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Abstract
Activity-independent and activity-dependent mechanisms work in concert to regulate neuronal
growth, ensuring the formation of accurate synaptic connections. CPG15, a protein regulated by
synaptic activity, functions as a cell-surface growth-promoting molecule in vivo. In Xenopus
laevis, CPG15 enhanced dendritic arbor growth in projection neurons, with no effect on
interneurons. CPG15 controlled growth of neighboring neurons through an intercellular signaling
mechanism that requires its glycosylphosphatidylinositol link. CPG15 may represent a new class
of activity-regulated, membrane-bound, growth-promoting proteins that permit exquisite spatial
and temporal control of neuronal structure.

The cpg15 gene was identified in a forward genetic approach designed to isolate activity-
regulated genes that mediate synaptic plasticity (1). In the adult rat, cpg15 is induced in the
brain by kainate (KA) and in visual cortex by light (2). During development, cpg15
expression is correlated with times of afferent in-growth, dendritic elaboration, and
synaptogenesis (2). Sequence analysis predicts a small, secreted protein (2) that is
membrane-bound by a glycosylphosphatidylinositol (GPI) linkage (3).

Antiserum generated against bacterially expressed rat CPG15 recognizes a protein from rat
brain dentate gyrus extracts (Fig. 1A) (4) of the size predicted by sequence analysis. A
protein of similar size is induced in Xenopus laevis after KA injections into the brain
ventricle (Fig. 1A) (5). In situ hybridizations using a partial clone of Xenopus cpg15 indicate
that the CPG15 mRNA is expressed in retinal ganglion cells and in differentiated neurons
throughout the central nervous system (CNS) of stage-47 tadpoles (6). Xenopus CPG15
protein is present in neurons and axons throughout the CNS (7, 8). In the optic tectum,
differentiated neurons label in a honeycomb pattern similar to N-CAM (neural cell adhesion
molecule) and other cell-surface antigens, while cells in the proliferative zone have
undetectable levels of CPG15 (Fig. 1C).

To investigate the cellular function of CPG15, we used a recombinant vaccinia virus (VV) to
express CPG15 in optic tectal cells of albino Xenopus tadpoles (9, 10). Tadpoles were
infected by ventricular injection with VV carrying rat cpg15 and β-galactosidase (β-gal)
cDNAs in a dual promoter vector, or with a control virus containing only the β-gal cDNA
(11). Two days after viral infection and approximately 24 hours after the beginning of
expression of foreign protein (9), single tectal cells were labeled with DiI (10, 12). Confocal
images through the entire structure of each neuron were collected at 24-hour intervals over a
period of 3 days, and three-dimensional (3D) images were reconstructed from this (13).
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The most prominent effect of CPG15 on the morphology of tectal projection neurons was
that the dendritic arbors of neurons from CPG15VV-infected animals increased their total
dendritic branch length (TDBL) and became more complex than arbors of neurons from β-
gal–infected or uninfected animals (Fig. 2) (14). This effect was quantified as an increase in
averaged TDBL (Fig. 3A) and by Sholl analysis (Fig. 3B).

We measured the distribution of dendritic arbor sizes, expressed as TDBL, within the
population of neurons from CPG15VV-infected animals and from control animals (Fig. 3C).
All three populations of neurons showed a gradual shift toward larger TDBLs as their
dendritic arbors grow. The shift toward larger TDBLs was greatest in neurons from
CPG15VV-infected animals. This analysis also demonstrates the presence of a
subpopulation of cells in CPG15VV-infected animals that have a greater TDBL than any
control cell. These “outliers” can be detected on all three days of imaging and are the most
distinctive manifestation of the CPG15 overexpression phenotype.

Interneurons were unaffected by CPG15VV infection (Fig. 4) (14, 15). It is therefore likely
that the regulation of interneuron dendritic development is controlled differently from that of
projection neurons, perhaps by different molecular participants.

To determine whether CPG15 could mediate intercellular signaling, we established
experimental conditions in which imaged cells were not likely to be infected with the
CPG15VV. Animals were infected with CPG15VV at a lower titer than in previous
experiments, imaged in vivo over a 2-day period, then fixed and processed for β-gal
immunohistochemistry (16). Because the VV contains a dual promoter vector with the
CPG15 cDNA cloned downstream of a strong promoter and the β-gal cDNA driven by the
weaker p7.5 vaccinia promoter, β-gal expression served as our marker for infected cells that
were also expressing the CPG15 protein. β-gal immunohistochemistry showed that none of
the 14 DiI-labeled neurons imaged in this experiment were infected with CPG15VV,
probably due to the low infection levels. Three of 14 neurons had TDBLs greater than any
control neuron and were therefore outliers. We found that outliers do not need to express
CPG15 in order to exhibit an enhanced growth response; however, each one was in close
proximity to infected neurons or radial glia (Fig. 5) (14). This demonstrates that the CPG15
growth promoting effect is mediated by a signaling molecule capable of communicating
between neighboring cells, possibly CPG15 itself.

