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Abstract

A slinky is an example of a tension spring: in an unstretched state a slinky is collapsed, with

turns touching, and a finite tension is required to separate the turns from this state. If a slinky

is suspended from its top and stretched under gravity and then released, the bottom of the slinky

does not begin to fall until the top section of the slinky, which collapses turn by turn from the top,

collides with the bottom. The total collapse time tc (typically ∼ 0.3 s for real slinkies) corresponds

to the time required for a wave front to propagate down the slinky to communicate the release of

the top end. We present a modification to an existing model for a falling tension spring9 and apply

it to data from filmed drops of two real slinkies. The modification of the model is the inclusion

of a finite time for collapse of the turns of the slinky behind the collapse front propagating down

the slinky during the fall. The new finite-collapse time model achieves a good qualitative fit to the

observed positions of the top of the real slinkies during the measured drops. The spring constant

k for each slinky is taken to be a free parameter in the model. The best-fit model values for k for

each slinky are approximately consistent with values obtained from measured periods of oscillation

of the slinkies.
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I. INTRODUCTION

The physics of slinkies has attracted attention since their invention in 1943. Topics of

studies include the hanging configuration of the slinky,1,2 the ability of a slinky to walk down

stairs,3 the modes of oscillation of a vertically suspended slinky,4,5 the dispersion of waves

propagating along slinkies,6–8 and the behavior of a vertically stretched slinky when it is

dropped.9–11

Slinkies are examples of tension springs, i.e. springs which may be under tension according

to Hooke’s law, but not compression. Unstretched slinkies have a length ℓ1 at which the turns

are in contact, and a finite tension f1 is needed to separate the turns from this state. They

collapse to this state if not stretched by an external force. This may be contrasted with a

“compression spring,” which can be under tension or compression according to Hooke’s law.

Compression springs have an unstretched length ℓ0 at which the turns are not in contact,

and the tension is zero. They may be compressed to a length ℓ1 at which the turns are in

contact, and obey Hooke’s law during this compression. Fig. 1 shows tension versus length

diagrams for uniform extensions of the two types of springs.

The vertically falling slinky, mentioned above, exhibits interesting dynamics which de-

pend on the slinky being a tension spring.9 A falling compression spring exhibits periodic

compressions and rarefactions, as longitudinal waves propagate along the spring length. A

falling tension spring collapses to the length ℓ1 during a fall, assuming the spring is released

in an initially stretched state (with length > ℓ1).

If a slinky is hanging vertically under gravity from its top (at rest) and then released,

the bottom of the slinky does not start to move downwards until the collapsing top section

collides with the bottom. Figure 2 illustrates this peculiar effect for a plastic rainbow-

colored slinky; this figure shows a succession of frames extracted from a high-speed video of

the fall of the slinky.12 The continued suspension of the bottom of the slinky after release is

somewhat counter-intuitive and very intriguing—a recent YouTube video showing the effect

with a falling slinky has received more than 800,000 views.13 The physical explanation is

straightforward: the collapse of tension in the slinky occurs from the top down, and a finite

time is required for a wave front to propagate down the slinky communicating the release

of the top.

The basic wave physics behind this behavior follows from the equation of motion for a
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falling (or suspended) compression spring14

m
∂2x

∂t2
= k

∂2x

∂ξ2
+mg, (1)

which applies to a tension spring when the turns are separated. In this equation x(ξ, t) is

the vertical location of a point along the spring at time t, m is the total spring mass, and k is

the spring constant. The (dimensionless) coordinate ξ describes the mass distribution along

the spring, such that dm = mdξ is the increment in mass associated with an increment

in ξ, with 0 ≤ ξ ≤ 1. Thus, for a spring with N turns, the end of turn i corresponds to

ξi = i/N and is located at position xi = x(ξi, t) = x(i/N, t) at time t. Equation (1) is an

inhomogenous wave equation. If the spring is falling under gravity, then in a coordinate

system falling with the center of mass of the spring (x′ = x− 1

2
gt2), the equation of motion

is the usual wave equation

m
∂2x′

∂t2
= k

∂2x′

∂ξ2
. (2)

Equation (2) implies that waves in the mass distribution (turn spacing) propagate along the

length of the spring in a characteristic time tp =
√

m/k. This accounts for the periodic

rarefactions and compressions of a compression spring during a fall, and for the propagation

of the wave front ahead of the collapsing turns in a falling tension spring.

In this paper we present a new detailed model for the fall of a slinky, which improves

on past models by taking into account the finite time for collapse of the turns of the slinky

behind the wave front. In Sec. II we explain the need for this refinement in the modeling,

and we present the details of the new model in Sec. III. The new model is compared with

the behavior of two real falling slinkies in Sec. IV, and we discuss our conclusions in Sec. V.

