Skip to main content
Log in

Structure of metallic nanowires and nanoclusters formed in superfluid helium

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that metallic nanowires (5–8 nm in diameter) that form during laser ablation of Ni, Pb, In, and Sn targets embedded in HeII contain extended single-crystal segments, while spherical clusters (about 2 μm in diameter) that form under these conditions have a regular shape and an atomically smooth surface. Such structures are explained by melting of metal ablation products under their coalescence in HeII. The short-term action of a low-intensity beam of electrons with an energy of 200 keV initiates the explosion in metallic spheres preserved in the vacuum chamber of a transmission electron microscope, which is accompanied with the formation of thousands of clusters with a diameter of a few nanometers. This effect is due to metastability of internal mechanical stresses produced upon sharp cooling of molten spheres by liquid helium. A mechanism of condensation of atoms and nanoparticles in quantized vortices of superfluid helium is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Gordon, R. Nishida, R. Nomura, and Y. Okuda, Pis’ma Zh. Eksp. Teor. Fiz. 85(11), 710 (2007) [JETP Lett. 85 (11), 581 (2007)].

    Google Scholar 

  2. E. B. Gordon and Y. Okuda, Fiz. Nizk. Temp. (Kharkov) 35(11), 278 (2009) [Low Temp. Phys. 35 (3), 209 (2009)].

    Google Scholar 

  3. G. A. Williams and R. E. Packard, Phys. Rev. Lett. 33,280 (1974).

    Article  ADS  Google Scholar 

  4. P. Moroshkin, V. Lebedev, B. Groberty, G. Neururer, E. B. Gordon, and A. Weis, Europhys. Lett. 90, 34 002 (2010).

    Article  Google Scholar 

  5. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, Fiz. Nizk. Temp. (Kharkov) 36(7), 740 (2010) [Low Temp. Phys. 36 (7), 590 (2010)].

    Google Scholar 

  6. G. P. Bewley, D. Lathrop, and K. R. Sreenivasan, Nature (London) 441, 588 (2006).

    Article  ADS  Google Scholar 

  7. G. P. Bewley, PhD Dissertation (Yale University, New Haven, Connecticut, United States, 2006).

  8. Seung Soo Oh, Do Hyun Kim, Myoung-Woon Moon, A. Vaziri, Miyoung Kim, Euijoon Yoon, Kyu Hwan Oh, and J. W. Hutchinson, Adv. Mater. (Weinheim) 20, 1093 (2008).

    Article  Google Scholar 

  9. Sang H. Yang, Michael J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B: Condens. Matter 57, 4 (1998).

    Google Scholar 

  10. W. Marine, B. Luk’yanchuk, and M. Sentis, Vide: Sci., Tech. Appl. 288, 440 (1998).

    Google Scholar 

  11. S. I. Anisimov and B. S. Luk’yanchuk, Usp. Fiz. Nauk 172(3), 301 (2002) [Phys.—Usp. 45 (3), 293 (2002)].

    Article  Google Scholar 

  12. P. Moroshkin, A. Hofer, and A. Weis, Phys. Rep. 469, 1 (2008).

    Article  ADS  Google Scholar 

  13. J. G. Daunt and R. S. Smith, Rev. Mod. Phys. 26, 172 (1954).

    Article  ADS  MATH  Google Scholar 

  14. E. B. Gordon, Fiz. Nizk. Temp. (Kharkov) 30(10), 1009 (2004) [Low Temp. Phys. 30 (10), 756 (2004)].

    Google Scholar 

  15. S. W. Van Sciver, Cryogenics 19, 385 (1979).

    Article  Google Scholar 

  16. J. Fang, A. E. Dementyev, J. Tempere, and I. F. Silvera, Rev. Sci. Instrum. 80, 043 901 (2009).

    Article  Google Scholar 

  17. R. Merrill and F. Stefani, IEEE Trans. Magn. 39, 1 (2003).

    Article  Google Scholar 

  18. E. B. Gordon, L. P. Mezhov-Deglin, O. F. Pugachev, and V. V. Khmelenko, Zh. Eksp. Teor. Fiz. 73(3), 952 (1977) [Sov. Phys. JETP 46 (3), 502 (1977)].

    Google Scholar 

  19. D. K. Sar and K. K. Nanda, Nanotechnology 21, 205701 (2010).

    Article  ADS  Google Scholar 

  20. R. Honeycombe, The Plastic Deformation of Metals (Cambridge University Press, Cambridge, 1968; Mir, Moscow, 1972).

    Google Scholar 

  21. Tables of Physical Quantities: A Reference Book, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  22. A. K. Pikaev, Modern Radiation Chemistry: Basic Principles, Experimental Technique, and Methods (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Gordon.

Additional information

Original Russian Text © E.B. Gordon, A.V. Karabulin, V.I. Matyushenko, V.D. Sizov, I.I. Khodos, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 139, No. 6, pp. 1209–1220.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, E.B., Karabulin, A.V., Matyushenko, V.I. et al. Structure of metallic nanowires and nanoclusters formed in superfluid helium. J. Exp. Theor. Phys. 112, 1061–1070 (2011). https://doi.org/10.1134/S1063776111040182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111040182

Keywords

Navigation