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EQUIVARIANT COHOMOLOGY OF MOMENT-ANGLE
COMPLEXES WITH RESPECT TO COORDINATE SUBTORI

TARAS PANOV AND INDIRA ZEINIKESHEVA

ABSTRACT. We compute the equivariant cohomology H7, (Zx) of moment-
angle complexes Zx with respect to the action of coordinate subtori 77 C T™.
We give a criterion for the equivariant formality of Zx and obtain specifications
for the cases of flag complexes and graphs.

1. INTRODUCTION

Let K be a simplicial complex on an m-element set V, and let Zx be the
corresponding moment-angle complex Zx. We study the equivariant cohomo-
logy of Zx with respect to the action of coordinate subtori 77y C T, where
I={iy,...,ig} CV.

We construct two commutative integral dga models for H7, (Zx). The first is
given by

(A[ui: ’L¢I]®Z[’C],d), duiZ’Ui, d’UiZO,
where Afu;: @ ¢ I] is the exterior algebra on degree-one generators u;, ¢ ¢ I, and
Z[K] is the face ring of Zx. The second dga model R;(K) is given by the quotient
of the first one by the ideal generated by u;v; and v? with i ¢ I. As a result we
obtain

Theorem 3.3. There are isomorphisms of rings
Hp (Zx) =2 H(Au;: i ¢ 1)@ ZIK],d) =2 H*(R;(K))
& Torzpy, ... v (Z[vi: i € 1], Z[K]),

where Z[v;: i € 1] is the Z[vy, . .., vy]-module via the homomorphism sending v; to
0fori¢l.

When I = V, the dga model above reduces to the face ring Z[K] with zero
differential, and we recover the integral formality result of [11].

When I = @, Theorem 3.3 gives the description of the ordinary integral cohomo-
logy of Zx of [2] and [5].

The additive (or Z[vy, ..., vy]-module) isomorphism

H;«I (ZIC) = TOI‘Z[vlwvﬂjm] (Z[’Ui: 1€ I], Z[IC]) = TOI'Z[vi: i¢1] (Z,Z[K:])
follows from the result of [§].

Next, we study the equivariant formality of Zx, that is, whether HJ (Zx) is a
free module over the polynomial ring H7, (pt) = H*(BTr) = Z[v;: i € I]. We prove
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Theorem 4.8. Let K be a simplicial complex on a finite set V. The following
conditions are equivalent:

(a) For any I € K, the equivariant cohomology H7. (Zx) is a free module over
H*(BTy).
(b) There is a partition V=V, U--- U Vp U U such that
K=0AWV1) -« 0A(V,) x A(U),
where A(U) denotes a full simplex on U, and 0A(V;) denotes the boundary
of a simplex on V;.
(¢) The rational face ring QK] is a complete intersection ring (the quotient of
the polynomial ring by an ideal generated by a regular sequence).
In the case of flag complexes we have the following specification:
Theorem 4.9. Let K be a flag complex on V. Then the following conditions are
equivalent:
(a) H%(Z2k) is a free module over Zv;] for all i.
(b) K=0A(W1)*--- % 0A(V,) * A(U) where |V| =2 fork=1,...,p.
A similar criterion holds in the case when K is a simple graph:
Theorem 4.11. Let K be a one-dimensional complex (a simple graph). Then the
following conditions are equivalent:
(a) H%(Z2k) is a free module over Z[v;] for any i.
(b) K is the one of the following: 0A?, A x DAL, AL, A, A x A°, AL,
Along the way we establish some additional properties of the equivariant co-
homology of Zx and give illustrative examples.

2. PRELIMINARIES

Let K be a simplicial complex on a finite m-element set V', which we often identify
with the index set [m] = {1,2,...,m}. We refer to a subset I = {i1,...,ix} CV
that is contained in K as a simplex. We assume that @ € KC and allow ghost vertices,
that is, one-element subsets {i} € V such that {i} ¢ K.

