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Abstract

In a typical range emptiness searching (resp., reporting) problem, we are given a set P of
n points in R

d, and wish to preprocess it into a data structure that supports efficient range
emptiness (resp., reporting) queries, in which we specify a range σ, which, in general, is a semi-
algebraic set in R

d of constant description complexity, and wish to determine whether P ∩σ = ∅,
or to report all the points in P ∩ σ. Range emptiness searching and reporting arise in many
applications, and have been treated by Matoušek [33] in the special case where the ranges are
halfspaces bounded by hyperplanes. As shown in [33], the two problems are closely related,
and have solutions (for the case of halfspaces) with similar performance bounds. In this paper
we extend the analysis to general semi-algebraic ranges, and show how to adapt Matoušek’s
technique, without the need to linearize the ranges into a higher-dimensional space. This yields
more efficient solutions to several useful problems, and we demonstrate the new technique in
four applications, with the following results:

(i) An algorithm for ray shooting amid balls in R
3, which uses O(n) storage and O∗(n) pre-

processing,1 and answers a query in O∗(n2/3) time, improving the previous bound of O∗(n3/4).
(ii) An algorithm that preprocesses, in O∗(n) time, a set P of n points in R

3 into a data
structure with O(n) storage, so that, for any query line ℓ (or, for that matter, any simply-shaped
convex set), the point of P farthest from ℓ can be computed in O∗(n1/2) time. This in turn
yields an algorithm that computes the largest-area triangle spanned by P in time O∗(n26/11),
as well as nontrivial algorithms for computing the largest-perimeter or largest-height triangle
spanned by P .

(iii) An algorithm that preprocesses, in O∗(n) time, a set P of n points in R
2 into a data

structure with O(n) storage, so that, for any query α-fat triangle ∆, we can determine, in O∗(1)
time, whether ∆∩P is empty. Alternatively, we can report in O∗(1) +O(k) time, the points of
∆ ∩ P , where k = |∆ ∩ P |.

(iv) An algorithm that preprocesses, in O∗(n) time, a set P of n points in R
2 into a data

structure with O(n) storage, so that, given any query semidisk c, or a circular cap larger than
a semidisk, we can determine, in O∗(1) time, whether c ∩ P is empty, or report the k points in
c ∩ P in O∗(1) +O(k) time.
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under the supervision of the first author at Tel Aviv University.
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1We use the notation O∗(nγ) to mean an upper bound of the form C(ε)nγ+ε, which holds for any ε > 0, where

C(ε) is a constant that depends on ε.
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Adapting the recent techniques of [12, 13, 14], we can turn our solutions into efficient al-
gorithms for approximate range counting (with small relative error) for the cases mentioned
above.

Our technique is closely related to the notions of nearest- or farthest-neighbor generalized
Voronoi diagrams, and of the union or intersection of geometric objects, where sharper bounds
on the combinatorial complexity of these structures yield faster range emptiness searching or
reporting algorithms.
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1 Introduction

The main technical contribution of this paper is an extension of Matoušek’s range emptiness and
reporting data structures [33] (see also [7] for a dynamic version of the problem) to the case of
general semi-algebraic ranges.

Ray shooting amid balls. A motivating application of this study is ray shooting amid balls in
R
3, where we want to construct a data structure of linear size with near-linear preprocessing, which

supports ray shooting queries in sublinear time. Typically, in problems of this sort, the bound on
the query time is some fractional power of n, the number of objects, and the goal is to make the
exponent as small as possible. For example, ray shooting amid a collection of n arbitrary triangles
can be performed in O∗(n3/4) time (with linear storage) [6]. Better solutions are known for various
special cases. For example, the authors have shown [41] that the query time can be improved to
O∗(n2/3), when the triangles are all fat, or are all stabbed by a common line.

At the other end of the spectrum, one is interested in ray shooting algorithms and data structures
where a ray shooting query can be performed in logarithmic or polylogarithmic time (or even O(nε)
time, for any ε > 0; this is O∗(1) in our shorthand notation). In this case, the goal is to reduce
the storage (and preprocessing) requirements as much as possible. For example, for arbitrary
triangles (and even for the special case of fat triangles), the best known bound for the storage
requirement (with logarithmic query time) is O∗(n4) [1, 6]. For balls, Mohaban and Sharir [37],
gave an algorithm with O∗(n3) storage and O∗(1) query time. However, when only linear storage
is used, the previously best known query time (for balls) is O∗(n3/4) (as in the case of general
triangles). In this paper we show, as an application of our general range emptiness machinery, that
this can be improved to O∗(n2/3) time.

When answering a ray-shooting query for a set S of input objects, one generally reduces the
problem to that of answering segment emptiness queries, following the parametric searching scheme
proposed by Agarwal and Matoušek [5] (see also Megiddo [36] for the original underlying technique).

A standard way of performing the latter kind of queries is to switch to a dual parametric space,
where each object in the input set is represented by a point. A segment e in R

3 is mapped to a surface
σe, which is the locus of all the points representing the objects that e touches (without penetrating
into their interior). Usually, σe partitions the dual space into two portions, one, σ+

e , consisting
of points representing objects whose interior is intersected by e, and the other, σ−

e , consisting of
points representing objects that e avoids. The segment-emptiness problem thus transforms into a
range-emptiness query: Does σ+

e contain any point representing an input object?

Range reporting and emptiness searching. Range-emptiness queries of this kind have been
studied by Matoušek [33] (see also Agarwal and Matoušek [7]), but only for the case where the
ranges are halfspaces bounded by hyperplanes. For this case, Matoušek has established a so-called
shallow-cutting lemma, that shows the existence of a (1/s)-cutting2 that covers the complement of
the union of any m given halfspace ranges, whose size is significantly smaller than the size of a
(1/s)-cutting that covers the entire space. This lemma provides the basic tool for partitioning a
point set P , in the style of [34], so that shallow hyperplanes (those containing at most n/r points of
P below them, say, for some given parameter r) cross only a small number of cells of the partition

2This is a partition of space (or a portion thereof) into a small number of simply-shaped cells, each of which is
crossed by at most n/s of the n given surfaces (hyperplanes in this case). See below for more details.
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(see below for more details). This in turn yields a data structure, known as a shallow partition
tree, that stores a recursive partitioning of P , which enables us to answer more efficiently halfspace
range reporting queries for shallow hyperplanes, and thus also halfspace range emptiness queries.
Using this approach, the query time (for emptiness) improves from the general halfspace range
searching query cost of O∗(n1−1/d) to O∗(n1−1/⌊d/2⌋). Reporting takes O∗(n1−1/⌊d/2⌋ + k), where k
is the output size.

Consequently, one way of applying this machinery for more general semi-algebraic ranges is to
“lift” the set of points and the ranges into a higher-dimensional space by means of an appropri-
ate linearization, as in [6], and then apply the above machinery. (For this, one needs to assume
that the given ranges have constant description complexity, meaning that each range is a Boolean
combination of a constant number of polynomial equalities and inequalities of constant maximum
degree. However, if the space in which the ranges are linearized has high dimension, the resulting
range reporting or emptiness queries become significantly less efficient. Moreover, in many ap-
plications, the ranges are Boolean combinations of polynomial (equalities and) inequalities, which
creates additional difficulties in linearizing the ranges, resulting in even worse running time.

An alternative technique is to give up linearization, and instead work in the original space. As
follows from the machinery of [33] (and further elaborated later in this paper), this requires, as a
major tool, the (existence and) construction of a decomposition of the complement of the union
of m given ranges (in the case of segment emptiness, these are the ranges σ+

e , for an appropriate
collection of segments e), into a small number of “elementary cells” (in the terminology of [6]—
see also below). Here we face, especially in higher dimensions, a scarcity of sharp bounds on the
complexity of the union itself, to begin with, and then on the complexity of a decomposition of
its complement. Often, the best one can do is to decompose the entire arrangement of the given
ranges, which results in too many elementary cells, and consequently in an algorithm with poor
performance.

To recap, in the key technical step in answering general semi-algebraic range reporting or empti-
ness queries, the best current approaches are either to construct a cutting of the entire arrangement
of the range-bounding surfaces in the original space, or to construct a shallow cutting in another
higher-dimensional space into which the ranges can be linearized. For many natural problems
(including the segment-emptiness problem), both approaches yield relatively poor performance.

As we will shortly note, in handling general semi-algebraic ranges, we face another major
technical issue, having to do with the construction of efficient test sets of ranges (in the terminology
of [6], elaborated below). Addressing this issue is a major component of the analysis in this paper,
and is discussed in detail later on.

Our results. We propose a variant of the shallow-cutting machinery of [33] for the case of semi-
algebraic ranges, which avoids the need for linearization, and works in the original space (which,
for the case of ray shooting amid balls, is a 4-dimensional parametric space in which the balls are
represented as points). While the machinery used by our variant is similar in principle to that in
[33], there are several significant technical difficulties which require more careful treatment.

Matoušek’s technique [33], as well as ours, considers a finite set Q of shallow ranges (called a
test set), and builds a data structure which caters only for ranges in Q. Matoušek shows how to
build, for any given parameter r, a set of halfspaces of size polynomial in r, which represents well all
(n/r)-shallow ranges, in the following sense: For any simplicial partition3 Π with parameter r, let

3Briefly, this is a partition of P into O(r) subsets of roughly equal size, each enclosed by some simplex (in the
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κ denote the maximal number of cells of Π crossed by a halfspace in Q. Then each (n/r)-shallow
halfspace crosses at most cκ cells of Π, where c is a constant that depends on the dimension.
Unfortunately (for the present analysis), the linear nature of the ranges is crucially needed for the
proof, which therefore fails for non-linear ranges.

Being a good representative of all shallow ranges, in the above sense, is only one of the require-
ments from a good test set Q. The other requirements are that Q be small, so that, in particular,
it can be constructed efficiently, and that the (decomposition of the) complement of the union of
any subset of Q have small complexity. All these properties hold for the case of halfspaces bounded
by hyperplanes, studied in [33].

As it turns out, and hinted above, obtaining a “good” test set Q for general semi-algebraic
ranges, with the above properties, is not an easy task. We give a simple general recipe for con-
structing such a set Q, but it consists of more complex ranges than those in the original setup. A
major problem with this recipe is that since the members of Q have a more complex shape, it be-
comes harder to establish good bounds on the complexity of (the decomposition of) the complement
of the union of any subset of these generalized ranges.

Nevertheless, once a good test set has been shown to exist, and to be efficiently computable,
it leads to a construction of an efficient elementary-cell partition with a small crossing number for
any empty or shallow original range. Using this construction recursively, one obtains a partition
tree, of linear size, so that any shallow original range γ visits only a small number of its nodes
(where γ visits a node if it crosses the elementary cell enclosing the subset of that node, meaning
that it intersects this cell but does not fully contain it), which in turn leads to an efficient range
reporting or emptiness-testing procedure. This part, of constructing and searching the tree, is
almost identical to its counterparts in the earlier works [6, 33, 34], and we will not elaborate on it
here, focusing only on the technicalities in the construction of a single “shallow” elementary-cell
partition.