II. THE COLLAPSE OF THE TURNS AT THE TOP OF THE SLINKY

A detailed description of the dynamical behavior of a falling tension spring requires so-

lution of the equations of motion for mass elements along the slinky that are subject to

gravity and local spring forces, taking into account the departure from Hooke’s law encoun-

tered when slinky turns come into contact. Because of the complexity of this modeling, past

efforts involve specific approximations.9–11
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For a mass element m∆ξ at a location ξi on the slinky, the equation of motion is14

m∆ξ
∂2x

∂t2

∣

∣

∣

∣

ξi,t

= f(ξi +∆ξ, t)− f(ξi, t) +m∆ξg

= ∆ξ
∂f

∂ξ

∣

∣

∣

∣

ξi,t

+m∆ξg,

(3)

where f(ξ, t) is the tension force at ξ. Equation (3) applies to all points except the top and

bottom of the slinky, where the tension is one sided. When slinky turns are separated at a

point along the slinky, the tension is given by Hooke’s law in the form9

f(ξ, t) = k

(

∂x

∂ξ
− ℓ0

)

, (4)

where ∂x/∂ξ describes the local extension of the slinky, and ℓ0 corresponds to a slinky length

at which the tension would be zero, assuming a Hooke’s law relation for all values of the local

extension. Substituting Eq. (4) into Eq. (3) leads to the inhomogenous wave equation (1).

For a tension spring the length ℓ0 cannot be reached because there is a minimum length

∂x

∂ξ
= ℓ1 > ℓ0 (5)

that corresponds to the spring coils being in contact with each other. At this point, the

minimum tension

f1 = k(ℓ1 − ℓ0) (6)

is achieved and the tension is replaced by a large (infinite) compression force as the collapsed

turns resist further contraction of the slinky (see Fig. 1). This non-Hooke’s law behavior is

met when turns collapse at the top of the falling slinky and the description of this process

complicates the modeling.

A simpler, approximate description of the dynamical collapse of the top of the slinky is

to assume a functional form for the position-mass distribution x(ξ, t) during the collapse,

and then impose conservation of momentum to ensure physical time evolution. Calkin9

introduced this semi-analytic approach and specifically assumed a distribution corresponding

to slinky turns collapsing instantly behind a downward propagating wave front located a

mass fraction ξc = ξc(t) along the slinky at time t after the release. The turns of the slinky at

the front instantly assume a configuration with a minimum tension, so that Eq. (5) applies

for all points behind the front at a given time

f(ξ < ξc, t) = f1. (7)
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For points ahead of the front (ξ > ξc) the tension is the same as in the hanging slinky.

The location of the front at time t is obtained by requiring that the total momentum of the

collapsing slinky matches the impulse imparted by gravity up to that time. (The modeling

is presented in detail in Sec. III B.) The Calkin model has also been derived in solving the

inhomogenous wave equation (1) subject to the boundary condition given by Eq. (7).10,11

With real falling slinkies the collapse of turns behind the front takes a finite time. Figure 3

illustrates the process of collapse of a real slinky using data extracted from a high-speed video

of a fall (this data is discussed in more detail in Sec. IVA.) The upper panel of Fig. 3 shows

the position of the top (blue circles), of turn eight (black + symbols), and of turn ten (red ×

symbols) versus time, for the first 0.2 s of the fall. The vertical position is shown as negative

in the downward direction measured from the initial position of the top [which corresponds

to −x in terms of the notation of Eq. (2)]. The upper panel shows that turns 8 and 10 of

the slinky remain at rest until the top has fallen some distance, and then turn eight begins

to fall before turn ten. The lower panel shows the spacing of turns eight and ten versus

time. The two turns change from the initial stretched configuration to the final collapsed

configuration in ∼ 0.1 s.

This paper presents a method of solution of Eq. (1) which adopts the approximate ap-

proach of Calkin, but includes a finite time for collapse of the turns. We assume a linear

profile for the decay in tension behind the wave front propagating down the slinky, which

provides a more realistic description of the slinky collapse.

III. MODELING THE FALL OF A SLINKY

In Secs. IIIA and IIIB we reiterate the Calkin9 model for a hanging slinky as a tension

spring, and for the fall of the tension spring. In Sec. IIIC the new model for the fall of the

slinky is presented.

A. The hanging slinky

For hanging slinkies it is generally observed that the top section of the slinky has stretched

turns, and a small part at the bottom has collapsed turns.1 Assuming mass fractions ξ1 and

1− ξ1 of the slinky with stretched and collapsed turns, respectively, the number of collapsed
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turns Nc is related to the total number of turns N by

Nc = (1− ξ1)N. (8)

A hanging slinky such that the turns just touch at the bottom would have ξ1 = 1.

