
ar
X

iv
:2

20
5.

14
67

8v
1 

 [
m

at
h.

A
T

] 
 2

9 
M

ay
 2

02
2

EQUIVARIANT COHOMOLOGY OF MOMENT-ANGLE

COMPLEXES WITH RESPECT TO COORDINATE SUBTORI

TARAS PANOV AND INDIRA ZEINIKESHEVA

Abstract. We compute the equivariant cohomology H
∗

TI
(ZK) of moment-

angle complexes ZK with respect to the action of coordinate subtori TI ⊂ T
m.

We give a criterion for the equivariant formality of ZK and obtain specifications
for the cases of flag complexes and graphs.

1. Introduction

Let K be a simplicial complex on an m-element set V , and let ZK be the
corresponding moment-angle complex ZK. We study the equivariant cohomo-
logy of ZK with respect to the action of coordinate subtori TI ⊂ Tm, where
I = {i1, . . . , ik} ⊂ V .

We construct two commutative integral dga models for H∗
TI
(ZK). The first is

given by (
Λ[ui : i /∈ I]⊗ Z[K], d

)
, dui = vi, dvi = 0,

where Λ[ui : i /∈ I] is the exterior algebra on degree-one generators ui, i /∈ I, and
Z[K] is the face ring of ZK. The second dga model RI(K) is given by the quotient
of the first one by the ideal generated by uivi and v2i with i /∈ I. As a result we
obtain

Theorem 3.3. There are isomorphisms of rings

H∗
TI
(ZK) ∼= H

(
Λ[ui : i /∈ I]⊗ Z[K], d

)
∼= H∗

(
RI(K)

)

∼= TorZ[v1,...,vm]

(
Z[vi : i ∈ I],Z[K]

)
,

where Z[vi : i ∈ I] is the Z[v1, . . . , vm]-module via the homomorphism sending vi to
0 for i /∈ I.

When I = V , the dga model above reduces to the face ring Z[K] with zero
differential, and we recover the integral formality result of [11].

When I = ∅, Theorem 3.3 gives the description of the ordinary integral cohomo-
logy of ZK of [2] and [5].

The additive (or Z[v1, . . . , vm]-module) isomorphism

H∗
TI
(ZK) ∼= TorZ[v1,...,vm]

(
Z[vi : i ∈ I],Z[K]

)
∼= TorZ[vi : i/∈I]

(
Z,Z[K]

)

follows from the result of [8].

Next, we study the equivariant formality of ZK, that is, whether H
∗
TI
(ZK) is a

free module over the polynomial ring H∗
TI
(pt) = H∗(BTI) = Z[vi : i ∈ I]. We prove
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Theorem 4.8. Let K be a simplicial complex on a finite set V . The following
conditions are equivalent:

(a) For any I ∈ K, the equivariant cohomology H∗
TI
(ZK) is a free module over

H∗(BTI).

(b) There is a partition V = V1 ⊔ · · · ⊔ Vp ⊔ U such that

K = ∂∆(V1) ∗ · · · ∗ ∂∆(Vp) ∗∆(U),

where ∆(U) denotes a full simplex on U , and ∂∆(Vi) denotes the boundary
of a simplex on Vi.

(c) The rational face ring Q[K] is a complete intersection ring (the quotient of
the polynomial ring by an ideal generated by a regular sequence).

In the case of flag complexes we have the following specification:

Theorem 4.9. Let K be a flag complex on V . Then the following conditions are
equivalent:

(a) H∗

S1
i

(ZK) is a free module over Z[vi] for all i.

(b) K = ∂∆(V1) ∗ · · · ∗ ∂∆(Vp) ∗∆(U) where |Vk| = 2 for k = 1, . . . , p.

A similar criterion holds in the case when K is a simple graph:

Theorem 4.11. Let K be a one-dimensional complex (a simple graph). Then the
following conditions are equivalent:

(a) H∗

S1
i

(ZK) is a free module over Z[υi] for any i.

(b) K is the one of the following: ∂∆2, ∂∆1 ∗ ∂∆1, ∂∆1, ∆1, ∂∆1 ∗∆0, ∆0.

Along the way we establish some additional properties of the equivariant co-
homology of ZK and give illustrative examples.