Developing all this machinery, and then putting it into action, we obtain efficient data structures
for the following applications, improving previous results or obtaining the first nontrivial solutions.
These instances are:

Ray shooting amid balls in 3-space. Given a set S of n balls in R
3, we construct, in O∗(n)

time, a data structure of O(n) size, which can determine, for a given query segment e, whether
e is empty (avoids all balls), in O∗(n2/3) time. Plugging this data structure into the parametric
searching technique of Agarwal and Matoušek [5], we obtain a data structure for answering ray
shooting queries amid the balls of S, which has similar performance bounds.

We represent balls in 3-space as points in R
4, where a ball with center (a, b, c) and radius r is

mapped to the point (a, b, c, r), and each object K ⊂ R
3 is mapped to the surface σK , which is the

locus of all (points representing) balls tangent to K (i.e., balls that touch K, but do not penetrate
into its interior). In this case, the range of an object K is the upper halfspace σ+

K consisting of
all points lying above σK (representing balls that intersect K). The complement of the union of a
subfamily of these ranges is the region below the lower envelope of the corresponding surfaces4 σK .
The minimization diagram of this envelope is the 3-dimensional Euclidean Voronoi diagram of the
corresponding set of objects. Thus we reveal (what we regard as) a somewhat surprising connection

linear case) or some elementary cell (in the general semi-algebraic case); see [6] and Section 3 below.
4In our solution, we will use a test set of objects K which are considerably more complex than just lines or

segments, but are nevertheless still of constant description complexity.
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between the problem of ray shooting amid balls and the problem of analyzing the complexity of
Euclidean Voronoi diagrams of (simply-shaped) objects in 3-space.

Farthest point from a line (or from any convex set) in R
3. Let P be a set of n points

in R
3. We wish to preprocess P into a data structure of size O(n), so that, for any query line ℓ,

we can efficiently find the point of P farthest from ℓ. This is a useful routine for approximating
polygonal paths in three dimensions; see [21].

As in the ray shooting problem, we can reduce such a query to a range emptiness query of
the form: Given a cylinder C, does it contain all the points of P? (That is, is the complement of
the cylinder empty?) We prefer to regard this as an instance of the complementary range fullness
problem, which seeks to determine whether a query range is full (i.e., contains all the input points).

Our machinery can handle this problem. In fact, we can solve the range fullness problem for
any family of convex ranges in 3-space, of constant description complexity. Our solution requires
O(n) storage and near linear preprocessing, and answers a range fullness query in O∗(n1/2) time,
improving the query time O∗(n2/3) given by Agarwal and Matoušek [6].

We then apply this result to solve the problem of finding the largest-area triangle spanned by
a set of n points in 3-space. The resulting algorithm requires O∗(n26/11) time, which improves a
previous bound of O∗(n13/5) due to Daescu and Serfling [21]. We also adapt our machinery to
compute efficiently the largest-perimeter triangle and the largest-height triangle spanned by such
a point set.

In both this, and the preceding ray-shooting applications, we use the general, more abstract
recipe for constructing good test sets.

Fat triangle and circular cap range emptiness searching and reporting. Finally, we
consider two planar instances of the range emptiness and reporting problems, in which we are given
a planar set P of n points, and the ranges are either α-fat triangles or sufficiently large circular
caps (say, larger than a semidisk). The general technique of Agarwal and Matoušek [6] yields, for
any class of planar ranges with constant description complexity, a data structure with near linear
preprocessing and linear storage, which answers such queries in time O∗(n1/2) (for emptiness) or
O∗(n1/2)+O(k) (for reporting). We improve the query time to O∗(1) and O∗(1)+O(k), respectively,
in both cases.

In these planar applications, we abandon the general recipe, and construct good test sets in
an ad-hoc (and simpler) manner. For α-fat triangles (i.e., triangles with the property that each of
their angles is at least α, which is some fixed positive constant), the test set consists of “canonical”
(α/2)-fat triangles, and the fast query performance is a consequence of the fact that the complement
of the union of m α′-fat triangles is O(m log logm), for any constant α′ > 0 [35]. It is quite likely
that our machinery can also be applied to other classes of fat objects in the plane, for which near-
linear bounds on the complexity of their union are known [22, 24, 25, 26]. However, constructing
a good test set for each of these classes is not an obvious step. We leave these extensions as open
problems for further research.

For circular caps, the motivation for range emptiness searching comes from the problem of
finding, for a query consisting of a point q and a line ℓ, the point of P which lies above ℓ and
is nearest to q (we only consider the case where q lies on or above ℓ). Such a procedure was
considered in [20]. Using parametric searching, the latter problem can be reduced to that of testing
for emptiness of a circular cap centered at q and bounded by ℓ (the assumption on the location of
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q ensures that this cap is at least a semidisk). Here too we manage to construct a test set which
consists of (possibly slightly smaller) circular caps, and we exploit the fact that the complexity of
the union of m such caps is O∗(m), as long as the caps are not too small (relative to their bounding
circles), to obtain the fast performance stated above.

Approximate range counting. Adapting the recent techniques of [12, 13, 14], we can turn our
solutions into efficient algorithms for approximate range counting (with small relative error) for
the cases mentioned above. That is, for a specified ε > 0, we can preprocess the input point set P
into a data structure which can efficiently compute, for any query range γ, an approximate count
tγ , satisfying (1 − ε)|P ∩ γ| ≤ tγ ≤ (1 + ε)|P ∩ γ|. The performance of the resulting algorithms is
detailed in Section 7. As observed in the papers just cited, approximate range counting is closely
related to the range emptiness problem, which in fact is a special case of the former problem. The
algorithm in [12] performs approximate range counting by a randomized binary search over |P ∩γ|,
where the search is guided by repeated calls to an emptiness testing routine on various random
samples of P . This algorithm uses emptiness searching as a black box, so, plugging our solutions for
this latter problem into their algorithm, we obtain efficient approximate range counting algorithms
for the ranges considered in this paper. See Section 7 for details.

Related work. Our study was originally motivated by work by Daescu and others [20, 21] on
path approximations and related problems. In these applications one needs to compute efficiently
the vertex of a subpath which is farthest from a given segment (connecting the two endpoints of
the subpath). These works used the standard range searching machinery of [6], and motivated us
to look for faster implementations.

The general range emptiness (or reporting) problem was studied by the authors a few years
ago [42]. In this earlier version, we did not manage to handle properly the issue of constructing a
good test set, so the results presented there are somewhat incomplete. The present paper builds
upon the previous one, but provides a thorough analysis of this aspect of the problem, and conse-
quently obtains a complete and efficient solution to the problems listed above, and lays down the
foundation for obtaining efficient solutions to many other similar problems—we believe indeed that
the applications given here only scratch the surface of the wealth of potential future applications
of this sort.

2 Preliminaries and notations

We begin with a brief review of the main concepts and notations used in our analysis.

Range spaces. A range space is a pair (X,Γ), where X is a set and Γ ⊆ 2X is a collection of
subsets of X, called ranges. In our applications, X = R

d, and Γ is a collection of semi-algebraic
sets of some specific type, each having constant description complexity. That is, each set in Γ is
given as a Boolean combination of a constant number of polynomial equalities and inequalities of
constant maximum degree. To simplify the analysis, we assume5, as in [6], that all the ranges in
Γ are defined by a single Boolean combination, so that each polynomial p in this combination is
(d + t)-variate, and each range γ has t degrees of freedom, so that if we substitute the values of

5This assumption is not essential, and is only made to simplify the presentation.
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these t parameters into the last t variables of each p, the resulting Boolean combination defines
the range γ. This allows us to represent the ranges of Γ as points in an appropriate t-dimensional
parametric space.

Under these special assumptions, the range space (X,Γ) has finite VC-dimension, a property
formally defined in [27]. Informally, it ensures that, for any finite subset P of X, the number of
distinct ranges of P is O(|P |δ), where δ is the VC-dimension.

As a matter of fact, we will consider range spaces of the form (P,ΓP ), where P ⊂ R
d is a finite

point set, and each range in ΓP is the intersection of P with a range in Γ.

Cuttings. Given a finite collection Γ of n semi-algebraic ranges in R
d, as above, and a parameter

r < n, a (1/r)-cutting for Γ is a partition Ξ of Rd (or of some portion of Rd) into a finite number of
relatively open cells of dimensions 0, 1, . . . , d, so that each cell is crossed by at most n/r ranges of
Γ, where a range γ ∈ Γ is said to cross a cell σ if γ ∩σ 6= ∅, but γ does not fully contain σ. We will
also need to consider weighted (1/r)-cuttings, where each range γ ∈ Γ has a positive weight w(γ),
and each cell of Ξ is crossed by ranges whose total weight is at most W/r, where W =

∑

γ∈Γ w(γ)
is the overall weight of all the ranges in Γ.

Shallow ranges. A range γ ∈ Γ is called k-shallow with respect to a set P of points in R
d, if

|γ ∩ P | ≤ k.

Elementary cells. Define, as in [6], an elementary cell in R
d to be a connected relatively open

semi-algebraic set of some dimension k ≤ d, which is homeomorphic to a ball and has constant
description complexity. As above, we assume, for simplicity, that the elementary cells are defined
by a single Boolean combination involving t free variables, and each cell is determined by fixing the
values of these t parameters.

Elementary cell partition. Let P be a set of n points in R
d. An elementary cell partition of

P is a collection Π = {(P1, s1), . . . , (Pm, sm)}, for some integer m, such that (i) {P1, . . . , Pm} is a
partition of P (into pairwise disjoint subsets), and (ii) each si is an elementary cell that contains
the respective subset Pi. In general, the cells si need not be disjoint. Usually, one also specifies a
parameter r ≤ n, and requires that n/r ≤ |Pi| ≤ 2n/r for each i, so m = O(r).

The function ζ(r). In Lemma 3.1 and Theorem 3.2, we use a function ζ(r) that bounds the
number of elementary cells in a decomposition of the complement of the union of any r ranges of
Γ. We assume that ζ(r) is “well behaved”, in the sense that for each c > 0 there exists c′ > 0 such
that ζ(cr) ≤ c′ζ(r) for every r. We also assume that ζ(r) = Ω(r).

(ν, α)-samples and shallow ε-nets. We recall the result of Li et al. [32], and adapt it, similar
to the recent observations in [28], to obtain a useful extension of the notion of ε-nets.

Let (X,R) be a range space of finite VC-dimension δ, and let 0 < α, ν < 1 be two given
parameters. Consider the distance function

dν(r, s) =
|r − s|

r + s+ ν
, for r, s ≥ 0.
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A subset N ⊆ X is called a (ν, α)-sample if for each R ∈ R we have

dν

(

|X ∩R|

|X|
,
|N ∩R|

|N |

)

< α.

Theorem 2.1 (Li et al. [32]) A random sample N of

O

(

1

α2ν

(

δ log
1

ν
+ log

1

q

))

elements of X is a (ν, α)-sample with probability at least 1− q.

Har-Peled and Sharir [28] show that, by appropriately choosing α and ν, various standard
constructs, such as ε-nets and ε-approximations, are special cases of (ν, α)-samples. Here we follow
a similar approach, and show the existence of small-size shallow ε-nets, a new notation introduced
in this paper.