Let (X,A) = {(X1,A41),...,(Xm,An)} be a sequence of m pairs of pointed
CW-complexes, A; C X;. For each subset I C V, define

(X, )" ={(21,....xm) € [[ Xj: wj € A; forj¢TI}.
j=1

The polyhedral product of (X, A) corresponding to K is
(x, 4% = Jx, 4 = (HXz- X HAZ-).
Iek IekK il il

Using the categorical language, denote by CAT(K) the face category of K, with
objects I € K and morphisms I C J. Define the cAT(K)-diagram

Dx(X,A): caT(K) — TOP,
I— (X,A),
which maps the morphism I C J of cAT(K) to the inclusion of spaces (X, A)! C
(X, A)’. Then we have
(X,A)* = colimDi (X, A) = colim(X, AL,

In the case when all the pairs (X;, A;) are the same, i.e. X; = X and A4; = A for
i=1,...,m, we use the notation (X, A)X for (X, A)*.
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The moment-angle complex Zx is the polyhedral product (D?,SM)*. We refer
to [3, Chapter 4] for more details and examples.
The face ring of K is the quotient ring

ZIK] == Zlv1, . . .y vm]/ Ik,

where Zic is the ideal generated by the square-free monomials v; = []
which I C V is not a simplex of K.

el Vi for

3. EQUIVARIANT COHOMOLOGY
For an action of a topological group G on a space X, the Borel construction is
EGxgX:=FEGxX/(e-g~t,g-x) ~ (e,1),

where EG is the universal right G-space, e € EG, g € G, x € X. There is the Borel
fibration EG xg X — BG over the classifying space BG = EG/G with fibre X.
The equivariant cohomology of X is

HEL(X) = H*(EG x¢ X).

The torus 7™ = (S')™ acts on Zx = (D?,S")* coordinatewise. The universal
bundle E£S! — BS! is the infinite-dimensional Hopf bundle S> — CP>.

We consider the equivariant cohomology of Zx with respect to the action of
coordinate subtori

T] = {(tl,...,tm) GTmZ tj =1 fOI‘j ¢I},
where I = {iy,...,ix} C V.
Proposition 3.1. There is a homotopy equivalence

ET; x1, Zx = (Y, B)X,

Y, — CP=>, iel, B, — pt, 1€l
D? Q¢ Sloi¢l

where

Proof. We have
ET; x7, Zx = ETy x1, (D?,8H)* = (X, A)X,
where

X; =

{Soo xq D2, i€l '_{SOO xg SY, qel,
D2, i¢l, ’ st idl.
The result follows from the homotopy equivalence of pairs
(8% x g1 D? 8% x g1 S1) = (CP>, pt),

as in [3, Theorem 4.3.2] where the case I = [m] is treated. O

Next we introduce two commutative dga models for the equivariant cohomology
HF, (Zx). First, consider the dga

(Alui: i ¢ I @ ZIK],d), du; = v;, dv; =0,

where Afu;: i ¢ I] is the exterior algebra on generators indexed by V — I. The

grading is given by degu; = 1, degv; = 2.
Second, consider the quotient dga

Ri(K) := Alu;: i ¢ I @ ZIK] /(uv; = v =0, i ¢ I),
noting that the ideal generated by w;v; and v? with i ¢ I is d-invariant.

We denote by C.(X) and C*(X) the normalised singular chain dg coalgebra
and singular cochain dg algebra of a space X, respectively. (A singular cochain is
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normalised if it vanishes on degenerate singular simplices [9, §VIIL.6]; passing to
normalised cochains does not change the quasi-isomorphism type of C*(X).)

Theorem 3.2. The singular cochain algebra C*(ETt X1, Zx) is quasi-isomorphic
to (Afu;: i ¢ I ® Z[K],d) and R;(K). The quasi-isomorphisms are natural with
respect to inclusion of subcomplezes.

Proof. We combine the arguments of [11], [3, §4.5, §8.1] and [6].

The acyclicity of the ideal generated by vZ and w;v; for i ¢ I in Alu;: i ¢ I|QZ[K]
is established in the same way as [3, Lemma 3.2.6], where the case I = & is treated.
This gives a quasi-isomorphism Afu;: i ¢ I] ® Z[K] = R;(K). For the remaining
quasi-isomorphism R;(K) ~ C*(ET; X1, Zx), we use the homotopy equivalent
polyhedral product model (Y, B)’C of Proposition 3.1.

