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LONG-TIME PROTEIN FOLDING DYNAMICS FROM SHORT-TIME
MOLECULAR DYNAMICS SIMULATIONS∗

JOHN D. CHODERA† , WILLIAM C. SWOPE‡ , JED W. PITERA‡ , AND KEN A. DILL§

Abstract. Protein folding involves physical timescales—microseconds to seconds—that are too
long to be studied directly by straightforward molecular dynamics simulation, where the fundamental
timestep is constrained to femtoseconds. Here we show how the long-time statistical dynamics of a
simple solvated biomolecular system can be well described by a discrete-state Markov chain model
constructed from trajectories that are an order of magnitude shorter than the longest relaxation
times of the system. This suggests that such models, appropriately constructed from short molecular
dynamics simulations, may have utility in the study of long-time conformational dynamics.
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1. Introduction. Proteins can fold to well-defined native topologies1 with sur-
prising determinism. Many small, single domain proteins can fold rapidly, reversibly,
cooperatively, and without the aid of other molecular machinery. In response to an en-
vironmental perturbation such as the introduction or removal of denaturant or a rapid
change in solvent temperature, these fast-folding proteins exhibit nearly exponential
relaxation kinetics with observed time constants on the order of microseconds. Other
proteins exhibit slow and complex kinetics, suggesting the presence of one or more
kinetic intermediates. A detailed understanding of this process has been the focus of
much of modern biophysics. Ultimately, knowledge of the general mechanistic features
by which proteins fold and aggregate is critical for understanding a variety of folding
and misfolding diseases, elucidating principles necessary for effective protein design,
and developing the basic tools needed for other related technological applications of
complex molecular structures.

A description of the mechanism by which a particular protein folds must by
necessity be a statistical one. While the initial microscopic state2 and dynamical
trajectory may differ for each molecule in an experiment, many proteins refold to
their native (folded) topologies upon the restoration of native conditions with the
certainty of macroscopic law [2]. A proper statistical description would summarize
the salient features and relative probabilities of relevant folding routes in a way that
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2By microscopic state, we refer to the set of generalized coordinates and momenta that completely
determine the microscopic state of the system, such as the phase space point.
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is meaningful to the physical chemist. This manner of model has been difficult to
extract from experiments. Despite the high time resolution possible with optical
spectroscopy, the majority of these experiments rely on the observation of an ensemble
of molecules to obtain sufficient signal, resulting in the ability to observe only (possibly
time-dependent) ensemble averages, rather than the behavior of any single molecule.
While observations of single molecules are now possible with fluorescence techniques,
atomic force microscopy, or optical traps, high temporal resolution is sacrificed to
achieve sufficient signal for reliable measurement. In contrast, computer simulation
promises the ability to produce information with both atomic detail and high temporal
resolution.

In practice, however, the presence of fast vibrational motion constrains the fun-
damental integration timestep to femtoseconds in order to ensure stability, limiting
practical straightforward molecular dynamics simulations of atomically detailed rep-
resentations of solvated proteins to tens of nanoseconds. As even the fastest folding
proteins exhibit relaxation timescales of several microseconds [24], this leads to a
timescale gap of at least two decades in time. Using supercomputers such as Blue
Gene [18] and software specialized for molecular dynamics simulations on these com-
puter systems [17, 19], one can produce atomistic simulations of protein molecules
with explicit representation of surrounding solvent on several microsecond timescales.
However, the number of trajectories that need be generated to provide an adequate
statistical characterization of the folding mechanism of even a single protein makes
such an endeavor extremely challenging. Distributed computing projects such as
Folding@Home [36] regularly collect tens of thousands of trajectories tens of nano-
seconds in length, but extracting insight about microsecond timescale dynamics from
these large datasets can be difficult [16, 35, 30].

