ2(a))) is a clique.

Proof. W.l.o.g. we prove this claim for S1 (we can assume S1 ∕= ∅ otherwise it is trivial). For sake of

shortness, let Q = N(S1) ∩ (N(a) ∪ Ñ2(a)). We know from the above claim that S1 is a clique. We now

show that every vertex in S1 is complete to Q. Suppose the contrary: then there exist x ∈ N(a)∪ Ñ2(a),
x ∕= u1, u2, and y, z ∈ S1 such that xy ∈ E and xz ∕∈ E. As y is non-simplicial (z, x ∈ n(y) and zx ∕∈ E),
it has a neighbor in N3(a), say w. Observe that wx,wu1, wu2 ∕∈ E, therefore x must be adjacent to u1

and u2: else, say xu1 ∕∈ E, there would be the claw (y;x, u1, w). Moreover, in order to avoid the claws
(u1;u5, x, z) and (u2;u3, x, z), it follows that u5x and u3x ∈ E. But then (x;u3, u5, y) is a claw.

Finally we show that Q is a clique. Suppose the contrary. There exists v, x ∈ Q that are not adjacent.
We have just shown that S1 is complete to Q, thus let y ∈ S1, and we have that xy and vy ∈ E. As y is
non-simplicial, there exists a vertex w of N3(a) that is adjacent to y, then there is the claw (y;x, v, w).

Claim 20. Let s ∈ Si for some i ∈ {1, .., 5}. N3(a) ∩N(s) is a clique.

Proof. Suppose there exists x, y ∈ N3(a) ∩N(s) with xy ∕∈ E. Let z ∈ N(s) ∩N(a), then (s;x, y, z) is a
claw.

Claim 21. Let s ∈ Si and t ∈ Sj for some i ∕= j ∈ {1, .., 5}. If st ∈ E, then N3(a)∩N(s) = N3(a)∩N(t).

Proof. Suppose that there exists x ∈ N3(a) ∩N(s) and xt ∕∈ E. Since i ∕= j, there exists y ∈ {u1, ..., u5}
such that y ∈ N(s) ∖N(t). But then (s;x, y, t) is a claw.

Claim 22. Let S be the union of at least two non-empty subsets Si. If S is a clique, then S ∪ (N3(a) ∩
N(S)) is a clique.

Proof. Suppose that Si ∪ Sj ⊆ S, i ∕= j. For all s ∈ Si, t ∈ Sj , i ∕= j, N3(a) ∩N(s) = N3(a) ∩N(t) by
Claim 21. If we iterate this argument, we can conclude that each vertex s ∈ S has the same neighbors in
N3(a). Finally, by Claim 20, N3(a) ∩N(s) is a clique and therefore S ∪ (N3(a) ∩N(S)) is a clique.

We now switch back to the statement we want to prove. By hypothesis and because of the properties
of sets Si shown above, we are in exactly one of the following cases.

1. There is a single set S1, . . . , S5 that is non-empty.

2. The set
∪

i=1..5 Si is not a clique and the sets S1, . . . , S5 that are non-empty are two.

3. The set
∪

i=1..5 Si is not a clique and the sets S1, . . . , S5 that are non-empty are three and non-
consecutive.

4. The sets
∪

i=1..5 Si is a clique and the sets S1, . . . , S5 that are non-empty are at least two.

5. The sets
∪

i=1..5 Si is not a clique, and the sets Si that are non-empty are consecutive, at least
three.

We are now going to show that in cases 1−4, we satisfy condition (ii) of the statement, while in case
5 we satisfy condition (i) of the statement. More precisely, we show that in cases 1−4 there exists a strip
(H,A) with disjoint extremities such that H is an induced subgraph of G and the following properties
hold:

(j) C(H,A) is anticomplete to V ∖ V (H);

(jj) For A ∈ A, A ∪K(A) is an articulation clique of G;
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(jjj) a ∈ V (H) and ®(H) ≤ 3;

(jv) S(G) ∩ V (H) = ∅;

and that for case 5, ®(G) ≤ 3 and S(G) = ∅.
Let us consider case 1. Assume w.l.o.g. that S1 ∕= ∅. In this case, we set H = G[{a}∪N(a)∪ Ñ2(a)],