Throughout the proof, we use the following zig-zag of quasi-isomorphisms of
dgas [10, §7.2]:

(3.1) C*(X) @ C*(Y) = Hom(C,(X) ® C,(Y),Z) < C*(X x Y),

where the arrow on the right is the dual of the Eilenberg—Zilber map C.(X) ®
C.(Y) = C.(X xY), which is a quasi-isomorphism of dg coalgebras [4, (17.6)].
First consider the case I = @ with m ghost vertices. Then Zx = T™ and

ETy xr, Z¢ ~T™ /Ty = (Y, B)* =[] 5%,
gl
whereas R;(K) = Afu;: i ¢ I]. There is a quasi-isomorphism Afu] = H*(S') —
C*(S') mapping u to its representing singular 1-cocycle (here it is important that
we work with normalised cochains). Applying (3.1) we obtain the required quasi-
isomorphism Alu;: i ¢ I] >~ C*([[;¢, S1).

Now consider the case m = 1 and K = AO a O-simplex. If I = @, then
(Y,B)* = D? and R;(K) = A[ | ® Z[v]/(uv = v? = 0). Let ¢: [01] — D? be the
standard parametrisation of the boundary circle S!, viewed as a singular 1-simplex.
Let 1: [012] — D? be a singular 2-simplex such that Ylg) = @ and ¥|og), ¥ljo1) are
constant maps to the basepoint 1 € S*. Then Oy = 0 and 9y = ¢, as we work with
the normalised chains. Now if o € C*(D?) is the cochain dual to ¢ and 8 € C?(D?)
is dual to 1, then Afu] ® Z[v]/(uwv = v* = 0) — C*(D?) mapping u to o and v to
B is a quasi-isomorphism. If I = {1}, then (Y, B)X* = CP> and R;(K) = Z[v].
There is a quasi-isomorphism Z[v] = H*(CP*) — C*(CP) mapping v to its
representing singular 2-cocycle.

Next consider the case K = A™~! = A[m], the full simplex on [m]. Apply-
ing (3.1) and the Kiinneth theorem, we obtain a zig-zag of quasi-isomorphisms

(3.2) Ri(A[m]) =Au;: i ¢ I] @ Z[v1, ..., vm ]/(uivi,vgz i¢ 1)

:®Z ® [u;] ® Z[vg)/ (usvi, v3) ®C* (CP™>) ®®C* (D?)

i€l igl iel igl
RREN, (H(CPOO < [10?) = ¢ ((v. B)2m),
el ¢l

which completes the proof for the case K = A[m].

The general case is proved by induction on the number of simplices in K using
the naturality with respect of inclusion of subcomplexes and the Mayer—Vietoris
sequence, as in [6, Theorem 1]. Namely, we add simplices one by one to the empty
simplicial complex on [m] and use the zig-zag of dga maps between the two short
exact sequences for any two simplicial complexes K1 and Ko on [m]:

0— R[(/Cl U ’CQ) — R[(/Cl) D R[(ICQ) — R](/Cl n ’CQ) — 0
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and
0— C*((Y, B)’C1UIC2) — C*((Y, B)’C1) ® C*((Y, B)’C2) N C*((Y, B)Klﬁlcz) 0

The zig-zags between the middle and right nonzero terms are quasi-isomorphisms
by induction. Then the zig-zag on the left is also a quasi-isomorphism by the
cohomology long exact sequence and five lemma.

It may be more illuminating to realise the dgas in question as the limits of dgas
correponding to simplices I € K. Namely, given a subset J C V, let A(J) denote
a simplex on J, viewed as a simplicial complex on V' (with ghost vertices V — J).
Then

Ri(A(T) = Az i ¢ ] @ Zlvy: j € J))(wyv; =02 =0, j € J 1),
Consider the CAT®P(K)-diagram
Rix: CAT?(K) — pDaA, J — Ri(A(J)),
sending a morphism J; C Jo of CATP(K) to the surjection of dgas Ry(A(J2)) —

R;(A(J1)). Then
R[(IC) = limRL;C = }lenllC R[(A(J))

Similarly, we have a CAT°P(K)-diagram
Crx: CATP(K) — DGA, J+— C*((Y, B)”).

