Skip to main content
Log in

The Current Scenario of Nature-Derived Cyclopeptides with Anticancer Potential (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Nature-derived cyclopeptides, a large group of secondary metabolites, are ubiquitously present in nature. Compared to the linear counterparts, cyclopeptides possess structural rigidity, biochemical stability, binding affinity and membrane permeability. Mechanistically, nature-derived cyclopeptides could interfere with various signaling pathways to induce cancer cell death and demonstrated potential in vitro and in vivo efficacy against various cancers including multidrug-resistant forms. Hence, nature-derived cyclopeptides are propitious lead compounds/candidates for developing novel anticancer therapeutic agents. This review attempts to provide a comprehensive summary of the sources, structural diversity, anticancer potential, and mechanisms of action of nature-derived cyclopeptides, covering articles published from 2018 to present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Hulvat, M.C., Surg. Clin. N. Am., 2020, vol. 100, p. 469. https://doi.org/10.1016/j.suc.2020.01.002

    Article  PubMed  Google Scholar 

  2. Siegel, R.L., Miller, K.D., Wagle, N. S., and Jemal, A., CA Cancer J. Clin., 2023, vol. 73, p. 17. https://doi.org/10.3322/caac.21763

    Article  PubMed  Google Scholar 

  3. Miller, K.D., Nogueira, L., Devasia, T., Mariotto, A.B., Yabroff, K.R., Jemal, A., Kramer, J., and Siegel, R.L., CA Cancer J. Clin., 2022, vol. 72, p. 409. https://doi.org/10.3322/caac.21731

    Article  PubMed  Google Scholar 

  4. Thakur, G., Kumar, R., Kim, S.B., Lee, S.Y., Lee, S.L., and Rho, G.J., Biomed., 2021, vol. 9, p. e178. https://doi.org/10.3390/biomedicines9020178

  5. Fan, J., To, K.K.W., Chen, Z.S., and Fu, L., Drug Resist. Updates, 2023, vol. 66, p. e100905. https://doi.org/10.1016/j.drup.2022.100905

  6. Emran, T.B., Shahriar, A., Mahmud, A.R., Rahman, T., Abir, M.H., Siddiquee, M.F.R., Ahmed, H., Islam, A., and Hassan, M.M., Front. Oncol., 2022, vol. 12, p. e 891652. https://doi.org/10.3389/fonc.2022.891652

  7. International Agency for Research on Cancer. Cancer Tomorrow. https://gco.iarc.fr/tomorrow/graphic-isotype?type=0&population=900&mode=population&sex=0&cancer=39&age_group=value&apc_male=0&apc_female=0

  8. Daly, N.L. and Wilson, D.T., Biochem. Soc. Trans., 2021, vol. 49, p. 1279. https://doi.org/10.1042/BST20200881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chia, L.Y., Kumar, P.V., Maki, M.A.A., Ravichandran, G., and Thilagar, S., Int. J. Pept. Res. Ther., 2023, vol. 29, p. e7. https://doi.org/10.1007/s10989-022-10478-y

  10. Ribeiro, R., Pinto, E., Fernandes, C., and Sousa, E., Mar. Drugs, 2022, vol. 20, p. e397. https://doi.org/10.3390/md20060397

  11. Saharan, R., Kumar, S., Khokra, S.L., Singh, S., Tiwari, A., Tiwari, V., Sahoo, B.M., and Kumar, M.A., Curr. Nutr. Food Sci., 2022, vol. 18, p. 441. https://doi.org/10.2174/1573401318666220114153509

    Article  CAS  Google Scholar 

  12. Ramadhani, D., Maharani, R., Gazzali, A.M., and Muchtaridi, M., Molecules, 2022, vol. 27, p. e4428. https://doi.org/10.3390/molecules27144428

  13. Yang, Y., Mao, H., Chen, L., and Li, L., Arch. Biochem. Biophys., 2021, vol. 701, p. e108776. https://doi.org/10.1016/j.abb.2021.108776

  14. Li, C.M., Haratipour, P., Lingeman, R.G., Perry, J.J.P., Gu, L., Hickey, R.J., and Malkas, L.H., Cells, 2021, vol. 10, p. e2908. https://doi.org/10.3390/cells10112908

  15. Zhang, Q.T., Liu, Z.D., Wang, Z., Wang, T., Wang, N., Wang, N., Zhang, B., and Zhao, Y.F., Mar. Drugs, 2021, vol. 19, p. e115. https://doi.org/10.3390/md19020115

