Skip to main content
Log in

Chemisorption Synthesis of the Ion-Polymeric Heteronuclear Gold(III)–Bismuth(III) Complex ([Au{S2CN(C3H7)2}2]3[Bi2Cl9])n Based on [Bi2{S2CN(C3H7)2}6]: 13C MAS NMR, Supramolecular Structure, and Thermal Behavior

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Chemisorption synthesis on the basis of the binuclear compound [Bi2{S2CN(C3H7)2}6] (I) and preparative isolation of the ion-polymeric heteronuclear gold(III)–bismuth(III) complex ([Au{S2CN(C3H7)2}2]3[Bi2Cl9])n (II) are carried out. Compounds I and II are characterized in comparison by IR spectroscopy and 13C CP-MAS NMR. According to the X-ray diffraction analysis data (CIF file CCDC no. 1407705), the cationic moiety of compound II exhibits an unusually complicated supramolecular structure including six isomeric noncentrosymmetric complex cations [Au{S2CN(C3H7)2}2]+ (hereinafter A–F) and two binuclear anions [Bi2Cl9]3– as conformers. The isomeric gold(III) cations perform various structural functions. Owing to pair secondary interactions Au···S, cations B, C, E, and F form centrosymmetric ([E···E], [F···F]) and noncentrosymmetric ([B···C]) binuclear aggregates [Au2{S2CN(C3H7)2}4]2+, whereas cations A and D are not involved in dimerization. The strongest secondary Au···S bonds are formed between the binuclear and mononuclear cations, resulting in the formation of supramolecular cation-cationic polymer chains of two types: (⋅⋅⋅A⋅⋅⋅[B⋅⋅⋅C]⋅⋅⋅A⋅⋅⋅[B⋅⋅⋅C]⋅⋅⋅)n and (D⋅⋅⋅[E⋅⋅⋅E]⋅⋅⋅D⋅⋅⋅[F⋅⋅⋅F]⋅⋅⋅])n. In both chains, the gold atoms of the binuclear cations are characterized by a distorted octahedral coordination [S6], whereas in the mononuclear cations the gold atoms retain the square environment [S4]. The cation-anionic interactions are provided by secondary bonds Cl⋅⋅⋅S involving the terminal chlorine atoms of isomeric [Bi2Cl9]3– and the sulfur atoms of the binuclear cations [Au2{S2CN(C3H7)2}4]2+. The character of the thermal behavior of compounds I and II is studied by simultaneous thermal analysis with the identification of intermediate and final products of the thermal transformations. The thermolysis of compound I at 193–320°C is accompanied by the formation of Bi2S3 with an impurity of reduced metallic bismuth particles. The final products of the thermal transformations of compound II are reduced elemental gold and Bi2O3, and the thermal transformation intermediates are BiCl3 and Bi2S3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. The concept of secondary bonds was proposed [34] for the description of interactions characterized by the distances comparable with the sums of the van der Waals radii of the corresponding atoms.

  2. Cation-anionic interactions of this type were observed earlier for the formation of supramolecular structures of the heteronuclear complexes Au(III)–Zn [36] and Au(III)–Fe(III) [37].

  3. The formation of metal sulfides upon the thermolysis of the complexes including the sulfur-containing ligands was substantiated from the thermodynamic point of view [42].

  4. The evaporation of BiCl3 was studied for samples of the compact substance. A significant mass loss begins from sample melting, the evaporation region lies in a range of 234.0–415.0°С, and the maximum rate of mass loss falls on 376.6°С.

REFERENCES

  1. de Carvalho, H.G. and de Araújo Penna, M., Lett. Nuovo Cimento, 1972, vol. 3, no. 18, p. 720.

    Article  Google Scholar 

  2. de Marcillac, P., Coron, N., Dambier, G., et al., Nature, 2003, vol. 422, no. 6934, p. 876.