Kinetics models may provide the necessary link between short simulations of a
single molecule and long experimental observations of ensembles of molecules. If time
evolution of a protein system is characterized by long waiting times within metastable
states punctuated by infrequent transitions between these states, interstate dynamics
may appear stochastic and memoryless on some short timescale. In this case, long
trajectories may be modeled as a Markov chain realized on a discrete state space of
a (hopefully small) number of states. While this model could not describe dynamical
behavior at very short timescales, which is dominated by molecular motion within a
metastable state, it could nevertheless faithfully describe long-timescale transitions
between states. This approach would have numerous advantages. It is precisely these
slow transitions involving major structural rearrangements that are of primary in-
terest; elimination of high-frequency detail is often desirable in aiding interpretation
of trajectories. To generate a statistical description of folding dynamics, instead of
generating many simulations, each long enough to contain complete folding events,
we need only generate simulations long enough to characterize transition rates be-
tween pairs of conformational substates. Construction would therefore be amenable
to parallelization on loosely coupled grids of computer systems. The resulting kinetic
model could then be used to compute the stochastic temporal evolution of either a
single molecule or an ensemble of molecules, allowing direct comparison to data from
both kinds of kinetics experiments, or to answer statistical questions about folding
pathways and mechanisms that are currently experimentally inaccessible.

This proposition is not entirely novel. Several groups have constructed stochastic
kinetic models from states defined by local potential energy minima of small peptides,
using transition state theory to estimate interstate transition rates [9, 26, 3, 28, 33, 32].
Unfortunately, the number of minima grows rapidly with increasing system size, mak-
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ing the procedure prohibitively expensive for larger proteins or systems containing
explicit solvent molecules. Other work [11, 50, 46, 1, 47, 40] has focused on the
construction of discrete- or continuous-time Markovian models to describe dynamics
between a small number of states. These models, however, have yet to demonstrate
that they can adequately describe the dynamics on timescales much longer than the
trajectories from which the models were constructed; no attempt is made to com-
pare the dynamics predicted by the model with long trajectories of explicitly solvated
systems. Transition interface sampling [31] and “milestoning” [15] attempt to de-
scribe dynamics along a one-dimensional reaction coordinate, but these approaches
are valid only if it can be shown that relaxation transverse to this coordinate happens
very quickly. Some have suggested constructing stochastic models of dynamics by ex-
pansion of the dynamical operator in a smooth basis set [43, 51, 44], but this approach
unfortunately suffers from the great difficulty of choosing rapidly convergent basis sets
for large molecules. In spite of the challenges with their construction, Markov models
that can accurately capture the long-time kinetics of a system can be very useful.
Such models embody a concise description of the various kinetic pathways and their
relative likelihood. Moreover, they can be used to facilitate the computation of useful
properties such as state lifetimes [49], mean first-passage times [46], the existence of
hidden intermediates [34], and Pfold values (transmission coefficients) [27].

Here we present a proof of principle for how the dynamics of a solvated biomolec-
ular system can be described using information from short simulations. This is il-
lustrated using terminally blocked alanine, a system small enough that its dynamical
behavior can also be thoroughly characterized by straightforward molecular dynam-
ics simulation. First, a parallel tempering simulation is conducted to explore the
thermally relevant regions of configuration space. Next, a set of metastable states,
corresponding to regions of configuration space with low probabilities of escape, are
identified. Due to the simplicity of the system considered in this work, these states
can readily be identified by hand. This removes the complication of choice of state
decomposition for arbitrary macromolecular systems, which we shall not address here.
Finally, a number of short trajectories are initiated from each state, and a Markov
chain model is constructed from analysis of the observed interstate transitions. We
demonstrate the validity of the model by comparing its prediction for the long-time
evolution of a nonequilibrium ensemble with what is actually exhibited by an ensemble
of long simulations.

This paper is organized as follows. In section 2, the Markov chain model and
its method of construction are described. In section 3, the method is applied to
terminally blocked alanine in explicit solvent. A discussion of the significance of this
result, as well as problems remaining to be solved before the method can be applied
to larger biomolecules, follows in section 4.