Let us first define this notion. Let (X,R) be a range space of finite VC-dimension δ, and let
0 < ε < 1 be a given parameter. A subset N ⊆ X is a shallow ε-net if it satisfies the following two
properties, for some absolute constant c.

(i) For each R ∈ R and for any parameter t ≥ 0, if |N ∩R| ≤ t log 1
ε then |X ∩R| ≤ c(t+ 1)ε|X|.

(ii) For each R ∈ R and for any parameter t ≥ 0, if |X ∩R| ≤ tε|X| then |N ∩R| ≤ c(t+ 1) log 1
ε .

Note the difference between shallow and standard ε-nets: Property (i) (with t = 0) implies that
a shallow ε-net is also a standard ε-net (possibly with a recalibration of ε). Property (ii) has no
parallel in the case of standard ε-nets – there is no guarantee how a standard net interacts with
small ranges.

Theorem 2.2 A random sample N of

O

(

1

ε

(

δ log
1

ε
+ log

1

q

))

elements of X is a shallow ε-net with probability at least 1− q.

Proof: Take α = 1/2, say, and calibrate the constants in the size ofN to guarantee, with probability
1 − q, that N is an (ε, 1/2)-sample. Assume that this is indeed the case. For a range R ∈ R, put
XR = |X ∩R|/|X| and NR = |N ∩R|/|N |. We have

dε(XR, NR) =
|XR −NR|

XR +NR + ε
<

1

2
.

That is,

|XR −NR| <
1

2
(XR +NR + ε),

or
XR < 3NR + ε, and, symmetrically, NR < 3XR + ε.

This is easily seen to imply properties (i) and (ii). For (i), let R be a range for which |N∩R| ≤ t log 1
ε ;

that is, NR ≤ βtε, for some absolute constant β (proportional to the VC-dimension). Then

|X ∩R| = |X| ·XR < |X|(3NR + ε) ≤ (3βt+ 1)ε|X|.
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For (ii), let R be a range for which |X ∩R| ≤ tε|X|; that is, XR ≤ tε. Then

|N ∩R| = |N | ·NR < |N |(3XR + ε) ≤ (3t+ 1)ε|N | ≤ (3t+ 1)γ log
1

ε
,

for another absolute constant γ (again, proportional to the VC-dimension). �

3 Semi-algebraic range reporting or emptiness searching

Shallow cutting in the semi-algebraic case. We begin by extending the shallow cutting
lemma of Matoušek [33] to the more general setting of semi-algebraic ranges. This extension is
fairly straightforward, although it involves several technical steps that deserve to be highlighted.

Lemma 3.1 (Extended Shallow Cutting Lemma) Let Γ be a collection of n semi-algebraic
ranges in R

d. Assume that the complement of the union of any subset of m ranges in Γ can be
decomposed into at most ζ(m) elementary cells, for a well-behaved function ζ as above. Then, for
any r ≤ n, there exists a (1/r)-cutting Ξ with the following properties:
(i) The union of the cells of Ξ contains the complement of the union of Γ.
(ii) Ξ consists of O(ζ(r)) elementary cells.
(iii) The complement of the union of the cells of Ξ is contained in a union of O(r) ranges in Γ.

See Figure 1 for an illustration.

Proof. The proof is a fairly routine adaptation of the proof in [33]. We employ a variant of the
method of Chazelle and Friedman [18] for constructing the cutting. Let Γ′ be a random sample of
O(r) ranges of Γ, and let E′ denote the complement of the union of Γ′. By assumption, E′ can be
decomposed into at most O(ζ(r)) elementary cells. The resulting collection Ξ of these cells is such
that their union clearly contains the complement of the union of Γ. Moreover, the complement of
the union of Ξ is the union of the O(r) ranges of Γ′. Hence, Ξ satisfies all three conditions (i)–(iii),
but it may fail to be a (1/r)-cutting.

This latter property is enforced as in [18], by further decomposing each cell τ of Ξ that is
crossed by more than n/r ranges of Γ, using additional subsamples from the surfaces that cross τ .
Specifically, for each cell τ of Ξ, let Γτ denote the subset of those ranges in Γ that cross τ , and
put ξτ = |Γτ |r/n. If ξτ > 1, we sample q = O(ξτ log ξτ ) ranges from Γτ , construct the complement
of the union of these ranges, decompose it into at most ζ(q) elementary cells, and clip them to
within τ . The resulting collection Ξ′ of subcells, over all cells τ of the original Ξ, clearly satisfies
(i). The analysis of [18] (see also [8]) establishes an exponential decay property on the number of
cells of Ξ that are crossed by more than ξn/r ranges, as a function of ξ. Specifically, as in [8],
the expected number of such cells is O(2−ξ

E(ζ(|Γ′′|)), where Γ′′ is another random sample of Γ,
where each member of Γ is chosen with probability r

nξ . This property implies, as usual [18], that

Ξ′ is (with high probability) a (1/r)-cutting, and it also implies that the size of Ξ′ is still O(ζ(r)),
assuming ζ to be well behaved. Since we have only refined the original cells of Ξ, the number of
ranges that cover the complement of the union of the final cells is still O(r). �

A special case that arises frequently is where each range in Γ is an upper (or lower) halfspace
bounded by the graph of some continuous (d− 1)-variate function. In this case the complement K
of the union of r ranges is the portion of space that lies below the lower envelope of the bounding
graphs. In this case, it suffices to decompose the graph of the lower envelope itself into at most
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Figure 1: A planar point set and a collection Γ of upper halfplanes. A random sample of the
lines bounding these ranes is shown in bold, with a decomposition of the region below their lower
envelope, which contains the region below the lower envelope of all the bounding lines, drawn
shaded.

ζ(r) elementary cells. Indeed, having done that, we can extend each cell τ within the envelope into
the cell τ− consisting of all points that lie vertically below τ . The new cells decompose K and are
also elementary.

As already discussed in the introduction, obtaining tight or nearly tight bounds for ζ(r) is still
a major open problem for many instances of the above setup. For example, decomposing an upper
envelope of r (d− 1)-variate functions of constant description complexity into O∗(rd−1) elementary
cells is still open for any d ≥ 4. (This bound is best possible in the worst case, since it is the
worst-case tight bound on the complexity of such an undecomposed envelope [40].) The cases d = 2
(upper envelope of curves in the plane) and d = 3 (upper envelope of 2-dimensional surfaces in
3-space) are easy. In these cases ζ(r) is proportional to the complexity of the envelope, which in
the worst case is near-linear for d = 2 and near-quadratic for d = 3 [40]. In higher dimensions, the
only general-purpose bound known to date is the upper bound obtained by computing the vertical
decomposition of the entire arrangement of the given surfaces, and extracting from it the relevant
cells that lie on or above the envelope. In particular, for d = 4 the bound is ζ(r) = O∗(r4), as
follows from the results of [30]. This leaves a gap of about a factor of r between this bound and the
bound O∗(r3) on the complexity of the undecomposed envelope. Of course, in certain special cases,
most notably the case of hyperplanes, as studied in [33], both the envelope and its decomposition
have (considerably) smaller complexity.

The situation with the complexity of the union of geometric objects is even worse. While
considerable progress was recently made on many special cases in two and three dimensions (see
[9] for a recent comprehensive survey), there are only very few sharp bounds on the complexity of
unions in higher dimensions. Worse still, even when a sharp bound on the complexity of the union
is known, obtaining comparable bounds on the complexity of a decomposition of the complement
of the union is a much harder problem (in d ≥ 3 dimensions). As an example, the union of n
congruent infinite cylinders in 3-space is known to have near-quadratic complexity [10], but it is
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still an open problem whether its complement can be decomposed into a near-quadratic number of
elementary cells.

Partition theorem for shallow semi-algebraic ranges. We next apply the new shallow cut-
ting lemma to construct an elementary cell partition of a given input point set P , with respect to
a specific set Q of ranges. This is done in a fairly similar way to that in [6] (see also [33, 34]). A
major difference in handling the semi-algebraic case is the construction of a set Q of ranges that will
be (a) small enough, and (b) representative of all shallow (or empty) ranges, in a sense discussed
in detail below. The method given in [6] does not work in the general semi-algebraic case, and
different, sometimes ad-hoc approaches need to be taken.

The following theorem summarizes the main part of the construction (except for the construction
of Q).

Theorem 3.2 (Extended Partition Theorem) Let P be a set of n points in R
d, let Γ be a

family of semi-algebraic ranges of constant description complexity, and let r be fixed. Let Q be an-
other finite collection (not necessarily a subset of Γ) of semi-algebraic ranges of constant description
complexity with the following properties: (i) The ranges in Q are all (n/r)-shallow. (ii) The com-
plement of the union of any m ranges of Q can be decomposed into at most ζ(m) elementary cells,
for any m. (iii) Any (n/r)-shallow range γ ∈ Γ can be covered by the union of at most δ ranges of
Q, where δ is a constant.
Then there exists an elementary cell partition Π of P , of size O(r), into subsets of size roughly
n/r, such that the crossing number of any (n/r)-shallow range in Γ with the cells of Π is either
O(r/ζ−1(r)+log r log |Q|), if ζ(r) = Ω(r1+ε), for any fixed ε > 0, or O(r log r/ζ−1(r)+log r log |Q|),
otherwise.

the proof, which, again, is similar to those in [6, 33, 34], proceeds through the following steps.
We first have:

Lemma 3.3 Let P be a set of n points in R
d, and r < n a parameter. Let Q be a set of (n/r)-

shallow ranges, with the property that the complement of the union of any subset of m ranges of
Q can be decomposed into at most ζ(m) elementary cells, for any m. Then there exists a subset
P ′ ⊆ P of at least n/2 points and an elementary cell partition Π = {(P1, s1), . . . , (Pm, sm)} for P ′

with |Pi| = ⌊n/r⌋ for all i, such that each range of Q crosses at most O(r/ζ−1(r) + log |Q|) cells si
of Π.

Proof. We will inductively construct disjoint sets P1, . . . , Pm ⊂ P of size n/r and elementary cells
s1, . . . , sm such that Pi ⊆ si for each i. The construction terminates when |P1 ∪ · · · ∪ Pm| ≥ n/2.
Suppose that P1, . . . , Pi−1 have already been constructed, and set P ′

i := P \
⋃

j<i Pj . We construct
Pi as follows: For a range σ ∈ Q, let κi(σ) denote the number of cells among s1, . . . , si−1 crossed
by σ. We define a weighted collection (Q,wi) of ranges, so that each range σ ∈ Q appears with
weight (or multiplicity) wi(σ) = 2κi(σ). We put wi(Q) =

∑

σ∈Q wi(σ). By Lemma 3.1 and by our
assumption that the function ζ(r) is well behaved, there exists a (1/t)-cutting Ξi for the weighted
collection (Q,wi) of size at most r/4, for an appropriate choice of t = Θ(ζ−1(r)), with the following
properties: The union of Ξi contains the complement of the union of Q, and the complement of the
union of Ξi is contained in the union of O(t) ranges of Q. Since all these ranges are (n/r)-shallow,
the number of points of P not in the union of Ξi is at most O(t) · (n/r) = n · O(ζ−1(r)/r), and
our assumptions on ζ(r) imply that this is smaller than n/4, if we choose t appropriately. Since we

10



assume that |P ′
i | ≥ n/2, it follows that at least n/4 points of P ′

i lie in the union of the at most r/4
cells of Ξi. By the pigeonhole principle, there is a cell si of Ξi containing at least n/r points of P ′

i .
We take Pi to be some subset of P ′

i ∩ si of size exactly n/r, and make si the cell in the partition
which contains Pi.