2. Preliminaries

LetK be a simplicial complex on a finitem-element set V , which we often identify
with the index set [m] = {1, 2, . . . ,m}. We refer to a subset I = {i1, . . . , ik} ⊂ V
that is contained in K as a simplex. We assume that ∅ ∈ K and allow ghost vertices,
that is, one-element subsets {i} ∈ V such that {i} /∈ K.

Let (X ,A) = {(X1, A1), . . . , (Xm, Am)} be a sequence of m pairs of pointed
CW-complexes, Ai ⊂ Xi. For each subset I ⊂ V , define

(X ,A)I :=
{
(x1, . . . , xm) ∈

m∏

j=1

Xj : xj ∈ Aj for j /∈ I
}
.

The polyhedral product of (X ,A) corresponding to K is

(X ,A)K :=
⋃

I∈K

(X ,A)I =
⋃

I∈K

(∏

i∈I

Xi ×
∏

i/∈I

Ai

)
.

Using the categorical language, denote by cat(K) the face category of K, with
objects I ∈ K and morphisms I ⊂ J . Define the cat(K)-diagram

DK(X ,A) : cat(K) −→ top,

I 7−→ (X ,A)I ,

which maps the morphism I ⊂ J of cat(K) to the inclusion of spaces (X ,A)I ⊂
(X ,A)J . Then we have

(X ,A)K = colimDK(X ,A) = colim
I∈K

(X ,A)I .

In the case when all the pairs (Xi, Ai) are the same, i. e. Xi = X and Ai = A for
i = 1, . . . ,m, we use the notation (X,A)K for (X ,A)K.
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The moment-angle complex ZK is the polyhedral product (D2, S1)K. We refer
to [3, Chapter 4] for more details and examples.

The face ring of K is the quotient ring

Z[K] := Z[v1, . . . , vm]/IK,

where IK is the ideal generated by the square-free monomials vI =
∏

i∈I vi for
which I ⊂ V is not a simplex of K.

3. Equivariant cohomology

For an action of a topological group G on a space X , the Borel construction is

EG×G X := EG×X/(e · g−1, g · x) ∼ (e, x),

where EG is the universal right G-space, e ∈ EG, g ∈ G, x ∈ X . There is the Borel
fibration EG ×G X → BG over the classifying space BG = EG/G with fibre X .
The equivariant cohomology of X is

H∗
G(X) := H∗(EG×G X).

The torus Tm = (S1)m acts on ZK = (D2, S1)K coordinatewise. The universal
bundle ES1 → BS1 is the infinite-dimensional Hopf bundle S∞ → CP∞.

We consider the equivariant cohomology of ZK with respect to the action of
coordinate subtori

TI = {(t1, . . . , tm) ∈ Tm : tj = 1 for j /∈ I},

where I = {i1, . . . , ik} ⊂ V .

Proposition 3.1. There is a homotopy equivalence

ETI ×TI
ZK

≃
−→ (Y,B )K,

where

Yi =

{
CP∞, i ∈ I,

D2, i /∈ I,
Bi =

{
pt , i ∈ I,

S1, i /∈ I.

Proof. We have

ETI ×TI
ZK = ETI ×TI

(D2, S1)K = (X ,A)K,

where

Xi =

{
S∞ ×S1 D2, i ∈ I,

D2, i /∈ I,
Ai =

{
S∞ ×S1 S1, i ∈ I,

S1, i /∈ I.

The result follows from the homotopy equivalence of pairs

(S∞ ×S1 D2, S∞ ×S1 S1)
≃
−→ (CP∞, pt),

as in [3, Theorem 4.3.2] where the case I = [m] is treated. �

Next we introduce two commutative dga models for the equivariant cohomology
H∗

TI
(ZK). First, consider the dga

(
Λ[ui : i /∈ I]⊗ Z[K], d

)
, dui = vi, dvi = 0,

where Λ[ui : i /∈ I] is the exterior algebra on generators indexed by V − I. The
grading is given by deg ui = 1, deg vi = 2.

Second, consider the quotient dga

RI(K) := Λ[ui : i /∈ I]⊗ Z[K]
/
(uivi = v2i = 0, i /∈ I),

noting that the ideal generated by uivi and v
2
i with i /∈ I is d-invariant.

We denote by C∗(X) and C∗(X) the normalised singular chain dg coalgebra
and singular cochain dg algebra of a space X , respectively. (A singular cochain is
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normalised if it vanishes on degenerate singular simplices [9, §VIII.6]; passing to
normalised cochains does not change the quasi-isomorphism type of C∗(X).)