2. Theory.

2.1. Conformational dynamics as a Markov process. Consider the dynam-
ics of a macromolecular system in equilibrium at some temperature of interest, where
we have decomposed all configuration space into a set of M disjoint but contiguous
states. If we observe a trajectory of this system at times t = 0, τ, 2τ, . . . , nτ , where τ
denotes the observation interval, we can represent the trajectory in terms of the state
the system occupies at each of these discrete times, s0, s1, s2, . . . , sn. The sequence
of states produced by such a trajectory is a discrete-time stochastic process. If this
process is a Markov chain, it must satisfy the Markov property, whereby the proba-
bility of observing the system in state sn at the time point nτ , given the state history
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s0, s1, s2, . . . , sn−1, is independent of all but the previous state sn−1. For a stationary
process which has no explicit dependence on time, this property is given by

P (sn|s0, s1, s2, . . . , sn−1) = P (sn|sn−1).(2.1)

As there are a finite number of states, this process can be entirely characterized by
an M ×M transition matrix T(τ) dependent only on lag time τ . The element Tji(τ)
denotes the probability of observing the system in state j at time τ , given that it was
initially in state i at time 0:

Tji(τ) ≡ P (j|i).(2.2)

If we do not know the precise initial state of the system at time 0 but only the
probability the system started in each state, or if we observe an ensemble of many
noninteracting systems in an experiment, we can instead consider the probability of
finding one particular molecule in each state i at time nτ as components of the vector
of state probabilities p(nτ). If the initial probability vector is given by p(0), we can
write the probability vector at some later time nτ as

p(nτ) = T(nτ)p(0) = [T(τ)]np(0).(2.3)

This property is described by the Chapman–Kolmogorov equation.

2.2. Construction of the Markov chain model from simulation. For a
system in which the dynamical evolution is Newtonian but the initial configurations
come from a canonical distribution, Swope, Pitera, and Suits [49] show that the
transition probability Tji(τ) can be written as

Tji(τ) ≡ 〈χj(z(τ))χi(z(0))〉
〈χi(z(0))〉

=

∫
dz(0) e−βH(z(0)) χj(z(τ))χi(z(0))∫

dz(0) e−βH(z(0)) χi(z(0))

=

∫
dz(0) pi(z(0))χj(z(τ)),(2.4)

where z denotes a point in phase space, χi(z) denotes the indicator function for state i,
β ≡ (kBT )−1 is the inverse temperature, H(z) is the Hamiltonian, and pi(z) denotes
the canonical distribution restricted to state i:

pi(z) =
e−βH(z) χi(z)∫
dz e−βH(z) χi(z)

.(2.5)

The final expression of (2.4) simply states the obvious: the transition matrix element
Tji(τ) can be estimated in a straightforward (though potentially inefficient) manner
by initiating a number of simulations from configurations selected from a canonical
distribution within state i, evolving the dynamics for a time τ , and determining the
fraction of trajectories that terminate in state j:

Tji(τ) ≈ Nji(τ)∑M
j′=1 Nj′i(τ)

.(2.6)

Here Nji(τ) denotes the number of trajectories initiated from state i that terminate
in state j at time τ . This procedure corresponds to the method proposed earlier by
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Fig. 1. Potential of mean force and state boundaries. Left: The terminally blocked alanine
peptide with (φ, ψ) torsions labeled. Right: The potential of mean force in the (φ, ψ) torsions at
302 K estimated from the parallel tempering simulation, truncated at 10kBT (white regions), with
reference scale (far right) labeled in units of kBT . Boundaries defining the six manually identified
states are superimposed and the states labeled.

Swope, Pitera, and Suits in the special case that the selection cells from which sets
of simulations are initiated are coincident with the states [49].

We do not expect dynamics of a macromolecule in solution to resemble a Markov
process for all observation intervals τ , as ballistic motion dominates on very short
times, and sufficient time must be allowed for collisions with the solvent and decor-
relation of the trajectory within a metastable state. Imperfect definitions of the
metastable states may also lead to non-Markovian behavior on short times [49]. At
sufficiently long intervals τ , however, we might observe that dynamics resembles a
Markov process. While it is impractical to test the condition of complete history
independence (see (2.1)), we can simply check the (weaker) condition imposed by the
Chapman–Kolmogorov equation (see (2.3)): For transition matrices constructed for
a given τ , we check whether (2.3) holds for several lag times n = 2, 3, 4, . . . to within
statistical uncertainty. If so, the Markovian model can be assumed to be a reasonable
model of dynamics.