A1 = N(S1) ∩ (N(a) ∪ Ñ2(a)). We then consider the strip (H, {A1}). Then, statement (j) holds by
construction, (jjj) holds by construction and by Lemma B.3, (jv) holds by Claim 16. We are left with
showing (jj). Note first that K(A1) = S1. First observe that A1∪K(A1) is a clique, because of Claim 19,
and it is maximal by construction. If A1 ∪K(A1) contains a simplicial vertex, then it is an articulation
clique by Lemma 16, thus suppose it has none. Then each vertex of S1 has an adjacent in N3(a), which
is anticomplete to A1 by construction, thus condition (1) from Lemma 3.5 holds for those vertices. Now
fix v ∈ A1; as v is not simplicial, it has a neighbor w not in A1, which is by construction anticomplete to
S1. Condition (1) from Lemma 3.5 also holds for those vertices, and this concludes the proof.

Let us consider case 2. Assume w.l.o.g. that S1, S3 ∕= ∅, and let s1 ∈ S1, s3 ∈ S3 be a pair of non-
adjacent vertices. Observe that N(a)∩N(S1)∩N(S3) = ∅, since any vertex from this set, say v, would be

the center of the claw (v; s1, s3, a). Now let Q = N(S1)∩N(S3)∩Ñ2(a). SetH = G[{a}∪N(a)∪Ñ2(a)∖Q],

A1 = (N(S1)∩(N(a)∪Ñ2(a)))∖Q, A2 = (N(S3)∩(N(a)∪Ñ2(a)))∖Q. As N(a)∩N(S1)∩N(S3) = ∅, then
A1, A2 are disjoint. We consider the strip (H, {A1, A2}). Then, statement (jjj) holds by Lemma B.3,
(jv) holds by Claim 16. If (j) does not hold, then there must be vertex v in Q that is adjacent to some
vertex w ∈ C(H,A), since S1 and S3 are, by construction, anticomplete to C(H,A). Thus (v;w, s1, s3)
is a claw, a contradiction. We are left to show (jj). Note that K(A1) = S1 ∪ Q and K(A2) = S3 ∪ Q.
First observe that A1 ∪K(A1) and A2 ∪K(A2) are cliques, because of Claim 19, and they are maximal
by construction. We are left to show that they are articulation cliques. We show the statement for
A1 ∪ K(A1), since the same argument holds for A2 ∪ K(A2). The proof builds on Lemma 3.5, i.e. we
show that each vertex in A1 ∪K(A1) fits either case (1) or case (2) of the lemma.

We first need to investigate N(Q). By construction, N(Q)∩N3(a) = ∅. Note first that Q is complete

to (N(a) ∪ Ñ2(a)) ∩ N(S1), since those vertices are in the clique A1, and similarly Q is complete to

(N(a)∪ Ñ2(a))∩N(S3). Now we show that N(Q)∖ (N(S1)∪N(S3)) = ∅: suppose the contrary, i.e. there
exists w ∈ N(Q) ∖ (N(S1) ∪ N(S3)), then (q;w, s1, s3) is a claw, for a vertex q ∈ Q such that qw ∈ E.

Thus, N [Q] = ((N(a) ∪ Ñ2(a)) ∩N(S1)) ∪ ((N(a) ∪ Ñ2(a)) ∩N(S1)) = A1 ∪K(A1) ∪A2 ∪K(A2). This
implies that all vertices of Q are regular and copies of one another.

Now fix v ∈ Q, and set X1 = S1, X2 = A1, Y1 = S3, Y2 = A2: X1 is non-complete to Y1 by
hypothesis; since N(a)∩N(S1)∩N(S3) is empty, and Q∩A1, Q∩A2 = ∅, X2 is anticomplete to Y1 and
Y1 is anticomplete to X2. As X1 ∪X2 = A1 ∪K(A1) ∖ Q and Y1 ∪ Y2 = N(Q) ∖ (A1 ∪K(A1)), and we
already argued that vertices from Q are copies, v satisfies case (2) of Lemma 3.5. Next, pick v ∈ S1.
If v is simplicial, we are fine. So suppose not. Then note that N(v) ∖ (A1 ∪ K(A1)) ⊆ (S3 ∪ N3(a)),
which implies that N(v) ∖ (A1 ∪ K(A1)) is anticomplete to u1; thus, v satisfies case (1) of Lemma 3.5.

