Skip to main content
Log in

Nuclear mitochondrial pseudogenes

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

As has been demonstrated recently, the transfer of genetic material from mitochondria to the nucleus and its integration into the nuclear genome is a continuous and dynamic process. Fragments of mitochondrial DNA (mtDNA) are incorporated in the nuclear genome as noncoding sequences, which are called nuclear mitochondrial pseudogenes (NUMT pseudogenes or NUMT inserts). In various eukaryotes, NUMT pseudogenes are distributed through different chromosomes to form a “library” of mtDNA fragments, providing important information on genome evolution. The escape of mtDNA from mitochondria is mostly associated with mitochondrial damage and mitophagy. Fragments of mtDNA may be integrated into nuclear DNA (nDNA) during repair of double-strand breaks (DSBs), which are caused by endogenous or exogenous agents. DSB repair of nDNA with a capture of mtDNA fragments may occur via nonhomologous end joining or a similar mechanism that involves microhomologous terminal sequences. An analysis of the available data makes it possible to suppose that the NUMT pseudogene formation rate depends on the DSB rate in nDNA, the activity of the repair systems, and the number of mtDNA fragments leaving organelles and migrating into the nucleus. Such situations are likely after exposure to damaging agents, first and foremost, ionizing radiation. Not only do new NUMT pseudogenes change the genome structure in the regions of their integration, but they may also have a significant impact on the actualization of genetic information. The de novo integration of NUMT pseudogenes in the nuclear genome may play a role in various pathologies and aging. NUMT pseudogenes may cause errors in PCR-based analyses of free mtDNA as a component of total cell DNA because of their coamplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomilin N.V. 2008. Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. BioEssays. 30, 338–348.

    PubMed  CAS  Google Scholar 

  2. Balakirev E.S., Ayala F.J. 2003. Pseudogenes: Are they “junk” or functional DNA? Annu. Rev. Genet. 37, 123–151.

    PubMed  CAS  Google Scholar 

  3. Gerstein M., Zheng D. 2006. The real life of pseudogenes. Sci. Am. 295, 48–55.

    PubMed  Google Scholar 

  4. Ortutay C, Vihinen M. 2008. PseudoGeneQuest: Service for identification of different pseudogene types in the human genome. BMC Bioinformatics. 9, 299.

    PubMed  Google Scholar 

  5. Lam H.K., Khurana E., Fang G., Cayting P., Carriero N., Cheung K.H., Gerstein M.B. 2009. Pseudofam: The pseudogene families database. Nucleic Acids Res. 37, D738–D743.

    PubMed  CAS  Google Scholar 

  6. Thorsness P.E., Weber E.R. 1996. Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int. Rev. Cytol. 165, 207–234.

    PubMed  CAS  Google Scholar 

  7. Bensasson D., Zhang D., Hartl D.L., Hewitt G.M. 2001. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 16, 314–321.

    PubMed  Google Scholar 

  8. Lopez J.V., Yuhki N., Masuda R., Modi W., O’Brien S.J. 1994. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol. 39, 174–190.

    PubMed  CAS  Google Scholar 

  9. Timmis J.N., Ayliffe M.A., Huang C.Y., Martin W. 2004. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet. 5, 123–135.

    PubMed  CAS  Google Scholar 

  10. Margulis L., Sagan D. 2003. Acquiring Genomes: A Theory ofthe Origins of Species. N.Y.: Basic Books.

    Google Scholar 

  11. Kleine T., Maier U.G., Leister D. 2009. DNA transfer from organelles to the nucleus: The idiosyncratic genetics of endosymbiosis. Annu. Rev. Plant Biol. 60, 115–138.

    PubMed  CAS  Google Scholar 

  12. Falkenberg M., Larsson N.G., Gustafsson C.M. 2007. DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem. 76, 679–699.