The position X = X(ξ) of points along the stretched part of the stationary hanging slinky

is described by setting ∂2x/∂t2 = 0 in Eq. (1) and integrating from ξ = 0 to ξ = ξ1 with the

boundary conditions

X(ξ = 0) = 0 and
∂X

∂ξ

∣

∣

∣

∣

ξ=ξ1

= ℓ1, (9)

corresponding to the fixed location of the top of the slinky, and the spacing of collapsed turns

at the bottom of the slinky, respectively. The position of points in the collapsed section at

the bottom is obtained by integrating Eq. (5) from ξ = ξ1 to ξ = 1, with the boundary value

X(ξ1) matching the result obtained by the first integration. Carrying out these calculations

gives

X(ξ) =











ℓ1ξ +
mg

k

(

ξ1 −
1

2
ξ

)

ξ, for 0 ≤ ξ ≤ ξ1

ℓ1ξ +
mg

2k
ξ21 , for ξ1 ≤ ξ ≤ 1.

(10)

The total length of the slinky in this configuration is

XB = X(1) = ℓ1 +
mg

2k
ξ21 , (11)

where B refers to the bottom of the slinky, and the center of mass is at

Xcom =

∫ 1

0

X(ξ) dξ =
1

2
ℓ1 +

mg

2k

(

1−
1

3
ξ1

)

ξ21 . (12)

The left panel of Fig. 4 illustrates the model slinky in the hanging configuration. The

slinky is drawn as a helix with a turn spacing matching X(ξ), for model parameter values

typical of real slinkies (detailed modeling of real slinkies is presented in Sec. IV). The

chosen parameters are: 80 total turns (N = 80), slinky mass m = 200 g, hanging length

XB = 1m, collapsed length ℓ1 = 60mm, slinky radius 30mm, and 10% of the slinky mass

collapsed at the bottom when hanging (ξ1 = 0.9). The light gray (green online) section of

the slinky at the bottom is the collapsed section, and the dot (red online) is the location of

the center-of-mass of the slinkey (given by Eq. (12) in the left panel).
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B. The falling slinky with instant collapse of turns

We assume the slinky is released at t = 0 and the turns collapse from the top down behind

a propagating wave front. In the model with instant collapse9 the process is completely

described by the location ξc = ξc(t) of the front at time t. The slinky is collapsed where

0 ≤ ξ < ξc but is still in the initial state where ξc < ξ ≤ 1. The position of points in

the collapsed section of the slinky, behind the front, is obtained by integrating Eq. (5) and

matching to the boundary condition

x(ξ = ξc, t) = X(ξc), (13)

to get

x(ξ, t) = ℓ1ξ +
mg

k
ξc

(

ξ1 −
1

2
ξc

)

(14)

for 0 ≤ ξ ≤ ξc. The lower part of the slinky (ξc ≤ ξ ≤ 1) has positions described by Eq. (10).

The motion of the slinky after release follows from Newton’s second law. The collapsed

top section has a velocity given by the derivative of Eq. (14)

∂x(ξ, t)

∂t
=

mg

k
(ξ1 − ξc)

dξc
dt

, (15)

and the mass of this section ismξc. The rest of the slinky is stationary so the total momentum

of the slinky is obtained by multiplying Eq. (15) by the mass mξc. Setting the momentum

equal to the net impulse mgt due to gravity on the slinky at time t gives

ξc (ξ1 − ξc)
dξc
dt

=
k

m
t, (16)

which can be directly integrated to give

ξ2c

(

ξ1 −
2

3
ξc

)

=
k

m
t2. (17)

At a given time Eq. (17) is a cubic in ξc; the first positive root to the cubic defines the

location of the collapse front at that time. The total collapse time tc—the time for the

collapse front to reach the bottom, collapsed section—is defined by ξc(tc) = ξ1, and from

Eq. (17) it follows that

tc =

√

m

3k
ξ31 . (18)
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Equation (17), together with Eqs. (10) and (14), defines the location x(ξ, t) of all points

on the slinky for t < tc. The center of mass falls from rest with acceleration g and so has

location

xcom(t) = Xcom +
1

2
gt2, (19)

where Xcom is given by Eq. (12).

Figure 5 shows solution of the instant-collapse model with the typical slinky parameters

used in Fig. 4.12 The upper panel shows the positions of the top (upper solid curve, blue

online), center-of-mass (middle solid curve, red online), and bottom (lower solid curve, red

online) of the slinky versus time. Position is negative in the downward direction so the upper

(blue) curve corresponds to the model expression −x(0, t). The position of the front versus

time is indicated by the dashed (black) curve. The lower panel shows the velocity of the top

of the slinky versus time (solid curve, blue online) and in both panels the total collapse time

tc is indicated by the vertical dashed (pink) line. For the typical slinky parameters used,

the spring constant is k = 0.84N/m and the collapse time is tc ≈ 0.24 s.

