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Abstract

In a typical range emptiness searching (resp., reporting) problem, we are given a set P of
n points in RY, and wish to preprocess it into a data structure that supports efficient range
emptiness (resp., reporting) queries, in which we specify a range o, which, in general, is a semi-
algebraic set in R? of constant description complexity, and wish to determine whether PNo = (),
or to report all the points in P N o. Range emptiness searching and reporting arise in many
applications, and have been treated by Matousek [33] in the special case where the ranges are
halfspaces bounded by hyperplanes. As shown in [33], the two problems are closely related,
and have solutions (for the case of halfspaces) with similar performance bounds. In this paper
we extend the analysis to general semi-algebraic ranges, and show how to adapt Matousek’s
technique, without the need to linearize the ranges into a higher-dimensional space. This yields
more efficient solutions to several useful problems, and we demonstrate the new technique in
four applications, with the following results:

(i) An algorithm for ray shooting amid balls in R3, which uses O(n) storage and O*(n) pre-
processingﬂ and answers a query in O*(n?/?) time, improving the previous bound of O* (n3/4).

(ii) An algorithm that preprocesses, in O*(n) time, a set P of n points in R? into a data
structure with O(n) storage, so that, for any query line ¢ (or, for that matter, any simply-shaped
convex set), the point of P farthest from ¢ can be computed in O*(n'/?) time. This in turn
yields an algorithm that computes the largest-area triangle spanned by P in time O*(n26/11),
as well as nontrivial algorithms for computing the largest-perimeter or largest-height triangle
spanned by P.

(iii) An algorithm that preprocesses, in O*(n) time, a set P of n points in R? into a data
structure with O(n) storage, so that, for any query a-fat triangle A, we can determine, in O*(1)
time, whether A N P is empty. Alternatively, we can report in O*(1) + O(k) time, the points of
AN P, where k= |ANP|.

(iv) An algorithm that preprocesses, in O*(n) time, a set P of n points in R? into a data
structure with O(n) storage, so that, given any query semidisk ¢, or a circular cap larger than
a semidisk, we can determine, in O*(1) time, whether ¢ N P is empty, or report the k points in
c¢NPin O*(1) + O(k) time.

*This work was supported by Grant 155/05 from the Israel Science Fund, by NSF Grants CCF-05-14079 and CCF-
08-30272, by a grant from the U.S.-Israel Binational Science Foundation, and by the Hermann Minkowski-MINERVA
Center for Geometry at Tel Aviv University. This work is part of the second author’s Ph.D. dissertation, prepared
under the supervision of the first author at Tel Aviv University.

fSchool of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel and Courant Institute of Mathematical
Sciences, New York University, New York, NY 10012, USA. michas@post.tau.ac.il

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. hayim@post.tau.ac.il

!We use the notation O*(n") to mean an upper bound of the form C(g)n”*, which holds for any € > 0, where
C'(e) is a constant that depends on €.


http://arxiv.org/abs/0908.4061v2

Adapting the recent techniques of [12], [I3] [14], we can turn our solutions into efficient al-
gorithms for approximate range counting (with small relative error) for the cases mentioned
above.

Our technique is closely related to the notions of nearest- or farthest-neighbor generalized
Voronoi diagrams, and of the union or intersection of geometric objects, where sharper bounds
on the combinatorial complexity of these structures yield faster range emptiness searching or
reporting algorithms.



1 Introduction

The main technical contribution of this paper is an extension of Matousek’s range emptiness and
reporting data structures [33] (see also [7] for a dynamic version of the problem) to the case of
general semi-algebraic ranges.

Ray shooting amid balls. A motivating application of this study is ray shooting amid balls in
R3, where we want to construct a data structure of linear size with near-linear preprocessing, which
supports ray shooting queries in sublinear time. Typically, in problems of this sort, the bound on
the query time is some fractional power of n, the number of objects, and the goal is to make the
exponent as small as possible. For example, ray shooting amid a collection of n arbitrary triangles
can be performed in O*(n3/4) time (with linear storage) [6]. Better solutions are known for various
special cases. For example, the authors have shown [4I] that the query time can be improved to
O*(nz/ 3), when the triangles are all fat, or are all stabbed by a common line.