The zig-zag of quasi-isomorphisms (3.2) induces an objectwise weak equivalence of
diagrams Ry x ~ Crx. The canonical maps Ry x(J) — ImRr x|carer(9a(s)) and
Crx(J) = HmCr k|caror(9.a(s)) are fibrations (surjections of dgas). Therefore, both
diagrams Ry and Crx are Reedy fibrant (see [3, Appendix C.1]). Their limits
are therefore quasi-isomorphic. Thus, we obtain the required zig-zag of quasi-
isomorphisms of dgas
. ~ 1i * Jy = * . J\ vk K

Ri(K) = lim Ri(A() ~ lim C*((¥, B)?) & C* (colim(Y, B)?) = C*((Y, B)¥),

where the second-to-last map is a quasi-isomorphism by excision (or by Mayer—
Vietoris). O

For the equivariant cohomology, we obtain

Theorem 3.3. There are isomorphisms of rings
Hi (Zx) =2 H*(Alu;: i ¢ 1)@ ZIK],d) = H* (R;(K),d)
o] (Z[’UZ‘: 1€ I],Z[/C]),

.....

where Zv;: i € I] is the Z[vy, . .., vm]-module via the homomorphism sending v; to
0fori¢l.

Proof. The first two isomorphisms follow from Theorem 3.2. For the last one,
consider the Koszul resolution Afu;: i ¢ I] ® Z[v;: ¢ ¢ I] — Z of the augmentation
Z[v;: i ¢ I-module Z. Tensoring it with Z[v;: ¢ € I| we obtain a free resolution of
the Zlvy, ..., vy]-module Z[v;: ¢ € I]:

Aui: i ¢ I @ Zvy, ..., vm] = Zlv; i € 1.

Then Torzy, ... v, (Z[vi: i € I],Z[K]) is the cohomology of the complex obtained
by applying ®z[y,.....s,.]ZIK] to the resolution above, which gives Alu;: i ¢ I] ®
Z[K]. O
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When I = [m], we obtain that the singular cochain algebra of ET™ Xpm Zx ~
(CP>=, pt)* is quasi-isomorphic to Z[K] with zero differential, which is the integral
formality result of [11].

When I = @, we obtain the description of the ordinary integral cohomology of
Zx of [2] and [5].

4. EQUIVARIANT FORMALITY

A T*-space X is called equivariantly formal if H%,.(X) is free as a module over
H,.(pt) = H*(BT*). The latter condition implies that the spectral sequence of
the bundle ET* x,« X — BT* collapses at the E; page.

Using the results of the previous section, we obtain that Zx is equivariantly
formal with respect to the action of Tt if Torgy,, ... v,.(Z[vs: i € I], Z[K]) is free as
a module over H*(BTr) = Z[v;: i € I].

Lemma 4.1. Let K = Alm]. Then Hf (Zx) is free as a H*(BTr)-module, for any
IC[m].

Proof. For K = A[m], we have Z¢ = D?™ is Tj-equivariantly contractible. Hence,
Hf (Zx) = Hf (pt) = H*(BTry) is a free H*(BT7)-module. O

.....

Lemma 4.2. Let K = A[m)], the boundary of a simplex on [m]. Then Zx = §?m~1
and HF (Zx) is free as a H*(BTr)-module, for any I C [m].

Proof. Consider the spectral sequence of the bundle ET; xp, Zx — BT with
fibre Zx =2 S?m~1. We claim that the homomorphism H*(ET; X1, Zxc) — H*(Zx)
induced by the inclusion of the fibre is surjective. Indeed, by the construction of the
previous section, H*(ET; X1, Zx) — H*(Zx) is the cohomology homomorphism
induced by the dga map

(Alui: i ¢ 1) @ ZIK],d) — (Alug, ..., up) ® Z[K], d).

We have H*(Zxc) = Z(1, [uzv1 -+ - 0; - - - vy ]), where [wvq -+ ;- vy] € H>™H(Zx)
denotes the cohomology class of the cocycle w;vy - -+ 0; - - - vy, With v; omitted (note
that Z[K] = Z[v1,...,0m]/(v1 -+ vm)). Choosing i ¢ I we get that [u;v1 -+ T; - - - U]
also represents a nontrivial cohomology class in H*(ET; X1, Zx) (here we use the
fact that I # [m]). Hence, H*(ET; x1, Zx) — H*(Zx) is surjective.