Theorem 3.2. The singular cochain algebra C∗(ETI ×TI
ZK) is quasi-isomorphic

to (Λ[ui : i /∈ I] ⊗ Z[K], d) and RI(K). The quasi-isomorphisms are natural with
respect to inclusion of subcomplexes.

Proof. We combine the arguments of [11], [3, §4.5, §8.1] and [6].
The acyclicity of the ideal generated by v2i and uivi for i /∈ I in Λ[ui : i /∈ I]⊗Z[K]

is established in the same way as [3, Lemma 3.2.6], where the case I = ∅ is treated.

This gives a quasi-isomorphism Λ[ui : i /∈ I] ⊗ Z[K]
≃
−→ RI(K). For the remaining

quasi-isomorphism RI(K) ≃ C∗(ETI ×TI
ZK), we use the homotopy equivalent

polyhedral product model (Y ,B)K of Proposition 3.1.
Throughout the proof, we use the following zig-zag of quasi-isomorphisms of

dgas [10, §7.2]:

(3.1) C∗(X)⊗ C∗(Y )
≃
−→ Hom(C∗(X)⊗ C∗(Y ),Z)

≃
←− C∗(X × Y ),

where the arrow on the right is the dual of the Eilenberg–Zilber map C∗(X) ⊗
C∗(Y )→ C∗(X × Y ), which is a quasi-isomorphism of dg coalgebras [4, (17.6)].

First consider the case K = ∅ with m ghost vertices. Then ZK = Tm and

ETI ×TI
ZK ≃ T

m/TI = (Y ,B)K =
∏

i/∈I

S1,

whereas RI(K) = Λ[ui : i /∈ I]. There is a quasi-isomorphism Λ[u] = H∗(S1) →
C∗(S1) mapping u to its representing singular 1-cocycle (here it is important that
we work with normalised cochains). Applying (3.1) we obtain the required quasi-
isomorphism Λ[ui : i /∈ I] ≃ C

∗(
∏

i/∈I S
1).

Now consider the case m = 1 and K = ∆0, a 0-simplex. If I = ∅, then
(Y ,B)K = D2 and RI(K) = Λ[u]⊗ Z[v]/(uv = v2 = 0). Let ϕ : [01] → D2 be the
standard parametrisation of the boundary circle S1, viewed as a singular 1-simplex.
Let ψ : [012]→ D2 be a singular 2-simplex such that ψ|[12] = ϕ and ψ|[02], ψ|[01] are

constant maps to the basepoint 1 ∈ S1. Then ∂ϕ = 0 and ∂ψ = ϕ, as we work with
the normalised chains. Now if α ∈ C1(D2) is the cochain dual to ϕ and β ∈ C2(D2)
is dual to ψ, then Λ[u]⊗ Z[v]/(uv = v2 = 0) → C∗(D2) mapping u to α and v to
β is a quasi-isomorphism. If I = {1}, then (Y ,B)K = CP∞ and RI(K) = Z[v].
There is a quasi-isomorphism Z[v] = H∗(CP∞) → C∗(CP∞) mapping v to its
representing singular 2-cocycle.

Next consider the case K = ∆m−1 = ∆[m], the full simplex on [m]. Apply-
ing (3.1) and the Künneth theorem, we obtain a zig-zag of quasi-isomorphisms

(3.2) RI(∆[m]) = Λ[ui : i /∈ I]⊗ Z[v1, . . . , vm]
/
(uivi, v

2
i : i /∈ I)

=
⊗

i∈I

Z[vi]⊗
⊗

i/∈I

(
Λ[ui]⊗ Z[vi]/(uivi, v

2
i )
) ≃
−→

⊗

i∈I

C∗(CP∞)⊗
⊗

i/∈I

C∗(D2)

≃
−→ · · ·

≃
←− C∗

(∏

i∈I

CP∞ ×
∏

i/∈I

D2
)
= C∗

(
(Y ,B)∆[m]

)
,

which completes the proof for the case K = ∆[m].
The general case is proved by induction on the number of simplices in K using

the naturality with respect of inclusion of subcomplexes and the Mayer–Vietoris
sequence, as in [6, Theorem 1]. Namely, we add simplices one by one to the empty
simplicial complex on [m] and use the zig-zag of dga maps between the two short
exact sequences for any two simplicial complexes K1 and K2 on [m]:

0→ RI(K1 ∪K2)→ RI(K1)⊕RI(K2)→ RI(K1 ∩ K2)→ 0
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and

0→ C∗((Y ,B)K1∪K2)→ C∗((Y ,B)K1)⊕ C∗((Y ,B)K2)→ C∗((Y ,B)K1∩K2)→ 0

The zig-zags between the middle and right nonzero terms are quasi-isomorphisms
by induction. Then the zig-zag on the left is also a quasi-isomorphism by the
cohomology long exact sequence and five lemma.

It may be more illuminating to realise the dgas in question as the limits of dgas
correponding to simplices I ∈ K. Namely, given a subset J ⊂ V , let ∆(J) denote
a simplex on J , viewed as a simplicial complex on V (with ghost vertices V − J).
Then

RI(∆(J)) = Λ[ui : i /∈ I]⊗ Z[vj : j ∈ J ]
/
(ujvj = v2j = 0, j ∈ J − I),

Consider the catop(K)-diagram

RI,K : catop(K) −→ dga, J 7−→ RI(∆(J)),

sending a morphism J1 ⊂ J2 of catop(K) to the surjection of dgas RI(∆(J2)) →
RI(∆(J1)). Then

RI(K) = limRI,K = lim
J∈K

RI(∆(J))

Similarly, we have a catop(K)-diagram

CI,K : catop(K) −→ dga, J 7−→ C∗((Y ,B)J ).

The zig-zag of quasi-isomorphisms (3.2) induces an objectwise weak equivalence of
diagrams RI,K ≃ CI,K. The canonical maps RI,K(J) → limRI,K|catop(∂∆(J)) and
CI,K(J)→ lim CI,K|catop(∂∆(J)) are fibrations (surjections of dgas). Therefore, both
diagrams RI,K and CI,K are Reedy fibrant (see [3, Appendix C.1]). Their limits
are therefore quasi-isomorphic. Thus, we obtain the required zig-zag of quasi-
isomorphisms of dgas

RI(K) = lim
J∈K

RI(∆(J)) ≃ lim
J∈K

C∗((Y ,B)J )
≃
←− C∗(colim

J∈K
(Y ,B)J ) = C∗((Y ,B)K),

where the second-to-last map is a quasi-isomorphism by excision (or by Mayer–
Vietoris). �

For the equivariant cohomology, we obtain

Theorem 3.3. There are isomorphisms of rings

H∗
TI
(ZK) ∼= H∗

(
Λ[ui : i /∈ I]⊗ Z[K], d

)
∼= H∗

(
RI(K), d

)

∼= TorZ[v1,...,vm]

(
Z[vi : i ∈ I],Z[K]

)
,

where Z[vi : i ∈ I] is the Z[v1, . . . , vm]-module via the homomorphism sending vi to
0 for i /∈ I.

Proof. The first two isomorphisms follow from Theorem 3.2. For the last one,
consider the Koszul resolution Λ[ui : i /∈ I]⊗ Z[vi : i /∈ I]→ Z of the augmentation
Z[vi : i /∈ I]-module Z. Tensoring it with Z[vi : i ∈ I] we obtain a free resolution of
the Z[v1, . . . , vm]-module Z[vi : i ∈ I]:

Λ[ui : i /∈ I]⊗ Z[v1, . . . , vm]→ Z[vi : i ∈ I].

Then TorZ[v1,...,vm](Z[vi : i ∈ I],Z[K]) is the cohomology of the complex obtained
by applying ⊗Z[v1,...,vm]Z[K] to the resolution above, which gives Λ[ui : i /∈ I] ⊗
Z[K]. �
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When I = [m], we obtain that the singular cochain algebra of ETm ×Tm ZK ≃
(CP∞, pt)K is quasi-isomorphic to Z[K] with zero differential, which is the integral
formality result of [11].

When I = ∅, we obtain the description of the ordinary integral cohomology of
ZK of [2] and [5].

