Skip to main content
Log in

Analysis of the properties of galaxy clusters in the Leo supercluster region

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We analyze the properties of galaxy clusters in the region of the Leo supercluster using observational data from the SDSS and 2MASS catalogs. We have selected 14 galaxy clusters with a total dynamical mass of 1.77 × 1015 M in the supercluster region 130 by 60 Mpc in the plane of the sky (z ≃ 0.037). The composite luminosity function of the supercluster is described by a Schechter function with parameters that, within the error limits, correspond to field galaxies and does not differ from the luminosity function of the richer Ursa Major (UMa) supercluster for the same luminosity range (the bright end). The luminosity functions of early-type and late-type galaxies in Leo at the faint end are characterized by a sharp decrease (α = −0.60±0.08) and a steep increase (α = −1.44± 0.10) in the number of galaxies, respectively. In the virialized cluster regions, the fraction of early-type galaxies selected by the u-r color, bulge contribution, and concentration index among the galaxies brighter than M * K + 1 is, on average, 62%. This fraction is smaller than that in the UMa supercluster at a 2–3σ level. The near-infrared luminosities of galaxy clusters down to a fixed absolute magnitude correlate with their masses almost in the same way as for other samples of galaxy clusters (L 200,K M 0.63±0.11200 )).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. O. Abell, H. G. Corwin, Jr., and R. P. Olowin, Astrophys. J. Suppl. Ser. 70, 1 (1989).