Figure 5 illustrates a number of unusual features of the model. For example, the initial

velocity of the top is non-zero—a consequence of the assumption of instant collapse at the

wave front. From Eqs. (15) and (17) the initial velocity of the top is

v0T = −
∂x

∂t

∣

∣

∣

∣

ξ=0

= −g

√

mξ1
k

≈ −4.5m/s. (20)

The acceleration of the top at time t = 0 must be infinite to produce a finite initial velocity.

The acceleration of the top of the slinky just after t = 0 is positive, i.e. in the upwards

direction, so the top of the slinky falls more slowly with time. From Eqs. (15) and (17) the

limiting value of the acceleration as t → 0 is

a0T = −
∂2x

∂t2

∣

∣

∣

∣

ξ=0

=
g

3ξ1
≈ 3.6m/s2. (21)

The acceleration of the top becomes negative (downwards) after the collision of the top and

bottom sections, when the whole slinky falls with acceleration −g. At the collapse time

when the top section impacts the bottom section there is an impulsive collision causing a

discontinuous jump in the velocity.
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C. The falling slinky with a finite time for collapse of turns

The instant-collapse model requires an unphysical instant change in the angle of the

slinky turns behind the collapse front, as discussed in Secs. II and IIIB. This affects the

positions of all turns of the slinky as a function of time behind the front. To model the

positions of the turns of a real collapsing slinky it is necessary to modify the model.

The lower panel of Fig. 3 indicates that the spacing between the turns of the slinky

decreases approximately linearly with time during the collapse. Hence we modify the model

in Sec. IIIC to include a linear profile for the decay in tension behind the collapse front

propagating down the slinky, as a function of mass fraction ξ. The tension is assumed to be

given by Eq. (4) with

∂x

∂ξ
= [X ′(ξc)− ℓ1]

(

1 +
ξ − ξc
∆

)

+ ℓ1 for max(0, ξc −∆) ≤ ξ ≤ ξc, (22)

where X = X(ξ) is given by Eq. (10), and the prime denotes differentiation with respect to

the parameter ξ. In this equation, ∆ is a parameter that governs the distance over which the

tension decays back to its minimum value f1. Figure 6 illustrates the local slinky extension

at time t as described by Eq. (22). Behind the front at ξc(t) the extension decreases linearly

as a function of ξ, returning to the minimum value ℓ1 over the fixed mass fraction ∆. Ahead

of the front the extension is the same as for the hanging slinky.

Equation (22) replaces Eq. (5) for the section of the slinky behind the collapse front and

provides a simple, approximate description of a finite collapse time for the turns behind the

front. The limit ∆ → 0 in the new model recovers the instant-collapse model.

Using Eq. (10) to evaluate the gradient in Eq. (22) gives

∂x

∂ξ
=

mg

k
(ξ1 − ξc)

(

1 +
ξ − ξc
∆

)

+ ℓ1 for max(0, ξc −∆) ≤ ξ ≤ ξc. (23)

Integrating Eq. (23) and imposing the boundary condition x(ξc) = X(ξc) using Eq. (10)

gives

x =
mg

k

[

(ξ1 − ξc)

(

1−
1

∆
ξc +

1

2∆
ξ

)]

ξ + ℓ1ξ +
mg

2k
ξ2c

(

1 +
ξ1 − ξc

∆

)

(24)

for max(0, ξc −∆) ≤ ξ ≤ ξc. If ξc > ∆, there is a completely collapsed section at the top of

the slinky. The mass density in this section is obtained by integrating Eq. (5) and matching

to the value x(ξc −∆) given by Eq. (24), leading to

x = ℓ1ξ +
mg

k

[

ξc

(

ξ1 −
1

2
ξc

)

−
1

2
∆ (ξ1 − ξc)

]

for 0 ≤ ξ ≤ max(0, ξc −∆). (25)
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Equations (24) and (25) are the counterparts to Eq. (14) in the instant-collapse model. In

the limit ∆ → 0, Eq. (25) is the same as Eq. (14).

The motion of the slinky in the new model is determined in the same way as for the

instant-collapse model. The velocity of the top section of the slinky prior to the complete

collapse of the top is obtained by differentiating Eqs. (24) and (25) to get

∂x

∂t
=

mg

k

[(

1 +
ξ1 − 3ξc/2

∆

)

ξc −
(

1 +
ξ1 − 2ξc + ξ/2

∆

)

ξ

]

dξc
dt

,

for max(0, ξc −∆) ≤ ξ ≤ ξc,

(26)

and
∂x

∂t
=

mg

k

(

ξ1 − ξc +
1

2
∆

)

dξc
dt

, for 0 ≤ ξ ≤ max(0, ξc −∆). (27)