Database searches do not reveal CPG15-related proteins. The CPG15 amino acid sequence
lacks the immunoglobulin G domains common to adhesion molecules (17). CPG15 shows
borderline similarity to ligands of the eph subfamily of receptor tyrosine kinases (ephrins)
(18). Two of the ephrins—ephrin-A2 (ELF-1; Cek7-L; LERK6) and ephrin-A5 (AL1;
RAGS; LERK7)—are anchored to the membrane by a GPI linkage (18, 19) and have been
implicated as guidance molecules for topographic mapping of retinotectal projections (20).
It appears that these cell-surface–bound ligands are unable to function as soluble factors and
require presentation in a membrane-bound form to activate their receptors by direct cell-to-
cell contact (21). We noted that CPG15-expressing neurons and glia were located near the
uninfected neurons with the CPG15 “outlier” phenotype. To test whether CPG15 requires
the GPI linkage for its growth promoting function, we infected tectal cells with a VV
containing a truncated version of CPG15 lacking the GPI consensus sequence (CPG15t3VV)
(22). CPG15t3VV was expressed in infected cells (Fig. 1, F and G), but failed to promote
dendritic arbor growth (Fig. 3D). Indeed, neurons in CPG15t3VV-infected animals have a
significantly slower growth rate than neurons from β-galVV–infected animals (*P < 0.02;
Fig. 3D). This indicates that CPG15 functions to promote dendritic growth only in its
membrane-bound form. Furthermore, the truncated CPG15 inhibits normal dendritic growth
in developing neurons. A truncated human homolog of CPG15 (neuritin) was previously
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reported to promote neuritogenesis in cultured rat hippocampal neurons (3). These
qualitative observations may reflect characteristics of the in vitro assay (for example,
CPG15t3 immobilization through binding to the polylysine substrate or different response
properties of the cultured neurons).