    PubMed  CAS  Google Scholar 

  13. Selosse M., Albert B., Godelle B. 2001. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol. Evol. 16, 135–141.

    PubMed  Google Scholar 

  14. Smith D.R., Lee R.W. 2009. The mitochondrial and plastid gemes of Volvox carteri: Bloated molecules rich in repetitive DNA. BMC Genomics. 10, 132. (http://www.biomedcentral.com/1471-2164/10/132

    PubMed  Google Scholar 

  15. Ricchetti M., Tekaia F., Dujon B. 2004. Continued colonization of the human genome by mitochondrial DNA. PLoSBiol. 2, E273.

    Google Scholar 

  16. Stern D.B., Lonsdale D.M. 1982. Mitochondrial and chloroplast genomes of maize have a 12-kb DNA sequence in common. Nature. 299, 698–702.

    PubMed  CAS  Google Scholar 

  17. Tsuzuki T., Nomiyama H., Setoyama C., Maeda S., Shimada K. 1983. Presence of mitochondrial-DNA-like sequences in the human nuclear DNA. Gene. 25, 223–229.

    PubMed  CAS  Google Scholar 

  18. Arctander P. 1995. Comparison of a mitochondrial gene and a corresponding nuclear pseudogene. Proc. R. Soc. Lond. BBiol. Sci. 262, 13–19.

    CAS  Google Scholar 

  19. Zischler H., Geisert H., vonHaseler A., Paabo S. 1995. A nuclear ‘fossil’ of the mitochondrial D-loop and the origin of modern humans. Nature. 378, 489–492.

    PubMed  CAS  Google Scholar 

  20. Altschul S., Gish W., Miller W., Myers E., Lipman D. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  21. Richly E., Leister D. 2004. NUMTs in sequenced eukaryotic genomes. Mol. Biol. Evol. 21, 1081–1084.

    PubMed  CAS  Google Scholar 

  22. Ruiz-Pesini E., Lott M.T., Procaccio V, Poole J.C., Brandon M.C., Mishmar D., Yi C., Kreuziger J., Baldi P., Wallace D.C. 2007. Anenhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic AcidsRes. 35, D823–D828.

    CAS  Google Scholar 

  23. Qu H., Ma F., Li Q. 2008. Comparative analysis of mitochondrial fragments transferred to the nucleus in vertebrate. J. Genet. Genomics. 35, 485–490.

    PubMed  Google Scholar 

  24. Morgulis A., Coulouris G., Raytselis Y., Madden T.L., Agarwala R., Schaffer A.A. 2008. Genome analysis: Database indexing for production MegaBLAST searches. Bioinformatics. 24, 1757–1764

    PubMed  CAS  Google Scholar 

  25. Stegemann S., Hartmann S., Ruf S., Bock R. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl. Acad. Sci. USA. 100, 8828–8833.

    PubMed  CAS  Google Scholar 

  26. Huang C.Y., Ayliffe M.A., Timmis J.N. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature. 422, 72–76.

    PubMed  CAS  Google Scholar 

  27. Sacerdot C., Casaregola S., Lafontaine I., Tekaia F., Dujon B., Ozier-Kalogeropoulos O. 2008. Promiscuous DNA in the nuclear genomes of hemiascomycetous yeasts. FEMS YeastRes. 8, 846–857.

    CAS  Google Scholar 

  28. Lin X., Kaul S., Rounsley S., et al. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 402, 761–768.

    CAS  Google Scholar 

  29. Stupar R.M., Lilly J.W., Town C.D., Cheng Z., Kaul S., Buell C.R., Jiang J. 2001. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: Implication of potential sequencing errors caused by large-unit repeats. Proc. Natl. Acad. Sci. USA. 98, 5099–5103.

    PubMed  CAS  Google Scholar 

  30. Rice Chromosome 10 Sequencing Consortium. 2003. In-depth view of structure, activity, and evolution of rice chromosome 10. Science. 300, 1566–1569.