At the other end of the spectrum, one is interested in ray shooting algorithms and data structures
where a ray shooting query can be performed in logarithmic or polylogarithmic time (or even O(n¢)
time, for any € > 0; this is O*(1) in our shorthand notation). In this case, the goal is to reduce
the storage (and preprocessing) requirements as much as possible. For example, for arbitrary
triangles (and even for the special case of fat triangles), the best known bound for the storage
requirement (with logarithmic query time) is O*(n?) [IL [6]. For balls, Mohaban and Sharir [37],
gave an algorithm with O*(n3) storage and O*(1) query time. However, when only linear storage
is used, the previously best known query time (for balls) is O*(n%/*) (as in the case of general
triangles). In this paper we show, as an application of our general range emptiness machinery, that
this can be improved to O*(n?/3) time.

When answering a ray-shooting query for a set S of input objects, one generally reduces the
problem to that of answering segment emptiness queries, following the parametric searching scheme
proposed by Agarwal and Matousek [5] (see also Megiddo [36] for the original underlying technique).

A standard way of performing the latter kind of queries is to switch to a dual parametric space,
where each object in the input set is represented by a point. A segment e in R? is mapped to a surface
oe, which is the locus of all the points representing the objects that e touches (without penetrating
into their interior). Usually, o, partitions the dual space into two portions, one, o, consisting
of points representing objects whose interior is intersected by e, and the other, o, consisting of
points representing objects that e avoids. The segment-emptiness problem thus transforms into a

range-emptiness query: Does o contain any point representing an input object?

Range reporting and emptiness searching. Range-emptiness queries of this kind have been
studied by Matousek [33] (see also Agarwal and Matousek [7]), but only for the case where the
ranges are halfspaces bounded by hyperplanes. For this case, MatousSek has established a so-called
shallow-cutting lemma, that shows the existence of a (1/ s)—cuttinég that covers the complement of
the union of any m given halfspace ranges, whose size is significantly smaller than the size of a
(1/s)-cutting that covers the entire space. This lemma provides the basic tool for partitioning a
point set P, in the style of [34], so that shallow hyperplanes (those containing at most n/r points of
P below them, say, for some given parameter r) cross only a small number of cells of the partition

2This is a partition of space (or a portion thereof) into a small number of simply-shaped cells, each of which is
crossed by at most n/s of the n given surfaces (hyperplanes in this case). See below for more details.



(see below for more details). This in turn yields a data structure, known as a shallow partition
tree, that stores a recursive partitioning of P, which enables us to answer more efficiently halfspace
range reporting queries for shallow hyperplanes, and thus also halfspace range emptiness queries.
Using this approach, the query time (for emptiness) improves from the general halfspace range
searching query cost of O*(n'~1/4) to O*(n'~1/19/2]). Reporting takes O*(n'~1/19/2 1 k), where k
is the output size.

Consequently, one way of applying this machinery for more general semi-algebraic ranges is to
“lift” the set of points and the ranges into a higher-dimensional space by means of an appropri-
ate linearization, as in [6], and then apply the above machinery. (For this, one needs to assume
that the given ranges have constant description complexity, meaning that each range is a Boolean
combination of a constant number of polynomial equalities and inequalities of constant maximum
degree. However, if the space in which the ranges are linearized has high dimension, the resulting
range reporting or emptiness queries become significantly less efficient. Moreover, in many ap-
plications, the ranges are Boolean combinations of polynomial (equalities and) inequalities, which
creates additional difficulties in linearizing the ranges, resulting in even worse running time.

An alternative technique is to give up linearization, and instead work in the original space. As
follows from the machinery of [33] (and further elaborated later in this paper), this requires, as a
major tool, the (existence and) construction of a decomposition of the complement of the union
of m given ranges (in the case of segment emptiness, these are the ranges a;" , for an appropriate
collection of segments ¢), into a small number of “elementary cells” (in the terminology of [6]—
see also below). Here we face, especially in higher dimensions, a scarcity of sharp bounds on the
complexity of the union itself, to begin with, and then on the complexity of a decomposition of
its complement. Often, the best one can do is to decompose the entire arrangement of the given
ranges, which results in too many elementary cells, and consequently in an algorithm with poor
performance.

To recap, in the key technical step in answering general semi-algebraic range reporting or empti-
ness queries, the best current approaches are either to construct a cutting of the entire arrangement
of the range-bounding surfaces in the original space, or to construct a shallow cutting in another
higher-dimensional space into which the ranges can be linearized. For many natural problems
(including the segment-emptiness problem), both approaches yield relatively poor performance.

As we will shortly note, in handling general semi-algebraic ranges, we face another major
technical issue, having to do with the construction of efficient test sets of ranges (in the terminology
of [6], elaborated below). Addressing this issue is a major component of the analysis in this paper,
and is discussed in detail later on.