    Article  CAS  PubMed  Google Scholar 

  3. Li, H., Lai, C.S., Wu, J., et al., J. Inorg. Biochem., 2007, vol. 101, no. 5, p. 809.

    Article  CAS  PubMed  Google Scholar 

  4. Ishak, D.H.A., Ooi, K.K., Ang, K.-P., et al., J. Inorg. Biochem., 2014, vol. 130, p. 38.

    Article  CAS  PubMed  Google Scholar 

  5. Salvador, J.A.R., Figueiredo, S.A.C., Pinto, R.M.A., and Silvestre, S.M., Future Med. Chem., 2012, vol. 4, no. 11, p. 1495.

    Article  CAS  PubMed  Google Scholar 

  6. Guo, Y.-C., Ma, Q.-G., Chen, S.-Y., et al., Chin. J. Struct. Chem., 2015, vol. 34, no. 7, p. 1028.

    CAS  Google Scholar 

  7. Ozturk, I.I., Banti, C.N., Kourkoumelis, N., et al., Polyhedron, 2014, vol. 67, p. 89.

    Article  CAS  Google Scholar 

  8. Arda, M., Ozturk, I.I., Banti, C.N., et al., RSC Adv., 2016, vol. 6, p. 29026.

    Article  CAS  Google Scholar 

  9. Chauhan, H.P.S., Joshi, S., and Carpenter, J., J. Therm. Anal. Calorim., 2016, vol. 124, no. 1, p. 117.

    Article  CAS  Google Scholar 

  10. Tamilvanan, S., Gurumoorthy, G., Thirumaran, S., and Ciattini, S., Polyhedron, 2017, vol. 121, p. 70.

    Article  CAS  Google Scholar 

  11. Ariza-Roldán, A.O., López-Cardoso, E.M., Rosas-Valdez, M.E., et al., Polyhedron, 2017, vol. 134, p. 221.

    Article  CAS  Google Scholar 

  12. Nomura, R., Kanaya, K., and Matsuda, H., Bull. Chem. Soc. Jpn., 1989, vol. 62, no. 3, p. 939.

    Article  CAS  Google Scholar 

  13. Zhang, H., Huang, J., Zhou, X., and Zhong, X., Inorg. Chem., 2011, vol. 50, no. 16, p. 7729.

    Article  CAS  PubMed  Google Scholar 

  14. Kun, W.N., Mlowe, S., Nyamen, L.D., et al., Chem. Eur. J., 2016, vol. 22, no. 37, p. 13127.

    Article  CAS  PubMed  Google Scholar 

  15. Sivasekar, S., Ramalingam, K., Rizzoli, C., and Alexander, N., Inorg. Chim. Acta, 2014, vol. 419, p. 82.

    Article  CAS  Google Scholar 

  16. Cabrita, J.F., Ferreira, V.C., and Monteiro, O.C., Electrochim. Acta, 2014, vol. 135, p. 121.

    Article  CAS  Google Scholar 

  17. Abdullah, N.H., Zainal, Z., Silong, S., et al., Thermochim. Acta, 2016, vol. 632, p. 37.

    Article  CAS  Google Scholar 

  18. Lai, C.S. and Tiekink, E.R.T., Z. Kristallogr., 2007, vol. 222, no. 10, p. 532.

    Article  CAS  Google Scholar 

  19. Ivanov, A.V., Egorova, I.V., Ivanov, M.A., et al., Dokl. Phys. Chem., 2014, vol. 454, no. 1, p. 16.

    Article  CAS  Google Scholar 

  20. Gowda, V., Sarma, B., Laitinen, R.S., et al., Polyhedron, 2017, vol. 129, p. 123.

    Article  CAS  Google Scholar 

  21. Sun, R.-Z., Guo, Y.-C., Liu, W.-M., et al., Chin. J. Struct. Chem., 2012, vol. 31, no. 5, p. 655.

    CAS  Google Scholar 

  22. Zaeva, A.S., Ivanov, A.V., Gerasimenko, A.V., and Sergienko, V.I., Russ. J. Inorg. Chem., 2015, vol. 60, no. 2, p. 203. doi 10.1134/S0036023615020229

    Article  CAS  Google Scholar 

  23. Zaeva, A.S., Ivanov, A.V., and Gerasimenko, A.V., Russ. J. Coord. Chem., 2015, vol. 41, no. 10, p. 644. doi 10.1134/S1070328415090109

    Article  CAS  Google Scholar 

  24. Byr’ko, V.M., Ditiokarbamaty, Moscow: Nauka, 1984.

    Google Scholar 

  25. Pines, A., Gibby, M.G., and Waugh, J.S., J. Chem. Phys., 1972, vol. 56, no. 4, p. 1776.

    Article  CAS  Google Scholar 

  26. APEX2, Madison: Bruker AXS Inc., 2010.

  27. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found Crystallogr., 2008, vol. 64, no. 1, p. 112.