  16. Mehta, L., Dhankhar, R., Gulati, P., Kapoor, R.K., Mohanty, A., and Kumar, S., J. Pep. Sci., 2020, vol. 26, p. e3246. https://doi.org/10.1002/psc.3246

  17. Zhang, J.N., Xia, Y.X., and Zhang, H.J., Int. J. Mol. Sci., 2021, vol. 22, p. e3973. https://doi.org/10.3390/ijms22083973

  18. Aaghaz, S., Gohel, V., and Kamal, A., Curr. Top. Med. Chem., 2019, vol. 19, p. 1491. https://doi.org/10.2174/1568026619666190125161517

    Article  CAS  PubMed  Google Scholar 

  19. Abdalla, M.A., and McGaw, L.J., Molecules, 2018, vol. 23, p. e2080. https://doi.org/10.3390/molecules23082080

  20. Zhang, H. and Chen, S., RSC Chem. Biol., 2022, vol. 3, p. 18. https://doi.org/10.1039/d1cb00154j

    Article  CAS  PubMed  Google Scholar 

  21. Du, X., Xiao, S., Luo, Q., Liu, X., and Liu, J., J. Pep. Sci., 2022, vol. 28, p. E3385. https://doi.org/10.1002/psc.3385

  22. Liu, J., Liu, F., Liu, P., Xu, H., Tang, L., Han, X., Zheng, M., and Ren, Y., J. Pep. Sci., 2022, vol. 28, p. E3410. https://doi.org/10.1002/psc.3410

  23. Li, W., Liu, J., Liu, X., Wang, F., and Zhao, H., Phytochem. Lett., 2020, vol. 40, p. 156. https://doi.org/10.1016/j.phytol.2020.09.015

    Article  CAS  Google Scholar 

  24. Liu, Z., Fu, J., Xiao, S., and Wang, D., RSC Adv., 2019, vol. 9, p. 29847. https://doi.org/10.1039/D2RA90037H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahn, M.Y., Oncol. Lett., 2018, vol. 16, p. 6552. https://doi.org/10.3892/ol.2018.9468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lomchoey, N., Panseeta, P., Boonsri, P., Apiratikul, N., Prabpai, S., Kongsaeree, P., and Suksamrarn, S., RSC Adv., 2018, vol. 8, p. 18204. https://doi.org/10.1039/C7RA13050C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bitchi, M.B., Magid, A.A., Kabran, F.A., Yao-Kouassi, P.A., Harakat, D., Morjani, H., Tonzibo, F.Z., and Voutquenne-Nazabadioko, L., Phytochem., 2019, vol. 167, p. e112081. https://doi.org/10.1016/j.phytochem.2019.112081

  28. Kwon, Y., Byun, W.S., Kim, B.Y., Song, M.C., Bae, M., Yoon, Y.J., Shin, J., Lee, S.K., and Oh, D.C., Molecules, 2018, vol. 23, p. e1266. https://doi.org/10.3390/molecules23061266

  29. Ahmad, R., Aldholmi, M., Carlsson, H., CarreteroMolina, D., Field, R.A., Ganesan, A., Gefflaut, T., Reyes, F., and Wilkinson, B., Angew. Chem. Int. Ed., 2022, vol. 61, p. E202203175. https://doi.org/10.1002/anie.202203175

  30. Le, T.C., Pulat, S., Lee, J., Kim, G.J., Kim, H., Lee, E.Y., Hillman, P.F., Nam, S.J., and Fenical, W., ACS Omega, 2022, vol. 7, p. 1722. https://doi.org/10.1021/acsomega.1c04520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ibrahim, A.H., Attia, E.Z., Hajjar, D., Anany, M.A., Desoukey, S.Y., Fouad, M.A., Kamel, M.S., Wajant, H., Gulder, T.A.M., and Abdelmohsen, U.R., Mar. Drugs, 2018, vol. 16, p. e290. https://doi.org/10.3390/md16090290

  32. Qin, F., Wang, C.Y., Kim, D., Wang, H.S., Zhu, Y.K., Lee, S.K., Yao, G.Y., and Liang, D., J. Org. Chem., 2021, vol. 82, p. 1462. https://doi.org/10.1021/acs.joc.0c02057