Our results. We propose a variant of the shallow-cutting machinery of [33] for the case of semi-
algebraic ranges, which avoids the need for linearization, and works in the original space (which,
for the case of ray shooting amid balls, is a 4-dimensional parametric space in which the balls are
represented as points). While the machinery used by our variant is similar in principle to that in
[33], there are several significant technical difficulties which require more careful treatment.

Matousek’s technique [33], as well as ours, considers a finite set @) of shallow ranges (called a
test set), and builds a data structure which caters only for ranges in ). Matousek shows how to
build, for any given parameter r, a set of halfspaces of size polynomial in r, which represents well all
(n/r)-shallow ranges, in the following sense: For any simplicial partz’tz’owﬁl II with parameter r, let

3Briefly, this is a partition of P into O(r) subsets of roughly equal size, each enclosed by some simplex (in the



k denote the maximal number of cells of IT crossed by a halfspace in Q. Then each (n/r)-shallow
halfspace crosses at most ck cells of II, where ¢ is a constant that depends on the dimension.
Unfortunately (for the present analysis), the linear nature of the ranges is crucially needed for the
proof, which therefore fails for non-linear ranges.

Being a good representative of all shallow ranges, in the above sense, is only one of the require-
ments from a good test set (). The other requirements are that ) be small, so that, in particular,
it can be constructed efficiently, and that the (decomposition of the) complement of the union of
any subset of () have small complexity. All these properties hold for the case of halfspaces bounded
by hyperplanes, studied in [33].

As it turns out, and hinted above, obtaining a “good” test set ) for general semi-algebraic
ranges, with the above properties, is not an easy task. We give a simple general recipe for con-
structing such a set @), but it consists of more complex ranges than those in the original setup. A
major problem with this recipe is that since the members of () have a more complex shape, it be-
comes harder to establish good bounds on the complexity of (the decomposition of) the complement
of the union of any subset of these generalized ranges.

Nevertheless, once a good test set has been shown to exist, and to be efficiently computable,
it leads to a construction of an efficient elementary-cell partition with a small crossing number for
any empty or shallow original range. Using this construction recursively, one obtains a partition
tree, of linear size, so that any shallow original range v visits only a small number of its nodes
(where v visits a node if it crosses the elementary cell enclosing the subset of that node, meaning
that it intersects this cell but does not fully contain it), which in turn leads to an efficient range
reporting or emptiness-testing procedure. This part, of constructing and searching the tree, is
almost identical to its counterparts in the earlier works [0, [33] [34], and we will not elaborate on it
here, focusing only on the technicalities in the construction of a single “shallow” elementary-cell
partition.

Developing all this machinery, and then putting it into action, we obtain efficient data structures
for the following applications, improving previous results or obtaining the first nontrivial solutions.
These instances are:

Ray shooting amid balls in 3-space. Given a set S of n balls in R3, we construct, in O*(n)
time, a data structure of O(n) size, which can determine, for a given query segment e, whether
e is empty (avoids all balls), in O*(n%*?) time. Plugging this data structure into the parametric
searching technique of Agarwal and Matousek [5], we obtain a data structure for answering ray
shooting queries amid the balls of S, which has similar performance bounds.

We represent balls in 3-space as points in R*, where a ball with center (a,b,c) and radius 7 is
mapped to the point (a,b,c,r), and each object K C R? is mapped to the surface o, which is the
locus of all (points representing) balls tangent to K (i.e., balls that touch K, but do not penetrate
into its interior). In this case, the range of an object K is the upper halfspace 0} consisting of
all points lying above o (representing balls that intersect K'). The complement of the union of a
subfamily of these ranges is the region below the lower envelope of the corresponding surfaced] OK.
The minimization diagram of this envelope is the 3-dimensional Euclidean Voronoi diagram of the

corresponding set of objects. Thus we reveal (what we regard as) a somewhat surprising connection

linear case) or some elementary cell (in the general semi-algebraic case); see [6] and Section ] below.
“In our solution, we will use a test set of objects K which are considerably more complex than just lines or
segments, but are nevertheless still of constant description complexity.



between the problem of ray shooting amid balls and the problem of analyzing the complexity of
Euclidean Voronoi diagrams of (simply-shaped) objects in 3-space.

Farthest point from a line (or from any convex set) in R3. Let P be a set of n points
in R3. We wish to preprocess P into a data structure of size O(n), so that, for any query line ¢,
we can efficiently find the point of P farthest from ¢. This is a useful routine for approximating
polygonal paths in three dimensions; see [21].