3. Application to terminally blocked alanine peptide.

3.1. System setup and equilibration. Using the LEaP program from the
AMBER7 molecular mechanics package [6], a terminally blocked alanine peptide (se-
quence ACE-ALA-NME; see Figure 1) was generated in the extended conformation
with peptide force field parameters taken from the AMBER parm96 parameter set [23].
The system was subsequently solvated with 431 TIP3P water molecules [21] in a trun-
cated octahedral simulation box with dimensions chosen to ensure all box boundaries
were at least 7 Å from any atom of the extended peptide. All minimization and
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molecular dynamics simulations were conducted using the sander program from the
AMBER7 package. Default nonbonded cutoffs were used, bonds to hydrogen were
constrained with SHAKE using a tolerance of 10−8 [39], and long-range electrostatics
were treated by the particle-mesh Ewald method [10] with the default settings.

The system was first subjected to 50 steps of steepest descent energy minimiza-
tion, followed by 1000 steps of conjugate gradient optimization. To equilibrate the
explicit solvent system to the appropriate volume, a 100 ps molecular dynamics sim-
ulation was performed with the temperature adjusted to 300 K and the pressure to
1 atm by the Berendsen weak-coupling algorithm [4] with temperature and pressure
relaxation time constants of 1 ps and 0.2 ps, respectively. The simulation box was
fixed at the final size obtained from this equilibration step, with a volume of 13 232 Å3,
in all subsequent simulations.

3.2. Parallel tempering. In order to broadly explore the configuration space
of the peptide and ensure that all important conformational substates were located,
a parallel tempering (or replica exchange among temperatures) molecular dynamics
simulation [48] was conducted using a parallel Perl wrapper for the sander pro-
gram [7]. Forty replicas were used, with replica temperatures exponentially dis-
tributed over the range 273–600 K, yielding an average exchange acceptance prob-
ability of about 50%. All momenta were reassigned from the Maxwell–Boltzmann
distribution at the appropriate replica temperature after each exchange attempt, and
constant-energy, constant-volume molecular dynamics with a 2 fs timestep was per-
formed between exchange attempts. The algorithm used to select pairs of replicas
for temperature exchange attempts starts from the highest temperature replica, at-
tempts to swap the configuration for the next-lowest temperature replica using the
Metropolis-like criteria, and proceeds down the temperatures in this manner. On
the next iteration, swapping attempts start from the lowest temperature and proceed
upward, and this alternation in direction is continued in subsequent pairs of iterations.

Starting all replicas from the volume-equilibrated configuration described above,
100 iterations were conducted with 1 ps between exchange attempts to equilibrate
the replicas to their respective temperatures. This equilibration run was followed by
a production run of 500 iterations with 20 ps between exchange attempts, a total
of 10 ns/replica. Solute configurations and potential energies from the production
run were written to disk every 0.1 ps, while full-system restart files were recorded
every 1 ps for the purpose of starting new simulations from these configurations, as
described in section 3.4.

3.3. State decomposition. The slow degrees of freedom for terminally blocked
alanine peptide (neglecting those involving solvent motion) can be captured by the
two backbone torsion angles labeled φ and ψ (see Figure 1) [5, 29]. To this end, the
potential of mean force at 302 K was computed from the parallel tempering data using
the weighted histogram analysis method (WHAM) [25, 8] and is shown in Figure 1.
Six free energy basins are readily visible, and rectangular regions around these basins
were chosen for the decomposition of all of configuration space into a set of six states.
State definitions are listed in Table 1 and plotted as thick dividing lines in Figure 1.