    Google Scholar 

  31. Mourier T., Hansen A.J., Willerslev E., Arctander P. 2001. The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol. Biol. Evol. 18, 1833–1837.

    PubMed  CAS  Google Scholar 

  32. Woischnik M., Moraes C.T. 2002. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 12, 885–893.

    PubMed  CAS  Google Scholar 

  33. Tourmen Y, Baris O., Dessen R, Jacques C, Malthiery Y., Reynier R. 2002. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics. 80, 71–77.

    PubMed  CAS  Google Scholar 

  34. Mishmar D., Ruiz-Pesini E., Brandon M., Wallace D.C. 2004. Mitochondrial DNA-like sequences in the nucleus (NUMTs): Insights into our African origins and the mechanism of foreign DNA integration. Hum. Mutat. 23, 125–133.

    PubMed  CAS  Google Scholar 

  35. Hazkani-Covo E., Graur D. 2007. A comparative analysis of numt evolution in human and chimpanzee. Mol. Biol. Evol. 24, 13–18.

    PubMed  CAS  Google Scholar 

  36. Hazkani-Covo E. 2009. Mitochondrial insertions into primate nuclear genomes suggest the use of numts as a tool for phylogeny. Mol. Biol. Evol. 26, 2175–2179.

    PubMed  CAS  Google Scholar 

  37. Campbell C.L., Thorsness P.E. 1998. Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J. Cell Sci. 111, 2455–2464.

    PubMed  CAS  Google Scholar 

  38. Camougrand N., Kissova I., Salin B., Devenish R.J. 2008. Monitoring mitophagy in yeast. Methods Enzymol. 451, 89–107.

    PubMed  CAS  Google Scholar 

  39. Zhang J., Kundu M., Ney P.A. 2009. Mitophagy in mammalian cells: The reticulocyte model. Methods Enzymol. 452, 227–245.

    PubMed  CAS  Google Scholar 

  40. Wallace D.C. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407.

    PubMed  CAS  Google Scholar 

  41. Berg O.G., Kurland C.G. 2000. Why mitochondrial genes are most often found in nuclei. Mol. Biol. Evol. 17, 951–961.

    PubMed  CAS  Google Scholar 

  42. Kim I., Rodriguez-Enriquez S., Lemasters J.J. 2007. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253.

    PubMed  CAS  Google Scholar 

  43. Gaziev A.I., Shaikhaev G.O. 2008. Damage of mitochondrial genome and pathways of its maintenance. Russ. J. Genet. 44, 437–455.

    CAS  Google Scholar 

  44. Faziev A.I., Podlutskii A.Ya. 2003. Low efficiency of DNA repair in mitochondria. Tsitologiya. 45, 403–417.

    Google Scholar 

  45. Stuart J.A., Brown M.F. 2006. Mitochondrial DNA maintenance and bioenergetics. Biochim. Biophys. Acta. 1757, 79–89.

    PubMed  CAS  Google Scholar 

  46. Shadel G.S., Clayton D.A. 1997. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66, 409–435.

    PubMed  CAS  Google Scholar 

  47. Falkenberg M., Larsson N.G., Gustafsson C.M. 2007. DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem. 76, 679–699.

    PubMed  CAS  Google Scholar 

  48. Cleaver J.E. 1992. Replication of nuclear and mitochondrial DNA in X-ray-damaged cells: Evidence for a nuclear-specific mechanism that down-regulates replication. Radiat. Res. 131, 338–344.

    PubMed  CAS  Google Scholar 

  49. Patrushev M.V., Patrusheva V.E., Evdokimovskii E.V., Ushakova T.E., Gaziev A.I. 2006. Elimination of mtDNA from mitochondria and activation of its replication in cells of irradiated mouse tissues. Tsitologiya. 48, 684–689.

    CAS  Google Scholar 

  50. Patrushev M., Kasumov V., Patrusheva V., Ushakova T., Gogvadze V, Gaziev A.I. 2006. Release of mitochondrial DNA fragments from brain mitochondria of irradiated mice. Mitochondrion. 6, 101–107.