4. Equivariant formality

A T k-space X is called equivariantly formal if H∗

Tk(X) is free as a module over

H∗

Tk(pt) = H∗(BT k). The latter condition implies that the spectral sequence of

the bundle ET k ×Tk X → BT k collapses at the E2 page.
Using the results of the previous section, we obtain that ZK is equivariantly

formal with respect to the action of TI if TorZ[v1,...,vm](Z[vi : i ∈ I],Z[K]) is free as
a module over H∗(BTI) = Z[vi : i ∈ I].

Lemma 4.1. Let K = ∆[m]. Then H∗
TI
(ZK) is free as a H∗(BTI)-module, for any

I ⊂ [m].

Proof. For K = ∆[m], we have ZK
∼= D2m is TI-equivariantly contractible. Hence,

H∗
TI
(ZK) ∼= H∗

TI
(pt) = H∗(BTI) is a free H∗(BTI)-module. �

Lemma 4.2. Let K = ∂∆[m], the boundary of a simplex on [m]. Then ZK
∼= S2m−1

and H∗
TI
(ZK) is free as a H∗(BTI)-module, for any I ( [m].

Proof. Consider the spectral sequence of the bundle ETI ×TI
ZK → BTI with

fibre ZK
∼= S2m−1. We claim that the homomorphism H∗(ETI×TI

ZK)→ H∗(ZK)
induced by the inclusion of the fibre is surjective. Indeed, by the construction of the
previous section, H∗(ETI ×TI

ZK) → H∗(ZK) is the cohomology homomorphism
induced by the dga map

(
Λ[ui : i /∈ I]⊗ Z[K], d

)
→

(
Λ[u1, . . . , um]⊗ Z[K], d

)
.

We have H∗(ZK) = Z〈1, [uiv1 · · · v̂i · · · vm]〉, where [uiv1 · · · v̂i · · · vm] ∈ H2m−1(ZK)
denotes the cohomology class of the cocycle uiv1 · · · v̂i · · · vm with vi omitted (note
that Z[K] = Z[v1, . . . , vm]/(v1 · · · vm)). Choosing i /∈ I we get that [uiv1 · · · v̂i · · · vm]
also represents a nontrivial cohomology class in H∗(ETI ×TI

ZK) (here we use the
fact that I 6= [m]). Hence, H∗(ETI ×TI

ZK)→ H∗(ZK) is surjective.
Now Hq(ETI ×TI

ZK)→ Hq(ZK) is the edge homomorphism

H∗(ETI ×TI
ZK)→ E0,q

∞ → E0,q
2 = Hq(ZK)

of the spectral sequence. Its surjectivity implies E0,q
2 = E0,q

∞ , that is, all the differ-
entials from the first column are trivial. By the multiplicative structure in the spec-
tral sequence, all other differentials are also trivial. We obtain H∗(ETI ×TI

ZK) ∼=
E∞ = E2

∼= H∗(BTI)⊗H
∗(ZK), a free H∗(BTI)-module. �

Let K1 and K2 be simplicial complexes on the sets V1 and V2, respectively. Their
join is the simplicial complex on V1 ⊔ V2 given by

K1 ∗ K2 = {I1 ⊔ I2 ⊂ V1 ⊔ V2 : I1 ∈ K1, I2 ∈ K2}.

Lemma 4.3. Let I1 ⊂ V1, I2 ⊂ V2, V = V1 ⊔ V2, I = I1 ⊔ I2 and K = K1 ∗ K2.
Suppose that H∗

TI1
(ZK1

) is free as a H∗(BTI1)-module, and H∗
TI2

(ZK2
) is free as a

H∗(BTI2)-module. Then H∗
TI
(ZK) is free as a H∗(BTI)-module.

Proof. We have ZK
∼= ZK1

×ZK2
by [3, Proposition 4.1.3]. Then

H∗
TI
(ZK) ∼= H∗

TI
(ZK1

×ZK2
) = H∗

(
ETI ×TI

(ZK1
×ZK2

)
)

∼= H∗
(
(ETI1 ×TI1

×ZK1
)× (ETI2 ×TI2

×ZK2
)
)

∼= H∗(ETI1 ×TI1
ZK1

)⊗H∗(ETI2 ×TI2
ZK2

) = H∗
TI1

(ZK1
)⊗H∗

TI2
(ZK2

).
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The second-to-last isomorphism above follows by the Künneth formula, because
H∗(ETI1 ×TI1

ZK1
) is a free Z-module (as it is a free Z[vi : i ∈ I1]-module). The

claim follows, since H∗(BTI) = H∗(BTI1)⊗H
∗(BTI2). �

Lemma 4.4. Let I /∈ K. Then H∗
TI
(ZK) is not free as a module over H∗(BTI).

