Skip to main content
Log in

Optical and dielectric characteristics of the rare-earth metal oxide Lu2O3

  • Electrical and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The characteristics of the Lu2O3 oxide and their variations controlled by compositional defects are studied. The defects are anion vacancies produced on partial reduction of the oxide. Such defects exhibit features typical of quantum objects and have a profound effect on the optical transmittance spectrum, the character of conduction (insulator or semiconductor properties) and the order of magnitude of the permittivity ɛ (capable of varying from 11.2 to 125). The structural features of vacancies in the oxides are considered, and the effect of vacancies on the polarization, conductivity, and lattice vibrations is studied. The studies are carried out in the temperature range 200–900 K, the wavelength range 0.03–50 μm, and the current frequency range 102–105 Hz. The rare-earth metal oxides attract interest for applications in microelectronics due to their high permittivity (several times higher than the permittivity of SiO2) and, hence, the prospects for use of these oxides instead of SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. I. Chernobrovkin and Yu. G. Sakharov, Élektronika 2(1), 82 (1973).

    Google Scholar 

  2. G. D. Wilk, R. M. Wallace, and J. M. Antony, J. Appl. Phys. 89, 5243 (2001).

    Article  ADS  Google Scholar 

  3. H. J. Osten, A. Laha, M. Czernohorsky, E. Bugiel, R. Dargis, and A. Fisse, Phys. Stat. Solidi A 295, 695 (2008).

    Article  ADS  Google Scholar 

  4. C. H. Liu, T. M. Pan, W. H. Shu, and K. C. Huang, Electrochem. Solid-State Lett. 10, G54 (2007).

    Article  Google Scholar 

  5. Chia-Wen Chang, Chia-Kang Dang, J. S. Huang, H. R. Chang, and T. F. Lei, Electrochem. Solid-State Lett. 10, J143 (2007).

    Article  Google Scholar 

  6. S. Duenas, H. Caston, H. Carcia, A. Gamez, L. Bailon, K. Kukli, T. Hatanpaa, J. Lu, M. Ritalola, and M. Leskola, J. Electrochem. Soc. 154, G207 (2007).

    Article  Google Scholar 

  7. G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli, I. L. Fedushkin, H. Schumann, Yu. Lebedinskii, and F. Zenkevich, Appl. Phys. Lett. 85, 630 (2004).

    Article  ADS  Google Scholar 

  8. E. Bonera, G. Scarel, M. Fanciulli, P. Delugas, and V. Fiorentini, Phys. Rev. Lett. 94, 027602 (2005).

    Article  ADS  Google Scholar 

  9. P. Darmawan, P. S. Lee, Y. Setiawan, J. C. Lai, and P. Yang, J. Vac. Sci. Technol. B 25, 1203 (2007).

    Article  Google Scholar 

  10. C. L. Yuan, P. Darmawan, Y. Setiawan, and P. S. Lee, Electrochem. Solid-State Lett. 99, F53 (2006).

    Article  Google Scholar 

  11. A. I. Shelykh, A. V. Prokof’ev, and B. T. Melekh, Fiz. Tverd. Tela 38, 427 (1966) [Sov. Phys. Solid State 38, 236 (1966)].

    Google Scholar 

  12. A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, J. Alloys Comp. 242, 41 (1966).

    Article  Google Scholar 

  13. Kh. S. Bagdasarov, V. P. Zhuze, M. G. Karin, K. K. Si- dorin, and A. I. Shelykh, Fiz. Tverd. Tela 26, 1134 (1984) [Sov. Phys. Solid State 26, 687 (1984)].

    Google Scholar 

  14. D. Bloor and J. R. Dean, J. Phys. C: Solid State Phys. 5, 1237 (1972).

    Article  ADS  Google Scholar 

  15. V. P. Zhuze and A. I. Shelykh, Fiz. Tekh. Poluprovodn. 23, 393 (1989) [Sov. Phys. Semicond. 23, 245 (1989)].

    Google Scholar 

  16. G. P. Skornyakov and V. L. Konstantinov, in Physics and Chemistry of Rare Earth Semiconductors, Ed. by G. P. Skornyakov and A. A. Samokhvalov (UNTs AN SSSR, Sverdlovsk, 1977) [in Russian].

    Google Scholar 

  17. G. Schaak and J. A. Koningstein, J. Opt. Soc. Am. 60, 1110 (1970).

    Article  ADS  Google Scholar 

  18. R. F. Gamarra, M. Josebachuilli, P. Zurita, and S. Gie, Am. J. Phys. 75, 1073 (2007).

    Article  ADS  Google Scholar 

  19. J. D. Axe, J. Phys. Chem. Sol. 30, 1403 (1969).

    Article  ADS  Google Scholar 

  20. A. E. Miller and A. H. Daane, J. Jnorg. Nucl. Chem. 27, 1955 (1965).

    Article  Google Scholar 

  21. A. Lidiard, Handbuch der Physik, Ed. by S. Flugge (Springer, Berlin, 1957; Inostr. Liter., Moscow, 1962), Vol. 20, Ch. 11.

    Google Scholar 

  22. H. J. van Daal and A. J. Bosman, Phys. Rev. 158, 736 (1967).

    Article  ADS  Google Scholar 

  23. A. J. Bosman and H. J. van Daal, Adv. Phys. 19, 1 (1970).

    Article  ADS  Google Scholar 

  24. T. Bak, M. K. Novotny, L. R. Sheppard, and J. Navotny, J. Phys. Chem. C 112, 12 981 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ordin.

Additional information

Original Russian Text © S.V. Ordin, A.I. Shelykh, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 5, pp. 584–589.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordin, S.V., Shelykh, A.I. Optical and dielectric characteristics of the rare-earth metal oxide Lu2O3 . Semiconductors 44, 558–563 (2010). https://doi.org/10.1134/S1063782610050027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610050027

Keywords

Navigation