As in the ray shooting problem, we can reduce such a query to a range emptiness query of
the form: Given a cylinder C, does it contain all the points of P? (That is, is the complement of
the cylinder empty?) We prefer to regard this as an instance of the complementary range fullness
problem, which seeks to determine whether a query range is full (i.e., contains all the input points).

Our machinery can handle this problem. In fact, we can solve the range fullness problem for
any family of convex ranges in 3-space, of constant description complexity. Our solution requires
O(n) storage and near linear preprocessing, and answers a range fullness query in O* (nl/ 2) time,
improving the query time O*(n2/ 3) given by Agarwal and Matousek [6].

We then apply this result to solve the problem of finding the largest-area triangle spanned by
a set of n points in 3-space. The resulting algorithm requires O*(n?%/1) time, which improves a
previous bound of O*(n'3/%) due to Daescu and Serfling [2I]. We also adapt our machinery to
compute efficiently the largest-perimeter triangle and the largest-height triangle spanned by such
a point set.

In both this, and the preceding ray-shooting applications, we use the general, more abstract
recipe for constructing good test sets.

Fat triangle and circular cap range emptiness searching and reporting. Finally, we
consider two planar instances of the range emptiness and reporting problems, in which we are given
a planar set P of n points, and the ranges are either a-fat triangles or sufficiently large circular
caps (say, larger than a semidisk). The general technique of Agarwal and Matousek [6] yields, for
any class of planar ranges with constant description complexity, a data structure with near linear
preprocessing and linear storage, which answers such queries in time O*(n'/?) (for emptiness) or
O*(n*/?)4+0(k) (for reporting). We improve the query time to O*(1) and O*(1)+O(k), respectively,
in both cases.

In these planar applications, we abandon the general recipe, and construct good test sets in
an ad-hoc (and simpler) manner. For a-fat triangles (i.e., triangles with the property that each of
their angles is at least «, which is some fixed positive constant), the test set consists of “canonical”
(a/2)-fat triangles, and the fast query performance is a consequence of the fact that the complement
of the union of m o'-fat triangles is O(mloglogm), for any constant o/ > 0 [35]. It is quite likely
that our machinery can also be applied to other classes of fat objects in the plane, for which near-
linear bounds on the complexity of their union are known [22], 24] 25| 26]. However, constructing
a good test set for each of these classes is not an obvious step. We leave these extensions as open
problems for further research.

For circular caps, the motivation for range emptiness searching comes from the problem of
finding, for a query consisting of a point ¢ and a line ¢, the point of P which lies above ¢ and
is nearest to ¢ (we only consider the case where ¢ lies on or above ¢). Such a procedure was
considered in [20]. Using parametric searching, the latter problem can be reduced to that of testing
for emptiness of a circular cap centered at ¢ and bounded by ¢ (the assumption on the location of



g ensures that this cap is at least a semidisk). Here too we manage to construct a test set which
consists of (possibly slightly smaller) circular caps, and we exploit the fact that the complexity of
the union of m such caps is O*(m), as long as the caps are not too small (relative to their bounding
circles), to obtain the fast performance stated above.

Approximate range counting. Adapting the recent techniques of [12] 13| [I4], we can turn our
solutions into efficient algorithms for approximate range counting (with small relative error) for
the cases mentioned above. That is, for a specified € > 0, we can preprocess the input point set P
into a data structure which can efficiently compute, for any query range -, an approximate count
ty, satisfying (1 —¢)|PN~vy| <ty < (1 +¢)|P N~y|. The performance of the resulting algorithms is
detailed in Section [ As observed in the papers just cited, approximate range counting is closely
related to the range emptiness problem, which in fact is a special case of the former problem. The
algorithm in [I2] performs approximate range counting by a randomized binary search over [P N+,
where the search is guided by repeated calls to an emptiness testing routine on various random
samples of P. This algorithm uses emptiness searching as a black box, so, plugging our solutions for
this latter problem into their algorithm, we obtain efficient approximate range counting algorithms
for the ranges considered in this paper. See Section [1 for details.

Related work. Our study was originally motivated by work by Daescu and others [20], 2I] on
path approximations and related problems. In these applications one needs to compute efficiently
the vertex of a subpath which is farthest from a given segment (connecting the two endpoints of
the subpath). These works used the standard range searching machinery of [6], and motivated us
to look for faster implementations.

