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The Origin of Planetary Impactors in the Inner Solar System

Robert G. Strom1, Renu Malhotra1, Takashi Ito2, Fumi Yoshida2, and David A. Kring1

ABSTRACT

New insights into the history of the inner solar system are derived from the impact

cratering record of the Moon, Mars, Venus and Mercury, and from the size distributions

of asteroid populations. Old craters from a unique period of heavy bombardment that

ended ∼3.8 billion years ago were made by asteroids that were dynamically ejected from

the main asteroid belt, possibly due to the orbital migration of the giant planets. The

impactors of the past ∼3.8 billion years have a size distribution quite different from the

main belt asteroids, but very similar to the population of near-Earth asteroids.

The Moon and all the terrestrial planets were resurfaced during a period of intense impact

cratering that occurred between the time of their accretion, ∼ 4.5 Ga, and ∼ 3.85 Ga. The lunar

cratering record and the radiometrically dated Apollo samples have shown that the intense bom-

bardment of the Moon ended at ∼3.85 Ga; the impact flux since that time to the present has been

at least an order of magnitude smaller. The 3.85 Ga epoch might represent the final end of an era

of steadily declining large impacts (the tail end of the accretion of the planets). However, it has

also been argued that only a sudden injection of impacting objects into the terrestrial planet zone

accounts for the abrupt end of the intense bombardment; thus, this event has been named the Late

Heavy Bombardment (LHB), or sometimes the Lunar Cataclysm, to distinguish it from the prior

final accretion of the planets at 4.5 Ga. Specifically, the lunar cataclysm hypothesis (1,2) postu-

lates that the intense bombardment of the Moon lasted only a very short period of time, 20–200

My (2–5). Recent results on the impact ages of lunar meteorites (which represent a much broader

region of the lunar surface than the Apollo samples) support this hypothesis (6–8). Furthermore,

the impact-reset ages of meteoritic samples of asteroids (9–10) and the shock-metamorphosing at

3.92 Ga of the only known sample of the heavily cratered highlands of Mars, meteorite Allan Hills

84001 (11), indicate that the LHB affected the entire inner Solar System, not just the Moon.

Identifying the sources of planetary impactors has proven elusive. Dynamical models invoking

both geocentric and heliocentric debris and both asteroidal and cometary reservoirs have been
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proposed (12), but chemical analyses of Apollo samples of impact melts point to a dominantly

asteroid reservoir for the lunar cataclysm (10). In this paper, we provide compelling new evidence

that the source of the LHB impactors was the main asteroid belt, and that the dynamical mechanism

that caused the LHB was unique in the history of the Solar System and distinct from the processes

producing the flux of objects that currently hit planetary surfaces.

We examined the crater size distributions (13) of surface units of various ages on the Moon,

Mars and Mercury, based on published data (14,15) supplemented by new crater counts (S1). Of

the terrestrial planets, only the Moon, Mercury and Mars have heavily cratered surfaces. These

surfaces all have complex size distributions, as seen in Fig. 1a. The curves for Mercury and Mars

are steeper than the lunar curve at diameters less than about 40 km, because plains formation

has obliterated a fraction of the smaller craters (S2). Therefore, the lunar highlands curve best

represents the shape of what we shall call the Population 1 crater size distribution.

In addition to the highlands, the crater curves for Martian old plains east of the Tharsis region,

old plains within the Hellas basin and plains within and surrounding the Caloris basin on Mercury

also have the same shape as the lunar highland curve over the same diameter range, but with a

lower crater density (16). The lower crater densities imply that these older plains probably formed

near the tail end of the LHB, about 3.8 billion years ago.

For the younger surfaces, the crater size distribution curves are flat and distinctly different

(Fig. 1b). These include the lightly cratered, hence younger, plains on Mars and the Moon, as

well as fresh craters with well-defined ejecta blankets (Class 1 craters) on the Moon. This crater

population we call Population 2.

The crater density on Venus (Fig. 2) is about an order of magnitude less than on Mars.