Now pick v ∈ (A1 ∪K(A1)) ∖ (Q ∪ S1) ⊆ N(a) ∪ Ñ2(a). v is not simplicial by Claim 16. Note that thus
N(v) ∖ (A1 ∪K(A1)) is non-empty and it is anticomplete to S1 by construction. Thus, v satisfies case (1)
of Lemma 3.5. Thus we conclude that A1 ∪K(A1) is an articulation clique.

Let us consider case 3. Assume w.l.o.g. that S1, S2, S4 ∕= ∅. Also, recall that S4 ∪ (N(S4) ∩ (N(a) ∪
Ñ2(a))) is a clique by Claim 19. As we show in the following, each vertex in S4 is either complete or
anticomplete to S1∪S2. Indeed, suppose that s4 ∈ S4 has a non-adjacent in S1∪S2, say w.l.o.g. s1 ∈ S1.
It follows that s4 is anti-complete to S2, otherwise there exists s2 ∈ S2 ∩ N(s4) and (s2; s4, s1, u3) is

a claw. Applying a similar reasoning, s4 is anti-complete to S1. Thus we can partition S4 in (S̄4,
¯̄S4),

where the vertices in S̄4 are those complete to S1 ∪ S2. Note that S̄4 may be empty, while ¯̄S4 is not by
hypothesis; moreover, they are both cliques by Claim 18. Claims 20 and 21 imply that T ∪(N(T )∩N3(a))
is a clique, for T = S1 ∪ S2 ∪ S̄4. Finally, the vertices in S1 ∪ S2 are not simplicial, and therefore have
neighbors in N3(a). Let Q = N(T ) ∩N3(a), and note that Q is a non-empty clique.

Now set H = G[{a} ∪ N(a) ∪ Ñ2(a) ∪ S1 ∪ S2], A1 = S1 ∪ S2, A2 = N(S4) ∩ (N(a) ∪ Ñ2(a))) and
we consider the strip (H, {A1, A2}). First, observe that A1, A2 are vertex disjoint. Then, statement
(j) holds by construction, statement (jjj) holds by Lemma B.3, (jv) holds by Claim 16 and because no
vertex in S1 ∪ S2 is simplicial. We are left to show (jj). Note that K(A1) = S̄4 ∪ Q and K(A2) = S4.
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Now observe that A1 ∪K(A1) = T ∪ (N(T ) ∩N3(a)) and thus it is a clique. We can also conclude that
A2 ∪K(A2) is a clique using Claim 19. By construction, they are both maximal.

We now show that A1 ∪ K(A1) is an articulation clique. Again, we use Lemma 3.5. Note that we
can suppose that no vertex in A1 ∪ K(A1) is simplicial, otherwise the statement immediately follows
from Lemma 3.4: since A1 ∪ K(A1) is a maximal clique, this implies that each vertex in A1 ∪ K(A1)
has a neighbor outside A1 ∪ K(A1). Now pick a vertex v ∈ S1, and note that N(v) ∖ (A1 ∪ K(A1)) is

contained in N(a)∪ Ñ2(a), and thus it is anticomplete to N3(a)∩N(S1) ⊆ A1∪K(A1), which we already
shown is non-empty. Thus, v satisfies case (1) of Lemma 3.5. Similarly for v ∈ S2. Now take a vertex

v in Q; as it is not simplicial, ∅ ∕= N(v) ∖ (A1 ∪K(A1)) ⊆ N4(a) ∪ (N3(a) ∖Q) ∪ ¯̄S4, which implies that
N(v) ∖ (A1 ∪K(A1)) is anti-complete to S1 ∪ S2 and again v satisfies case (1). Last, take a vertex v in

S̄4. As N(S̄4) ⊆ Q∪ S1 ∪ S2 ∪ ¯̄S4 ∪A2, v is regular. First observe that all vertices of S̄4 are copies, since
S̄4 is a clique and N [S̄4] = A1 ∪K(A1) ∪ A2 ∪K(A2). Then fix v ∈ S̄4: case (2) of Lemma 3.5 applies

with X1 = A1, X2 = Q, Y1 = N(S4) ∩ (N(a) ∪ Ñ2(a)), Y2 = ¯̄S4. Thus we conclude that A1 ∪K(A1) is
an articulation clique.