    Article  CAS  Google Scholar 

  33. Almaliti, J., Canuto, K.M., Duggan, B.M., Gerwick, W.H., Glukhov, E., Keller, L., Koehnke, J., Sikandar, A., and Suzuki, B.M., ACS Chem. Biol., 2020, vol. 15, p. 751. https://doi.org/10.1021/acschembio.9b00992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wen, J., Liu, Y., Zhang, S.S., Song, Y., Li, W.L., and Yan, X.J., J. Asian Nat. Prod. Res., 2022, vol. 24, p. 1169. https://doi.org/10.1080/10286020.2022.2083607

    Article  CAS  PubMed  Google Scholar 

  35. Cho, Y.B., Han, J.S., Hong, J.T., Hwang, B.Y., Kim, J.G., Lee, D., Lee, J.W., Lee, M.K., Lee, Y.J., and Shin, D.H., Molecules, 2021, vol. 26, p. e7275. https://doi.org/10.3390/molecules26237275

  36. Nair, V., Kim, M.C., Golen, J.A., Rheingold, A.L., Castro, G.A., Jensen, P.R., and Fenical, W., Mar. Drugs, 2020, vol. 18, p. e549. https://doi.org/10.3390/md18110549

  37. Wu, C., Tang, J., Malit, J.J.L., Wang, R., Sung, H.H.Y., Williams, I.D., and Qian, P.Y., J. Nat. Prod., 2022, vol. 85, p. 1751. https://doi.org/10.1021/acs.jnatprod.2c00290

    Article  CAS  PubMed  Google Scholar 

  38. Ise, Y., Matsunaga, S., Ohtsuka, S., Okada, S., Takada, K., and Tian, T., Tetrahedron, 2020, vol. 76, p. e130997. https://doi.org/10.1016/j.tet.2020.130997

  39. Abdel-Wahab, N.M., Harwoko, H., Müller, W.E.G., Hamacher, A., Kassack, M.U., Fouad, M.A., Kamel, M.S., Liu, Z., and Proksch, P., Bioorg. Med. Chem., 2019, vol. 27, p. 3954. https://doi.org/10.1016/j.bmc.2019.07.025

    Article  CAS  PubMed  Google Scholar 

  40. Anand, M., Alagar, M., Ranjitha, J., and Selvaraj, V., Arab. J. Chem., 2019, vol. 12, p. 2782. https://doi.org/10.1016/j.arabjc.2014.05.037

    Article  CAS  Google Scholar 

  41. Choules, M.P., Wolf, N.M., Lee, H., Anderson, J.R., Grzelak, E.M., Wang, Y., Ma, R., Franzblau, S.G., and Cho, S., Antimicrob. Agents Chemother., 2019, vol. 63, p. E02204-18. https://doi.org/10.1128/AAC.02204-18

  42. Chen, Y.X., Liu, C., Liu, N., Wu, Y., Zhao, Q.J., Hu, H.G., Li, X., and Zou, Y., Chem. Biodiversity, 2018, vol. 15, p. E1700414. https://doi.org/10.1002/cbdv.201700414

  43. Chen, W., Chen, Y., Liu, Y., Long, J., Wang, J., Yang, B., and Zhou, X., Mar. Drugs, 2021, vol. 19, p. e701. https://doi.org/10.3390/md19120701

  44. Yan, X.J., Wen, J., Song, Y., Sha, D.M., Sha, M.L.N., Zhang, S.S., and Liu, Y., Chin. J. Chin. Mat. Med., 2022, vol. 47, p. 4391. https://doi.org/10.19540/j.cnki.cjcmm.20220421.204

    Article  Google Scholar 

  45. Sosa-Rueda, J., Domínguez-Meléndez, V., Ortiz-Celiseo, A., López-Fentanes, F.C., Cuadrado, C., Fernández, J.J., Daranas, A.H., and Cen-Pacheco, F., Phytochem., 2022, vol. 194, p. e112839. https://doi.org/10.1016/j.phytochem.2021.112839

  46. Rodríguez-Expósito, R.L., Sosa-Rueda, J., Reyes-Batlle, M., Sifaoui, I., Cen-Pacheco, F., Daranas, A.H., Díaz-Marrero, A.R., Piñero, J.E., Fernández, J.J., and Lorenzo-Morales, J. Int. J. Parasitol.: Drugs Drug Resist., 2021, vol. 17, p. 67. https://doi.org/10.1016/j.ijpddr.2021.08.003

