Skip to main content
Log in

Improving the efficiency of the bioconversion of plant raw materials with mutant cellulases of Penicillium verruculosum

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Plant biomass is the main type of organic material on Earth. The efficiency of biocatalytic conversion of plant raw materials determines the cost of their biotechnological processing to produce commercially valuable products such as organic alcohols and acids, carbohydrates, and hydrocarbons. New recombinant Penicillium canescens strains that produce not only their own enzyme complex but also heterologous cellulases (i.e., mutant and wild-type cellobiohydrolase I (CBH I) and endoglucanase II (EG II) of P. verruculosum) are constructed. Enzymatic agents (EAs) prepared on the basis of recombinant strains of P. canescens are found to be more active in the hydrolysis of crushed aspen wood. Yields of glucose and reducing sugars are observed 24–72 h after hydrolysis with EAs prepared in recombinant strains to be from 48 to 52 and 60 to 64%, respectively, higher than those for hydrolysis with EAs prepared in the initial recipient strain. The presence of N45A and N194A site-specific mutations introduced to reduce surface glycosilation thus results in a substantial increase in the yields of desired CBH I and EG II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bungay, H.R., Energy: the Biomass Options, New York Wiley, 1981.

    Google Scholar 

  2. Bioprocessing of Renewable Resources to Commodity Bioproducts, Bisaria, V.S. and Kondo, A., Eds., New York, Wiley, 2014.

  3. Sticklen, M., Curr. Opin. Biotechnol., 2006, vol. 17, no. 3, pp. 315–319.

    Article  CAS  Google Scholar 

  4. From the Sugar Platform to biofuels and biochemicals. Final report for the European Commission Directorate- General Energy no. ENER/C2/423-2012/SI2.673791. https://ec.europa.eu/energy/sites/ener/files/documents/EC%20Sugar%20Platform%20final%20report.pdf. Cited January 14, 2017.

  5. Kumar, R., Singh, S., and Singh, O.V., J. Ind. Microbiol. Biotechnol., 2008, vol. 35, no. 5, pp. 377–391.

    Article  CAS  Google Scholar 

  6. Chekushina, A.V., Dotsenko, G.S., and Sinitsyn, A.P., Catal. Ind., 2013, vol. 5, no. 1, pp. 98–104. doi 10.1134/S2070050413010042

    Article  Google Scholar 

  7. Martins, L.F., Kolling, D., Camassola, M., Dillion, A.J.P., and Ramos, L.P., Bioresour. Technol., 2008, vol. 99, no. 5, pp. 1417–1424.

    Article  CAS  Google Scholar 

  8. Ikeda, Y., Hayashi, H., Okuda, N., and Park, E.Y., Biotechnol. Prog., 2007, vol. 23, no. 2, pp. 333–338.

    Article  CAS  Google Scholar 

  9. Biotechnology for Agro-Industrial Residues Utilization, Nigam, P. and Pandley, A., Eds., New York, Springer, 2009.

  10. Illanes, A., Cauerhff, A., Wilson, L., and Castro, G.R., Bioresour. Technol., 2012, vol. 115, pp. 48–57.

    Article  CAS  Google Scholar 

  11. Gusakov, A.V. and Sinitsyn, A.P., Biofuels, 2012, vol. 3, no. 4, pp. 463–477.

    Article  CAS  Google Scholar 

  12. Dotsenko, A.S., Gusakov, A.V., Volkov, P.V., Rozhkova, A.M., and Sinitsyn, A.P., Biotechnol. Bioeng., 2016, vol. 113, no. 2, pp. 283–291.

    Article  CAS  Google Scholar 

  13. Dotsenko, A.S., Gusakov, A.V., Rozhkova, A.M., Sinitsyna, O.A., Nemashkalov, V.A., and Sinitsyn, A.P., Protein Eng., Des. Sel., 2016, vol. 29, no. 11, pp. 495–502. doi 10.1093/protein/gzw030

    Article  CAS  Google Scholar 

  14. Aslanidis, C. and De Jong, P.J., Nucleic Acids Res., 1990, vol. 18, no. 20, pp. 6069–6074.

    Article  CAS  Google Scholar 

  15. Sinitsyn, A.P. and Rozhkova, A.M., in Microorganisms in Biorefineries, Kamm, B., Ed., Berlin: Springer, 2015, pp. 1–19.