Proof. Take vI =
∏

i∈I vi ∈ H
∗(BTI). Then vI ·1 = [vI ] = 0, because vI represents

zero in H∗
TI
(ZK) = H(Λ[ui : i /∈ I]⊗Z[K]). Hence, 1 is a H∗(BTI)-torsion element,

and H∗
TI
(ZK) is not free as a H∗(BTI)-module. �

Let K be a simplicial complex on V and V ′ ⊂ V . The subcomplex K′ = {I ∈
K : I ⊂ V ′} is called a full subcomplex (an induced subcomplex on V ′). Equivalently,
K′ ⊂ K is a full subcomplex if any missing face of K′ is a missing face of K.

Lemma 4.5. If H∗
TI
(ZK) is a free H∗(BTI)-module and K′ is a full subcomplex of

K such that I ∈ K′, then H∗
TI
(ZK′) is also a free H∗(BTI)-module.

Proof. Since K′ is a full subcomplex, there is a retractionZK′ → ZK → ZK′ (see [13,
Proposition 2.2] or [12, Lemma 4.2]), which is TI -equivariant for any I ⊂ V ′. It
follows that H∗

TI
(ZK′) is a direct summand in the free H∗(BTI)-module H∗

TI
(ZK).

Hence, H∗
TI
(ZK′) is also free. �

The equivariant cohomology H∗
TI
(ZK) may fail to be free as a H∗(BTI)-module

even when I is a simplex of K:

Example 4.6. Let K be an m-cycle (the boundary of an m-gon), with vertices
numbered counter-clockwise. Let I = {i}, so that TI is the ith coordinate circle
S1
i . When m = 3 or m = 4, H∗

S1
i

(ZK) is free over Z[vi] for all i by Lemma 4.2

and Lemma 4.3. Suppose that m > 5. Then the nonzero cohomology class in
H3

S1
m

(ZK) represented by the cocycle u1v3 ∈ Λ[u1, . . . , um−1] ⊗ Z[K] is a Z[vm]-

torsion element. Indeed, vm · [u1v3] = [u1v3vm] = 0, since v3vm = 0 in Z[K] for
m > 5. Hence, H∗

S1
m

(ZK) is not free as a Z[vm]-module.

Recall that a missing face (a minimal non-face) of a simplicial complex K on V
is a subset I ⊂ V such that I /∈ K but every proper subset of I is in K. In other
words, I is a missing face if ∂∆(I) is a subcomplex of K, but ∆(I) is not. We
denote by MF(K) the set of missing faces of K.

Generalising Example 4.6, we have

Lemma 4.7. Let I1 and I2 be missing faces of K, and suppose that I = I1 − I2 is
nonempty. Then H∗

TI
(ZK) is not free as a module over H∗(BTI).

Proof. Since I1 and I2 are distinct missing faces, we have I2 6⊂ I1. Take j ∈
I2 − I1. Then j /∈ I. The cocycle ujvI2−j represents a nontrivial cohomology class
in H∗

TI
(ZK) = H(Λ[ui : i /∈ I]⊗ Z[K]).

We claim that the cohomology class [ujvI2−j ] ∈ H
∗
TI
(ZK) is a H

∗(BTI)-torsion
element. Indeed, take vI =

∏
i∈I vi ∈ H

∗(BTI). Then

vI · [ujvI2−j ] = [ujvIvI2−j ] = [ujvI1vI2−I1−j ] = 0,

since vI1 = 0 in Z[K]. Hence, H∗
TI
(ZK) is not free as a H∗(BTI)-module. �

Theorem 4.8. Let K be a simplicial complex on a finite set V . The following
conditions are equivalent:

(a) For any I ∈ K, the equivariant cohomology H∗
TI
(ZK) is a free module over

H∗(BTI).
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(b) There is a partition V = V1 ⊔ · · · ⊔ Vp ⊔ U such that

K = ∂∆(V1) ∗ · · · ∗ ∂∆(Vp) ∗∆(U),

where ∆(U) denotes a full simplex on U , and ∂∆(Vi) denotes the boundary
of a simplex on Vi.

