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Abstract—A quasilinear parabolic problem with a time fractional derivative of the Caputo type and
mixed boundary conditions is considered. The coefficients of the elliptic operator depend on the
gradient of the solution, and this operator is uniformly monotone and Lipschitz-continuous. For this
problem, unconditionally stable linear regularized semi-discrete scheme is constructed based on the
L1-approximation of the fractional time derivative. Stability estimates are obtained by the variational
method. Accuracy estimates are given provided that the initial data and the solution to the differential
problem are sufficiently smooth. The proved result of stability of the semi-discrete scheme is valid for
the mesh scheme obtained from the semi-discrete problem using the finite element method in spatial
variables.
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INTRODUCTION

Partial differential equations with time-fractional derivatives arise in mathematical modeling of
anomalous diffusion and dynamic processes in materials with memory. Numerous articles are devoted
to the approximation of boundary value problems for linear problems with time-fractional derivatives.
In recent years, the numerical methods has been actively developed for equations with time-fractional
derivatives and the elliptic parts containing the non-linearities. Thus, implicit mesh schemes for the
equations with Caputo time-fractional derivatives and with right-hand sides depending on the solution
are studied in [1–3]. In [4] an implicit scheme is investigated for the nonlinear diffusion equation with
a coefficient depending on the solution and with Caputo time-fractional derivative. In [5–10], analysis
of ADI schemes was performed for linear time-fractional equations and for a class of semilinear time-
fractional equations.

The article [11] proposes a new mathematical model for a viscoelastic-plastic process by formulating
a temporary fractional equation containing an elliptic operator, which depends on the gradient of the
solution. In [12], the authors construct and study backward Euler and locally one dimensional schemes
approximating Dirichlet problem with Caputo time-fractional derivative and a quasilinear elliptic part
without mixed derivatives.

In this article, we consider a quasilinear parabolic problem with a time fractional derivative of the
Caputo type and mixed boundary conditions. The quasilinear elliptic part of the problem defines a
uniformly monotone and Lipschitz operator, which is energy equivalent to the Laplace operator. For
this problem, we construct and investigate a linear regularized semidiscrete scheme in which the
regularization term contains the Laplace operator and time-fractional derivative is approximated using
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well-known L1-approximation. Stability estimates for the semidiscrete problem by the variational
method are obtained. Accuracy estimates are given provided that the initial data and the solution to
the differential problem are sufficiently smooth. For discrete schemes obtained as a result of mesh
approximations of the elliptic part of the semidiscrete problem, the stability estimates remain valid. They
are also generalized for factorized schemes.

1. FORMULATION OF THE PROBLEM

Let Ω ⊂ R
2 be a polygon with the boundary ∂Ω = ΓD ∪ ΓN , meas ΓD > 0, and Q = Ω× (0, T ],

ΣD = ΓD × (0, T ], ΣN = ΓN × (0, T ]. Define a Caputo-type time-fractional derivative:

Dty(t) =

t∫

0

G(t− s)
∂y

∂s
(s)ds (1)

with a kernel G(t) satisfying the assumptions:

G(t) : (0,+∞) → R
+ is continuous and strictly decreasing function,

+∞∫

0

G(t)dt < ∞. (2)

The conditions (2) are satisfied for

• the generalized Caputo fractional derivative with G(t) =
r(t)

Γ(1− α)tα
, 0 < α < 1, Γ(x) is gamma-

function, a weighting function r(t) ∈ C2[0, T ], r(t) > 0 and r′(t) � 0 for all t ∈ [0, T ] (r(t) ≡ 1
corresponds to the classical Caputo fractional derivative);

• the multi-term fractional derivative with G(t) =

s∑
k=1

ck
Γ(1− αk)tαk

, 0 < α1 < . . . < αs < 1,

ck > 0.

See the definitions of the corresponding derivatives, e.g., in [13–15]).
Let us define a second order quasilinear elliptic differential operator L and the co-normal derivative

∂u

∂νL
by the equalities

Lu = −
2∑

i=1

∂

∂xi
gi
(
x, t, u,∇u

)
+ g0

(
x, t, u,∇u

)
,

∂u

∂νL
=

2∑
i=1

gi
(
x, t, u,∇u

)
cos(n, xi), (3)

where n is the unit vector of the outward normal to ΣN . Suppose that the nonlinear coefficients
gi(t, p) = gi(x, t, p0, p1, p2) of the equation satisfy the following assumptions for all (x, t) ∈ Q̄ and
p, q, r ∈ R