Equation (27) is the counterpart to Eq. (15). The total momentum of the slinky is given by

p = m

∫ ξc

0

∂x

∂t
dξ , (28)

and using Eqs. (26) and (27) to evaluate the integral gives

p =
m2g

2k
ξ2c

(

1 +
ξ1 − 4ξc/3

∆

)

dξc
dt

if ξc ≤ ∆, (29)

and

p =
m2g

k

[

ξc (ξ1 − ξc) + ∆

(

ξc −
1

2
ξ1 −

1

6
∆

)]

dξc
dt

if ξc ≥ ∆. (30)

Setting Eqs. (29) and (30) equal to the total impulse mgt on the slinky up to time t gives

equations defining the location ξc(t) of the front at time t:

1

2
ξ2c

(

1 +
ξ1 − 4

3
ξc

∆

)

dξc
dt

=
kt

m
if ξc ≤ ∆, (31)

and
[

ξc (ξ1 − ξc) + ∆

(

ξc −
1

2
ξ1 −

1

6
∆

)]

dξc
dt

=
kt

m
if ξc ≥ ∆, (32)

which are the counterparts to Eq. (16) in the instant-collapse model. Equations (31) and (32)

may be integrated with respect to ξc, leading to

ξ3c
∆+ ξ1 − ξc

3∆
=

kt2

m
if ξc ≤ ∆, (33)

and

ξ2c

(

ξ1 −
2

3
ξc

)

−∆(ξ1 − ξc)

(

ξc −
1

3
∆

)

=
kt2

m
if ξc ≥ ∆, (34)

10



which are the counterparts to Eq. (17) that defines the location of the front in the instant-

collapse model.

The total collapse time tc for the slinky (the time for the front to reach ξ1) is obtained by

setting ξc = ξ1 in Eq. (34). Interestingly, the result is unchanged from the instant-collapse

case and is given by Eq. (18). A second time scale relevant for the model is the time tlin

for the top of the slinky to undergo the initial linear collapse (for times t > tlin there are

completely collapsed turns at the top of the slinky). This is obtained by setting ξc = ∆ in

Eq. (33) to get

tlin =

√

mξ1
3k

∆. (35)

Figure 7 shows solution of the finite-collapse time model for the typical parameters used

in Figs. 4 and 5, and with a value of ∆ chosen to match 10 turns of the 80-turn slinky

(∆ = 10/80 = 0.125). The layout of the figure is the same as for Fig. 5. The position versus

time of the top of the slinky (upper solid curve in the upper panel) is very similar to that

in the instant-collapse model, but the top initially accelerates downwards from rest rather

than having an initial non-zero velocity. The location of the front versus time (dashed curve

in the upper panel) is significantly different to that shown in Fig. 5, and comparison of this

curve and the position of the top of the slinky shows the effect of the finite time for turns

to collapse behind the front. A specific feature of the motion of the front is that the initial

velocity of the front is infinite (the dashed curve has a vertical slope at t = 0). The lower

panel of Fig. 7 plots the velocity versus time of the top of the slinky and shows that the top

is initially at rest, then accelerates rapidly until time tlin = 0.03 s during the initial linear

collapse, which is marked by a sudden change in curvature of the velocity profile. The initial

dynamics of the top differ from the instant-collapse model; in particular the velocity of the

top of the slinky at time t = 0 is zero, rather than having a finite value. However, after

the initial acceleration of the top, the velocity variation of the top is similar to that in the

instant-collapse model.

The right panel in Fig. 4 also illustrates the solution of the finite-collapse-time model

with the typical parameters, showing a helix drawn to match x(ξ, 1

2
tc)—the model slinky

at one half the total collapse time. The upper, dark-gray (blue online) section of the helix

is the portion of the slinky above the collapse front, described by Eq. (23). The location

of the collapse front is shown by a dashed horizontal line, while the dot (red online) shows
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the center of mass and the light-gray (green online) section at the bottom is the collapsed

section in the hanging configuration.

IV. MODELING REAL SLINKIES

A. Data

The finite-collapse-time model from Section IIIC is compared with data obtained for two

real slinkies, labeled A and B. The masses, lengths, and numbers of turns of the slinkies

are listed in Table I. Slinky A is a typical metal slinky and slinky B is the light plastic

rainbow-colored slinky shown in Fig. 2. These two slinkies were chosen because they have

significantly different parameters.

TABLE I. Measured data for two real slinkies.

Slinky A Slinky B

Mass m (g) 215.5 48.7

Collapsed length l1 (mm) 58 66

Stretched length XB (m) 1.26 1.14

Number of turns N 86 39

The slinkies are suspended from a tripod and released, and the fall is captured with a

Casio EX-F1 camera at 300 frames/s. The positions of the top and bottom of each slinky

are determined from the movies at time steps of τ = 0.01 s in each case. Figure 2 shows

frames from the movie used to obtain the data for slinky B.