Now HY(ET; x1, Zx) — H(Zx) is the edge homomorphism

H*(ET; x7, Z¢) — E%9 — EYY = H(Z)
of the spectral sequence. Its surjectivity implies ES 1 = F%4 that is, all the differ-
entials from the first column are trivial. By the multiplicative structure in the spec-

tral sequence, all other differentials are also trivial. We obtain H*(ET; X1, Zx) =
Ew = Ey =2 H*(BTr) ® H*(Zx), a free H*(BTr)-module. O

Let K4 and Ks be simplicial complexes on the sets V; and V3, respectively. Their
join is the simplicial complex on V; U V5 given by
IC1 % Ko :{Ill_|12 cWiuVe: I € Ky, I EICQ}.

Lemma 4.3. Let I, C Vi, L, C Vo, V=ViuW, I =LUIL and K = K1 *x Ks.
Suppose that Hy, (Zx,) is free as a H*(BTy,)-module, and Hy, (Zk,) is free as a
H*(BT1,)-module. Then Hf (Zx) is free as a H*(BTr)-module.

Proof. We have Zx = Zi, x Zx, by [3, Proposition 4.1.3]. Then
H;’I (Z’C) = H;’I (Z’Cl X ZK:Q) =H" (ETI X1y (Z’C1 X ZK:Q))
= H*((ETy, x1;, XZx,) x (ETy, X1p, X ZK,))
= H*(ETfl XTy, Z’C1) & H*(ETI2 X Ty, Zlcz) = H’;Il (Z’C1) ® HT*“IZ (Zlcz)'
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The second-to-last isomorphism above follows by the Kiinneth formula, because
H*(ETr, X1, 2k,) is a free Z-module (as it is a free Z[v;: i € I;]-module). The
claim follows, since H*(BT;) = H*(BTy,) @ H*(BTy,). O

Lemma 4.4. Let I ¢ K. Then Hf (Zx) is not free as a module over H*(BTr).

Proof. Take vy = [[,c;vi € H*(BTr). Then vy -1 = [v;] = 0, because v represents
zero in Hy, (Zx) = H(Afu;: i ¢ I]®Z[K]). Hence, 1 is a H*(BTr)-torsion element,
and H7, (Zx) is not free as a H*(BTr)-module. O

Let K be a simplicial complex on V and V' C V. The subcomplex K' = {I €
K: I CV'}iscalled a full subcomplex (an induced subcomplex on V'). Equivalently,
K' C K is a full subcomplex if any missing face of K’ is a missing face of K.

Lemma 4.5. If H} (Zx) is a free H*(BTr)-module and K' is a full subcomplex of
K such that I € K', then Hf (Zk) is also a free H*(BTr)-module.

Proof. Since K’ is a full subcomplex, there is a retraction Zx — Zx — Zi (see [13,
Proposition 2.2] or [12, Lemma 4.2]), which is Tr-equivariant for any I C V'. It
follows that H7. (Zx/) is a direct summand in the free H*(BTr)-module HF, (Zx).
Hence, H7, (Zx) is also free. O

The equivariant cohomology H7. (Zx) may fail to be free as a H*(BTr)-module
even when [ is a simplex of IC:

Example 4.6. Let K be an m-cycle (the boundary of an m-gon), with vertices
numbered counter-clockwise. Let I = {i}, so that T7 is the ith coordinate circle
S}, When m = 3 or m = 4, H%,(2x) is free over Z[v;] for all i by Lemma 4.2
and Lemma 4.3. Suppose that m > 5. Then the nonzero cohomology class in
Hg}n (Zk) represented by the cocycle ujvs € Afuy, ..., um—1] ® ZIK] is a Z[vy]-
torsion element. Indeed, vy, - [u1vs] = [urvzvy,] = 0, since vzv, = 0 in Z[K] for
m = 5. Hence, Hg, (Zk) is not free as a Z[vy,]-module.

Recall that a missing face (a minimal non-face) of a simplicial complex K on V
is a subset I C V such that T ¢ K but every proper subset of I is in K. In other
words, I is a missing face if OA(I) is a subcomplex of IC, but A(I) is not. We
denote by MF(K) the set of missing faces of K.

Generalising Example 4.6, we have

Lemma 4.7. Let I} and Is be missing faces of K, and suppose that I = I; — I5 is
nonempty. Then Hi (Zx) is not free as a module over H*(BTr).