    Article  CAS  Google Scholar 

  28. Fabretti, A.C., Forghieri, F., Giusti, A., et al., Spectrochim. Acta, Part A, 1984, vol. 40, no. 4, p. 343.

    Article  Google Scholar 

  29. Yin, H., Li, F., and Wang, D., J. Coord. Chem., 2007, vol. 60, no. 11, p. 1133.

    Article  CAS  Google Scholar 

  30. Jaschinski, B., Blachnik, R., Pawlak, R., and Reuter, H., Z. Kristallogr. NCS, 1998, vol. 213, nos. 1−4, p. 541.

    CAS  Google Scholar 

  31. Savilov, S., Kloo, L., Kuznetsov, A., et al., Z. Anorg. Allg. Chem., 2003, vol. 629, no. 14, p. 2525.

    Article  CAS  Google Scholar 

  32. Gerasimenko, A.V., Karaseva, E.T., and Polishchuk, A.V., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, no. 2, p. m378.

  33. Winter, M., The Periodic Table of the Elements by Web Elements (accessed January 2010). http://www. webelements.com.

  34. Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1.

    Article  CAS  Google Scholar 

  35. Haiduc, I. and Edelmann, F.T., Supramolecular Organometallic Chemistry, Wiley-VCH, 1999.

    Book  Google Scholar 

  36. Loseva, O.V. and Ivanov, A.V., Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, p. 1491. doi 10.1134/ S0036023614120146

    Article  CAS  Google Scholar 

  37. Ivanov, A.V., Loseva, O.V., Rodina, T.A., et al., Russ. J. Coord. Chem., 2016, vol. 42, no. 2, p. 104. doi 10.1134/S1070328416020032

    Article  CAS  Google Scholar 

  38. Lalia-Kantouri, M., Christofides, A., and Manoussakis, G.E., J. Therm. Anal. Calorim., 1984, vol. 29, no. 2, p. 279.

    Article  CAS  Google Scholar 

  39. Lalia-Kantouri, M. and Manoussakis, G.E., J. Therm. Anal. Calorim., 1984, vol. 29, no. 5, p. 1151.

    Article  CAS  Google Scholar 

  40. Ripan, R. and Ceteanu, I., Neorganicheskaya khimiya. T. 1. Khimiya metallov, Spitsin, V.I., Kolli, I.D., Eds., Moscow: Mir, 1971.

  41. Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Konstanty neorganicheskikh veshchestv: spravochnik (Characteristics of Inorganic Compounds. A Handbook), Moscow: Drofa, 2008.

    Google Scholar 

  42. Razuvaev, G.A., Almazov, G.V., Domrachev, G.A., et al., Dokl. Akad. Nauk SSSR, 1987, vol. 294, no. 1, p. 141.

    CAS  Google Scholar 

  43. Larionov, S.V., Mikhalin, I.N., Glinskaya, L.A., et al., Russ. J. Inorg. Chem., 2004, vol. 49, no. 3, p. 331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V., Gerasimenko, A.V., Egorova, I.V. et al. Chemisorption Synthesis of the Ion-Polymeric Heteronuclear Gold(III)–Bismuth(III) Complex ([Au{S2CN(C3H7)2}2]3[Bi2Cl9])n Based on [Bi2{S2CN(C3H7)2}6]: 13C MAS NMR, Supramolecular Structure, and Thermal Behavior. Russ J Coord Chem 44, 518–531 (2018). https://doi.org/10.1134/S1070328418080043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328418080043

Keywords:

Navigation