3:

gi(t, p), for i, k = 0, . . . , 2 are continuous,
2∑

i=0

(gi(t, p)− gi(t, q))(pi − qi) � c0

2∑
i=1

(pi − qi)
2, c0 > 0,

2∑
i=0

(gi(t, p)− gi(t, q))ri � c1

(
2∑

i=0

(gi(t, p)− gi(t, q))(pi − qi)

)1/2 ( 2∑
i=0

r2i

)1/2

. (4)

Consider a quasilinear parabolic problem with the time-fractional derivative and mixed boundary
conditions:

Dtu+ Lu = f in QT ,
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u = 0 on ΣD,
∂u

∂νL
= q on ΣN ,

u = 0 for t = 0, x ∈ Ω. (5)

We assume that given functions f = f(x, t) and q = q(x, t) are continuous in t in order to use the
simplest mesh approximations and do not specify their properties in details, since we do not investigate
the existence of a solution to problem (5).

Let us make only a few remarks about well-known results on the existence of weak solutions
of parabolic equations with time-fractional derivatives. The existence of a regular weak solution to
Dirichlet problem for the case of linear operator L and classical Caputo fractional derivative was proved
in [16]. A priori estimate for the solution in the norm of Hα(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω) ∩H2(Ω))
through the L2(Q)-norm of f was derived. The existence of a weak solution from Besov space
Bα/2(QT ) = Hα/2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) is substantiated in [12] for a quasilinear Dirichlet
boundary value problem with classical Caputo derivative and a particular case of differential operator
(3). This result can be generalized for the case of boundary value problem with elliptic operator (3) and
Caputo time derivative. In a general case the problem of the existence of a unique solution to (5) seems
to be open. In the future, we will assume that problem (5) has a smooth solution, and will focus on
studying the mesh approximation of this problem.

2. APPROXIMATION

Multiplying the differential equation (5) by a sufficiently smooth function v(x) : v|ΓD
= 0, we obtain

a variational equation that can serve as a basis for the constructing its approximations:
∫

Ω

Dtuvdx+

∫

Ω

(
2∑

i=1

gi
(
x, t, u,∇u

) ∂v

∂xi
+ g0

(
x, t, u,∇u

)
v

)
dx =

∫

Ω

fvdx+

∫

ΓN

qvdΓ.

Let V = {y ∈ H1(Ω); y = 0 a.e. x ∈ ΓD} with the norm ||u||2V =

∫

Ω

(
u2 + |∇u|2

)
dx, and let

||u||20 =
∫
Ω

u2dx, ||u||21 =

∫

Ω

|∇u|2dx and ||u||2Γ =
∫
ΓN

u2dΓ. It is well-known that

||u||0 � cΩ||u||1, ||v||Γ � cΓ||v||1 ∀v ∈ V. (6)

Due to the first inequality in (6) the norms ||u||V and ||u||1 are equivalent. By virtue of this fact and the
assumptions (4) the form

a(t, u, v) =

∫

QT

( 2∑
i=1

gi
(
x, t, u,∇u

) ∂v

∂xi
+ g0

(
x, t, u,∇u

)
v
)
dxdt

is well-defined on V × V for all t and has the following properties:

a(t, u, v − u)− a(t, v, v − u) � c0||u− v||21 ∀u, v ∈ V,

a(t, u− v,w) � c2||u− v||1||w||1 ∀u, v, w ∈ V, c2 = c2(c1, cΩ). (7)

Let ωτ = {tj = jτ, j = 0, 1, . . . M ;Mτ = T} be a uniform mesh on the segment [0, T ] and let us use
the notation yj = y(tj) for a continuous function y(t). The L1-approximation of the time derivative

Dty(t) =

t∫

0

G(t− s)
∂y

∂s
(s)ds of a continuous function y(t) at a point tk ∈ ωτ is given by the following

relations:

Dty(tk) ≈ ∂tȳ
k = d1y

k +

k−1∑
j=1

(dj+1 − dj)y
k−j − dky

0,
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dj =
1

τ

tk−j+1∫

tk−j

G(tk − s)ds =
1

τ

jτ∫

(j−1)τ

G(u)du, ȳk = (y0, y1, . . . , yk).