We next establish the asserted bound on the crossing numbers between the ranges of Q and the
elementary cells s1, . . . , sm, in the following standard manner. The final weight wm(σ) of a range
σ ∈ Q with crossing number κ (with respect to the final partition) is 2κ. On the other hand, each
newly added cell si is crossed by ranges of Q of total weight O(wi(Q)/ζ−1(r)), because si is an
elementary cell of the corresponding weighted (1/t)-cutting Ξi. The weight of each of these crossing
ranges is doubled at the i-th step, and the weight of all the other ranges remains unchanged. Thus
wi+1(Q) ≤ wi(Q)(1 +O(1/ζ−1(r))). Hence, for each range σ ∈ Q we have

wm(σ) ≤ wm(Q) ≤ |Q|

(

1 +O

(

1

ζ−1(r)

))m

≤ |Q|

(

1 +O

(

1

ζ−1(r)

))O(r)

≤ |Q|eO(r/ζ−1(r)),

and thus κ = logwm(σ) = O(r/ζ−1(r) + log |Q|). �

Discussion. The limitation of Lemma 3.3 is that the bound that it derives (a) applies only
to ranges in Q, and (b) includes the term log |Q|. An ingenious component of the analysis in [33]
overcomes both problems, by choosing a test set Q of ranges whose size is only polynomial in r (and,
in particular, is independent of n), which is nevertheless sufficiently representative of all shallow
ranges, in the sense that the crossing number of any (n/r)-shallow range is O(max{κ(σ) | σ ∈ Q}).
This implies that Lemma 3.3 holds for all shallow ranges, with the stronger bound which does not
involve log |Q|.

Unfortunately, the technique of [33] does not extend to the case of semi-algebraic ranges, as it
crucially relies on the linearity of the ranges.6 The following lemma gives a sufficient condition for
a test set Q to be representative of the relevant shallow ranges, in the sense that Q satisfies the
assumptions made in Theorem 3.2. That is:

Lemma 3.4 Let P be a set of n points in R
d, and let Γ be a family of semi-algebraic ranges with

constant description complexity. Consider an elementary-cell partition Π = {(P1, s1), . . . , (Pr, sr)}
of P such that |Pi| = n/r for each i. Let Q be a finite set of (n/r)-shallow ranges (not necessarily
ranges of Γ), so that the maximal crossing number of a range q ∈ Q with respect to Π is κ. Then,
for any range γ ∈ Γ which is contained in the union of at most δ ranges of Q (for some constant
δ), the crossing number of γ is at most (κ+ 1)δ.

Proof. Let γ ∈ Γ be a range for which there exist δ ranges q1, . . . , qδ of Q such that γ ⊆ q1∪· · ·∪qδ.
Then, if γ crosses a cell si of Π, then at least one of the covering ranges qj must either cross si or
fully contain si. The number of cells of Π that can be crossed by any single qj is at most κ, and
each qj can fully contain at most one cell of Π (because qj is (n/r)-shallow).7 Hence, the overall
number of cells of Π that γ can cross is at most (κ+ 1)δ, as asserted. �

6It uses point-hyperplane duality, and exploits the fact that a halfspace (bounded by a hyperplane) intersects a
simplex if and only if it contains a vertex of the simplex, which is false in the general semi-algebraic case.

7By choosing a slightly smaller value for r in the construction of the partition, we can even rule out the possibility
that a range qj fully contains a cell of Π. This however has no effect on the asymptotic bounds that the analysis
derives.
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Proof of Theorem 3.2. Apply Lemma 3.3 to the input set P0 = P , with parameter r0 = r.
This yields an elementary-cell partition Π0 for (at least) half of the points of P0, which satisfies the
properties of that lemma. Let P1 denote the set of the remaining points of P0, and set r1 = r0/2.
Apply Lemma 3.3 again to P1 with parameter r1, obtaining an elementary cell partition Π1 for (at
least) half of the points of P1. We iterate this process k = O(log r) times, until the set Pk has fewer
than n/r points. We take Π to be the union of all the elementary-cell partitions Πi formed so far,
together with one large cell containing all the remaining points of Pk. The resulting elementary-cell
partition of P consists of at most 1 + r + r/2 + r/4 + . . . ≤ 2r subsets, each of size at most n/r.
The crossing number of a range in Q is, by Lemma 3.3,

O

(

log r
∑

i=1

(

(r/2i)/ζ−1(r/2i) + log |Q|
)

)

.

Our assumptions on ζ imply that if ζ(r) = Ω(r1+ε), for any fixed ε > 0, the first terms add up to
O(r/ζ−1(r)); otherwise we can bound their sum by O(r log r/ζ−1(r)). Hence, by the properties of
Q and by Lemma 3.4, the crossing number of any empty range is also O(r/ζ−1(r) + log |Q| log r)
or O(r log r/ζ−1(r) + log |Q| log r), respectively. �

Partition trees and reporting or emptiness searching. As in the classical works on range
searching [6, 33, 34], we apply Theorem 3.2 recursively, and obtain a partition tree T , where each
node v of T stores a subset Pv of P and an elementary cell σv enclosing Pv. The children of a node
v are obtained from an elementary cell partition of Pv—each of them stores one of the resulting
subsets of Pv and its enclosing cell. At the leaves, the size of the subset that is stored is O(r).

Testing a range γ for emptiness is done by searching with γ in T . At each visited node v, where
γ ∩ σv 6= ∅, we test whether γ ⊇ σv, in which case γ is not empty. Otherwise, we find the children
of v whose cells are intersected by γ. If there are too many of them we know that γ is not empty.
Otherwise, we recurse at each child.

Reporting is performed in a similar manner. If σv ⊆ γ we output all of σv. Otherwise, we find
the children of v whose cells are intersected by γ. If there are too many of them we know that γ is
not (nv/r)-shallow (with respect to Pv), so, if r is a constant, we can afford to check every element
of Pv for containment in γ, and output those points that do lie in γ. If there are not too many
children, we recurse in each of them.

The efficiency of the search depends on the function ζ(m). If ζ(m) = O∗(mk) then an emptiness
query takes O∗(n1−1/k) time, and a reporting query takes O∗(n1−1/k)+O(t), where t is the output
size. Thus making ζ (i.e., k) small is the main challenge in this technique.

A general recipe for constructing good test sets. Let Γ be the given collection of semi-
algebraic ranges of constant description complexity. As above, we assume that each range γ ∈ Γ
has t degrees of freedom, for some constant parameter t, so it can be represented as a point γ∗ in a
t-dimensional parametric space, which, for convenience, we denote as Rt. Each input point p ∈ P
is mapped to a region Kp, which is the locus of all points representing ranges which contain p.

We fix a parameter r ≥ 1, and choose a random sample N of ar log r points of P , where a
is a sufficiently large constant. We form the set N∗ = {Kp | p ∈ N}, construct the arrangement
A(N∗), and let V = A≤k(N

∗) denote the region consisting of all points contained in at most k
ranges of N∗, where k = b log r and b is an absolute constant that we will fix later. We decompose
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V into elementary cells, using, e.g., vertical decomposition [40]. In the worst case, we get O∗(r2t−4)
elementary cells [17, 30]. 8

Let τ be one of these cells. We associate with τ a generalized range γτ in R
d, which is the union

⋃

{γ | γ∗ ∈ τ}. Since τ has constant description complexity, as do the ranges of Γ, it is easy to
show that γτ is also a semi-algebraic set of constant description complexity (see [16]).

We define the test set Q to consist of all the generalized ranges γτ , over all cells τ in the
decomposition of V , and claim that, with high probability (and with an appropriate choice of b),
Q is a good test set, in the following three aspects.

(i) Compactness. |Q| = O∗(r2t−4); that is, the size of Q is polynomial in r and independent of n.

(ii) Shallowness. Each range γτ in Q is β(n/r)-shallow with respect to P , for some constant
parameter β.

(iii) Containment. Every (n/r)-shallow range γ ∈ Γ is contained in a single range γτ of Q.

Property (i) is obvious. Consider the range space (P,Γ∗), where Γ∗ consists of all generalized
ranges γτ , over all elementary cells τ of the form arising in the above vertical decomposition. It
is a fairly easy exercise to show that (P,Γ∗) also has finite VC-dimension. See, e.g., [40]. By
Theorem 2.2, if a is a sufficiently large constant (proportional to the VC-dimension of (P,Γ∗)) then
N is a shallow (1/r)-net for both range spaces (P,Γ) and (P,Γ∗), with high probability, so we
assume that N is indeed such a shallow (1/r)-net.

Let γτ ∈ Q. Note that any point p ∈ P in γτ lies in a range γ ∈ Γ with γ∗ ∈ τ . By definition,
γ∗ also belongs to Kp, and so Kp crosses or fully contains τ . Since τ is (b log r)-shallow in A(N∗),
it is fully contained in at most b log r regions Kp, for p ∈ N (and is not crossed by any such region).
Hence |γτ ∩N | < b log r, so, since N is a shallow (1/r)-net for (P,Γ∗), we have |γτ ∩P | < c(b+1)n/r,
so γτ is (c(b+ 1)n/r)-shallow, which establishes (ii).

For (iii), let γ ∈ Γ be an (n/r)-shallow range. Since N is a shallow (1/r)-net for (P,Γ), and
|γ ∩ P | ≤ |P |/r, we have |γ ∩ N | ≤ 2c log r. Hence, with b ≥ 2c, γ ∈ V , so there is a cell τ of
the decomposition which contains γ, which, by construction, implies that γ ⊆ γτ , thus establishing
(iii).

To make Q a really good test set, we also need the following fourth property:

(iv) Efficiency. There exists a good bound on the associated function ζ(m), bounding the size of
a decomposition of the complement of the union of any m ranges of Q.

The potentially rather complex shape of these generalized ranges makes it harder to obtain, in
general, a good bound on ζ.

In what follows, we manage to use this general recipe in two of our four applications (ray shooting
amid balls and range fullness searching), with good bounds on the corresponding functions ζ(·). In
two other planar applications (range emptiness searching with fat triangles and with circular caps),
we abandon the general technique, and construct ad hoc good test sets.

Remark: In the preceding construction, we wanted to make sure that every (n/r)-shallow range
γ ∈ Γ is covered by a range of Q. If we only need this property for empty ranges γ (which is the
case for emptiness testing), it suffices to consider only the 0-level of A(N∗), i.e., the complement
of the union of N∗. Other than this simplification, the construction proceeds as above.