The general range emptiness (or reporting) problem was studied by the authors a few years
ago [42]. In this earlier version, we did not manage to handle properly the issue of constructing a
good test set, so the results presented there are somewhat incomplete. The present paper builds
upon the previous one, but provides a thorough analysis of this aspect of the problem, and conse-
quently obtains a complete and efficient solution to the problems listed above, and lays down the
foundation for obtaining efficient solutions to many other similar problems—we believe indeed that
the applications given here only scratch the surface of the wealth of potential future applications
of this sort.

2 Preliminaries and notations

We begin with a brief review of the main concepts and notations used in our analysis.

Range spaces. A range space is a pair (X,I'), where X is a set and I' C 2% is a collection of
subsets of X, called ranges. In our applications, X = R? and I" is a collection of semi-algebraic
sets of some specific type, each having constant description complexity. That is, each set in I is
given as a Boolean combination of a constant number of polynomial equalities and inequalities of
constant maximum degree. To simplify the analysis, we assumd?, as in [6], that all the ranges in
I" are defined by a single Boolean combination, so that each polynomial p in this combination is
(d + t)-variate, and each range v has t degrees of freedom, so that if we substitute the values of

5This assumption is not essential, and is only made to simplify the presentation.



these t parameters into the last ¢ variables of each p, the resulting Boolean combination defines
the range . This allows us to represent the ranges of I' as points in an appropriate t-dimensional
parametric space.

Under these special assumptions, the range space (X,I") has finite VC-dimension, a property
formally defined in [27]. Informally, it ensures that, for any finite subset P of X, the number of
distinct ranges of P is O(|P|?), where d is the VC-dimension.

As a matter of fact, we will consider range spaces of the form (P,I'p), where P C R? is a finite
point set, and each range in I'p is the intersection of P with a range in I'.

Cuttings. Given a finite collection I' of n semi-algebraic ranges in R%, as above, and a parameter
r < n,a (1/r)-cutting for T is a partition = of R? (or of some portion of R?) into a finite number of
relatively open cells of dimensions 0,1,...,d, so that each cell is crossed by at most n/r ranges of
I, where a range v € T is said to cross a cell o if yNo # (), but v does not fully contain o. We will
also need to consider weighted (1/r)-cuttings, where each range v € I" has a positive weight w(7),
and each cell of Z is crossed by ranges whose total weight is at most W/r, where W = nyer w(7y)
is the overall weight of all the ranges in I.

Shallow ranges. A range v € I'is called k-shallow with respect to a set P of points in R?, if
lyNP| <k.

Elementary cells. Define, as in [6], an elementary cell in R? to be a connected relatively open
semi-algebraic set of some dimension k < d, which is homeomorphic to a ball and has constant
description complexity. As above, we assume, for simplicity, that the elementary cells are defined
by a single Boolean combination involving ¢ free variables, and each cell is determined by fixing the
values of these ¢ parameters.

Elementary cell partition. Let P be a set of n points in R%. An elementary cell partition of
P is a collection IT = {(P1,1),...,(Pn,Sm)}, for some integer m, such that (i) {Py,..., Py} is a
partition of P (into pairwise disjoint subsets), and (ii) each s; is an elementary cell that contains
the respective subset P;. In general, the cells s; need not be disjoint. Usually, one also specifies a
parameter r < n, and requires that n/r < |P;| < 2n/r for each i, so m = O(r).

The function ((r). In Lemma B and Theorem B.2] we use a function ((r) that bounds the
number of elementary cells in a decomposition of the complement of the union of any r ranges of
I'. We assume that ((r) is “well behaved”, in the sense that for each ¢ > 0 there exists ¢ > 0 such
that ((cr) < d((r) for every r. We also assume that ((r) = Q(r).

(v, a)-samples and shallow e-nets. We recall the result of Li et al. [32], and adapt it, similar
to the recent observations in [28], to obtain a useful extension of the notion of e-nets.

Let (X,R) be a range space of finite VC-dimension 4, and let 0 < a,v < 1 be two given
parameters. Consider the distance function
| — s

dy(?", S) = m, for r,Ss 2 0.



A subset N C X is called a (v, a)-sample if for each R € R we have

g <|XnR| |NmR|><a
T\

Theorem 2.1 (Li et al. [32]) A random sample N of

1 1 1
@) <T <(5log— + log —>>
o’y v q
elements of X is a (v, «)-sample with probability at least 1 — q.

Har-Peled and Sharir [2§] show that, by appropriately choosing « and v, various standard
constructs, such as e-nets and e-approximations, are special cases of (v, a)-samples. Here we follow
a similar approach, and show the existence of small-size shallow e-nets, a new notation introduced
in this paper.