Proof. Since I and I are distinct missing faces, we have Iy ¢ I;. Take j €
I, — I. Then j ¢ I. The cocycle u;vr,—; represents a nontrivial cohomology class
in Hy (Zx) = H(Afu;: i ¢ I] @ Z[K]).

We claim that the cohomology class [ujvr, ;] € Hf, (Zx) is a H*(BTr)-torsion

element. Indeed, take vy = [],c;vi € H*(BTr). Then
vr - [ujvr, —j] = [ujvrvr,—j] = [ujvn v, -1, 5] =0,

since v;, = 0 in Z[K]. Hence, Hf, (Zx) is not free as a H*(BTr)-module. O

Theorem 4.8. Let I be a simplicial complex on a finite set V. The following
conditions are equivalent:

(a) For any I € K, the equivariant cohomology H7. (Zx) is a free module over
H*(BTY).
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(b) There is a partition V. =ViU---UV,UU such that
K=0A(1)%---x0A(V,) x A(U),
where A(U) denotes a full simplex on U, and 0A(V;) denotes the boundary

of a simplex on V;.
(¢) The rational face ring Q[K] is a complete intersection ring (the quotient of
the polynomial ring by an ideal generated by a regular sequence).

Proof. (a)=(b) We have Q[K] = Q[v1,...,vm]/(t1,...,t,) where t = [[;cy, vi is
a square-free monomial and Vj is a missing face of IC, for £ = 1,...,p. Suppose
some of these missing faces intersect nontrivially, say, V1 NV, # &. Then I =
Vi — V4 is nonempty, and HF, (Zx) is not a free H*(BTr)-module by Lemma 4.7. A
contradiction. Hence, V1, ...,V are pairwise non-intersecting, so K is as described
in (b).

(b)=(a) Write I = I; U---U I, U J, where I, C Vi, J CU. Then Hf (Zx) is a
free H*(BTy)-module by Lemmas 4.1, 4.2 and 4.3.

(b)=(c) Recall [3, §A.3] that a sequence of homogeneous elements (t1,..., )
of positive degree in Qvy,...,vy] is a reqular sequence if t;41 is not a zero di-
visor in Q[u1,...,vm]/(t1,...,t;) for 0 < i < k. If K is as in (b), then Q[K] =
Qv ...y vm]/(t1, ..., tp), where m = [V] and t, = [[;y, vi for k=1,...,p. Then
(t1,...,tp) is a regular sequence, so Q[K] is a complete intersection ring.

(¢)=(b) Suppose Q[K] = Q[v1,...,vm]/(t1,...,tp) where (t1,...,t,) is a reg-
ular sequence. We can assume that t; = HiGVk v; where Vi is a missing face
of IC, for k = 1,...,p. Suppose some of these missing faces intersect nontrivi-
ally, say, V1 NV, # @&. Then tg - Hievl—vg v; =t - Hjevz—vl vj, so ta is a zero
divisor in Q[v1,...,vm]/(t1). A contradiction. Hence, V1, ...,V are pairwise non-
intersecting, so K is as described in (b). O

The equivalence (b)<(c) of Theorem 4.8 was noted in [11, §5].

Recall that IC is called a flag complez if each of its missing faces has two vertices.
A simplicial complex K is flag if and only if it has no ghost vertices and any set of
vertices of IC which are pairwise connected by edges spans a simplex. In the case of
flag complexes we have the following specification of the criterion in Theorem 4.8.

Theorem 4.9. Let K be a flag complex on V. Then the following conditions are
equivalent:

(a) H%(Z2x) is a free module over Zv;] for all i.
(b) K=0A(W1)*---%0A(V,) * A(U) where |Vi| =2 fork=1,...,p.

Proof. Implication (b)=-(a) follows from Theorem 4.8, so we only need to prove
(a)=(b). Let V4, V4 be missing faces. Then |Vi| = || = 2. f N NV, # &,
then V) — V, = {i} for some i € V. Then H,(Zx) is not free as a Z[v;]-module
by Lemma 4.7. This contradiction shows that all missing faces of K are pairwise
non-intersecting, so K is as in (b). O

Here is an example showing that the equivalence of Theorem 4.9 does not hold
in the non-flag case.