    Google Scholar 

  16. Aleksenko, A.Y., Makarova, N.A., Nikolaev, I.V., and Clutterbuck, A.J., Curr. Genet., 1995, vol. 28, no. 5, pp. 474–477.

    Article  CAS  Google Scholar 

  17. Nelson, N.A., J. Biol. Chem., 1944, vol. 153, no. 2, pp. 375–380.

    CAS  Google Scholar 

  18. Somogyi, M., J. Biol. Chem., 1952, vol. 195, no. 1, pp. 19–23.

    CAS  Google Scholar 

  19. Peterson, G.L., Anal. Biochem., 1979, vol. 100, no. 2, pp. 201–220.

    Article  CAS  Google Scholar 

  20. Morozova, V.V., Gusakov, A.V., Andrianov, R.M., Pravilnikov, A.G., Osipov, D.O., and Sinitsyn, A.P., Biotechnol. J., 2010, vol. 5, no. 8, pp. 871–880.

    Article  CAS  Google Scholar 

  21. Chekushina, A.V., Dotsenko, G.S., Kondratieva, E.G., and Sinitsyn, A.P., Biotechnol. Russ., 2013, no. 3, pp. 58–68.

    Google Scholar 

  22. Chekushina, A.V., Dotsenko, G.S., Kondratieva, E.G., and Sinitsyn, A.P., Biotechnol. Russ., 2013, no. 3, pp. 69–80.

    Google Scholar 

  23. Smirnova, I.A., Sereda, A.S., Kostyleva, E.V., Tsurikova, N.V., Bushina, E.V., Rozhkova, A.M., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2015, vol. 51, no. 6, pp. 660–666.

    Article  CAS  Google Scholar 

  24. Clarke, A.J., Biodegradation of Cellulose. Enzymology and Biotechnology, Lancaster, PA Technomic, 1997.

    Google Scholar 

  25. Teeri, T.T., Trends Biotechnol., 1997, vol. 15, no. 5, pp. 160–167.

    Article  Google Scholar 

  26. Woods, T.M., McCrae, S.I., and Bhat, K.M., Biochem. J., 1989, vol. 260, no. 1, pp. 37–43.

    Article  Google Scholar 

  27. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., and Amorim, D.S., Appl. Microbiol. Biotechnol., 2005, vol. 67, no. 5, pp. 577–591.

    Article  CAS  Google Scholar 

  28. Berlin, A., Maximenko, V., Gilkes, N., and Saddler, J., Biotechnol. Bioeng., 2007, vol. 97, no. 2, pp. 287–296.

    Article  CAS  Google Scholar 

  29. Wieczorek, A.S., Biot-Pelletier, D., and Martin, V.J.J., in Cellulose—Biomass Conversion, van De Ven, T. and Kadla, J., Eds., Rijeka, Croatia InTech}, 2013, ch. 5, pp. 101–130. http://www.intechopen.com/books/cellulose-biomass-conversion/recombinant-cellulase-andcellulosome- systems. Cited 14 January}, 2017. doi 10.5772/54225

  30. Proskurina, O.V., Korotkova, G.G., Rozhkova, A.M., Matys, V.Yu., Koshelev, A.V., Okunev, O.N., Nemashkalov, V.A., Sinitsyna, O.A., Revin, V.V., and Sinitsyn, A.P., Catal. Ind., 2014, vol. 6, no. 1, pp. 72–78. doi 10.1134/S2070050414010085

    Article  Google Scholar 

  31. National Renewable Energy Laboratory Website. www.nrel.gov/. Cited 14 January, 2017.

  32. Li, D.-C., Li, A.-N., and Papageorgiou, A.C., Enzyme Res., 2011. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3226318. Cited 14 January, 2017. doi 10.4061/ 2011/308730

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dotsenko.

Additional information

Original Russian Text © A.S. Dotsenko, A.M. Rozhkova, A.V. Gusakov, A.P. Sinitsyn, 2016, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotsenko, A.S., Rozhkova, A.M., Gusakov, A.V. et al. Improving the efficiency of the bioconversion of plant raw materials with mutant cellulases of Penicillium verruculosum . Catal. Ind. 9, 71–76 (2017). https://doi.org/10.1134/S2070050417010044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050417010044

Keywords

Navigation