The properties (2) imply that the coefficients satisfy the inequalities

d1 > d2 > · · · > dM > 0. (8)

First, we consider the semidiscrete implicit scheme approximating problem (5): find
(y(x, t1), y(x, t2), . . . , y(x, tM )) with y(x, tk) ∈ V and y(x, 0) = 0, such that for all k∫

Ω

∂tȳ
k(x)v(x)dx + a(tk, y

k, v) =

∫

Ω

f(x, tk)v(x)dx+

∫

ΓN

q(x, tk)vdΓ ∀v ∈ V. (9)

Since ∂tȳ
k(x) = d1y

k(x) +
k−1∑
j=1

(dj+1 − dj)y
k−j(x), then a k-th equation of system (9) is a variational

equation ∫

Ω

d1y
k(x)v(x)dx + a(tk, y

k, v) = Fk(v) (10)

with right-hand side

Fk(v) =

∫

Ω

f(x, tk)v(x)dx +

∫

ΓN

q(x, tk)vdΓ−
k−1∑
j=1

(dj+1 − dj)

∫

Ω

∇yk−j(x) · ∇v(x)dx.

Due to the properties (7) the left side of (10) defines a continuous and uniformly monotone operator
from V to its dual V ∗. Using the inequalities (6), it is easy to see that linear functional Fk ∈ V ∗ for
f(x, tk) ∈ L2(Ω) and q(x, tk) ∈ L2(ΓN ). Thus, the existence of a unique solution to problem (10) follows
from [17], Chapter 2, section 2.1.

Below, instead of the nonlinear problem (9), a linear regularized problem is constructed. To shorten
writing, we will use the notations

(u, v) =

∫

Ω

uvdx, ak(u, v) = a(tk, u, v) (fk, v) =

∫

Ω

f(x, tk)v(x)dx +

∫

ΓN

q(x, tk)vdΓ.

Let us introduce a bilinear bounded form r(u, v) on the space V × V , which satisfies the inequality

r(u, u) � ||u||21 ∀u ∈ V. (11)

A particular case of this bilinear form is r(u, v) =
∫

Ω

∇u · ∇vdx for u, v ∈ V.

The regularized scheme approximating (5) is as follows: for a given y0 = 0 find yk for k � 1 from the
system of linear equations

(∂tȳ
k, v) + σr(yk − yk−1, v) + a(tk−1, y

k−1, v) = (fk, v) ∀v ∈ V, σ > 0. (12)

For a fixed k the mesh scheme (12) can be written as

d1(y
k, v) + σr(yk − yk−1, v) +

k−1∑
j=1

(dj+1 − dj)(y
k−j , v) + ak−1(y

k−1, v) = (fk, v), (13)

The linear variational problem (13) has a unique solution for any σ � 0 by Lax–Milgram theorem.
The essential point used in proving stability estimates is the property of the L1-approximation of the

time-fractional derivative, which is given by the following lemma:
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Lemma 1 ([12]). Let

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d2 0 0 0 · · · 0 0 0

0 d2 0 0 · · · 0 0 0

d3 − d2 0 d2 0 · · · 0 0 0

... ... ... ... · · · ... ...

dM − dM−1 dM−1 − dM−2 dM−2 − dM−3 ... · · · d3 − d2 0 d2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the symmetric matrix 1/2(D +DT ) is positive definite.
Using the matrix D, the approximation of time derivative at a point tk = kτ ∈ ωτ can be written as

∂ty(tk) = (d1 − d2)(y
k − yk−1) +

(
Dkȳ

k
)k
,

where Dk is k × k leading submatrix of B, and 1/2(Dk +DT
k ) is positive definite along with

1/2(D +DT ):
m∑
k=1

(
Dkȳ

k
)k
yk � 0 ∀ȳk = (y1, y2, . . . , yk). (14)

Introduce also the bilinear, symmetric and positive definite form on V × V :

b(u, v) = (d1 − d2)(u, v) + σr(u, v).

Now the equation (13) can be rewritten as

b(yk − yk−1, v) + (
(
Dkȳ

k
)k
, v) + ak−1(y

k−1, v) = (fk, v). (15)

For generality, we derive an a priori estimate for the case of a nonzero initial value. For i = 1, 2 we
denote by yi the solutions of the equation (13) with the right-hand sides fi and the initial values y0i . Let
also y = y1 − y2, y0 = y01 − y02 and ψ = f1 − f2.