B. Fitting the data and model

The finite-collapse time model from Section IIIC is applied to the data for the two slinkies

as follows. The observed positions for the top of each slinky during its fall are fitted to the

model using least squares for all time steps. The free parameters in the model are taken

to be the collapse mass fraction ∆, the spring constant k, and an offset t0 to time, which

describes the time of release of the slinky compared to the time of the first observation. The

parameter t0 is needed because the precise time of release is difficult to determine accurately.
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The additional slinky parameters used are the measured values of the collapsed length ℓ1,

the hanging length XB, and the mass m. (Given ℓ1, XB, m, and a chosen value of k, Eq. (11)

determines the value of ξ1, so equivalently, ξ1 could be taken as a free parameter instead of

k.)

The method of fitting is to fit the data values xT(tn) for the positions of the top of a slinky

(T denotes top) at the observed times tn = (n−1)τ (with n = 1, 2, ...) to the model function

for the positions evaluated at the offset time, i.e. the fit is made to x(ξ, t) evaluated at ξ = 0

and t = tn− t0. The model function x(ξ, t) is defined by Eqs. (24), (25), (33), and (34) (and

by the hanging configuration X(ξ) for t < t0). This procedure correctly identifies t = t0 as

the time of release.

Table II lists the best-fit parameters for the slinkies. The value of ∆ is given both as

a mass fraction and in terms of the corresponding number of turns of the slinky. For the

plastic slinky ξ1 = 1, implying that no turns are collapsed at the bottom of the slinky in

the hanging configuration. Inspection of the top left frame in Fig. 2 suggests that this is

correct.

TABLE II. Best-fit model parameters for the slinkies.

Slinky A Slinky B

Spring constant k (N/m) 0.69 0.22

ξ1 0.89 1

ξ1 (collapsed turns) 9.5 0

∆ 0.045 0.45

∆ (turns) 3.9 18

t0 (s) 0.022 0.01

Total collapse time tc (s) 0.27 0.27

Linear collapse time tlin (s) 0.014 0.12

Figures 8 and 9 show the fits between the model and the observed data for Slinkies A

and B, respectively. The upper panel in each figure shows positions versus time for the

slinky top (model: upper solid curve, data: circles, blue online), turn 10 (model: middle

solid curve, data: squares, black online), and the slinky bottom (model: lower solid curve,

data: ×, green online). The lower panel in each figure shows the velocity of the top of the
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slinky versus time (model: solid curve, data: circles, blue online). The measured velocity of

the top of the slinky is determined by centered differencing of the observed position values,

i.e. the velocity at time tn is approximated by

vT(tn) =
xT(tn+1)− xT(tn−1)

2τ
. (36)

These values are estimated for illustrative comparison with the model, but they are not used

in the fitting, which uses only the position data for the top shown in the upper panel. Note

also that the lower panel shows downward values as negative, i.e. it shows −vT(tn) versus tn.

Both panels in Figs. 8 and 9 also show the time offset t0 for the model by the left vertical

(red online) dashed line, and the total collapse time for the model by the right vertical (pink

online) dashed line.

The results in Figs. 8 and 9 demonstrate that the model achieves a good qualitative fit

to the observed positions of the top of each slinky. The quality of the fit is shown in the

approximate reproduction of the values of the velocity of the top of each slinky obtained by

differencing the position data for the top. In particular, the description of the finite time for

collapse of the slinky top given by Eq. (22), with the best-fit model values, approximately

reproduces the observed initial variation in the velocity of the top of each slinky shown in

the lower panels of the figures. Although we do not attempt a detailed error analysis, it

is useful to consider the expected size of uncertainties in the data values. If the observed

position values are accurate to σx ≈ 0.5 cm, the uncertainty in velocity implied by the

centered differencing formula Eq. (36) is

σv =
σx√
2τ

≈ 0.4m/s. (37)

The detailed differences between the observed and best-fit model velocity values are approx-

imately consistent with Eq. (37).

The fit is better for slinky A than slinky B, as shown by specific discrepancies between

the model and observed data for the position of turn 10 (upper panel of Fig. 9), and the

velocity of the top (lower panel of Fig. 9). This may be due to the technique used to hang

the slinky: the top turns are tied together to allow the slinky to be hung vertically (see

the first frame in Fig. 2). About a turn and a half of the slinky was joined at the top, and

as a result the top of the slinky is heavier than in the model, and there is approximately

one fewer turn. The same technique was used for both slinkies, but the effect may be more
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important for slinky B, which is significantly lighter and has fewer turns, than slinky A. We

make no attempt to incorporate this in our model.