    Google Scholar 

  51. Kutsyi M.P., Gouliaeva N.A., Kuznetsova E.A. and Gaziev A.I. 2005. DNA-binding proteins of mammalian mitochondria. Mitochondrion. 5, 35–44.

    PubMed  CAS  Google Scholar 

  52. Gulajeva N.A., Kuznetsova E.A., Gaziev A.I. 2006. Proteins associated with mitochondrial DNA protect it against the action of X-rays and hydrogen peroxide. Biofizika. 51, 692–697.

    Google Scholar 

  53. Gaziev A.I., Shaikhaev G.O., Korenev S.V. 2008. Extracellular plasma DNA as a potential dignostic marker in oncology. Vopr. Onkol. 54, 545–554.

    PubMed  CAS  Google Scholar 

  54. Holdenrieder S., Stieber P. 2009. Clinical use of circulating nucleosomes. Crit. Rev. Clin. Lab. Sci. 46, 1–24.

    PubMed  CAS  Google Scholar 

  55. Gaziev A.I., Abdullaev S.A., Antipova V.N., Gulyaeva N.A., Malakhova L.V., Shaikhaev G.O., Bezlepkin V.G. 2009. Rapid detection of radiation-induced mutations in tissue and circulating mtDNA by an endonuclease method. Tekhnol. Zhivykh Sistem. 6(2), 10–23.

    CAS  Google Scholar 

  56. Abdullaev S.A., Antipova V.N., Gaziev A.I. 2009. Extracellular mutant mitochondrial DNA content is sharply elevated in the blood plasma of irradiated mice. Mol. Biol. 43, 990–996.

    CAS  Google Scholar 

  57. Spees J.L., Olson S.D., Whitney M.J., Prockop D.J. 2006. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA. 103, 1283–1288.

    PubMed  CAS  Google Scholar 

  58. Blanchard J.L., Schmidt G.W. 1996. Mitochondrial DNA migration events in yeast and humans: Integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol. Biol. Evol. 13, 537–548.

    PubMed  CAS  Google Scholar 

  59. Yu X., Gabriel A. 1999. Patching broken chromosomes with extranuclear cellular DNA. Mol. Cell. 4, 873–881.

    PubMed  CAS  Google Scholar 

  60. Ricchetti M., Fairhead C, Dujon B. 1999. Mitochondrial DNA repairs doublestrand breaks in yeast chromosomes. Nature. 402, 96–100.

    PubMed  CAS  Google Scholar 

  61. Sasaki M.S. 2009. Advances in the biophysical and molecular bases of radiation cytogenetics. Int. J. Radiat. Biol. 85, 26–47.

    PubMed  CAS  Google Scholar 

  62. Vogel E.W., Natarajan A.T. 1995. DNA damage and repair in somatic and germ cells in vivo. in vivo. Mutat Res. 330, 183–208.

    PubMed  CAS  Google Scholar 

  63. Shrivastav M., De Haro L.P., Nickoloff J.A. 2008. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18, 134–147.

    PubMed  CAS  Google Scholar 

  64. Pardo B., Gomez-Gonzlez B., Aguilera A. 2009. DNA double-strand break repair: How to fix a broken relationship. Cell. Mol. Life Sci. 66, 1039–1056.

    PubMed  CAS  Google Scholar 

  65. Haviv-Chesner A, Kobayashi Y, Gabriel A., Kupiec M. 2007. Capture of linear fragments at a double-strand break in yeast. Nucleic Acids Res. 35, 5192–5202.

    PubMed  CAS  Google Scholar 

  66. Hedges D.J., Deininger P.L. 2007. Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat. Res. 616, 46–59.

    PubMed  CAS  Google Scholar 

  67. Hazkani-Covo E., Covo S. 2008. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet. 4(10), e1000237.

    PubMed  Google Scholar 

  68. Pace J.K., Sen S.K., Batzer M.A., Feschotte C. 2009. Repair-mediated duplication by capture of proximal chromosomal DNA has shaped vertebrate genome evolution. PLoSGenet. 5(5), e1000469.