    Article  CAS  PubMed  Google Scholar 

  47. Kim, E., Shin, Y.H., Kim, T.H., Byun, W.S., Cui, J., Du, Y.E., Lim, H.J., Oh, D.C., and Yoon, Y.J., Biomol., 2019, vol. 9, p. e672. https://doi.org/10.3390/biom9110672

  48. Byun, W.S., Kim, S., Kim, W.K., Lee, S.K., Oh, D.C., and Shin, Y.H., J. Nat. Prod., 2020, vol. 83, p. 118. https://doi.org/10.1021/acs.jnatprod.9b00918

    Article  CAS  PubMed  Google Scholar 

  49. Cai, W., Matthew, S., Chen, Q.Y., Paul, V.J., and Luesch, H., Bioorg. Med. Chem., 2018, vol. 26, p. 2310. https://doi.org/10.1016/j.bmc.2018.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bornancin, L., Alonso, E., Alvariño, R., Inguimbert, N., Bonnard, I., Botana, L.M., and Banaigs, B., Bioorg. Med. Chem., 2019, vol. 27, p. 1966. https://doi.org/10.1016/j.bmc.2019.03.046

    Article  CAS  PubMed  Google Scholar 

  51. Sullivan, P., Krunic, A., Burdette, J.E., and Orjala, J., J. Antibiot., 2020, vol. 73, p. 526. https://doi.org/10.1038/s41429-020-0301-x

    Article  CAS  Google Scholar 

  52. Kwon, O.S., Kim, C.K., Byun, W.S., Oh, J., Lee, Y.J., Lee, H.S., Sim, C.J., Oh, K.B., and Shin, J., J. Nat. Prod., 2018, vol. 81, p. 1426. https://doi.org/10.1021/acs.jnatprod.8b00121

    Article  CAS  PubMed  Google Scholar 

  53. Liu, X.D., Gu, K.B., Xia, S.S., Zhang, D.J., and Li, Y.G., J. Antibiot., 2018, vol. 71, p. 838. https://doi.org/10.1038/s41429-018-0071-x

    Article  CAS  Google Scholar 

  54. Hu, Y.Y., Feng, L., Wang, J., Zhang, X.J., Wang, Z., and Tan, N.H., Chem. Biodiversity, 2019, vol. 16, p. E1800438. https://doi.org/10.1002/cbdv.201800438

  55. Yang, J., Yang, T., Yan, W., Li, D., Wang, F., Wang, Z., Guo, Y., Bai, P., Tan, N., and Chen, L., RSC Adv., 2018, vol. 8, p. 23451. https://doi.org/10.1039/c8ra04241a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Z., Zhao, S., Song, L., Pu, Y., Wang, Q., Zeng, G., Liu, X., Bai, M., Li, S., Gao, F., Chen, L., Wang, C., and Tan, N., Cell Death Dis., 2018, vol. 9, p. e715. https://doi.org/10.1038/s41419-018-0743-2

  57. Feng, L., Li, L., Tan, N.H., Wang, J., Wang, J., Wang, Y.R., and Wang, Z., J. Ethnopharm., 2021, vol. 266, p. e113438. https://doi.org/10.1016/j.jep.2020.113438

  58. Xu, X., Jiang, N., Liu, S., Jin, Y., Cheng, Y., Xu, T., Wang, X., Fan, J., and Zhang, A., J. Nat. Prod., 2022, vol. 85, p. 1918. https://doi.org/10.1021/acs.jnatprod.1c01215

    Article  CAS  PubMed  Google Scholar 

  59. Sugawara, K., Kanki, D., Watanabe, R., Matsushima, R., Ise, Y., Yokose, H., Morii, Y., Okada, S., and Matsunaga, S., Tetrahedron, 2022, vol. 119, p. e132859. https://doi.org/10.1016/j.tet.2022.132859

  60. Li, C., Hu, Y., Wu, X., Stumpf, S.D., Qi, Y., D’Alessandro, J.M., Nepal, K.K., Sarotti, A.M., Cao, S., and Blodgett, J.A.V., PNAS, 2022, vol. 119, p. e2117941119. https://doi.org/10.1073/pnas.2117941119

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-m. Shi.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Bs., Liu, K., Wang, J. et al. The Current Scenario of Nature-Derived Cyclopeptides with Anticancer Potential (A Review). Russ J Gen Chem 94, 675–689 (2024). https://doi.org/10.1134/S1070363224030198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224030198

Keywords:

Navigation