We now show that A2 ∪K(A2) is an articulation clique: again, we use Lemma 3.5 for the proof. We
can again suppose that each vertex of A2∪K(A2) has a neighbor outside A2∪K(A2). For a vertex in S̄4,

we set X1 = A2, X2 = ¯̄S4, Y1 = A1, Y2 = Q, and conclude that case (2) applies. Now take a vertex v in

A2: each neighbor of v that is not in A2∪K(A2) is anticomplete to ¯̄S4, so case (1) applies. Take a vertex

v in ¯̄S4: each neighbor of v that is not in A2 ∪K(A2) belongs to N3(a), and therefore it is anticomplete
to u4 ∈ A2. This shows that case (1) applies also in this case, and consequently that A2 ∪K(A2) is an
articulation clique.

Let us consider case 4. Note that, in this case, each non-empty Si is made of non-simplicial vertices,
and therefore each vertex in some Si has a neighbor in N3(a). By Claim 22, it also follows that N3(a) is a
clique and it is complete to

∪
i=1..5 Si. In this case, we set H = G[{a}∪N(a)∪N2(a)], A1 =

∪
i=1..5 Si and

we consider the strip (H, {A1}). Statement (j) holds by construction, (jjj) by Lemma B.3, (jv) by Claim
16 and because each non-empty Si is made of non-simplicial vertices. We are left with statement (jj): let
K(A1) = N3(a). We already argued that A1∪K(A1) is a clique, it is maximal by construction, and again
we can suppose it has no simplicial vertex. In particular, each vertex in K(A1) has a neighbor in N4(a),

which is by definition anticomplete to A1. As each vertex in A1 has a neighbor in N(a) ∪ Ñ2(a) that is
anticomplete to K(A1), we apply case (i) of Lemma 3.5 to conclude that A1 ∪K(A1) is an articulation
clique.

Let us now consider case 5. As we already mentioned, we are going to show that ®(G) ≤ 3 and
S(G) = ∅. Assume w.l.o.g. that S1, S2, . . . , Sk, k ≥ 3, are non-empty, with either k = 5 or Sk+1 = ∅. By
iteratively applying Claims 18 and 22, it follows that N3(a) is complete to S1 ∪ S2 ∪ . . . ∪ Sk, and that
N3(a) is a clique. Now observe that N4(a) = ∅. In fact, otherwise let z be a vertex of N3(a) that has
some adjacent w ∈ N4(a). By hypothesis, there exist x, y ∈ S1 ∪S2 ∪ . . .∪Sk that are not adjacent, then
there would be the claw (z;w, x, y).

Let s1, s2, s3 be vertices in respectively S1, S2, S3. We now show that Ñ2(a) = ∅. Suppose the

contrary and let z ∈ Ñ2(a). Observe that {u1, u2, u3, u4} ⊆ N(S1)∪N(S2)∪N(S3). On the other hand,
{u1, u2, u3, u4} ∩N(z) is non-empty from part (i) of Claim 15. It is a routine to check that then {u1, u2,
u3, u4, s1, s2, s3} ⊆ N(z). In fact, suppose e.g. that u1z ∈ E: then s1z ∈ E in order to avoid the claw
(u1; a, s1, z) and u2z ∈ E in order to avoid the claw (s1;u2, z, w), where w ∈ N3(a) is adjacent to s1. If
we iterate this argument, we can show that indeed {u1, u2, u3, u4, s1, s2, s3} ⊆ N(z). But this leads to a
contradiction, since (z;u1, u4, s2) is a claw. It follows that N2(a) = S1∪S2∪ . . .∪Sk and therefore N2(a)
is complete to N3(a). We know from Lemma B.3 that ®(G[{a} ∪N(a) ∪N2(a)]) ≤ 3. If ®(G) ≥ 4, then
there must exist a stable set S of size 4 picking exactly one vertex in N3(a) (since N3(a) is a clique and
we showed N4(a) = ∅). It follows that ∣S ∩ ({a} ∪N(a))∣ = 3, which is a contradiction.