3.4. Construction of Markov chain model from short trajectories. To
construct a Markov chain model of dynamics once the states were identified, the
interstate transition probabilities were computed using the procedure described in
section 2.2. A set of 1000 energy-conserving trajectories 10 ps in length were gener-
ated from a canonical distribution of initial conditions within each state. This initial
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Table 1

State definitions for the manual decomposition of (φ, ψ)-space into metastable states and pop-
ulations at 302 K.

State definitions
State Labela φ ψ Peq

b

1 C5 [117, −105) [28, −124) .4787 (.0613)
2 PII [−105, 0) [28, −124) .4159 (.0486)
3 αP [117, −105) [−124, 28) .0425 (.0038)
4 αR [−105, 0) [−124, 28) .0588 (.0079)
5 Cax

7 [0, 117) [111, −5) .0030 (.0015)
6 αL [0, 117) [−5, 111) .0011 (.0004)

aCorresponding state labels from [38]. bEquilibrium probabilities at 302 K estimated from the
replica exchange simulation by WHAM with corresponding uncertainties representing one standard
deviation shown in parenthesis.

distribution was generated by selecting initial configurations from all replicas of the
replica exchange simulation with a probability proportional to their weight used in
computing canonical averages at 302K, as determined by WHAM, and assigning ini-
tial momenta from the Maxwell–Boltzmann distribution. For each lag time τ , an
estimate of the transition probability Tij(τ) was obtained using (2.6). A bootstrap
procedure [14], in which 200 replicates of 1000 trajectories from each state were chosen
with replacement from the set of trajectories emanating from each state, was used to
estimate the uncertainty in the observed transition probabilities.

The observed transition probabilities out of each state as a function of τ are
shown in Figure 2, along with the corresponding equilibrium probabilities of each state
determined from the replica-exchange simulation. None of the state populations reach
their equilibrium values within 10 ps, indicating the slowest relaxation timescales are
much longer, perhaps substantially so for trajectories originating from states 5 and 6.
Transition matrices at several lag times—0.1 ps, 1 ps, 6 ps, and 10 ps—are shown in
Table 2.

3.5. Comparison with long trajectories. To determine the accuracy with
which transition matrices constructed from different lag times from short (10 ps) sim-
ulations are able to reproduce the statistical dynamics over long times (approximately
100 ps), state populations for an ensemble of trajectories emanating from each state
were computed from the model and compared to the observed time evolution of a
separate set of long trajectories. For this comparison, 1000 trajectories 100 ps in
length were initiated from each state, using the same protocol in section 3.4. Figure 3
shows the time evolution of state populations from these trajectories (along with cor-
responding uncertainties) as a function of time. Superimposed are state populations
computed by (2.3) from the transition matrices constructed for different lag times τ
from the short simulations described in section 3.4. These are connected by straight
line segments solely to guide the eye; the model cannot make predictions for the
populations at times that are not integral multiples of the lag time τ .

The transition probabilities are poorly reproduced in the model constructed with
a lag time of only 0.1 ps. Apparently, this time is so short that the system does not
behave in a Markovian manner on this timescale. At a lag time of 1 ps, the agreement
between the model and long simulations is clearly better, though there are still visible
systematic deviations. By a lag time of 6 ps, the agreement is excellent. The model
constructed from a lag time of 10 ps also shows excellent agreement, but by this time,
the temporal resolution has started to become rather poor. Information about the
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Fig. 2. Transition matrix elements as a function of lag time estimated from 10 ps shooting
trajectories. Each plot, labeled above by the state from which the trajectories originated, shows
state-to-state transition probabilities as a function of the lag time τ estimated from a set of 1000
trajectories 10 ps in length originating from an equilibrium distribution within each state. Verti-
cal bars depict 95% confidence intervals. Equilibrium state probabilities obtained from the parallel
tempering simulations are shown as solid horizontal lines in the corresponding color.

system is known only for times that are integral multiples of 10 ps. One can imagine
that the most useful model would be constructed from the shortest lag time at which
dynamics is Markovian, as this model has the highest temporal resolution while still
correctly describing long-time dynamics.