(c) The rational face ring Q[K] is a complete intersection ring (the quotient of
the polynomial ring by an ideal generated by a regular sequence).

Proof. (a)⇒(b) We have Q[K] = Q[v1, . . . , vm]/(t1, . . . , tp) where tk =
∏

i∈Vk
vi is

a square-free monomial and Vk is a missing face of K, for k = 1, . . . , p. Suppose
some of these missing faces intersect nontrivially, say, V1 ∩ V2 6= ∅. Then I =
V1−V2 is nonempty, and H∗

TI
(ZK) is not a free H∗(BTI)-module by Lemma 4.7. A

contradiction. Hence, V1, . . . , Vp are pairwise non-intersecting, so K is as described
in (b).

(b)⇒(a) Write I = I1 ⊔ · · · ⊔ Ip ⊔ J , where Ik ( Vk, J ⊂ U . Then H∗
TI
(ZK) is a

free H∗(BTI)-module by Lemmas 4.1, 4.2 and 4.3.

(b)⇒(c) Recall [3, §A.3] that a sequence of homogeneous elements (t1, . . . , tk)
of positive degree in Q[v1, . . . , vm] is a regular sequence if ti+1 is not a zero di-
visor in Q[v1, . . . , vm]/(t1, . . . , ti) for 0 6 i < k. If K is as in (b), then Q[K] =
Q[v1, . . . , vm]/(t1, . . . , tp), where m = |V | and tk =

∏
i∈Vk

vi for k = 1, . . . , p. Then

(t1, . . . , tp) is a regular sequence, so Q[K] is a complete intersection ring.

(c)⇒(b) Suppose Q[K] = Q[v1, . . . , vm]/(t1, . . . , tp) where (t1, . . . , tp) is a reg-
ular sequence. We can assume that tk =

∏
i∈Vk

vi where Vk is a missing face
of K, for k = 1, . . . , p. Suppose some of these missing faces intersect nontrivi-
ally, say, V1 ∩ V2 6= ∅. Then t2 ·

∏
i∈V1−V2

vi = t1 ·
∏

j∈V2−V1
vj , so t2 is a zero

divisor in Q[v1, . . . , vm]/(t1). A contradiction. Hence, V1, . . . , Vp are pairwise non-
intersecting, so K is as described in (b). �

The equivalence (b)⇔(c) of Theorem 4.8 was noted in [11, §5].
Recall that K is called a flag complex if each of its missing faces has two vertices.

A simplicial complex K is flag if and only if it has no ghost vertices and any set of
vertices of K which are pairwise connected by edges spans a simplex. In the case of
flag complexes we have the following specification of the criterion in Theorem 4.8.

Theorem 4.9. Let K be a flag complex on V . Then the following conditions are
equivalent:

(a) H∗

S1
i

(ZK) is a free module over Z[vi] for all i.

(b) K = ∂∆(V1) ∗ · · · ∗ ∂∆(Vp) ∗∆(U) where |Vk| = 2 for k = 1, . . . , p.

Proof. Implication (b)⇒(a) follows from Theorem 4.8, so we only need to prove
(a)⇒(b). Let V1, V2 be missing faces. Then |V1| = |V2| = 2. If V1 ∩ V2 6= ∅,
then V1 − V2 = {i} for some i ∈ V . Then H∗

S1
i

(ZK) is not free as a Z[vi]-module

by Lemma 4.7. This contradiction shows that all missing faces of K are pairwise
non-intersecting, so K is as in (b). �

Here is an example showing that the equivalence of Theorem 4.9 does not hold
in the non-flag case.

Example 4.10. Let K be the simplicial complex on 5 vertices with MF(K) =
{I1, I2}, where I1 = {1, 2, 3} and I2 = {3, 4, 5}. Then H∗

TI
(ZK) is not free as a

H∗(BTI)-module for I = {1, 2} (or for I = {4, 5}) due to Lemma 4.7. However,
H∗

S1
i

(ZK) is a free H∗(BS1
i )-module for all i. Indeed, it can be shown by the
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methods of [7, §8] or [1] that ZK
∼= S5 ∨ S5 ∨ S8. The ordinary cohomology is

generated by the following monomials in the Koszul algebra Λ[u1, . . . , u5]⊗ Z[K]:

H∗(ZK) = Z〈1, [ukvI1−k], [ujvI2−j ], [ui1ui2v[5]−i1−i2 ]〉,

where k ∈ I1, j ∈ I2, [ukvI1−k], [ujvI2−j ] ∈ H
5(ZK), i1 ∈ I1 − I2, i2 ∈ I2 − I1 and

[ui1ui2v[5]−i1−i2 ] ∈ H
8(ZK).