Lemma 2. Let the conditions (7) be satisfied and the regularization parameter satisfies the
condition

σ =
c22
2c0

+ δ, δ > 0. (16)

Then there is a constant μ = μ(δ) such that for all m = 1, 2, . . . M the following a priori estimate
for the regularized mesh scheme (13) holds:

(d1 − d2)||ym||20 + μ

m∑
k=1

||yk||21 � ||y0||20 + r(y0, y0) + 2

m∑
k=1

|
(
ψk, yk)

∣∣. (17)

Proof. From the equations (24) written for yk1 and yk2 with test function v = 2(yk1 − yk2) = 2yk we
obtain:

2b(yk − yk−1, yk) + 2(
(
Dkȳ

k
)k
, yk) + 2ak−1(y

k−1
1 , v) − 2ak−1(y

k−1
1 , yk) = 2(ψk, yk). (18)

In what follows, we use the following estimates:

2b(yk − yk−1, yk) = ||yk||2b − ||yk−1||2b + ||yk − yk−1||2b ;

2ak−1(y
k−1
1 , yk)− 2ak−1(y

k−1
2 , yk)

= 2ak−1(y
k−1
1 , yk−1 + yk − yk−1)− 2ak−1(y

k−1
2 , yk−1 + yk − yk−1)

� 2c0||yk−1||21 − 2c2||yk−1||1||yk − yk−1||1 � (2c0 − δ0)||yk−1||21 −
c22
δ0
||yk − yk−1||21

with a constant δ0 ∈ (0, 2c0) in the second estimate.
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Using the derived estimates and the inequality (14), after summing the equation (18) over k from 1
to m we obtain

||ym||2b − ||y0||2b +
m∑
k=1

(
||yk − yk−1||2b −

c22
δ0
||yk − yk−1||21

)

+ (2c0 − δ0)

m∑
k=1

||yk−1||21 � 2

m∑
k=1

|(ψk, yk)|. (19)

Now, due to the definition of the bilinear form b(., .) and the inequalities (11) and (16) we have the
inequality

||yk − yk−1||2b � σ||yk − yk−1||21 =
(

c22
2c0

+ δ

)
||yk − yk−1||21.

With an appropriate choice of the constant δ0 = δ0(δ) ∈ (0, 2c0), we obtain

||yk − yk−1||2b −
c22
δ0
||yk − yk−1||21 �

(
c22
2c0

+ δ − c22
δ0(δ)

)
||yk − yk−1||21 � 0,

whence

||ym||2b − ||y0||2b + (2c0 − δ0(δ))
m∑
k=1

||yk−1||21 � 2
m∑
k=1

|(ψk, yk)|.

Let μ(δ) = min{σ, 2c0 − δ0(δ)}. Since ||ym||2b = (d1 − d2)||ym||2 + σ||ym||21, then the last inequality
implies (17) �

The a priori estimate (17) can be used to obtain various stability estimates for the regularized mesh
scheme (13). We give one such estimate in the case of zero initial condition. Let

||f ||−1 = sup
u∈V \{0}

(f, u)

||u||1
= sup

u∈V \{0}

∫
Ω fudx

(
∫
Ω |∇u|2dx)1/2

and let the following norms be defined for the functions from ωτ to V or to its subspace W :

||y||2L2(ωτ ;H1) =

M∑
k=1

τ ||yk||21, ||f ||2L2(ωτ ;H−1) =

M∑
k=1

τ ||uk||2−1, ||q||2L2(ωτ ;L2(Γ)) =

M∑
k=1

τ ||uk||2Γ.

Theorem 1. Let the conditions (7) be satisfied, yi be the solutions of the equation (13) with the
right-hand sides fi, homogeneous initial conditions y0i = 0 and the right-hand sides in Neuman
boundary conditions qi. If the regularization parameter satisfies the condition (16):

σ =
c22
2c0

+ δ, δ > 0,

then the following stability estimate holds:

||y1 − y2||L2(ωτ ;H1) � C
(
||f1 − f2||L2(ωτ ;H−1) + ||q1 − q2||L2(ωτ ;L2(Γ))

)
, C = C(δ). (20)

Proof. The inequality (17) implies

μ
m∑
k=1

τ ||yk1 − yk2 ||21 � 2
m∑
k=1

τ
∣∣(ψk, yk1 − yk2)

∣∣ (21)

with

(ψk, v) =

∫

Ω

(f1(x, tk)− f2(x, tk))v(x)dx +

∫

ΓN

(q1(x, tk)− q2(x, tk)v(x)dΓ.
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For all k and v ∈ V ∣∣∣∣∣∣
∫

Ω

(f1(x, tk)− f2(x, tk))v(x)dx

∣∣∣∣∣∣ � ||fk
1 − fk

2 ||−1||v||1,

and due to (6)∣∣∣∣∣∣∣
∫

ΓN

(q1(x, tk)− q2(x, tk)v(x)dΓ

∣∣∣∣∣∣∣
� ||qk1 − qk2 ||Γ||v||Γ � cΓ||qk1 − qk2 ||Γ||v||1.