3.6. Long-time dynamics from the Markov chain model. As an illustra-
tion of the utility of the Markov chain model, Figure 4 depicts an artificial trajectory
generated by realization of the Markov process, 10 ns in length, three orders of magni-
tude longer than the short trajectories used to construct the model. While statistical
properties of the dynamics can also be extracted in other ways, such as through an
eigenvalue decomposition, it may be useful to generate artificial trajectories and an-
alyze them directly. Note the infrequent sampling of states 5 and 6, states with very
small equilibrium probabilities, and the long dwell times in the region formed by stable
states 1 and 2.

4. Discussion. We have demonstrated that a Markov model constructed from
simulations roughly one order of magnitude shorter than the slowest relaxation time
in the system is sufficient to capture the long-time dynamics of a simple biomolecular
system, terminally blocked alanine peptide in explicit solvent. Instead of generating
large numbers of long trajectories to statistically characterize dynamics, we require
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Table 2

Transition matricesa at several lag times estimated from a set of 10 ps trajectories.

T(0.1 ps) =

⎡
⎢⎢⎢⎢⎢⎣

.967 .041 .029 .002

.030 .959 .003 .001

.003 .912 .022
.059 .975

.993 .015

.007 .982

⎤
⎥⎥⎥⎥⎥⎦

T(1 ps) =

⎡
⎢⎢⎢⎢⎢⎣

.856 .161 .096 .011 .002 .004

.130 .835 .008 .007 .086

.014 .002 .701 .109 .001
.002 .195 .873 .014

.966 .047

.017 .863

⎤
⎥⎥⎥⎥⎥⎦

T(6 ps) =

⎡
⎢⎢⎢⎢⎢⎣

.642 .400 .190 .068 .010 .069

.324 .586 .069 .043 .011 .268

.023 .009 .373 .251 .017 .002

.011 .005 .367 .637 .075 .004
.001 .001 .839 .104

.048 .553

⎤
⎥⎥⎥⎥⎥⎦

T(10 ps) =

⎡
⎢⎢⎢⎢⎢⎣

.573 .459 .232 .157 .022 .138

.385 .520 .110 .072 .033 .333

.018 .013 .286 .235 .030 .005

.022 .008 .371 .535 .111 .009
.001 .001 .745 .127

.002 .059 .388

⎤
⎥⎥⎥⎥⎥⎦

aBlank entries denote estimated transition probabilities of zero.

only a sufficient number of trajectories to estimate transition probabilities between
pairs of states. In addition, these trajectories need only be long enough for interstate
dynamics to appear Markovian. Once so constructed, the model can be used to answer
various questions of interest regarding the long-time statistical dynamics without the
need to perform additional simulations.

While it is impossible to predict what the minimum trajectory length required
for Markovian behavior will be for other, larger systems, it is important to recall that
most proteins fold on the millisecond to second timescale. Even fast folding proteins
can require tens of microseconds to fold [24]. To bring the treatment of these systems
within the realm of feasibility, the Markov time would need to remain sufficiently short
to allow the collection of a significant number of trajectories despite the presence of
relaxation times many orders of magnitude longer. No statement can yet be made
about the number of states necessary to model more complex systems or whether this
number might make this approach prohibitively expensive.

The question of how best to validate a Markov chain model constructed from short
trajectories without additional long-time information is a topic of active research.
To determine the lag time to construct the transition matrix so that the Markov
chain is an accurate description of long-time dynamics, it was necessary to compare
to an additional set of long trajectories. This, of course, defeats the utility of a
model constructed from short trajectories. Other methods, such as tests of eigenvalue
behavior [49] or direct tests of Markovity [37], may provide alternatives.