Only young craters are present, evidently because older craters have been erased by multiple global

resurfacing events (17). Furthermore, small craters are scarce on Venus because its thick atmosphere

screens out small impactors (18). Part of the Venus crater population consists of clusters of craters

(multiples) that result from fragmentation of the impacting object in the dense atmosphere. These

comprise 16% of all Venus craters (S1). The size distribution of these multiples is also shown in

Fig. 2, where the diameter is derived from the sum of the crater areas in the cluster. The turnover

of the curve for multiple craters does not occur until diameters less than 9 km; at larger diameters

the curve is flat. This, together with the much lower crater density, strongly suggests that the

impacting population on Venus was the same as Population 2 on the Moon and Mars. It is also

evidence that the turnover of the crater curve is indeed due to atmospheric screening.

The two characteristic shapes of the crater curves in the inner Solar System are summarized in

Fig. 3. We conclude that the terrestrial planets have been impacted by two populations of objects

which are distinguishable by their size distributions. Population 1 is responsible for the LHB, and

Population 2 is responsible for the post–LHB period and up to the present time.

A number of studies on the physics of impact cratering on solid bodies have derived projectile–

crater scaling laws. We used the Pi scaling law (19) to derive the projectile size distribution for
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Population 1 and Population 2 impactors. We used the lunar highland crater curves as represen-

tative of Population 1 and the Martian young plains as representative of Population 2, as these

provide the best statistics. (We did not include crater diameters greater than 500 km, because

of scaling uncertainties.) We assumed projectile parameters appropriate for asteroidal impacts:

density of 3 g cm−3 (similar to basaltic rock), an impact angle of 45◦ and impact velocities of 17

km s−1 and 12 km s−1 on the Moon and on Mars, respectively (20). In Fig. 4, we compare these

distributions to recent determinations of the size distributions of the main belt asteroids (MBAs)

(21–23) and Near Earth Asteroids (NEAs) (24). The size distribution of the current MBAs is vir-

tually identical to the Population 1 projectile size distribution, as pointed out in (25). This result

indicates that the objects responsible for the LHB originated from Main Belt asteroids. Unless

comets or Kuiper belt objects have the same size distribution, these objects could not have been

significant contributors to the LHB.

The close match between the current MBA size distribution and that of the LHB projectiles

implies that the main asteroid belt has remained unchanged in its size distribution over the past

3.8 Gy. There are two possible interpretations of this result: either collisional processes produced

a steady-state size distribution in the main asteroid belt at least as early as 3.8 Ga, or the collision

frequency in the main asteroid belt was drastically reduced around 3.8 Ga.

The mechanism responsible for ejecting asteroids from the main asteroid belt and into terres-

trial planet-crossing orbits during the LHB had to be unique to the early Solar System because

there is no evidence for any subsequent event of similar magnitude in the inner planets’ cratering

history since then. Furthermore, that mechanism had to be one that ejected asteroids from the

main belt in a size–independent manner, preserving the MBA size distribution in the inner planet

impactor population. This precludes size–dependent non–gravitational transport processes, such

as the Yarkovsky effect, and instead implicates a dynamical process, such as sweeping gravitational

resonances, that was largely insensitive to asteroid mass.

A dynamical mechanism consistent with the above constraints that explains the congruence of

the size distributions of the MBAs and the Population 1 projectiles, involves the orbital migration of

the giant planets. Such migration of the outer planets is thought to have occurred on a timescale of

about 107–108 years early in Solar System history (26–29), and it would have caused severe depletion

of the asteroid belt due to orbital instabilities that ensue as strong Jovian mean motion resonances

sweep across this zone (30). This phenomenon would have caused the Moon and terrestrial planets

to be cataclysmically bombarded by asteroids and icy planetesimals (comets) for a period of 10–100

Myr (31). A recently proposed variation on the giant planet migration theory invokes the change

of the eccentricities of Jupiter and Saturn, if and when these planets passed through a 1:2 orbital

resonance during their orbital migration (32). Such resonance passage would have destabilized the

planetesimal disk beyond the orbits of the planets, causing a sudden massive delivery of comets

to the inner Solar System; in this scenario, the asteroid belt is also destabilized due to sweeping

gravitational resonances; together, these cause a significant spike in the intensity of cometary as

well as asteroid impacts on the inner planets (33).
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In either scenario, the relative intensity of comets versus asteroids in the projectile population

of the LHB is not well determined by the published dynamical simulations. Since the impact

signature in the crater record in the inner Solar System is asteroidal, we conclude that either

comets played a minor role or their impact record was erased by later–impacting asteroids.