Now the estimate (20) immediately follows from (21) and the last two inequalities. �

Using the proven stability estimate, we can obtain an accuracy estimate under the assumption
that the input data and the solution to the differential problem are sufficiently smooth. Let yk, k =
1, 2, . . . ,M, be the solution of a semidiscrete problem (12) and uk = u(x, tk) be the exact solution u(x, t)
of the differential problem (5). Then the estimate (18) applied to the difference y − u contains in the
right-hand side the function ψk which is defined by the equality

(ψk, v) = (∂tū
k −Dtu(tk), v) + σr(uk − uk−1, v).

Let us consider the case of classical Caputo derivative. The following estimate is well-known ([19, 20]):

∂α
t ū

k = Dα
t u(tk) +O(τ2−α). It is easy to see that r(uk − uk−1, v) = τr

(
uk − uk−1

τ
, v

)
� O(τ)||v||1.

Thus, the most significant term in the approximation error is associated with the introduction of the
regularizing term, and the accuracy estimate is

||y − u||L2(ωτ ;H1) = O(τ).

Note that for the implicit scheme (backward Euler scheme) and locally one-dimensional scheme (see
[12]), the terms in the accuracy estimate related to the approximation in time have the following orders
respectively:

||y − u||L2(ωτ ;H1) = O(τ2−α), ||y − u||L2(ωτ ;L2) = O(τα/2).

Both of these schemes are nonlinear and require the use of iterative methods when implemented at each
time level.

Remark 1. A fully discrete approximation of problem (5) can be constructed using an approximation
with respect to the spatial variables of the semidiscrete problem (12). All the results on the existence of
a unique solution and the proved stability estimates remain valid for mesh problems constructed using
the finite element method with finite elements of the first order, as well as for finite element schemes with
quadrature formulas.

Remark 2. The explicit (forward Euler) mesh scheme is a particular case of fully discrete regularized
scheme with σ = 0. A sufficient condition of its stability follows from the estimate (19):

(d1 − d2)||u||2 � c22
δ0
||u||21 ∀u ∈ V. (22)

The last inequality is equivalent to the following estimate for the maximum eigenvalue λmax of the mesh
Laplace operator:

d1 − d2 � λmax.

As is known, λmax = O(h−2), where h characterizes the mesh step in the spatial variable. Since, for
example, for the L1-approximation of the Caputo derivative, d1 − d2 = O(τ−α), then (22) leads to a
very restrictive condition for the smallness of the time step:

τ < ch2/α

with a constant c, which depends on the problem data.
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Remark 3. Let r1(u, v) be a bounded bilinear form in V × V and r1(u, u) � 0. Then the following
scheme satisfies all the proven results on unique solvability and stability:

(∂tȳ
k, v) + σr(yk − yk−1, v) + r1(y

k, v) + a(tk−1, y
k−1, v) = (fk, v) ∀v ∈ V, σ > 0. (23)

This fact allows to apply these results to the factorized mesh schemes. More precisely, let for a fully
discrete scheme constructed using finite element or finite difference scheme r(u, v) = (Ru, v) and the
mesh Laplace operator R = −Δh with corresponding boundary conditions can be splitted into the sum
R = R1 +R2 such that R1R2 is a non-negative mesh operator: (R1R2u, u) � 0. In this case we set
r1(u, v) = (R1R2u, v) and take the regularization term in the form

σr(yk − yk−1, v) + σ2d−1
1 r1(y

k, v).

The corresponding mesh scheme becomes the mesh scheme with a factorized operator on each time
level:

d1
(
(I + σd−1

1 R1)(I + σd−1
1 R2)y

k, v
)
− σ(Ryk−1, v) +

k−1∑
j=1

(dj+1 − dj)(y
k−j, v)

+ ak−1(y
k−1, v) = (fk, v), I is the identity operator. (24)

The implementation of (24) is reduced to sequential inversion of the mesh operators I + σd−1
1 R1

and I + σd−1
1 R2 and is very easy if these operators are locally one-dimensional (that corresponds to

alternating direction method) or triangle (that corresponds to alternating triangular method). The
term σ2d−1

1 r1(u
k, v) is added to the approximation error. In case of classical Caputo derivative it is

asymptotically O(τα). So, the accuracy estimate is

||y − u||L2(ωτ ;H1) = O(τα).
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