Since both I1 − I2 and I2 − I1 contain two elements, we can choose k, j, i1, i2
such that i /∈ {k, j, i1, i2}. Then the monomials ukvI1−k, ujvI2−j , ui1ui2v[5]−i1−i2

represent nontrivial cohomology classes in H∗

S1
i

(ZK). This implies that the homo-

morphismH∗

S1
i

(ZK)→ H∗(ZK) is surjective. Therefore, the spectral sequence of the

bundle ES1
i ×S1

i

ZK → BS1
i collapses at the E2 page, as in the proof of Lemma 4.2.

It follows that H∗

S1
i

(ZK) ∼= H∗(BS1
i )⊗H

∗(ZK), a free H∗(BS1
i )-module.

The equivalence similar to that of Theorem 4.9 also holds when K is one-
dimensional.

Theorem 4.11. Let K be a one-dimensional complex (a simple graph). Then the
following conditions are equivalent:

(a) H∗

S1
i

(ZK) is a free module over Z[vi] for any i.

(b) K is the one of the following: ∂∆2, ∂∆1 ∗ ∂∆1, ∂∆1, ∆1, ∂∆1 ∗∆0, ∆0.

Proof. Implication (b)⇒(a) follows from Theorem 4.8, so we only need to prove
(a)⇒(b). We consider several cases.

Case 1: K is a tree. If it has no more than three vertices, then K is ∆1, ∂∆1 ∗∆0

or ∆0. In each of these cases H∗

S1
i

(ZK) is a free Z[vi]-module by Theorem 4.8.

Suppose K has more than three vertices. Then K has a connected induced

subgraph K1 on 4 vertices, which has the form r r r

r

or r r r r . In both
cases, there are I1, I2 ∈MF(K1) such that I1−I2 = {i} for some i. Then H∗

S1
i

(ZK1
)

is not free over Z[vi] by Lemma 4.7, and H∗

S1
i

(ZK) is also not free by Lemma 4.5.

A contradiction.

Case 2: K is a disjoint union of trees. If K has two vertices, then K = ∂∆1.
Suppose K has more than two vertices. Write K = K1 ⊔ · · · ⊔ Ks where each Kj

is a tree. Then each Kj has at most three vertices by Case 1. Take I1 = {i, j},
I2 = {k, j}, where i ∈ K1, j ∈ K2 and {k, j} /∈ K. Then I1, I2 ∈ MF(K) and
I1 − I2 = {i}. Hence, H∗

S1
i

(ZK) is not a free Z[vi]-module by Lemma 4.7. A

contradiction.

Case 3: K has a 3-cycle. If K is a 3-cycle, then K = ∂∆2.
Suppose K has at least 4 vertices. Consider the induced subgraph on 4 vertices

containing a 3-cycle. There are four cases:

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

In the first two cases, take I1 = {3, 4}, I2 = {2, 4} in MF(K). In the last two cases,
take I1 = {1, 2, 3} and I2 = {1, 2, 4} in MF(K). Then I1 − I2 = {3} and H∗

S1
3

(ZK)

is not a free Z[v3]-module by Lemma 4.7. A contradiction.

Case 4: K has no 3-cycles and has a 4-cycle. If K is a 4-cycle, then K =
∂∆1 ∗ ∂∆1.
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Suppose K has more than 4 vertices. Consider the induced subgraph on 5 vertices
containing a 4-cycle. Since there are no 3-cycles, there are three cases:

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

In all cases take I1 = {2, 4}, I2 = {4, 5} in MF(K), then I1−I2 = {2} and H∗

S1
2

(ZK)

is not a free Z[v2]-module by Lemma 4.7. A contradiction again.

Case 5: each minimal cycle in K has length at least 5. Then K has an induced
subgraph K1 which is an m-cycle with m > 5. As in Example 4.6, we have that
H∗

S1
m

(ZK1
) is not free as a Z[vm]-module. SoH∗

S1
m

(ZK) is also not free by Lemma 4.5.

A contradiction. �
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