8Here, in this dual construction, we do not need any sharper bound; any bound polynomial in r is sufficient for
our purpose.
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4 Fullness searching and reporting outliers for convex ranges

Let P be a set of n points in 3-space, and let Γ be a set of convex ranges of constant description
complexity. We wish to preprocess P in near-linear time into a data structure of linear size, so
that, given a query range γ ∈ Γ, we can efficiently determine whether γ contains all the points
of P . Alternatively, we want to report all the points of P that lie outside γ. (This is clearly a
special case of range emptiness searching or range reporting, if one considers the complements of
the ranges in Γ.) For simplicity, we only focus on the range fullness problem; the extension to
reporting “outliers” is similar to the standard treatment of reporting queries, as discussed earlier.

We present a solution to this problem, with O∗(n1/2) query time, thereby improving over the
best known general bound of O∗(n2/3), given in [6], which applies to any range searching (e.g.,
range counting) with semi-algebraic sets (of constant description complexity) in R

3.

To apply our technique to this problem we first need to build a good test set. Since fullness
searching is complementary to emptiness searching, we need a property complementary to that
assumed in Theorem 3.2 (see also Lemma 3.4). In fact, we will enforce the property that every full
range γ fully contains a single range of Q, which is “almost full” (contains at least n− n/r points
of P ).

As above, assuming the ranges of Γ to have t degrees of freedom, we map each range γ ∈ Γ
to a point γ∗ in R

t. A point p ∈ R
3 is mapped to a region Kp which is the locus of all the

points γ∗ that correspond to ranges γ which contain p. We fix r < n, take a random sample
N of O(r log r) points of P (with a sufficiently large constant of proportionality), construct the
intersection I =

⋂

p∈N Kp, and decompose it into elementary cells. For each resulting cell σ, let
γσ denote the intersection

⋂

γ∗∈σ γ. As above, since σ has constant description complexity, γσ is a
semi-algebraic set of constant description complexity. Note that, since the ranges in Γ are convex,
each range γσ is also convex (albeit of potentially more complex shape than that of the original
ranges).

Define the test set Q to consist of all the generalized ranges γσ, over all cells σ in the de-
composition of I. We argue that Q satisfies all four properties required from a good test set: (i)
Compactness: As above, the size of Q is polynomial in r (it is at most O∗(r2t−4)). (ii) Shallowness
(or, rather, “almost fullness”): For each cell σ and any γ ∈ Γ with γ∗ ∈ σ, γ∗ lies in all the sets Kp,
for p ∈ N , and thus N ⊆ γ. By construction, we also have N ⊆ γσ. Apply the ε-net theory [27] to
the range space (P, Γ̃), where the ranges of Γ̃ are complements of ranges of the same form as the
ranges γσ. Since γcσ ∩N = ∅ for each cell σ in the decomposition, we have, with high probability,
the property that for each cell σ of I, γσ contains at least n− n/r points of P , so it is an “almost
full” range. (iii) Containment: Let γ ∈ Γ be a full range. Then, in particular, N ⊆ γ. Then γ∗ ∈ I,
and let σ be the cell of I containing γ∗. Then, by construction, γσ ⊆ γ. (iv) Efficiency: Finally, we
show that the complexity of a decomposition of the intersection of any m ranges in Q, is O∗(m2),
so ζ(m) = O∗(m2).

Claim 4.1 Let Q be a set of convex “almost full” ranges, each containing at least n−n/r points of
P . The intersection, K, of any m ranges q1, . . . , qm ∈ Q can be decomposed into O∗(m2) elementary
cells.

Proof. Since all ranges inQ are convex, K is a convex set too. Assume, for simplicity of presentation,
that K is nonempty and has nonempty interior, and fix a point o in that interior. We can regard the
boundary of each qi as the graph of a bivariate function ρ = Fi(θ, ϕ) in spherical coordinates about
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o. Then ∂K is the graph of the lower envelopes of these functions. Since the qi’s have constant
description complexity, (the graph of) each Fi is also a semi-algebraic set of constant description
complexity9. Hence the combinatorial complexity of ∂K is O∗(m2) [40]. Moreover, since ∂K is
2-dimensional, we can partition it into O∗(m2) trapezoidal-like elementary cells, using a variant of
the vertical decomposition technique, and then extend each such cell τ0 to a 3-dimensional cone-like
cell τ , which is the union of all segments connecting o to the points of τ0. The resulting cells τ
constitute a decomposition of K into O∗(m2) elementary cells, as claimed. �

Using the machinery developed in the preceding section, we therefore obtain the following result.

Theorem 4.2 Let P be a set of n points in R
3, and let Γ be a family of convex ranges of constant

description complexity. Then one can construct, in near linear time, a data structure of linear size
so that, for any range γ ∈ Γ, it can determine, in O∗(n1/2) time, whether γ is full.

Reporting outliers. To extend the above approach to the problem of reporting outliers, we
apply a construction similar to that in the “general recipe” presented above. That is, we take the
b log r deepest levels of A(N), for an appropriate constant b, decompose them into elementary cells,
and construct a generalized range γσ for each of these cells σ. The general machinery given above
implies the following result:

Theorem 4.3 Let P be a set of n points in R
3, and let Γ be a family of convex ranges of constant

description complexity. Then one can construct, in near linear time, a data structure of linear size
so that, for any range γ ∈ Γ, it can report the points of P in the complement of γ, in O∗(n1/2)+O(k)
time, where k is the query output size.

4.1 Farthest point from a convex shape

A useful application of the data structure of Theorem 4.2 is to farthest point queries. In such a
problem we are given a set P of n points in R

3, and wish to preprocess it, in near-linear time, into
a data structure of linear size, so that, given a convex query object o (from some fixed class of
objects with constant description complexity), we can efficiently find the point of P farthest from
o.

We solve this problem using parametric searching [36]. The corresponding decision problem is:
Given the query object o and a distance ρ, determine whether the Minkowski sum o ⊕ Bρ is full,
where Bρ is the ball of radius ρ centered at the origin. The smallest ρ with this property is the
distance to the farthest point from o. With an appropriate small-depth parallel implementation of
this decision problem, the parametric searching also takes time O∗(n1/2). Reporting the k farthest
points from o, for any parameter k, can be done in O∗(n1/2)+O(k) time, using a simple variant of
this technique.

4.2 Computing the largest-area, largest-perimeter, and largest-height triangles

Let P be a set of n points in R
d. We wish to find the triangle whose vertices belong to P and

whose area (respectively, perimeter, height) is maximal. This problem is a useful subroutine in

9With an appropriate algebraic re-parametrization of the spherical coordinates, of course.
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path approximation algorithms; see [21]. Daescu and Serfling [21] gave an O∗(n13/5)-algorithm for
the 3-dimensional largest-area triangle. In d dimensions, the running time is O∗(n3−2/(⌊d2/2⌋+1)).

In R
3, our technique, without any additional enhancements, yields the improved boundO∗(n5/2),

using the following straightforward procedure. For each pair of points p1, p2 ∈ P , we find the far-
thest point q ∈ P from the line p1p2, compute the area of ∆p1p2q, and output the largest-area
triangle among those triangles. The procedure performs farthest-point queries from O(n2) lines,
for a total cost of O∗(n5/2), as claimed.

We can improve this solution, using the following standard decomposition technique, to an algo-
rithm with running time O∗(n26/11). First, the approach just described performs M farthest-point
queries on a set of N points in time O∗(MN1/2 +N), where the second term is the preprocessing
cost of preparing the data structure.

Before continuing, we note the following technical issue. Recall that we find the farthest point
from a query line ℓ by drawing a cylinder Cρ around ℓ, whose radius ρ is the smallest (unknown)
radius for which Cρ contains P . The concrete value of ρ is found using parametric searching. In
the approach that we follow now, we will execute in parallel O(n2) different queries, each with its
own ρ, so care has to be taken when running the parametric search with this multitude of different
unknown values of ρ.

While there are several alternative solutions to this problem, we use the following one, which
seems the cleanest. Let A > 0 be a fixed parameter. For each pair p1, p2 of distinct points of P , let
CA(p1p2) denote the cylinder whose axis passes through p1 and p2 and whose radius is 2A/|p1p2|.
In the decision procedure, we specify the value of A, and perform O(n2) range fullness queries
with the cylinders CA(p1p2). If all of them are found to be full, then A ≥ A∗, where A∗ is the
(unknown) maximal area of a triangle spanned by P ; otherwise A < A∗. (With a somewhat finer
implementation, we can also distinguish between the cases A > A∗ and A = A∗; we omit the details
of this refinement.)

To implement the decision procedure, we apply a duality transform, where each cylinder C in
3-space is mapped to a point C∗ = (a, b, c, d, ρ), where (a, b, c, d) is some parametrization of the
axis of C and ρ is its radius. In this dual parametric 5-space, a point p ∈ R

3 is mapped to a surface
p∗, which is the locus of all (points representing) cylinders which contain p on their boundary.
Note that the portion of space below (resp., above) p∗, in the ρ-direction, consists of points dual
to cylinders which do not contain (resp., contain) p.

Let P ∗ = {p∗ | p ∈ P}. Fix some sufficiently large but constant parameter r0, and construct
a (1/r0)-cutting Ξ of A(P ∗), using the vertical decomposition of a random sample of O(r0 log r0)
surfaces of P ∗ (see, e.g., [40]). As follows from [17, 30], the combinatorial complexity of Ξ is O∗(r60).
We distribute the O(n2) points dual to the query cylinders among the cells of Ξ, in brute force, and
also find, in equally brute force, for each cell τ the subset P ∗

τ of surfaces which cross τ . We ignore
cells which fully lie below some surface of P ∗, because cylinders whose dual points fall in such a
cell cannot be full (the decision algorithm stops as soon as such a point (cylinder) is detected). For
each of the remaining cells τ , we repeat this procedure with the subset of the points dual to the
surfaces in P ∗

τ and with the subset of cylinders whose dual points lie in τ . We keep iterating in
this manner until we reach cuttings whose cells are crossed by at most n/r dual surfaces, where r
is some (non-constant) parameter that we will shortly fix. As is easily checked, the overall number
of cells in these cuttings is O∗(r6).

We then run the preceding weaker procedure on each of the resulting cells τ , with the set Pτ

of points dual to the surfaces which cross τ and with the set Cτ of cylinders whose dual points lie
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in τ . Letting mτ denote the number of these cylinders, the overall cost of the second phase of the
procedure is

∑

τ

O∗(mτ (n/r)
1/2 + n/r) = O∗(n2(n/r)1/2 + nr5).

Since r0 is a constant, the overall cost of the first phase is easily seen to be proportional to the
overall size of the resulting subproblems, which is O∗(n2 + nr5). Overall, the cost is thus

O∗(n5/2/r1/2 + nr5).

Choosing r = n3/11, this becomes O∗(n26/11).

Running a generic version of this decision procedure in parallel is fairly straightforward. The
cuttings themselves depend only on the dual surfaces, which do not depend on A∗, so we can
construct them in a concrete, non-parametric fashion. Locating the points dual to the query
cylinders can be done in parallel, and, since r0 is a constant, this takes constant parallel depth
for each of the logarithmically many levels of cuttings. The second phase can also be executed
in parallel in an obvious manner. Omitting the further easy details, we conclude that the overall
algorithm also takes O∗(n26/11) time.