Let us first define this notion. Let (X,R) be a range space of finite VC-dimension §, and let
0 < e <1 be a given parameter. A subset N C X is a shallow e-net if it satisfies the following two
properties, for some absolute constant c.

(i) For each R € R and for any parameter ¢ > 0, if [N N R| < tlog 1 then |X N R| < c(t + 1)e| X]|.
(i) For each R € R and for any parameter ¢ > 0, if | X N R| < te|X| then [N N R| < c(t + 1) log 1.

Note the difference between shallow and standard e-nets: Property (i) (with ¢ = 0) implies that
a shallow e-net is also a standard e-net (possibly with a recalibration of €). Property (ii) has no
parallel in the case of standard e-nets — there is no guarantee how a standard net interacts with
small ranges.

Theorem 2.2 A random sample N of
1 1 1
0] <— <5log— +log—>>
€ € q
elements of X is a shallow e-net with probability at least 1 — q.
Proof: Take o = 1/2, say, and calibrate the constants in the size of N to guarantee, with probability

1 — g, that N is an (e,1/2)-sample. Assume that this is indeed the case. For a range R € R, put
Xr=|XNR|/|X| and Ngr = |N N R|/|N|. We have

| Xpr—Ngr| 1
d:(Xp,Np) = 0——— < —.
8( R R) Xr+ Np+e¢ 2
That is,
1
|XR—NR|<§(XR+NR+€),
or

Xr <3Np+e¢e, and, symmetricallyy, N < 3Xgr +e¢.

This is easily seen to imply properties (i) and (ii). For (i), let R be arange for which [NNR| < tlog ;
that is, Nr < fte, for some absolute constant 8 (proportional to the VC-dimension). Then

X NR|=|X| Xg < |X|(3Ng +¢) < (36t + 1)e| X]|.



For (ii), let R be a range for which |X N R| < te|X|; that is, Xr < te. Then
1
INNR|=|N|-Ng <|N|BXg+¢e) < (3t+1)e|N| < (3t+1)ylog o

for another absolute constant 7 (again, proportional to the VC-dimension). [

3 Semi-algebraic range reporting or emptiness searching

Shallow cutting in the semi-algebraic case. We begin by extending the shallow cutting
lemma of Matousek [33] to the more general setting of semi-algebraic ranges. This extension is
fairly straightforward, although it involves several technical steps that deserve to be highlighted.

Lemma 3.1 (Extended Shallow Cutting Lemma) Let I' be a collection of n semi-algebraic
ranges in R%. Assume that the complement of the union of any subset of m ranges in T' can be
decomposed into at most ((m) elementary cells, for a well-behaved function ¢ as above. Then, for
any r < n, there exists a (1/r)-cutting = with the following properties:

(i) The union of the cells of Z contains the complement of the union of T

(ii) = consists of O(((r)) elementary cells.

(iii) The complement of the union of the cells of Z is contained in a union of O(r) ranges in I.

See Figure [l for an illustration.

Proof. The proof is a fairly routine adaptation of the proof in [33]. We employ a variant of the
method of Chazelle and Friedman [I8] for constructing the cutting. Let I be a random sample of
O(r) ranges of T', and let E’ denote the complement of the union of I''. By assumption, E’ can be
decomposed into at most O(¢(r)) elementary cells. The resulting collection Z of these cells is such
that their union clearly contains the complement of the union of I'. Moreover, the complement of
the union of = is the union of the O(r) ranges of I''. Hence, = satisfies all three conditions (i)—(iii),
but it may fail to be a (1/r)-cutting.

This latter property is enforced as in [I8], by further decomposing each cell 7 of Z that is
crossed by more than n/r ranges of I', using additional subsamples from the surfaces that cross .
Specifically, for each cell 7 of =, let I'. denote the subset of those ranges in I'" that cross 7, and
put & = [Ty|r/n. If & > 1, we sample ¢ = O(&; log &;) ranges from I';, construct the complement
of the union of these ranges, decompose it into at most ((q) elementary cells, and clip them to
within 7. The resulting collection =’ of subcells, over all cells 7 of the original Z, clearly satisfies
(i). The analysis of [I8] (see also [8]) establishes an exponential decay property on the number of
cells of = that are crossed by more than &n/r ranges, as a function of . Specifically, as in [§],
the expected number of such cells is O(27¢E(¢(|T"])), where T is another random sample of T,
where each member of I' is chosen with probability nLg This property implies, as usual [18], that
= is (with high probability) a (1/r)-cutting, and it also implies that the size of Z' is still O(¢(r)),
assuming ¢ to be well behaved. Since we have only refined the original cells of =, the number of
ranges that cover the complement of the union of the final cells is still O(r). O

A special case that arises frequently is where each range in I" is an upper (or lower) halfspace
bounded by the graph of some continuous (d — 1)-variate function. In this case the complement K
of the union of r ranges is the portion of space that lies below the lower envelope of the bounding
graphs. In this case, it suffices to decompose the graph of the lower envelope itself into at most



Figure 1: A planar point set and a collection I' of upper halfplanes. A random sample of the
lines bounding these ranes is shown in bold, with a decomposition of the region below their lower
envelope, which contains the region below the lower envelope of all the bounding lines, drawn
shaded.