    Article  ADS  Google Scholar 

  2. J. A. L. Aguerri, R. Sánshez-Janssen, and C. Muños-Tuñón, Astron. Astrophys. 471, 17 (2007).

    Article  ADS  Google Scholar 

  3. S. Andreon, J.-C. Cuillandre, E. Puddu, and Y. Mellier, Mon. Not. R. Astron. Soc. 372, 60 (2006).

    Article  ADS  Google Scholar 

  4. M. L. Balogh, D. Christlein, A. I. Zabludoff, and D. Zaritsky, Astrophys. J. 557, 117 (2001).

    Article  ADS  Google Scholar 

  5. M. L. Balogh, I. K. Baldry, R. Nicol, et al., Astrophys. J. 615, L101 (2004).

    Article  ADS  Google Scholar 

  6. E. F. Bell, D.H. McIntosh, N. Katz, and M. D. Weinberg, Astrophys. J. Suppl. Ser. 149, 289 (2003).

    Article  ADS  Google Scholar 

  7. H. Boöhringer, W. Voges, J. P. Huchra, et al., Astrophys. J. Suppl. Ser. 129, 435 (2000).

    Article  ADS  Google Scholar 

  8. A. M. Botashev, O. V. Verkhdanov, O. Cardona, et al., Astron. Rep. 43, 165 (1999).

    Google Scholar 

  9. G. D. Bothun and R. A. Schombert, Astrophys. J. 267, 15 (1983).

    Article  ADS  Google Scholar 

  10. S. Brough, W. J. Couch, C. A. Collins, et al., Mon. Not. R. Astron. Soc. 385, L103 (2008).

    Article  ADS  Google Scholar 

  11. W. S. Burgett, M. M. Vick, D. S. Davies, et al., Mon. Not. R. Astron. Soc. 352, 605 (2004).

    Article  ADS  Google Scholar 

  12. M. R. Carlberg, H. K. C. Yee, E. Ellingson, et al., Astrophys. J. 485, L13 (1997).

    Article  ADS  Google Scholar 

  13. G. N. F. Chapman, M. J. Geller, and J. P. Huchra, Astron. J. 94, 571 (1987).

    Article  ADS  Google Scholar 

  14. S. Cole, P. Norberg, C.M. Baugh, et al., Mon. Not. R. Astron. Soc. 326, 255 (2001).

    Article  ADS  Google Scholar 

  15. M. Colless, Mon. Not. R. Astron. Soc. 237, 799 (1989).

    ADS  Google Scholar 

  16. D. A. Dale, R. Giovanelli, M. P. Haynes, et al., Astron. J. 114, 455 (1997).

    Article  ADS  Google Scholar 

  17. A. Dressler, Astrophys. J. 236, 351 (1980).

    Article  ADS  Google Scholar 

  18. H. Ebeling, A. C. Edge, H. Boöhringer, et al., Mon. Not. R. Astron. Soc. 301, 881 (1998).

    Article  ADS  Google Scholar 

  19. H. Ebeling, A. C. Edge, S.W. Allen, et al., Mon. Not. R. Astron. Soc. 318, 333 (2000).

    Article  ADS  Google Scholar 

  20. M. Einasto, E. Tago, J. Jaaniste, et al., Astron. Astrophys. Suppl. Ser. 123, 119 (1997).

    Article  ADS  Google Scholar 

  21. M. Einasto, J. Jaaniste, J. Einasto, et al., Astrophys. J. 685, 83 (2008).

    Article  ADS  Google Scholar 

  22. M. Einasto, E. Saar, V. J. Martinez, et al., Astrophys. J. 405, 821 (2003).

    Google Scholar 

  23. V. R. Eke, C. M. Baugh, S. Cole, et al., Mon. Not. R. Astron. Soc. 362, 1233 (2005).

    Article  ADS  Google Scholar 

  24. C. Fanti, R. Fanti, L. Feretti, et al., Astron. Astrophys. 105, 200 (1982).

    ADS  Google Scholar 

  25. M. J. Geller, T. C. Beers, G. D. Bothun, and J. P. Huchra, Astron. J. 89, 319 (1984).

    Article  ADS  Google Scholar 

  26. T. Goto, C. Yamauchi, Y. Fujita, et al., Mon. Not. R. Astron. Soc. 346, 601 (2003).

    Article  ADS  Google Scholar 

  27. Y. Harsha, Sreedhar, K. Rakos, G. Hensler, et al., Astron. Nachr. 328, 659 (2007).

    ADS  Google Scholar 

  28. J. G. Hoessel, K. D. Borne, and D. P. Schneider, Astrophys. J. 293, 94 (1985).

    Article  ADS  Google Scholar 

  29. Y. S. Hwang and M. G. Lee, Astrophys. J. 662, 236 (2007).

    Article  ADS  Google Scholar 

  30. T. H. Jarrett, T. Chester, R. Cutri, et al., Astrophys. J. 119, 2498 (2000).

    Google Scholar 

  31. C. Jones and W. Forman, Astrophys. J. 511, 65 (1999).

    Article  ADS  Google Scholar 

  32. D. H. Jones, B. A. Peterson, M. Colless, and W. Saunders, Mon. Not. R. Astron. Soc. 369, 25 (2006).

    Article  ADS  Google Scholar 

  33. A. Jordán, M. J. West, P. Côté, and R. O. Marzke, Astron. J. 125, 1642 (2003).

    Article  ADS  Google Scholar 

  34. A. T. Kalloglian, A. G. Egikian, D. Nanni, et al., Astrophysika 19, 101 (1983).

    Article  ADS  Google Scholar 

  35. C. S. Kochanek, M. A. Pahre, E. E. Falco, et al., Astrophys. J. 560, 566 (2001).

    Article  ADS  Google Scholar 

  36. F. G. Kopylova and A. I. Kopylov, Astron. Lett. 33, 211 (2007); astro-ph/0705.3945.

    Article  ADS  Google Scholar 

  37. F. G. Kopylova and A. I. Kopylov, Astrophys. Bull. 64, 1 (2009); astro-ph/0912.2503.

    Article  ADS  Google Scholar 

  38. M. P. Kowalski, M. P. Ulmer, and P. Hintzen, Astron. J. 93, 1350 (1987).

    Article  ADS  Google Scholar 

  39. Y.-T. Lin and J. J. Mohr, Astrophys. J. 617, 879 (2004).

    Article  ADS  Google Scholar 

  40. Y.-T. Lin, J. J. Mohr, and S. A. Stanford, Astrophys. J. 610, 745 (2004).

    Article  ADS  Google Scholar 

  41. A. Mahdavi, M. J. Geller, D. G. Fabricant, et al., Astron. J. 111, 64 (1996).

    Article  ADS  Google Scholar 

  42. H. J. Martinez, A. Zandivarez, M. Domingues, et al., Mon. Not. R. Astron. Soc. 333, L31 (2002).

    Article  ADS  Google Scholar 

  43. P. Merluzzi, A. Mercurio, C. P. Haynes, et al., Mon. Not. R. Astron. Soc. 402, 753 (2010).

    Article  ADS  Google Scholar 

  44. M. Obrić, Ž. Ivezić, P. N. Best, et al., Mon. Not. R. Astron. Soc. 370, 1677 (2000).

    Article  ADS  Google Scholar 

  45. M. Plionis, in Outskirts of Galaxy Clusters: Intense Life in the Suburbs, IAU Colloq. 195, Ed. by A. Diaferio Cambridge Univ., Cambridge, 2004, p. 19.

    Google Scholar 

  46. K. Rakos, J. Schombert, A. Odell, Astrophys. J. 658, 929 (2007).

    ADS  Google Scholar 

  47. M. Ramella, W. Boschin, M. Geller, et al., Astron. J. 128, 2022 (2004).

    Article  ADS  Google Scholar 

  48. M. Ramella, M. J. Yeller, A. Pisani, and L. N. da Costa, Astron. J. 123, 2976 (2002).

    Article  ADS  Google Scholar 

  49. K. Rines and A. Diaferio, Astron. J. 132, 1275 (2006).

    Article  ADS  Google Scholar 

  50. K. Rines, M. J. Geller, A. Diaferio, et al., Astron. J. 128, 1078 (2004).

    Article  ADS  Google Scholar 

  51. P. Schechter, Astrophys. J. 203, 297 (1976).

    Article  ADS  Google Scholar 

  52. A. Schwope, G. Hasinger, I. Lehmann, et al., Astron. Nachr. 321, 1 (2000).

    Article  ADS  Google Scholar 

  53. M. A. Strauss, D. H. Weinberg, R. H. Lupton, et al., Astron. J. 124, 1810 (2002).

    Article  ADS  Google Scholar 

  54. K. M. Strom and S. E. Strom, Astron. J. 83, 1293 (1978).

    Article  ADS  Google Scholar 

  55. M. Tanaka, T. Goto, S. Okamura, et al., Astron. J. 128, 2677 (2004).

    Article  ADS  Google Scholar 

  56. J. P. Vallee and A. S. Wilson, Nature 259, 451 (1976).

    Article  ADS  Google Scholar 

  57. J. P. Vallee, A. S. Wilson, and A. H. Bridge, Astrophys. J. 250, 66 (1981).

    Article  ADS  Google Scholar 

  58. J. C. Webber, Publ. Astron. Soc. Pacif. 86, 223 (1974).

    Article  ADS  Google Scholar 

  59. S. M. Weinmann, F. C. van den Bosch, X. Yang, and H. J. Mo, Mon. Not. R. Astron. Soc. 366, 2 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Kopylova.

Additional information

Original Russian Text © F.G. Kopylova, A.I. Kopylov, 2011, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2011, Vol. 37, No. 4, pp. 243–257.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopylova, F.G., Kopylov, A.I. Analysis of the properties of galaxy clusters in the Leo supercluster region. Astron. Lett. 37, 219–232 (2011). https://doi.org/10.1134/S1063773711030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773711030029

Keywords

Navigation