We are left to show that no vertex in G is simplicial. Recall that in this case V = {a} ∪ N(a) ∪
(
∪

i=1..5 Si)∪N3(a). No vertex of {a}∪N(a) is simplicial by Claim 16. No vertex of
∪

i=1..5 Si is simplicial,
since we already argued that each vertex of

∪
i=1..5 Si has a neighbor in N3(a). Last, observe that no

vertex in N3(a) is simplicial, since N3(a) is complete to
∪

i=1..5 Si, that is not a clique by hypothesis.

We now move to complexity issues. We can compute the sets Nj(a) for j = 1, 2, 3 in time O(m).
Recall that, by definition, for i ∈ [5], Si is the subset of N2(a) formed by those vertices a) whose neighbors
in W are exactly ui and ui+1, and such that b1) they have a neighbor in N3(a), or b2) they are simplicial.
Given a vertex of N2(a), we can check conditions a), b1), b2) in time O(n) (recall that we are given the
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set S(G)). Thus O(n2) is sufficient to build sets S1, . . . , S5 and Ñ2(a), and to check for each pair i, j, if
Si∪Sj is a clique. If

∪
i=1..5 Si = ∅, from Claim 17 we are in case (i), thus we can suppose

∪
i=1..5 Si ∕= ∅.

Then we can distinguish between cases 1− 5 and construct the strip (H,A) with the required properties
in time O(n2).

Proof of Theorem 5.2. Let G be a claw-free but not quasi-line graph G. Using Lemma B.4 and the
trivial fact that the set S(G) can be computed in O(n3)-time, it suffices to show that, given

∙ for each irregular vertex of G, a 5-wheel W (a) centered in a;

∙ for some irregular vertex a, an hyper-line strip (H,A) such that a ∈ V (H), no vertex of H is
simplicial and ®(H) ≤ 3;

∙ the set S(G) of simplicial vertices of G;

we can build in time O(n3) a family ℋ of vertex disjoint hyper-line strips of G such that:

∙ each strip in ℋ contains a 5-wheel of G and has stability number at most 3;

∙ G∣ℋ is quasi-line and non-empty.

So, let G1 be the graph G∣(H,A). Note that G1 is not necessarily connected. Let C be a component
of G∣(H,A). By (i) of Lemma B.1 C is claw-free; by (ii)− (iii) of the same lemma either C is quasi-line,
or we have, for each irregular vertex a of C, a 5-wheel W (a) centered in a. Suppose that C is not
quasi-line, and pick an irregular vertex a. Observe that, by construction, C has some vertex from the
extremities of (H,A), and therefore a simplicial vertex. Hence, it follows from Lemma B.5 that there
exists an hyper-line strip (H1,A1) such that a ∈ V (H1), no vertex of H1 is simplicial and ®(H1) ≤ 3.
Note in particular, that (H,A) and (H1,A1) are vertex disjoint: this is because the vertices of the core
of (H,A) do not belong to G∣(H,A), while the vertices of its extremities are simplicial.

Then we proceed by induction and define a series G1, . . . , Gt of graphs such that, for i ∈ [t],
Gi = Gi−1∣(Hi,Ai) (we let G0 := G), where, for i ∈ [t]:

∙ (Hi,Ai) is an hyper-line strip of Gi−1, that is vertex disjoint from (H1,A1), . . . , (Hi−1,Ai−1);

∙ (Hi,Ai) contains a 5-wheel of G, has stability number at most 3 and no simplicial vertices;

∙ Gt is quasi-line.

Note, in particular, that the graph Gt is non-empty, since the removal of each strip produces some
simplicial vertex, none of which belongs to any hyper-line strip that we remove, so they belong to Gt. Also
recall that, if let ℋ = {(H1,A1), . . . , (Ht,At)}, then by Observation 2, Gt ≡ G∣ℋ. In order to conclude
the proof, we must show that the family {(Hi,Ai)}ti=1 can be produced in time O(n3). Trivially, t ≤ n,
since the strips are vertex disjoint. Also, using statement (iv) of Lemma B.1, for each graph i = 1, . . . , t,
the set S(Gi) can be easily built from the set S(Gi−1). We already observed that, by part (iii) of Lemma
B.1, we are given a 5−wheel for each irregular vertex in Gi. Thus, Lemma B.5 guarantees that we can
build the family ℋ in O(n3)-time.