During nervous system development, synaptic activity influences the formation of neuronal
connections, in part by controlling axonal and dendritic structure (23). Our studies are
consistent with a model in which visual activity induces CPG15, which in turn promotes
neuronal growth and structural plasticity. We show that CPG15, an activity-regulated
molecule, promotes dendritic growth through intercellular signaling, suggesting that it may
function as a ligand. It is intriguing to consider that GPI-linked ligands may function not
only as passive positional labels, as in the case of ephrins, but also as activity-regulated
growth-promoting signals. As a membrane-bound protein, CPG15 might confer spatial
specificity to a growth promoting signal, which may be lacking in secreted factors. As more
proteins are discovered that influence neuronal outgrowth in the brain, studies of their
functions will enhance the understanding of wiring of neuronal connections and their
modification by activity.
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Fig. 1.
CPG15 induction by kainic acid and its expression in Xenopus optic tectum. (A) Immuno-
blot of protein extracts from tadpoles harvested at the specified times after intraventricular
injection of KA, or rat hippocampus dentate gyri 24 hours after ip injection of KA (right
lane). Incubation with the antiserum to CPG15 labels a 12-kD band (arrow) that is not seen
with preimmune serum (PI). Confocal images of sections through the optic tecti of untreated
tadpoles (B and C) or tadpoles infected with CPG15VV (D and E) or CPG15t3VV (F and
G). Sections probed with preimmune rabbit serum show no specific labeling (B). Outlined
on this section are the optic tectal neuropil (N), differentiated tectal neurons (TN), and the
proliferative zone (PZ). These same regions can be discerned in the sections stained with the
antisera to CPG15 [(C), (E), and (G)]. A honeycomb pattern of endogenous CPG15
immunoreactivity can be seen in the TN region of the tectum, and retinal ganglion cell axons
are stained in N (C). Sections from animals infected with virus were double-labeled with
anti– β-gal to show extent of infection [(D) and (F)] and with anti-CPG15 at higher
magnification [(E) and (G)]. In the infected tecti [(E) and (G)], the honeycomb pattern of
CPG15 immunoreactivity also extends into the PZ, where many infected neurons are located
[(D) and (F)]. Arrows mark retinotectal axons. Bar, 100 μm for upper panel and 50 μm for
lower panels.
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Fig. 2.
CPG15 promotes dendritic growth in optic tectal neurons. Drawings of 3D reconstructed
projection neurons from β-galVV–infected animals (top panel) and CPG15VV-infected
animals (bottom panel) imaged over 3 days. The three neurons shown in each group (from
left to right) represent the range of neuronal sizes imaged on the first day. Cell a in each
panel has the smallest TDBL from all neurons in its group (CPG15 or control). Cell b has a
TDBL closest to the mean branch length of each group, and cell c has the largest TDBL in
each group. In all three examples, the neurons in the CPG15 group grew faster and
developed a more complex dendritic arbor than did their control counterparts.
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Fig. 3.
Quantification of CPG15 growth-promoting effect on dendritic arbors. (A) The average
TDBL of rostrally projecting CPG15 neurons, β-gal neurons, and uninfected control neurons
is plotted over 3 days of imaging. On the first day of imaging, the average TDBL of
projection neurons from CPG15VV-infected animals was 447 ± 69 μm (n = 39),
significantly larger (P < 0.05) than cells from uninfected (257 ± 31 μm; n = 32) and β-
galVV–infected (260 ± 43 μm; n = 22) animals. The disparity in TDBL between cells from
CPG15VV-infected and control animals increases on the second day of imaging (14). This
difference is maintained on the third day, as both populations continue to grow, at 927 ± 138
μm (n = 24) for CPG15 neurons, compared to 553 ± 53 μm (n = 31) for uninfected and 563
± 37 μm (n = 19) in β-galVV–infected animals (P < 0.05). (B) Sholl analysis (24) shows that
CPG15 increases dendritic arbor density of projection neurons from CPG15VV-infected
animals compared to β-galVV controls. Concentric circles with a 10-μm spacing were drawn
around the cell body, and the number of intersections of all dendritic branches with the
circles was counted. (C) Frequency distribution of projection neuron TDBL values for each
day of imaging from animals infected with the CPG15VV, β-galVV, or uninfected controls.
For days 1 and 3, respectively, group sizes were n = 39 and n = 24 for CPG15VV, n = 32
and n = 31 for β-galVV, and n = 22 and n = 19 for uninfected. (D) CPG15 increases growth
rate of projection neurons while CPG15t3VV slows their growth. The growth rate for
projection neurons from β-galVV–, CPG15VV-, or CPG15t3VV-infected animals was
determined by subtracting TDBL on day 1 from TDBL on day 2. The growth rate of neurons
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in CPG15VV-infected animals [308 ± 35 μm/day (n = 39)] was significantly greater (**P <
0.003) than that of β-galVV controls [173 ± 22 μm/day (n = 32)]. In contrast, growth rates of
neurons from CPG15t3VV-infected animals [110 ± 24 μm/day (n = 30)] were significantly
lower than their β-galVV control counterparts (*P < 0.02).
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Fig. 4.
CPG15 does not affect tectal interneurons. (A) Drawings of interneurons from β-gal–
infected animals (left) and CPG15VV-infected animals (right) with a TDBL closest to the
mean branch length of each group. (B) The growth rate (TDBL on day 2 – TDBL on day 1)
is significantly greater (P < 0.01) for CPG15 projection neurons (n = 17) than control
neurons (n = 41). Such a difference in growth rate is not seen between interneurons from
control 155 ± 48 μm/day (n = 13) and CPG15VV-infected animals 185 ± 81 μm/day (n = 9)
(P > 0.7).
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Fig. 5.
CPG15 promotes growth through intercellular signaling. (A) A 3D reconstruction of a tectal
projection neuron from a CPG15VV-infected animal, with a TDBL of 1684 μm on the first
day of imaging (day 1) and 2021 μm on the second day (day 2). This cell is a clear outlier on
both days as the largest control cell is 642 μm on the first day of imaging and 1017 μm on
the second. (B) Top panel shows a drawing of the tadpole optic tectum (OT) and the tectal
ventricle (V) with the marked location of this cell. The green square delineates the region
shown in the bottom panel. Bottom panel shows a superimposition of images collected with
a 488-nm filter visualizing the DiI-labeled cell imaged in green and images collected with a
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647-nm filter visualizing β-gal immunopositive cells in red. The arrow marks the cell
imaged in (A).
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