    Google Scholar 

  69. Callegari A.J., Kelly T.J. 2007. Shedding light on the DNA damage checkpoint. CellCycle. 6, 660–666.

    CAS  Google Scholar 

  70. Pandita T.K., Richardson C. 2009. Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res. 37, 1363–1377.

    PubMed  CAS  Google Scholar 

  71. Bergink S., Jentsch S. 2009. Principles of ubiquitin and SUMO modifications in DNA repair. Nature. 458, 461–467.

    PubMed  CAS  Google Scholar 

  72. Mahaney B.L., Meek K., Lees-Miller S.R 2009. Repair of ionizing radiation4nduced DNA doublestrand breaks by non-homologous end-joining. Biochem J. 417, 639–650.

    PubMed  CAS  Google Scholar 

  73. Kabayashi J., Iwabuchi K., Miyagawa K., Sonoda F., Suzuki K., Takata M., Tauchi H. 2008 Current topics in DNA double-strand break repair. J. Radiat. Res. 49, 93–103.

    Google Scholar 

  74. Stracker T.H., Williams B.R., Deriano L., Theunissen J.W., Adelman C.A., Roth D.B., Petrini J.H. 2009. Artemis and nonhomologous end joining-independent influence of DNA-dependent protein kinase catalytic subunit on chromosome stability. Mol. Cell. Biol. 29, 503–514.

    PubMed  CAS  Google Scholar 

  75. Ahel I., Rass U., El-Khamisy S.F, Katyal S., Clements P.M., McKinnon P.J., Caldecott K.W., West S.C. 2006. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature. 443, 713–716.

    PubMed  CAS  Google Scholar 

  76. Clements P.M., Breslin C., Deeks E.D., Byrd P.J., Ju L., Bieganowski P., Brenner C., Moreira M.C., Taylor A.M., Caldecott K.W. 2004. The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair. 3, 1493–1502.

    PubMed  CAS  Google Scholar 

  77. Forand A., Fouchet P., Lahaye J., Chicheportiche A., Habert R., Bernardino-Sgherri J. 2009. Similarities and differences in the in vivo response of mouse neonatal gonocytes and spermatogonia to genotoxic stress. Biol. Reprod. 80, 860–873.

    PubMed  CAS  Google Scholar 

  78. Jaroudi S., Kakourou G., Cawood S., Doshi A., Ranieri D.M., Serhal R, Harper J.C., Gupta S.B. 2009. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum. Reprod. 24, 2649–2655.

    PubMed  CAS  Google Scholar 

  79. Ahmed E.A., van der Vaart A., Barten A., Kal H.B., Chen J., Lou Z., Minter K., Bartkova J., Bartek J., de Boer P., de Rooij D.G. 2007. Differences in DNA double strand breaks repair in male germ cell types: Lessons learned from a differential expression of Mdc1 and 53BP1. DNA Repair. 6, 1243–1254.

    PubMed  CAS  Google Scholar 

  80. Marchetti F., Wyrobek A.J. 2008. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage. DNA Repair. 7, 572–581.

    PubMed  CAS  Google Scholar 

  81. Oliva R. 2006. Protamines and male infertility. Hum. Reprod. Update. 12, 417–435.

    PubMed  CAS  Google Scholar 

  82. Goodarzi A.A., Noon A.T., Jeggo P.A. 2009. The impact of heterochromatin on DSB repair. Biochem. Soc. Trans. 37, 569–576.

    PubMed  CAS  Google Scholar 

  83. Fatehi A.N., Bevers M.M., Schoevers E., Roelen B.J., Colenbander B., Gadella B.M. 2006. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J. Androl. 27, 176–188.