The best-fit values for the model parameter ξ1 may be checked by comparison with

the observed number of collapsed turns Nc at the bottom of each slinky in the hanging

configuration, which is given by Eq. (8). Alternatively, the model values for the spring

constant k may be checked by comparison with the period of the fundamental mode of

oscillation of the slinky when it is hanging5

T0 = 4

√

m

k
. (38)

Table III lists the predictions for Nc and T0 based on the model values of ξ1 and k, and the

observed values for each slinky.

TABLE III. Predictions (for best-fit model parameters) and observations for the number of col-

lapsed turns when hanging, and for the fundamental mode frequency.

Slinky A Slinky B

Model fundamental period T0 (s) 2.23 1.88

Observed fundamental period (s) 2.18 1.77

Model number of collapsed turns Nc 9.5 0

Observed number of collapsed turns 10 0

Table III shows that the slinky model with best-fit parameters approximately reproduces

the observed fundamental mode periods and numbers of collapsed turns for the two slinkies.

(Note that the two model values Nc and T0 are not independent.) The discrepancies between

the model and observed values for the fundamental periods are ∼ 5%, with the model values

being too large in both cases. It is useful to consider the expected size of discrepancies in

the period produced by observational uncertainties. From Eqs. (11), (18), and (38) it follows

that

tc =
4

3

[

2(XB − ℓ1)

g

]3/4
1

√
T0

. (39)

Assuming the distances XB and ℓ1 are well-determined, Eq. (39) implies

σT0

T0

= 2
σtc

tc
, (40)

where σT0 and σtc are the uncertainties in T0 and tc respectively. Taking the value of the

time step τ = 0.01 s as a representative value for σtc in Eq. (40) gives σT0/T0 = 0.08, i.e.
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an 8% error in the model value for the fundamental mode period. This suggests that the

model values for T0 are as accurate as might be expected from observational uncertainties,

and indicates that it is difficult to determine the mode period for a real slinky based on

measuring the fall of the slinky.

The technique of suspension of the top of the slinky, involving tying about a turn and a

half of the slinky together to ensure that it hangs vertically, introduces some uncertainty into

the modeling. It is interesting to investigate the effect of this step on the initial dynamics of

the slinky during the fall. For this purpose the slinky is suspended in two additional ways,

with a string tied across both sides of just the top turn, and with a string tied across both

sides of the top two turns, linked together. These methods of suspension involve fewer, and

greater numbers of turns tied together at the top, respectively, compared with the original

method (which had about a turn and a half tied together at the top). Figure 10 illustrates

the two methods of suspension, showing images (in inverted grayscale for clarity) of the

top few turns of the slinky in the two cases. The left-hand image shows the case with one

turn tied together at the top while the right-hand image shows the case with two turns tied

together.

With these methods of suspension the slinky is filmed being dropped, and data are

extracted for the first 0.06 s of the fall in each case; the results are shown in Fig. 11. The

upper panel shows the positions versus time for the top of the slinky and for the first turn

below the turns tied at the top, for each case: circles and squares, respectively for suspension

by one turn, and + and × symbols, respectively for suspension by two. The lower panel

shows the velocities of the top in each case, obtained by differencing the position data using

Eq. (36) (circles for suspension by one turn and + symbols for suspension by two). These

results show that the top of the slinky accelerates from rest more rapidly when fewer turns

are tied together at the top, which is expected because the inertia of the top is reduced.

However, in both cases the top achieves a very similar velocity after ∼ 0.05 s. It is expected

that the subsequent dynamics of the collapse of turns will be similar in the two cases. The

dependence of the initial dynamics of the top on the method of suspension will influence

the estimates of model parameters, in particular the collapse mass fraction ∆. However, it

is expected that the estimate of the spring constant k will be less influenced because this

parameter is determined largely by the identification from the data of the total collapse time

tc. The dependence of the fitting on the method of suspension of the top of the slinky could
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perhaps be reduced by fitting to the positions of turns other than the top turn during the

fall.

V. CONCLUSIONS

The fall of a slinky illustrates the physics of a tension spring, and more generally wave

propagation in a spring. This paper investigates the dynamics of an initially stretched slinky

that is dropped. During the fall the slinky turns collapse from the top down as a wave front

propagates along the slinky. The bottom of the slinky does not begin to fall until the top

collides with it. A modification to an existing model9 for the fall is presented, providing an

improved description of the collapse of the slinky turns. The modification is the inclusion

of a finite time for collapse of turns behind the downward propagating wave front. The new

model is fitted to data obtained from videos of the falls of two real slinkies having different

properties.

The model is shown to account for the observed positions of the top of each slinky in

the experiments, and in particular reproduces the initial time-profile for the velocity of

the top after release. The spring constant of the slinky is assumed as a free parameter

in the model, and the best-fit model values are tested by comparison with independent

determinations of the fundamental mode periods for the two slinkies, which depend on the

spring constants. The model values appear consistent with the observations taking into

account the observational uncertainties.