In this work, we have avoided the issue of how best to define the number and
location of states used for construction of the Markov model. Ideally, these states
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Fig. 4. An artificial trajectory generated from the transition matrix constructed from a lag time
of 10 ps.

will be significantly metastable so that the system rapidly loses memory of its previ-
ous location after entering a state, before making a transition to another state. For
the system considered, the slow degrees of freedom were known beforehand, so the
potential of mean force in these coordinates revealed a useful set of states. In more
complex systems, the coordinates in which dynamics is slow will be much more diffi-
cult to discern; some automatic method for the identification of metastable states is
necessary. Pure conformational clustering methods [22, 20] may prove to be inade-
quate because they neglect the true locations of kinetic barriers, but attempts to also
consider kinetic relationships give promising results but have not yet been applied to
large explicitly solvated systems [41, 42, 40]. This problem is the subject of work soon
to be reported [45].

Here we employed the most straightforward approach to estimating interstate
transition probabilities, whereby a large number of short trajectories are initiated
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from equilibrium within each state. While this approach is amenable to distributed
or grid computing, the metastable nature of well-chosen states will result in many
of these trajectories simply remaining in their state of origin, rather than contribut-
ing to estimates of the off-diagonal elements of the transition matrix. It is precisely
these off-diagonal elements that are critical in determining which trajectories through
state space are most likely. Algorithms employing importance sampling techniques
in trajectory space—such as transition path sampling [12], transition interface sam-
pling [52], and the string method [13]—may provide an efficient way to compute these
interstate transition probabilities.
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[41] Ch. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard, A direct approach to conforma-
tional dynamics based on hybrid Monte Carlo, J. Comput. Phys., 151 (1999), pp. 146–168.

[42] Ch. Schütte and W. Huisinga, Biomolecular conformations can be identified as metastable
states of molecular dynamics, in Handbook of Numerical Analysis—Special Volume on
Computational Chemistry, Vol. X, P. G. Ciarlet and J.-L. Lions, eds., North–Holland,
Amsterdam, 2002, pp. 699–744.

[43] D. Shalloway, Macrostates of classical stochastic systems, J. Chem. Phys., 105 (1996), pp.
9986–10007.

[44] M.-y. Shen and K. F. Freed, Long time dynamics of met-enkephalin: Tests of mode-coupling
theory and implicit solvent models, J. Chem. Phys., 118 (2003), pp. 5143–5156.

[45] N. Singhal, J. D. Chodera, J. W. Pitera, V. S. Pande, K. A. Dill, and W. C. Swope,
An Automatic State Decomposition Method for the Construction of Discrete-State Markov
Models of Protein Dynamics, manuscript, 2006.

[46] N. Singhal, C. D. Snow, and V. S. Pande, Using path sampling to build better Markovian
state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hair-
pin, J. Chem. Phys., 121 (2004), pp. 415–425.

[47] S. Sriraman, I. G. Kevrekidis, and G. Hummer, Coarse master equation from Bayesian
analysis of replica molecular dynamics simulations, J. Phys. Chem. B, 109 (2005), pp.
6479–6484.

[48] Y. Sugita and Y. Okamoto, Replica-exchange molecular dynamics method for protein folding,
Chem. Phys. Lett., 314 (1999), pp. 141–151.

[49] W. C. Swope, J. W. Pitera, and F. Suits, Describing protein folding kinetics by molecular
dynamics simulations: 1. Theory, J. Phys. Chem. B, 108 (2004), pp. 6571–6581.

[50] W. C. Swope, J. W. Pitera, F. Suits, M. Pitman, M. Eleftheriou, B. G. Fitch, R. S.

Germain, A. Rayshubski, T. J. C. Ward, Y. Zhestkov, and R. Zhou, Describing protein
folding kinetics by molecular dynamics simulations: 2. Example applications to alanine
dipeptide and a beta-hairpin peptide, J. Phys. Chem. B, 108 (2004), pp. 6582–6594.

[51] A. Ulitsky and D. Shalloway, Variational calculation of macrostate transition rates, J.
Chem. Phys., 109 (1998), pp. 1670–1686.

[52] T. S. van Erp, D. Moroni, and P. G. Bolhuis, A novel path sampling method for the
calculation of rate constants, J. Chem. Phys., 118 (2003), pp. 7762–7774.