Largest-perimeter triangle. The above technique can be adapted to yield efficient solutions of
several problems of a similar flavor. For example, consider the problem of computing the largest-
perimeter triangle among those spanned by a set P of n points in R

3. Here, for each pair p1, p2
of points of P , and for a specified perimeter π, we construct the ellipsoid of revolution Eπ(p1, p2),
whose boundary is the locus of all points q satisfying |qp1|+ |qp2| = π−|p1p2|. (Here, of course, we
only consider pairs p1, p2 with |p1p2| < π/2.) We now run O(n2) range fullness queries with these
ellipsoids, and report that π∗ > π if at least one of these ellipsoids in not full, or π∗ ≤ π otherwise,
where π∗ is the largest perimeter.

The efficient implementation of this procedure is carried out similar to the preceding algorithm,
except that here the dual representation of our ellipsoids require six degrees of freedom, to specify
the foci p1 and p2. Unlike the previous case, the dual surfaces p

∗ do depend on π, so, in the generic
implementation of the decision procedure we also need to construct the various (1/r0)-cuttings in
a generic, parallel manner.10 However, since r0 is a constant, this is easy to do in constant parallel
depth per cutting. A (1/r0)-cutting in R

6 has complexity O∗(r8) [17, 30]. A modified version of
the preceding analysis then yields:

Theorem 4.4 The largest-perimeter triangle among those spanned by a set of n points in R
3 can

be computed in O∗(n12/5) time.

Largest-height triangle. In this variant, we wish to compute the triangle with largest height
among those determined by a set P of n points in R

3. Here, for each pair p1, p2 of points of P , and
for a specified height h, we construct the cylinder Ch(p1, p2), whose axis passes through p1 and p2
and whose radius is h. We run O(n2) range fullness queries with these cylinders, and report that
h∗ > h if at least one of these cylinders in not full, or h∗ ≤ h otherwise, where h∗ is the desired
largest height.

10We can make these surfaces independent of π if we add π as a seventh degree of freedom, but then the overall
performance of the algorithm deteriorates.
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The efficient implementation of this procedure is carried out as above, except that here the dual
representation of these cylinders require only four degrees of freedom, once h is specified. As in the
preceding case, here too the surfaces of P ∗ also depend on h, so we need a generic parallel procedure
for constructing (1/r0)-cuttings for these surfaces, which however is not difficult to achieve, since
r0 is a constant. We omit the simple routine details. Since a (1/r0)-cutting in R

4 has complexity
O∗(r4) [30], a modified version of the preceding analysis then yields:

Theorem 4.5 The largest-height triangle among those spanned by a set of n points in R
3 can be

computed in O∗(n16/7) time.

Further extensions. We can extend this machinery to higher dimensions, although its perfor-
mance deteriorates as the dimension grows. The range fullness problem in R

d, for d ≥ 4, can
be handled in much the same way as in the 3-dimensional case. When extending Claim 4.1, we
have an intersection of m convex sets of constant description complexity in R

d, and we can regard
the boundary of the intersection as the lower envelope of m (d − 1)-variate functions of constant
description complexity, each representing the boundary of one of the input convex sets, in spherical
coordinates about some fixed point in the intersection. The complexity of the lower envelope is
O∗(md−1) [39]. However, we need to decompose the region below the envelope into elementary
cells, and, as already noted, the only known general-purpose technique for doing so is to decompose
the entire arrangement of the graphs of the m boundary functions, and select the cells below the
lower envelope. The complexity of such a decomposition is O∗(m2d−4) [17, 30]. This implies that
ζ(r) = O∗(r2d−4). The rest of the analysis, including the construction of a good test set, is done in
essentially the same manner. Hence, using the machinery of the previous section, we obtain:

Theorem 4.6 Let P be a set of n points in R
d, for d ≥ 4, and let Γ be a family of convex ranges

of constant description complexity. Then one can construct, in near linear time, a data structure
of linear size so that, for any range γ ∈ Γ, it can determine, in O∗(n1−1/(2d−4)), whether γ is full.

Finding the largest-area triangle in R
d. Let P be a set of n points in R

d, for d ≥ 4, and
consider the problem of finding the largest-area triangle spanned by P . We apply the same method
as in the 3-dimensional case, whose main component is a decision procedure which tests O(n2)
cylinders for fullness. A cylinder (with a line as an axis) in R

d has 2d − 1 degrees of freedom, so
the dual representation of our O(n2) cylinders is as points in R

2d−1. The best known bound on
the complexity of a (1/r)-cutting in this space is O∗(r2(2d−1)−4) = O∗(r4d−6). Applying this bound
and the bound in Theorem 4.6, the overall cost of the decision procedure is

O∗
(

n2(n/r)1−1/(2d−4) + nr4d−7
)

.

Optimizing the value of r, and applying parametric searching, we get an algorithm for the maximum-
area triangle in R

d with running time

O∗

(

n
1+ (4d−9)(4d−7)

(4d−6)(2d−4)−1

)

.

We can extend the other problems (largest-perimeter or largest-height triangles) in a similar man-
ner, and can also obtain algorithms for solving higher-dimensional variants, such as computing
the largest-volume tetrahedron or higher-dimensional simplices. We omit the straightforward but
tedious analysis, and the resulting cumbersome-looking bounds.

18



5 Ray shooting amid balls in 3-space

Let B be a set of n balls in 3-space. We show how to preprocess B in near-linear time into a data
structure of linear size, so that, given a query ray ρ, the first ball that ρ hits can be computed in
O∗(n2/3) time, improving the general bound O∗(n3/4) mentioned in the introduction. As already
noted, we use the parametric-searching technique of Agarwal and Matoušek [5], which reduces the
problem to that of efficiently testing whether a query segment s = qz ⊂ ρ intersects any ball in B,
where q is the origin of ρ and z is a parametric point along ρ.

Parametric representation of balls and segments. We move to a parametric 4-dimensional
space, in which balls in 3-space are represented by points, so that a ball with center at (a, b, c) and
radius r is mapped to the point (a, b, c, r). A segment e, or for that matter, any closed nonempty
set K ⊂ R

3 of constant description complexity, is mapped to a surface σK , which is the locus of all
points representing balls that touch K but are openly disjoint from K. By construction, σK is the
graph of a totally defined continuous trivariate function r = σK(a, b, c), which is semi-algebraic of
constant description complexity. Moreover, points below (resp., above) σK represent balls which
are disjoint from K (resp., intersect K).

Moreover, for any such set K, σK(q) is, by definition, the (Euclidean) distance of q from K.
Hence, given a collection K = {K1,K2, . . . ,Km} of m sets, the minimization diagram of the surfaces
σK1 , . . . , σKm (that is, the projection onto the 3-space r = 0 of the lower envelope of these surfaces)
is the nearest-neighbor Voronoi diagram of K. We use this property later on, in deriving a sharp
bound on the resulting function ζ(·).

Building a test set for segment emptiness. Here we use the general recipe for constructing
good test sets, which covers each empty segment e by a fairly complex “canonical” empty region
K, which has nonetheless constant description complexity. In parametric 4-space, each such region
K is mapped to the upper halfspace above the corresponding surface σK ; this is the set of all balls
that intersect K. The complement of the union of m such ranges is the portion of 4-space below the
lower envelope of the corresponding surfaces σKi

. Using the connection between this envelope and
the Voronoi diagram of the Ki’s, we are able to decompose (the diagram and thus) the complement
of the union into ζ(m) = O∗(m3) elementary cells.

in more detail, the construction proceeds as follows. We start by choosing a random sample
N of O(r log r) balls of B, to construct a test set Q for empty segment ranges, with respect to
N . While we do not have a clean, explicit geometric definition of these ranges, they will satisfy,
as above, all the four requirements from a good test set. Also, we spell out the adaptation of the
general recipe to the present scenario, to help the reader see through one concrete application of
the general recipe.

Specifically, we move to a dual space, in which segments in 3-space are represented as points.
Segments in 3-space have six degrees of freedom; for example, we can represent a segment by the
coordinates of its two endpoints. The dual space is therefore 6-dimensional. Each ball B ∈ N is
mapped to a surface B∗, which is the locus of all points representing segments which touch ∂B but
do not penetrate into its interior; that is, either they are tangent to B, at a point in their relative
interior, or they have an endpoint on ∂B but are openly disjoint from B.

Let N∗ denote the collection of the surfaces dual to the balls of N . Construct a (1/r)-cutting
of A(N∗), which consists of O∗(r8) elementary cells [17, 30]. Each cell τ has the property that all
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points in τ represent segments which meet a fixed set of balls from among the balls in N and avoid
all other balls of N ; the set depends only on τ .

For each cell τ whose corresponding set of balls is empty, we define Kτ to be the union, in
3-space, of all segments e whose dual points lie in τ . Since τ is an elementary cell, Kτ is a semi-
algebraic set of constant description complexity (see, e.g., [16]). Moreover, Kτ is an N -empty
region, in the sense that it is openly disjoint from all the balls in N .

Since we have to work in parametric 4-space, we map each region Kτ of the above kind into
a range γτ in 4-space, which is the locus of all (points representing) balls which intersect Kτ . As
discussed above, γτ is the upper halfspace bounded by the graph σKτ of the distance function from
points in R

3 to Kτ .

We define the desired test set Q to consist of all the ranges γτ , as just defined, and argue that
Q indeed satisfies all four properties required from a good test set: (a) Compactness: |Q| = O∗(r8),
so its size is small. (b) Shallowness: With high probability, each range in Q is (n/r)-shallow, since
it does not contain any point representing a ball in N (and we assume that the sample N does
indeed have this property, which makes all the ranges in Q (n/r)-shallow). (c) Containment: Each
empty segment is also N -empty, so its dual point lies in some cell τ of the cutting, whose associated
subset of balls is empty. By construction, we have e ⊂ Kτ . That is, any ball intersecting e also
intersects Kτ , so the range in 4-space that e defines is contained in γτ , i.e., in a single range of Q.
(d) Efficiency: The complement of the union of any m ranges in Q can be decomposed into O∗(m3)
elementary cells.

The proof of (d) proceeds as follows. The complement of the union of m ranges, γτ1 , . . . , γτm , is
the region below the lower envelope of the corresponding surfaces σKτ1

, . . . , σKτm
. To decompose

this region, it suffices to produce a decomposition of the 3-dimensional minimization diagram of
these surfaces, and extend each of the resulting cells into a semi-unbounded vertical prism, whose
“ceiling” lies on the envelope.

The combinatorial complexity of the minimization diagram of a collection K = {Kτ1 , . . . ,Kτm}
of m trivariate functions of constant description complexity is11 O∗(m3) [40]. Moreover, as noted
above, the minimization diagram is the Euclidean nearest-neighbor Voronoi diagram of K.