¢(r) elementary cells. Indeed, having done that, we can extend each cell 7 within the envelope into
the cell 77 consisting of all points that lie vertically below 7. The new cells decompose K and are
also elementary.

As already discussed in the introduction, obtaining tight or nearly tight bounds for {(r) is still
a major open problem for many instances of the above setup. For example, decomposing an upper
envelope of 7 (d — 1)-variate functions of constant description complexity into O*(r?~1) elementary
cells is still open for any d > 4. (This bound is best possible in the worst case, since it is the
worst-case tight bound on the complexity of such an undecomposed envelope [40].) The cases d = 2
(upper envelope of curves in the plane) and d = 3 (upper envelope of 2-dimensional surfaces in
3-space) are easy. In these cases ((r) is proportional to the complexity of the envelope, which in
the worst case is near-linear for d = 2 and near-quadratic for d = 3 [40]. In higher dimensions, the
only general-purpose bound known to date is the upper bound obtained by computing the vertical
decomposition of the entire arrangement of the given surfaces, and extracting from it the relevant
cells that lie on or above the envelope. In particular, for d = 4 the bound is ((r) = O*(r*), as
follows from the results of [30]. This leaves a gap of about a factor of r between this bound and the
bound O*(r3) on the complexity of the undecomposed envelope. Of course, in certain special cases,
most notably the case of hyperplanes, as studied in [33], both the envelope and its decomposition
have (considerably) smaller complexity.

The situation with the complexity of the union of geometric objects is even worse. While
considerable progress was recently made on many special cases in two and three dimensions (see
[9] for a recent comprehensive survey), there are only very few sharp bounds on the complexity of
unions in higher dimensions. Worse still, even when a sharp bound on the complexity of the union
is known, obtaining comparable bounds on the complexity of a decomposition of the complement
of the union is a much harder problem (in d > 3 dimensions). As an example, the union of n
congruent infinite cylinders in 3-space is known to have near-quadratic complexity [10], but it is



still an open problem whether its complement can be decomposed into a near-quadratic number of
elementary cells.

Partition theorem for shallow semi-algebraic ranges. We next apply the new shallow cut-
ting lemma to construct an elementary cell partition of a given input point set P, with respect to
a specific set ) of ranges. This is done in a fairly similar way to that in [6] (see also [33] 34]). A
major difference in handling the semi-algebraic case is the construction of a set () of ranges that will
be (a) small enough, and (b) representative of all shallow (or empty) ranges, in a sense discussed
in detail below. The method given in [6] does not work in the general semi-algebraic case, and
different, sometimes ad-hoc approaches need to be taken.

The following theorem summarizes the main part of the construction (except for the construction

of Q).

Theorem 3.2 (Extended Partition Theorem) Let P be a set of n points in R?, let T' be a
family of semi-algebraic ranges of constant description complexity, and let r be fized. Let Q be an-
other finite collection (not necessarily a subset of ') of semi-algebraic ranges of constant description
complezity with the following properties: (i) The ranges in @Q are all (n/r)-shallow. (ii) The com-
plement of the union of any m ranges of Q can be decomposed into at most ((m) elementary cells,
for any m. (iii) Any (n/r)-shallow range v € I’ can be covered by the union of at most § ranges of
Q, where J is a constant.

Then there ezists an elementary cell partition 11 of P, of size O(r), into subsets of size roughly
n/r, such that the crossing number of any (n/r)-shallow range in T' with the cells of 11 is either
O(r/¢(r)+logrlog |Q)), if ((r) = Q(r'e), for any fived e > 0, or O(rlogr/¢~(r)+logrlog |Q|),
otherwise.

the proof, which, again, is similar to those in [0, [33] B4], proceeds through the following steps.
We first have:

Lemma 3.3 Let P be a set of n points in RY, and r < n a parameter. Let Q be a set of (n/r)-
shallow ranges, with the property that the complement of the union of any subset of m ranges of
Q@ can be decomposed into at most ((m) elementary cells, for any m. Then there exists a subset
P’ C P of at least n/2 points and an elementary cell partition 11 = {(Py,81),...,(Pn,Sm)} for P’
with |P;| = |n/r| for all i, such that each range of Q crosses at most O(r /(= (r) +1log |Q|) cells s;
of 11.