    PubMed  CAS  Google Scholar 

  84. Marchetti F., Wyrobek A.J. 2009. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation4nduced transgenerational genomic damage. Lawrence Berkeley National Laboratory Publication. (http://escholarship.org/uc/item/1pr9n13z).

  85. Shoubridge E.A., Wai T. 2007. Mitochondrial DNA and the mammalian oocyte. Curr. Top. Dev. Biol. 77, 87–111.

    PubMed  CAS  Google Scholar 

  86. Barritt J.A., Kokot M., Cohen J., Steuerwald N., Brenner CA. 2002. Quantification of human ooplasmic mitochondria. Reprod. Biomed. Online. 4, 243–247.

    PubMed  CAS  Google Scholar 

  87. Haber J.E. 2008. Alternative endings. Proc. Natl. Acad. Sci. USA. 105, 405–406.

    PubMed  CAS  Google Scholar 

  88. Bennardo N., Cheng A., Huang N., Stark J.M. 2008. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 4, e1000110.

    PubMed  Google Scholar 

  89. Scuric Z., Chan C.Y., Hafer K., Schiestl R.H. 2009. Ionizing radiation induces microhomology-mediated end joining in trans in yeast and mammalian cells. Radiat. Res. 171, 454–463.

    PubMed  CAS  Google Scholar 

  90. Nimonkar A.V., Sica R.A., Kowalczykowski S.C. 2009. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules. Proc. Natl. Acad. Sci. USA. 106, 3077–3082.

    PubMed  CAS  Google Scholar 

  91. Bentley J., Diggle C.P., Harnden P., Knowles M.A., Kiltie A.E. 2004. DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Res. 32, 5249–5259.

    PubMed  CAS  Google Scholar 

  92. Lee K., Lee S.E. 2007. Saccharomyces cerevisiae Sae2-and Tell-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics. 176, 2003–2014.

    PubMed  CAS  Google Scholar 

  93. Ahnesorg R, Smith R, Jackson S.R 2006. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 124, 301–313.

    PubMed  CAS  Google Scholar 

  94. Nohmi T., Suzuki M., Masumura K., Yamada M., Matsui K., Ueda O., Suzuki H., Katoh M., Ikeda H., Sofuni T. 1999. Spi(-) selection: An efficient method to detect gamma ray-induced deletions in transgenic mice. Environ. Mol. Mutagen. 34, 9–15.

    PubMed  CAS  Google Scholar 

  95. Kiechle M., Manivasakam R, Eckardt-Schupp F., Schiestl R.H., Friedl A.A. 2002. Promoter-trapping in Saccharomyces cerevisiae by radiation-assisted fragment insertion. Nucleic Acids Res. 30, e136.

    PubMed  Google Scholar 

  96. Shin K.H., Kang M.K., Kim R.H., Kameta A., Baluda M.A., Park N.H. 2006. Abnormal DNA end-joining activity in human head and neck cancer. Int. J. Mol. Med. 17, 917–924.

    PubMed  CAS  Google Scholar 

  97. Stegemann S., Bock R. 2006. Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell. 18, 2869–2878.

    PubMed  CAS  Google Scholar 

  98. Decottignies A. 2007. Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination. Genetics. 176, 1403–1415.

    PubMed  CAS  Google Scholar 

  99. Jensen-Seaman M.I., Wildschutte J.H., Soto-Caldern I.D., Anthony N.M. 2009. A comparative approach shows differences in patterns of numt insertion during hominoid evolution. J. Mol. Evol. 68, 688–699.

    PubMed  CAS  Google Scholar 

  100. Turner C.C., Killoran N.S., Thomas T., Rosenberg M., Chuzhanova N.A., Johnston J., Kemel Y., Cooper D.N., Biesecker L.G. 2003. Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Hum. Genet. 112, 303–309.