We can decompose each cell Vi = V (Kτi) of the diagram (or, more precisely, the portion
of the cell outside the union of the Kτi ’s) using its star-shapedness with respect to its “site”
Kτi ; that is, for any point p ∈ V (Kτi), the segment connecting p to its nearest point on Kτi is
fully contained in V (Kτi). As is easy to verify, this property holds regardless of the shape, or
intersection pattern, of the regions in K. We first decompose the 2-dimensional faces bounding Vi

into elementary cells, using, e.g., an appropriate variant of 2-dimensional vertical decomposition,
and then take each such cell φ0 and extend it to a cell φ, which is the union of all segments, each
connecting a point in φ0 to its nearest point on Kτi . The resulting cells, obtained by applying
this decomposition to all cells of the diagram, form a decomposition of the portion of the diagram
outside the union of the Kτi ’s, into a total of O∗(m3) elementary cells, as desired. The union of
the Kτi ’s themselves, being a subcollection of cells of a 3-dimensional arrangement of m regions of
constant description complexity, can also be decomposed into O∗(m3) cells, using standard results
on vertical decomposition in three dimensions [40].

Using Lemma 3.4 and the machinery of Section 3, in conjunction with the parametric searching
technique of [5], we thus obtain the following theorem.

11This bound holds regardless of how “badly” the regions in K are shaped, nor how “wildly” they can intersect
one another, as long as each of them has constant description complexity.
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Theorem 5.1 Ray shooting amid n balls in 3-space can be performed in O∗(n2/3) time, using a
data structure of O(n) size, which can be constructed in O∗(n) time.

Remark: In the preceding description, we only considered empty ranges. If desired, we can
extend the analysis to obtain a data structure which also supports “reporting queries”, in which
we want to report the first k balls hit by a query ray. We omit the details of this straightforward
extension.

6 Range emptiness searching and reporting in the plane

Fat triangle reporting and emptiness searching. Let α > 0 be a fixed constant, and let P
be a set of n points in the plane. We wish to preprocess P , in O∗(n) time, into a data structure
of size O(n), which, given an α-fat query triangle γ (which, as we recall, is a triangle all of whose
angles are at least α), can determine in O∗(1) time whether γ ∩ P = ∅, or report in O∗(1) +O(k)
time the points of P in γ, where k = |P ∩ γ|.

To do so, we need to construct a good test set Q. We use the following “canonization” process
(an ad-hoc process, not following the general recipe of Section 3). As above, we apply the construc-
tion to a random sample N of O(r log r) points of P . For simplicity, we first show how to canonize
empty triangles, and then extend the construction to shallow triangles. (As before, the first part
suffices for emptiness searching, whereas the second part is needed for reporting queries.) Let ∆ be
an α-fat empty triangle, which is then also N -empty. We expand ∆ homothetically, keeping one
vertex fixed and translating the opposite side away, until it hits a point q1 of N . We then expand
the new triangle homothetically from a second vertex, until the opposite side hits a second point
q2 of N , and then apply a similar expansion from the third vertex, making the third edge of the
triangle touch a third point q3 of N . We end up with an N -empty triangle ∆′, homothetic to, and
containing, ∆, each of whose sides passes through one of the points q1, q2, q3 ∈ N . See Figure 2.
(It is possible that some of these expansions never hit a point of N , so we may end up with an
unbounded wedge or halfplane instead of a triangle. Also, the points q1, q2, q3 need not be distinct.)

q3

∆

∆′

q1
q2

Figure 2: The first step in canonizing an empty triangle.

Let D be the set of orientations {jα/4 | j = 0, 1, . . . , ⌊8π/α⌋}. We turn the side containing q1
clockwise and counterclockwise about q1, keeping its endpoints on the lines containing the other
two sides, until we reach an orientation in D, or until we hit another point of N (which could also
be one of the points q2, q3), whichever comes first. Each of the new sides forms, with the two lines
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containing the two other sides, a new (openly) N -empty (3α/4)-fat triangle; the union of these two
triangles covers ∆′. See Figure 3.

∆

q1
q2

q3

Figure 3: The second step in canonizing an empty triangle.

For each of the two new triangles, ∆′′, we apply the same construction, by rotating the side
containing q2 clockwise and counterclockwise, thereby obtaining two new triangles whose union
covers ∆′′. We then apply the same construction to each of the four new triangles, this time
rotating about q3. Overall, we get up to eight new triangles whose union covers ∆. Each of these
new triangles is (α/2)-fat, openly N -empty, and each of its sides either passes through two points
of N , or passes through one point of N and has orientation in D. Since |D| = O(1/α) = O(1), it
follows that the overall number of these canonical covering triangles is O((r log r)6) = O∗(r6). (We
omit the easy extensions of this step to handle unbounded wedges or halfplanes, or the cases where
the points qi, or some of the newly encountered points, lie at vertices of the respective triangles.)

We take Q to be the collection of these canonical triangles, and argue that Q indeed satisfies the
properties of a good test set: (a) Compactness: |Q| = O∗(r6), so its size is small. (b) Shallowness:
With high probability, each range in Q is (n/r)-shallow (and, as usual, we assume that this property
does indeed hold). (c) Containment: By construction, each α-fat empty triangle is contained in the
union of at most eight triangles in Q. (d) Efficiency: Being (α/2)-fat, the union of anym triangles in
Q has complexity O(m log logm) [35], so the associated function ζ satisfies ζ(m) = O(m log logm).
This, combined with Lemma 3.4 and the machinery of Section 3, lead to the following theorem.

Theorem 6.1 One can preprocess a set P of n points in the plane, in near-linear time, into a data
structure of linear size, so that, for any query α-fat triangle ∆, one can determine, in O∗(1) time,
whether ∆ ∩ P = ∅.

Reporting points in fat triangles. We can extend the technique given above to the problem
of reporting the points of P that lie inside any query fat triangle. For this, we need to construct a
test set that will be good for shallow ranges and not just for empty ones. Using Theorem 2.2, we
construct (by random sampling) a shallow (1/r)-net N ⊆ P of size O(r log r). We next canonize
every (n/r)-shallow α-fat triangle ∆, by the same canonization process used above, with respect
to the set N . Note that each of the resulting canonical triangles contains (in its interior) the same
subset of N as ∆ does. By the properties of shallow (1/r)-nets, since |∆ ∩ P | ≤ n/r, we have
|∆ ∩N | = O(log r), so all the resulting canonical triangles are (c log r)-shallow with respect to N ,
for some absolute constant c. Again, since N is a shallow (1/r)-net, all the canonical triangles are
(c′n/r)-shallow with respect to P , for another absolute constant c′. Hence, the resulting collection Q
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of canonical triangles is a good test set for all shallow fat triangles, and we can apply the machinery
of Section 3 to obtain a data structure of linear size, which can be constructed in near-linear time,
and which can perform reporting queries in fat triangles in time O∗(1)+O(k), where k is the output
size of the query.

Range emptiness searching with semidisks and circular caps. The motivation for studying
this problem comes from the following problem, addressed in [20]. We are given a set P of n points
in the plane, and wish to preprocess it into a data structure of linear size, so that, given a query
point q and a query line ℓ, one can quickly find the point of P closest to q and lying above ℓ. In
the original problem, as formulated in [20], one also assumes that q lies on ℓ, but we will consider,
and solve, the more general version of the problem, where q also lies above ℓ.

The standard approach (e.g., as in [6]) yields a solution with linear storage and near-linear
preprocessing, and query time O∗(n1/2). We present a solution with query time O∗(1).

Using parametric searching [36], the problem reduces to that of testing whether the intersection
of a disk of radius ρ centered at q with the halfplane ℓ+ above ℓ is P -empty. The resulting range
is a circular cap larger than a semidisk (or exactly a semidisk if q lies on ℓ). Again, the main task
is to construct a good test set Q for such ranges, which we do by using an ad-hoc canonization
process, which covers each empty circular cap by O(1) canonical caps, which satisfy the properties
of a good test set; in particular, we will have ζ(m) = O∗(m). (As before, we consider here only the
case of emptiness detection, and will consider the reporting problem later.)

To construct a test set Q we choose a random sample N of O(r log r) points of P and build a
set of canonical empty ranges with respect to N . Let C = Cc,ρ,ℓ be a given circular cap (larger
than a semidisk) with center c, radius ρ, and chord supported by a line ℓ. We first translate ℓ in
the direction which enlarges the cap, until either its portion within the disk D of the cap touches
a point of N , or ℓ leaves D. See Figure 4(left). In the latter case, C is contained in a complete
N -empty disk, and it is fairly easy to show that such a disk is contained in the union of at most
three canonical N -empty disks, each passing through three points of N or through two diametrically
opposite points of N ; there are at most O∗(r3) such disks.

q′

C

ℓ

q

C

q
ℓ

Figure 4: The first steps in canonizing an empty cap.

Suppose then that the new chord (we continue to denote its line as ℓ) passes through a point q of
N , as in the figure. Let D be a set of O(1) canonical orientations, uniformly spaced and sufficiently
dense along the unit circle, for some small constant value α. Rotate ℓ about q in both clockwise
and counterclockwise directions, until we reach one of the two following events: (i) the orientation
of ℓ belongs to D; or (ii) the portion of ℓ within D touches another point of N . In either case, the
two new lines, call them ℓ1, ℓ2, become canonical—there are only O∗(r2) such possible lines. Note
that our original cap C is contained in the union C1 ∪ C2, where C1 = Cc,ρ,ℓ1 and C2 = Cc,ρ,ℓ2 .
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Moreover, although the new caps need no longer be larger than a semidisk, they are not much
smaller—this is an easy exercise in elementary geometry. See Figure 4(right).

We next canonize the disk of C (which is also the disk of C1 and C2). Fix one of the new caps,
say C1. Expand C1 from the center c, keeping the line ℓ1 fixed, until we hit a point q1 of N (lying
in ℓ+1 ). See Figure 5(left). If c lies in ℓ+1 then we move c parallel to ℓ1 in both directions, again
keeping ℓ1 itself fixed and keeping the circle pass through q1, until we obtain two circular caps,
each passing through q1 and through a second point of N (if we do not hit a second point, we reach
a quadrant, bounded by ℓ and by the line orthogonal to ℓ through q1). The union of the two new
circular caps covers C1. See Figure 5(right).

q1

c

C1

q1

c

C1

ℓ1 ℓ1

Figure 5: The second step in canonizing an empty cap.

If c lies in ℓ−1 , we move it along the two rays connecting it to the endpoints u0, v0 of the chord
defined by ℓ1. As before, each of the motions stops when the circle hits another point of N in ℓ+1 , or
when the motion reaches u0 or v0. We claim that C1 is contained in the union of the two resulting
caps. Indeed, let u and v denote the locations of the center at the two stopping placements. We
need to show that, for any point b ∈ C1 we have either |bu| ≤ |q1u| or |bv| ≤ |q1v|. If both
inequalities did not hold, then both u and v would have to lie on the side of the perpendicular
bisector of q1b containing q1. This is easily seen to imply that c must also lie on that side, which
however is impossible (because |bc| ≤ |q1c|). See Figure 6.

Next, we take one of these latter caps, C ′, whose bounding circle passes through q1 and through
a second point q2 of N ∩ ℓ+1 , and move its center along the bisector of q1q2 in both directions,
keeping the bounding circle touch q1 and q2, and still keeping the line ℓ1 supporting the chord
fixed. We stop when the first of these events takes place: (i) The center reaches ℓ1, in which case
the cap becomes a semidisk (this can happen in only one of the moving directions). (ii) The center
reaches the midpoint of q1q2. (iii) The bounding circle touches a third point of N ∩ ℓ+1 . (iv) The
central angle of the chord along ℓ1 is equal to some fixed positive angle β > 0. The union of the
two new caps covers C ′. (It is possible that during the motion the moving circle becomes tangent
to ℓ1, and then leaves it, in which case the corresponding final cap is a full disk.)