Example 4.10. Let K be the simplicial complex on 5 vertices with MF(K) =
{I, 12}, where I} = {1,2,3} and I = {3,4,5}. Then H7 (Zx) is not free as a
H*(BTr)-module for I = {1,2} (or for I = {4,5}) due to Lemma 4.7. However,
H;il (Zx) is a free H*(BS})-module for all i. Indeed, it can be shown by the
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methods of [7, §8] or [1] that Zx = S° Vv S° v S8 The ordinary cohomology is
generated by the following monomials in the Koszul algebra Afuq, ..., us] ® Z[K]:

H*(2x) = Z1, [ugvr, k], [ujvr,—5], [wi wiy vis)—i; —i,1),
where k € 11, j (S IQ, ['U/k'UIl—k]a [Uj'UIZ—j] S H5(Z;C), 1€ — IQ, i9 € Io — I and
[uil ui2v[5]*i1*i2] € H8(ZK:)

Since both Iy — I and I, — I; contain two elements, we can choose k, j, 41,2
such that i ¢ {k,j,i1,42}. Then the monomials ugvr, —k, UV, —j, Uiy Uiy V]5)—i; —i,
represent nontrivial cohomology classes in HY,(Zx). This implies that the homo-
morphism H, (Zx) — H*(Z) is surjective. Therefore, the spectral sequence of the
bundle ES} x g1 Zx — BS} collapses at the F2 page, as in the proof of Lemma 4.2.
It follows that HZ, (Zx) = H* (BS}) ® H*(Zx), a free H*(BS})-module.

The equivalence similar to that of Theorem 4.9 also holds when K is one-
dimensional.

Theorem 4.11. Let K be a one-dimensional complex (a simple graph). Then the
following conditions are equivalent:

(a) H%(Z2x) is a free module over Z[v;] for any i.

(b) K is the one of the following: OA?, OA x OAL, 0AL, AL, OA! x+ A0, AV,

Proof. Implication (b)=-(a) follows from Theorem 4.8, so we only need to prove
(a)=-(b). We consider several cases.

Case 1: K is a tree. If it has no more than three vertices, then K is A!, 0A! x A°
or A%, In each of these cases H}, (Zx) is a free Z[v;]-module by Theorem 4.8.
Suppose K has more than three vertices. Then K has a connected induced

subgraph K on 4 vertices, which has the form or . In both
cases, there are Iy, Iy € MF(Ky) such that Iy — I = {i} for some i. Then H}, (Zx, )

is not free over Z[v;] by Lemma 4.7, and H,(2x) is also not free by Lemma 4.5.

A contradiction.

Case 2: K is a disjoint union of trees. If K has two vertices, then K = A"

Suppose K has more than two vertices. Write K = Ky U - -- L Ky where each K;
is a tree. Then each /C; has at most three vertices by Case 1. Take I = {4,j},
I = {k,j}, where i € K1, j € Ko and {k,j} ¢ K. Then I,Io € MF(K) and
Iy — Iy = {i}. Hence, H%,(Zx) is not a free Z[v;]-module by Lemma 4.7. A
contradiction. '

Case 3: K has a 3-cycle. If K is a 3-cycle, then K = 0A2.

Suppose K has at least 4 vertices. Consider the induced subgraph on 4 vertices
containing a 3-cycle. There are four cases:

1 3 1 3 1 3 1 3
In the first two cases, take I = {3,4}, I = {2,4} in MF(K). In the last two cases,
take Iy = {1,2,3} and Ir = {1,2,4} in MF(K). Then I} — I, = {3} and HY, (Zx)
3

is not a free Z[vs]-module by Lemma 4.7. A contradiction.

Case 4: K has no 3-cycles and has a 4-cycle. If K is a 4-cycle, then K =
DAL x DAL,
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Suppose K has more than 4 vertices. Consider the induced subgraph on 5 vertices
containing a 4-cycle. Since there are no 3-cycles, there are three cases:

2 2 2

4 4 4

In all cases take I1 = {2,4}, I = {4,5} in MF(K), then I} — Iz = {2} and H, (Zx)
2
is not a free Z[vg]-module by Lemma 4.7. A contradiction again.

Case 5: each minimal cycle in IC has length at least 5. Then K has an induced
subgraph Iy which is an m-cycle with m > 5. As in Example 4.6, we have that
&1 (2k, ) is not free as a Z[v,,]-module. So H, (Zx) is also not free by Lemma 4.5.
A contradiction. " O
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