Proof. We will inductively construct disjoint sets Py, ..., P, C P of size n/r and elementary cells
S1,...,8m such that P; C s; for each i. The construction terminates when |P; U--- U P,| > n/2.
Suppose that Py, ..., P,_; have already been constructed, and set P/ := P\ |J ;<i Pj- We construct
P; as follows: For a range o € @, let k;(0) denote the number of cells among sq,...,s;—1 crossed
by 0. We define a weighted collection (Q,w;) of ranges, so that each range o € @) appears with
weight (or multiplicity) w;(o) = 2%(7). We put w;(Q) = > e wi(0). By Lemma B.Jland by our
assumption that the function ((r) is well behaved, there exists a (1/t)-cutting Z; for the weighted
collection (Q,w;) of size at most /4, for an appropriate choice of t = ©({~!(r)), with the following
properties: The union of Z; contains the complement of the union of @), and the complement of the
union of =Z; is contained in the union of O(t) ranges of Q). Since all these ranges are (n/r)-shallow,
the number of points of P not in the union of Z; is at most O(¢) - (n/r) = n - O((~(r)/r), and
our assumptions on ((r) imply that this is smaller than n/4, if we choose t appropriately. Since we
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assume that |P/| > n/2, it follows that at least n/4 points of P/ lie in the union of the at most r/4
cells of Z;. By the pigeonhole principle, there is a cell s; of Z; containing at least n/r points of P.
We take P; to be some subset of PZ-’ N s; of size exactly n/r, and make s; the cell in the partition
which contains P;.

We next establish the asserted bound on the crossing numbers between the ranges of @) and the
elementary cells si,..., s, in the following standard manner. The final weight w,,(c) of a range
o € @ with crossing number x (with respect to the final partition) is 2. On the other hand, each
newly added cell s; is crossed by ranges of Q of total weight O(w;(Q)/¢™1(r)), because s; is an
elementary cell of the corresponding weighted (1/t)-cutting =;. The weight of each of these crossing
ranges is doubled at the i-th step, and the weight of all the other ranges remains unchanged. Thus
wi1(Q) < wi(Q)(1 +0O(1/¢1(r))). Hence, for each range o € Q we have

nfo) < (@ <101 (140 (ﬁ))m <lal(1+o (g_%(r)))%) < QU0 /T ),

and thus k = log wy, (o) = O(r/¢L(r) +1og|Q]). O

Discussion. The limitation of Lemma is that the bound that it derives (a) applies only
to ranges in @, and (b) includes the term log |@|. An ingenious component of the analysis in [33]
overcomes both problems, by choosing a test set () of ranges whose size is only polynomial in r (and,
in particular, is independent of n), which is nevertheless sufficiently representative of all shallow
ranges, in the sense that the crossing number of any (n/r)-shallow range is O(max{x(c) | o € Q}).
This implies that Lemma [3.3] holds for all shallow ranges, with the stronger bound which does not
involve log Q).

Unfortunately, the technique of [33] does not extend to the case of semi-algebraic ranges, as it
crucially relies on the linearity of the rangesﬁ The following lemma gives a sufficient condition for
a test set () to be representative of the relevant shallow ranges, in the sense that () satisfies the
assumptions made in Theorem That is:

Lemma 3.4 Let P be a set of n points in R, and let T be a family of semi-algebraic ranges with
constant description complezity. Consider an elementary-cell partition 11 = {(P1,s1),...,(Pr, $r)}
of P such that |P;| = n/r for each i. Let Q be a finite set of (n/r)-shallow ranges (not necessarily
ranges of I'), so that the mazimal crossing number of a range q € Q with respect to 11 is k. Then,
for any range v € T’ which is contained in the union of at most & ranges of Q (for some constant
d), the crossing number of v is at most (k + 1)J.

Proof. Let v € I' be a range for which there exist § ranges q1, ..., gs of Q such that v C ¢ U---Ugs.
Then, if v crosses a cell s; of II, then at least one of the covering ranges g; must either cross s; or
fully contain s;. The number of cells of II that can be crossed by any single g; is at most «, and
each ¢; can fully contain at most one cell of II (beca