Similarly, if the center of C ′ lies on ℓ1 (which can happen when the motion in the preceding

q1

C1

c
vuu0 v0 ℓ1

Figure 6: C1 is contained in the union of the two other caps.
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canonization step reaches v0 or u0), then we canonize its disk by translating the center to the left
and to the right along l1 until the bounding circle touches another point of N ∩ ℓ+1 , exactly as in
the preceding case (shown in Figure 5(right)).

Let C ′′ be one of the four new caps. In all cases C ′′ is canonical: For the first kind of caps, the
stopping condition that defines C ′′ is (ii) or (iii) then either the circle bounding C ′′ passes through
three points of N or it passes through two diametrically opposite points of N . There are a total
of O∗(r3) such circles, and since C ′′ is obtained (in a unique manner) by the interaction of one of
these circles and one of the O∗(r2) canonical chord-lines, there is a total of O∗(r5) such caps. If the
stopping condition is (i), the cap is also canonical, because the center of the containing disk is the
intersection point of a bisector of two points of N with one of the O∗(r2) canonical chord-lines, so
there is a total of O∗(r4) such caps. In the case of condition (iv), there are only O∗(r2) such disks,
for a total of O∗(r4) caps. Similar reasoning shows that the caps resulting in the second case are
also canonical, and their number is O∗(r4).

We take the test set Q to consist of all the caps of the final forms, and argue that it satisfies the
properties of a good test set: (a) Compactness: |Q| = O∗(r5), so its size is small. (b) Shallowness:
With high probability, each range in Q is (n/r)-shallow (and we assume that this property does
indeed hold). (c) Containment: Each empty cap is also N -empty, so, by the above canonization
process, it is contained in the union of O(1) caps of Q. (d) Efficiency: Each cap C ∈ Q is (α, β)-
covered, for appropriate fixed constants α, β > 0, in the terminology of [24], meaning that for each
point p ∈ ∂C there exists an α-fat triangle touching p, contained in C, and with diameter which
is at least β times the diameter of C. In addition, the boundaries of any two ranges in Q (or of
any two circular caps, for that matter) intersect in at most four points, as is easily checked. As
follows from the recent analysis of de Berg [22], the complexity of the union of any m ranges in Q
is O(λ6(m) log2 m) = O∗(m). Hence, the complement of the union of any m ranges in Q can be
decomposed into O∗(m) elementary cells, making ζ(m) = O∗(m).

In conclusion, we obtain:

Theorem 6.2 Let P be a set of n points in the plane. We can preprocess P , in near-linear time,
into a data structure of linear size, so that, for any query circular cap C, larger than a semidisk,
we can test whether C ∩ P is empty, in O∗(1) time.

Combining Theorem 6.2 with parametric searching, we obtain:

Corollary 6.3 Let P be a set of n points in the plane. We can preprocess P , in near-linear time,
into a data structure of linear size, so that, for any query halfplane ℓ+ and point q ∈ ℓ+, we can
find, in O∗(1) time, the point in P ∩ ℓ+ nearest to q.

Remark. The machinery developed in this section also applies to smaller circular caps, as long as
they are not too small. Formally, if the central angle of each cap is at least some fixed constant
α > 0, the same technique holds, so we can test emptiness of such ranges in O∗(1) time, using a
data structure which requires O(n) storage and O∗(n) preprocessing. Thus Theorem 6.2 carries
over to this scenario, but Corollary 6.3 does not, because we have no control over the “fatness”
of the cap, as the disk shrinks or expands, when the center of the disk lies in ℓ−, and once the
canonical caps become too thin, the complexity of their union may become quadratic.
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Reporting points in semidisks and circular caps. As in the case of fat triangles, we can
extend the technique to answer efficiently range reporting queries in semidisks or in sufficiently
large circular caps. We use the same canonization process, with respect to a random sample N
of size O(r log r) which is a shallow (1/r)-net, and argue, exactly as in the case of fat triangles,
that the resulting collection of canonical caps is a good test set for shallow semidisk or larger cap
ranges. Applying the machinery of Section 3, we obtain a data structure of linear size, which can
be constructed in near-linear time, and which can perform reporting queries in semidisks or larger
caps, in time O∗(1) +O(k), where k is the output size of the query.

7 Approximate range counting

Given a set P of n points in R
d, a set Γ of semi-algebraic ranges of constant description complexity,

and a parameter δ > 0, the approximate range counting problem is to preprocess P into a data
structure such that, for any query range γ ∈ Γ, we can efficiently compute an approximate count
tγ which satisfies

(1− δ)|P ∩ γ| ≤ tγ ≤ (1 + δ)|P ∩ γ|.

As in most of the rest of the paper, we will only consider the case where the size of the data
structure is to be (almost) linear, and the goal is to find solutions with small query time.

The problem has been studied in several recent papers [12, 13, 14, 29], for the special case where
P is a set of points in R

d and Γ is the collection of halfspaces (bounded by hyperplanes). A variety
of solutions, with near-linear storage, were derived; in all of them, the dependence of the query cost
on n is close to n1−1/⌊d/2⌋, which, as reviewed earlier, is roughly the same as the cost of halfspace
range emptiness queries, or the overhead cost of halfspace range reporting queries [33].

The fact that the approximate range counting problem is closely related to range emptiness
comes as no surprise, because, when P ∩ γ = ∅, the approximate count t must be 0, so range
emptiness is a special case of approximate range counting. The goal is therefore to derive solutions
that are comparable, in their dependence on n, with those that solve emptiness (or reporting)
queries. As just noted, this has been accomplished for the case of halfspaces. In this section we
extend this technique to the general semi-algebraic case.

The simplest solution is to adapt the technique of Aronov and Har-Peled [12], which uses a
procedure for answering range emptiness queries as a “black box”. Specifically, suppose we have
a data structure, D(P ′), for any set P ′ of n′ points, which can be constructed in T (n′) time, uses
S(n′) storage, and can determine whether a query range γ ∈ Γ is empty in Q(n′) time. Using
such a black box, Aronov and Har-Peled show how to construct a data structure for n points using

O((δλ−3 + Σ
⌈1/δ⌉
i=1 1/iλ−2)S(n) log n) storage and O((δλ−3 + Σ

⌈1/δ⌉
i=1 1/iλ−2)T (n) log n) preprocessing,

where λ ≥ 1 is some constant for which S(n/r) = O(S(n)/rλ) and T (n/r) = O(T (n)/rλ), for
any r > 1. Given a range γ ∈ Γ, the data structure of [12] returns, in O(δ−2Q(n) log n) time, an
approximate count tγ , satisfying (1− δ)|γ ∩ P | ≤ tγ ≤ |γ ∩ P |.

The intuition behind this approach is that a range γ, containing m points of P , is expected to
contain mr/n points in a random sample from P of size r, and no points in a sample of size smaller
than n/m. The algorithm of [12] then guesses the value of a (up to a factor of 1 + δ), sets r to be
an appropriate multiple of n/m, and draws many (specifically, O(δ−2 log n) random samples of size
r. If γ is empty (resp., nonempty) for many of the samples then, with high probability, the guess
for m is too large (resp., too small). When we cannot decide either way, we are at the correct value
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of m (up to a relative error of δ). The actual details of the search are somewhat more contrived;
see [12] for those details.

Plugging our emptiness data structures into the machinery of [12], we therefore obtain the
following results. In all these applications we can take λ = 1, so, in the terminology used above,
the overall data structure uses O(δ−2S(n) log n) storage and O(δ−2T (n) log n) preprocessing.

Corollary 7.1 Let P be a set of n points in the plane, and let α, δ be given positive parameters.
Then we can preprocess P into a data structure of size O(δ−2n log n), in time O(δ−2n1+ε), for any
ε > 0, such that, for any α-fat query triangle ∆, we can compute, in O(δ−2nε) time, for any ε > 0,
an approximate count t∆ satisfying (1− δ)|∆ ∩ P | ≤ t∆ ≤ |∆ ∩ P |.

Corollary 7.2 Let P be a set of n points in the plane, and let δ be a given positive parameter.
Then we can preprocess P into a data structure of size O(δ−2n log n), in time O(δ−2n1+ε), for
any ε > 0, such that, for any line ℓ, point p on ℓ or above ℓ, and distance d, we can compute, in
O(δ−2nε) time, for any ε > 0, an approximate count tℓ,p,d of the exact number Nℓ,p,d of the points
of P which lie above ℓ and at distance at most d from p, so that (1− δ)Nℓ,p,d ≤ tℓ,p,d ≤ Nℓ,p,d.

Corollary 7.3 Let P be a set of n points in R
3, Γ a collection of convex semi-algebraic ranges of

constant description complexity, and δ a given positive parameter. Then we can preprocess P into
a data structure of size O(δ−2n log n), in time O(δ−2n1+ε), for any ε > 0, such that, for any query
range γ ∈ Γ, we can compute, in O(ε−2n1/2+ε log n) time, for any ε > 0, an approximate count tγ
of the number of points of P outside γ, satisfying (1− δ)|γc ∩ P | ≤ t∆ ≤ |γc ∩ P |.

Corollary 7.4 Let B be a set of n balls in R
3, and let δ be a given positive parameter. Then

we can preprocess B into a data structure of size O(δ−2n log n), in time O(δ−2n1+ε), for any
ε > 0, such that, for any query ray ρ, we can compute, in O(ε−2n2/3+ε log n) time, for any ε > 0,
an approximate count tρ of the exact number Nρ of the balls of B intersected by ρ, satisfying
(1− δ)Nρ ≤ tρ ≤ Nρ.

Remark: Another approach to approximate range counting has been presented in [13, 14], in
which, rather than using range emptiness searching as a black box, one modifies the partition
tree of the range emptiness data structure, and augments each of its inner nodes with a so-called
relative (p, ε) approximation sets, which are then used to obtain the approximate count of a range.
This approach too can be adapted to yield efficient approximate range counting algorithms for
semialgebraic ranges, with a slightly improved dependence of their performance on δ. We omit
details of such an adaptation in this paper.

8 Conclusion

In this paper we have presented a general approach to efficient range emptiness searching with
semi-algebraic ranges, and have applied it to several specific emptiness searching and ray shooting
problems. The present study resolves and overcomes the technical problems encountered in our
earlier study [42], and presents more applications of the technique.

Clearly, there are many other applications of the new machinery, and an obvious direction for
further research is to “dig them up”. In each such problem, the main step would be to design a
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good test set, with associated function ζ(·) as small as possible, using either the general recipe or an
appropriate ad-hoc analysis. Many specific instances of this step are likely to generate interesting
(and often hard) combinatorial questions. For example, as already mentioned earlier, we still do
not know whether the complement of the union of n (congruent) cylinder in R

3 can be decomposed
into O∗(n2) elementary cells.
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[34] J. Matoušek, Efficient partition trees, Discrete Comput. Geom. 8 (1992), 315–334.
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