    PubMed  Google Scholar 

  101. Gaziev A.I., Shaikhaev G.O. 2007. Ionizing radiation can activate insertion of mitochondrial DNA fragments into the nuclear genome. Radiat. Biol. Radioekol. 47, 673–683.

    CAS  Google Scholar 

  102. Li WH., Gu Z., Wang H., Nekrutenko A. 2001. Evolutionary analyses of the human genome. Nature. 409, 847–849.

    PubMed  CAS  Google Scholar 

  103. Batzer M.A., Deininger P.L. 2002. Alu repeats and human genomic diversity. Nature Rev. Genet. 3, 370–379.

    PubMed  CAS  Google Scholar 

  104. Neil J.C., Cameron E.R. 2002. Retroviral insertion sites and cancer: Fountain of all knowledge? Cancer Cell. 2, 253–255.

    PubMed  CAS  Google Scholar 

  105. Shay J.W., Werbin H. 1992. New evidence for the insertion of mitochondrial DNA into the human genome: Significance for cancer and aging. Mutat. Res. 275, 227–235.

    PubMed  CAS  Google Scholar 

  106. Nelson P.N., Carnegie P.R., Martin J., Davari E.H., Hooley R, Roden D., Rowland-Jones S., Warren R, Astley J., Murray P.G. 2003. Demystified: Human endogenous retroviruses. Mol. Pathol. 56, 11–18.

    PubMed  CAS  Google Scholar 

  107. Martin W. 2003. Gene transfer from organelles to the nucleus: Frequent and in big chunks. Proc. Natl. Acad. Sci. USA. 100, 8612–1412.

    PubMed  CAS  Google Scholar 

  108. Biehl A., Richly E., Noutsos C., Salamini F., Leister D. 2005. Analysis of 101 nuclear transcriptomes reveals 23 distinct regulons and their relationship to metabolism, chromosomal gene distribution and co-ordination of nuclear and plastid gene expression. Gene. 344, 33–41.

    PubMed  CAS  Google Scholar 

  109. Willett-Brozick J.E., Savul S.A., Richey L.E., Baysal B.E. 2001. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum.Genet. 109, 216–223.

    PubMed  CAS  Google Scholar 

  110. Borensztajn K., Chafa O., Alhenc-Gelas M., Salha S., Reghis A., Fischer A.M., Tapon-Bretaudiere J. 2002. Characterization of two novel splice site mutations in human factor VII gene causing severe plasma factor VII deficiency and bleeding diathesis. Br. J. Haematol. 117, 168–171.

    PubMed  CAS  Google Scholar 

  111. Goldin E., Stahl S., Cooney A.M., Kaneski C.R., Gupta S., Brady R.O., Ellis J.R., Schiffmann R. 2004. Transfer of a mitochondrial DNA fragment to MCOLN1 causes an inherited case of mucolipidosis IV. Hum. Mutat. 24, 460–465.

    PubMed  CAS  Google Scholar 

  112. Reid R.A. 1983. Can migratory mitochondrial DNA activate oncogenes? Trends Biochem. Sci. 8, 190–192.

    CAS  Google Scholar 

  113. Richter C. 1988. Do mitochondrial DNA fragments promote cancer and aging? FEBSLett. 241, 1–5.

    CAS  Google Scholar 

  114. Shay J.W., Baba T., Zhan Q., Kamimura N., Cuthbert J.A. 1991. HeLaTG cells have mitochondrial DNA inserted into the c-myc oncogene. Oncogene. 6, 1869–1874.

    PubMed  CAS  Google Scholar 

  115. Cavalli L.R., Liang B.C. 1998. Mutagenesis, tumorigenicity, and apoptosis: Are the mitichondria involved? Mutat. Res. 398, 19–26.

    PubMed  CAS  Google Scholar 

  116. Hadler H.I., Devadas K., Mahalingam R. 1998. Selected nuclear LINE elements with mitochondrial-DNA-like inserts are more plentiful and mobile in tumor than in normal tissue of mouse and rat. J. Cell Biochem. 68, 100–112.