The new model for the slinky dynamics during the fall developed here is semi-analytic,

and allows treatment of a tension spring including approximate description of the dynamics

of the collapse of the spring. During the collapse of the top of the slinky the turns collide,

but the model does not describe this process in detail. Instead, the collapse is approximately

described by the assumption of a linear decrease in tension as a function of mass density along

the spring behind the front initiating the collapse. The linear approximation is motivated by

the experimental data from the slinky videos, which shows that the spacing between slinky

turns during the collapse decreases approximately linearly with time.

The behavior of a falling slinky is likely to be counter-intuitive to students and provides

a useful (and very simple) undergraduate physics lecture demonstration. The explanation of

the behavior may be supplemented by showing high-speed videos of the fall. The modeling of
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the process presented here is also relatively simple, and should be accessible to undergraduate

students.
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Compression spring Tension spring

Length Length
0 0

Fig. 1. Tension versus length diagrams for a compression spring (left) and a tension spring (right).

The tension in each spring is zero for spring length ℓ0 assuming Hooke’s law applies (this length is

not achieved for the tension spring). The turns of the spring touch for length ℓ1.

20



Fig. 2. Frames extracted from a high-speed video of the fall of a rainbow-colored slinky, illustrating

the collapse of the top of the slinky, and the continued suspension of the bottom after release of

the top. The top end of the slinky takes ∼ 0.25 s to reach the bottom.
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Fig. 3. Data extracted from the video shown in Fig. 2, illustrating the finite time for collapse of

the turns of the slinky. Upper panel: position versus time of the top of the slinky (circles, blue

online), turn eight of the slinky (+ symbols, black online) and turn ten of the slinky (× symbols,

red online). Position is negative downwards in this panel. Lower panel: The spacing of turns eight

and ten versus time.
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Fig. 4. Left panel: the model for a hanging slinky, with the slinky represented as a helix with turn

spacing matching X(ξ). Typical slinky parameters are used. The dot in each panel indicates the

location of the center of mass, and the light gray (green online) part of the slinky at the bottom

is the collapsed section. Right panel: the finite-collapse-time model for the slinky during the fall

at time t = tc/2. The top dark gray (blue online) section of the slinky is the section undergoing

collapse, above the downward-propagating collapse front indicated by a dashed horizontal line.
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Fig. 5. The instant-collapse model9 for a falling slinky using parameters typical of a real slinky.

Upper panel: position versus time of the slinky top (upper solid curve), center-of-mass (middle

solid curve), bottom (lower solid curve), and wave front initiating collapse (dashed curve). Position

is negative downwards in this figure. Lower panel: velocity of the slinky top versus time. The total

collapse time tc is shown as the vertical dashed line in both panels.
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Fig. 6. The gradient ∂x/∂ξ, which describes the local slinky extension, versus mass density ξ in

the finite-collapse-time model. The tension defined by this profile declines linearly behind the wave

front [located at ξc(t)] from a value matching the tension in the hanging slinky at the front, to the

minimum tension value f1 = k(ℓ1 − ℓ0) at ξ = ξc−∆. Ahead of the front the tension is unchanged

from that in the hanging slinky.
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Fig. 7. The finite-collapse-time model for a falling slinky using the same slinky parameters as in

Fig. 5. The collapse of the model slinky is assumed to occur via a linear decay in tension over

ten turns of the slinky. Upper panel: position versus time of the slinky top (upper solid curve),

center-of-mass (middle solid curve), bottom (lower solid curve), and wave front initiating collapse

(dashed curve). Position is negative downwards in this figure. Lower panel: velocity of the slinky

top versus time. The total collapse time tc is shown as the vertical dashed line in both panels.
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Fig. 8. The finite-collapse-time model applied to slinky A. The upper panel shows position versus

time for the slinky top (upper), turn 10 (middle), and slinky bottom (lower), with the observed

data represented by symbols and the best-fit model values by curves. The fitting is based on the

observed positions of the slinky top. The lower panel shows the velocity of the slinky top versus

time. The vertical dashed lines in both panels show the time of release of the slinky (left), which

is a model parameter, and the model collapse time (right).
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Fig. 9. The finite-collapse-time model applied to slinky B. The presentation is the same as in

Fig. 8.
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Fig. 10. An experiment with different methods of suspension of the top of slinky B. In the left-hand

image the top is suspended from a string tied across a diameter of the first turn of the slinky. In

the right-hand image the string is tied around the first two turns.
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Fig. 11. Data extracted for the initial fall of slinky B following suspension using the two methods

shown in Fig. 10. The circles and squares show results for suspension by one turn and the + and

× symbols for suspension by two turns. The upper panel shows the position versus time of the top

and of the first turn below the initially tied top section. The lower panel shows the velocities of

the top in each case, obtained by differencing the position data (circles for suspension by one turn

and + symbols for suspension by two).
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