Both of these mechanisms predict a LHB lasting between ∼10 My and ∼150 My. Therefore,

the LHB was a catastrophic event that occurred from about 3.9 Ga to 3.8 Ga. Because of this, it is

not possible to use the crater record to date surfaces older than about 3.9 Gy; the previous crater

record has been obliterated by this event. The heavily cratered highlands of the Moon, Mars and

Mercury that register Population 1 were resurfaced 3.9 billion years old, although older rock relics

may have survived.

The size distribution of Population 2 projectiles (Fig. 4) is the same as the NEAs and quite

different from the LHB projectiles. Thus, NEAs are largely responsible for the cratering record after

3.8 Ga. This result is contrary to the findings in (34) that apparently used biased data containing

observational losses (cf. ref. 24) and whose analysis based on cumulative (rather than differential)

size distributions was not sufficiently sensitive to the differences in the distributions.

A plausible reason that the MBAs and the NEAs have such a different size distribution is the

Yarkovsky effect that causes secular changes in orbital energy of an asteroid due to the asymmetric

way a spinning asteroid absorbs and reradiates solar energy (35). Over a few tens of millions

of years the effect is large enough to transport a significant number of sub–20 km size asteroids

into strong Jovian resonances (36) that deliver them into terrestrial planet-crossing orbits. The

magnitude of the effect depends on the size of the asteroid: for diameters greater than about 10 m,

the smaller the asteroid the larger the effect. This explains why the NEAs (Population 2 projectiles)

have relatively more small objects compared to MBAs. Because the younger post-LHB surfaces

have been impacted primarily by NEAs, the ages of these surfaces can be derived from the crater

production rate of NEAs. However, the ages derived from the NEA impacts will be an upper limit

because we do not know the comet crater production rate with any certainty.

Our results further imply that dating surfaces of solid bodies in the outer solar system using the

inner planet cratering record is not valid. Attempts have been made to date outer planet surfaces

on an absolute time scale by assuming that the crater population found in the inner Solar System

is the same throughout the entire Solar System and has the same origin. In light of our results,

this assumption is false. Additional evidence to support this conclusion is found in the cratering

record of the Jovian satellites. Indeed, Callisto has a crater size distribution different than both

Population 1 and Population 2 craters (37,38).
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Figure Captions

Fig. 1. The crater size distributions on the Moon, Mars and Mercury, shown as R plots (13). The

upper curves (a) are for heavily cratered surfaces on the Moon (blue), Mars (red) and Mercury

(green). The lower curves (b) are for younger surface on the Moon (blue) and Mars (red). The

size distributions on younger surfaces (Population 2) are different than for the old surfaces that

represent the LHB (Population 1).

Fig. 2. Size distributions of all Venus craters and, separately, multiple craters, compared to the

Mars Northern Plains (green). The downturn in the Venus curves (dashed blue lines) is due to

atmospheric screening of projectiles. The unscreened portions (red) are the same as Population 2

on Mars.

Fig. 3. These crater curves summarize the inner Solar System cratering record, with two distinctly

different size distributions. The red curves are Population 1 craters that represent the period of

Late Heavy Bombardment. The lower density blue curves (Population 2) represent the post-LHB

era on the Moon, Mars and Venus. The Mars Young Plains curve is a combination of the the Mars

Northern Plains and Mars Young Volcanics. The Venus curve is a composite of the production

population for all craters greater than 9 km, including multiples in the range of 9–25 km diameter.

Fig. 4. The size distributions of the projectiles (derived from the crater size distributions) compared

with those of the Main Belt Asteroids (MBAs) and Near Earth Asteroids (NEAs). The red dots

(upper curve) are for the lunar highlands (Population 1), and the red squares (lower curve) are for

the Martian young plains (Population 2). The other colors and point styles are for the asteroids

derived by various authors: in the upper curves, the light blue, the dark blue and the green symbols

are from Spacewatch (21), the Sloan Digital Sky Survey (22), and from the Subaru asteroid surveys

(23), respectively; the black dots in the lower curves are the debiased LINEAR near earth asteroids

(24). An arbitrary normalisation factor is applied to obtain the R values for the asteroids. The

MBA size distribution is virtually identical with Population 1 projectiles responsible for the LHB

crater record. The NEA size distribution is the same as Population 2 projectiles responsible for the

post–LHB crater record.
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