    PubMed  CAS  Google Scholar 

  117. Liang B.C. 1996. Evidence for association of mitochondrial DNA sequence amplification and nuclear localization in human low-grade gliomas. Mutat. Res. 354, 27–33.

    PubMed  Google Scholar 

  118. Krawczak M., Cooper D.N. 1991. Gene deletions causing human genetic disease: Mechanisms of mutagenesisand the role of the local DNA sequence environment. Hum. Genet. 86, 425–441.

    PubMed  CAS  Google Scholar 

  119. Yao Y, Kong Q., Salas A., Bandelt H. 2008. Pseudomitochondrial genome haunts disease studies. J. Med. Genet. 45, 769–772.

    PubMed  CAS  Google Scholar 

  120. Ramos A., Santos C., Alvarez L., Nogues R., Aluja M.R 2000. Human mitochondrial DNA complete amplification and sequencing: A new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis. 30, 1–7.

    Google Scholar 

  121. Hirano M., Shtilbans A., Mayeux R., Davidson M.M., DiMauro S., Knowles J.A., Schon E.A. 1997. Apparent mtDNA heteroplasmy in Alzheimer’s disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc. Natl. Acad. Sci. USA. 94, 14894–14899.

    PubMed  CAS  Google Scholar 

  122. Wallace D.C., Stugard C., Murdock D., Schurr T., Brown M.D. 1997. Ancient mtDNA sequences in the human nuclear genome: Apotential source of errors in identifying pathogenic mutations. Proc. Natl. Acad. Sci. USA. 94, 14900–14905.

    PubMed  CAS  Google Scholar 

  123. Taylor R.W., Taylor G.A., Morris C.M., Edwardson J.M., Turnbull D.M. 1998. Diagnosis of mitochondrial disease: Assessment of mitochondrial DNA heteroplasmy in blood. Biochem. Biophys. Res. Commun. 251, 883–887.

    PubMed  CAS  Google Scholar 

  124. Parr R.L., Maki J., Reguly B., Dakubol G.D, Aguirre A., Wittock R., Robinson K., Jakupciak J.P., Thayerl R.E. 2006. The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation. BMC Genomics. 7, 185–198.

    PubMed  Google Scholar 

  125. Herrnstadt C., Clevenger W., Ghosh S.S., Anderson C., Fahy E., Miller S., Howell N., Davis R.E. 1999. A novel mitochondrial DNA-like sequence in the human nuclear genome. Genomics. 60, 67–77.

    PubMed  CAS  Google Scholar 

  126. Thangaraj K., Joshi M.B., Reddy A.G., Rasalkar A.A., Singh L. 2003. Sperm mitochondrial mutations as a cause of low sperm motility. J. Androl. 24, 388–392.

    PubMed  Google Scholar 

  127. Davis R.E., Miller S., Herrnstadt C., Ghosh S.S., Fahy E., Shinobu L.A., Galasko D., Thal L.J., Flint Beal M., Howell M., Davis Parker W. Jr. 1997. Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA. 94, 4526–4531.

    PubMed  CAS  Google Scholar 

  128. Goios A., Prieto L., Amorim A., Pereira L. 2008. Specificity of mtDNA-directed PCR4nfluence of nuclear mtDNA insertion (NUMT) contamination in routine samples and techniques. Int. J. Legal Med. 122, 341–345.

    PubMed  Google Scholar 

  129. Sorenson M., Quinn T. 1998. Numts: A challenge for avian systematics and population biology. The Auk. 115, 214–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gaziev.

Additional information

Original Russian Text © A.I. Gaziev, G.O. Shaikhaev, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 3,pp. 405–417.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaziev, A.I., Shaikhaev, G.O. Nuclear mitochondrial pseudogenes. Mol Biol 44, 358–368 (2010). https://doi.org/10.1134/S0026893310030027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310030027

Key words

Navigation