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ABSTRACT

In this work, we study convolutional neural network encoder-decoder architectures with pre-trained encoder
weights for breast mass segmentation from digital screening mammograms. To automatically detect breast cancer,
one fundamental task to achieve is the segmentation of the potential abnormal regions. Our objective was to find
out whether encoder weights trained for breast cancer evaluation in comparison to those learned from natural
images can yield a better model initialization, and furthermore improved segmentation results. We applied
transfer learning and initialized the encoder, namely ResNet34 and ResNet22, with ImageNet weights and weights
learned from breast cancer classification, respectively. A large clinically-realistic Finnish mammography screening
dataset was utilized in model training and evaluation. Furthermore, an independent Portuguese INbreast dataset
was utilized for further evaluation of the models. 5-fold cross-validation was applied for training. Soft Focal
Tversky loss was used to calculate the model training time error. Dice score and Intersection over Union were
used in quantifying the degree of similarity between the annotated and automatically produced segmentation
masks. The best performing encoder-decoder with ResNet34 encoder tailed with U-Net decoder yielded Dice
scores (mean±SD) of 0.7677±0.2134 for the Finnish dataset, and ResNet22 encoder tailed with U-Net decoder
0.8430±0.1091 for the INbreast dataset. No large differences in segmentation accuracy were found between the
encoders initialized with weights pre-trained from breast cancer evaluation, and of those from natural image
classification.

Keywords: computer aided detection, deep learning, feature pyramid network, mass detection, image segmen-
tation, transfer learning, U-net

1. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer type, with approximately 2.3 million new cases yearly.1
Mammography is commonly used for breast cancer screening as it is a cost-effective method for early detection
and does not require invasive actions. Typically, two projection images from bilateral craniocaudal (CC) and
mediolateral oblique (MLO) views are taken from both breasts.

When performing automated mammography image analysis for cancer diagnosis, an initial task is to detect
the potentially abnormal regions. This task is not easy, as these abnormalities can encompass only a small area in
the high-resolution breast images. Moreover, abnormal breast tissue appears with varying visual characteristics
in terms of shape and texture. Breast abnormalities can roughly be categorized as architectural distortions,
asymmetries, calcifications and masses. Several works have been dedicated to the automated characterization of
these abnormalities. Among those which focus on segmentation of architectural distortions is Ben-Ari et al.2 ,
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segmentation of calcifications Zamir et al.3 , mass detection Ribli et al.4 and segmentation of masses Wang et
al.5 and Lou et al.6 , to name a few.

In the field of computer vision, pre-trained models, e.g., trained on the ImageNet7 dataset of natural images,
have been shown to have a positive effect on various classification and segmentation tasks. Agarwal et al.8 ex-
perimented with transfer learning and pre-trained weights initialization from representations learnt from natural
images. They have investigated mass and non-mass areas detection using a semi-supervised image patch-based
approach. Recently, Liu et al.9 have studied very weakly-supervised segmentation from high-resolution mammo-
grams using a network which can be trained using only image-level labels. This work is in close relation to Shen
et al.,10 which is among the first works to make trained models publicly available in the field of breast cancer
detection. Their models are trained on the NYU Breast Cancer Screening Dataset which encompass 1,001,093
images from 141,472 patients.11,12

In this work we study two different convolutional neural network (CNN) encoder-decoder architectures with
injected pre-trained encoder weights for the task of breast mass segmentation. Our objective is to find out
whether pre-trained weights from breast cancer classification, namely Globally-Aware Multiple Instance Classifier
(GMIC)10 weights, can give a better standing point for the segmentation in comparison to those learned from
natural images, namely ImageNet based pre-trained model weights. We use a subset of a clinically-realistic
Finnish dataset in the model training and validation and further evaluate the models on a well-known Portuguese
INbreast13 dataset.

2. METHODOLOGY

2.1 Materials
2.1.1 Finnish dataset

Our Finnish dataset originates from mammography screening studies conducted over the 2011-2019 period within
City of Oulu, Oulu, Finland. We later refer to this dataset as Oulu Dataset of Screening Mammography
(OUDSM). A permit for a registry-based studies from the Northern Ostrobothnia Hospital District (179/2019),
Finland, and the City of Oulu (35/2019), Finland, was obtained before initiating the data collection. Each study
in the dataset contains digital mammograms in Digital Imaging and Communications in Medicine (DICOM)
format and textual information about the study from the mammographic information system (MIS). Original
size of the dataset after collection was 49,634 studies from 22,739 unique patients. Mammograms (2,934 studies)
having co-reading assessment score greater than or equal to 3 in a five-level Finnish scale (1: normal, 2: benign,
3: malignancy cannot be excluded, 4: suspect for malignancy, 5: malignant), were labelled by radiology resident
T. T. using a custom made MATLAB (2020a, MA, USA) based annotation tool.14 Three groups of pixel-wise
contours were drawn: malignant and benign masses, malignant and benign calcifications, and malignant and
benign architectural distortions with the possibility to assign additional characterizations. Specifically, the mass
masks were then utilized in this work for supervision of the training. Moreover, the labelled dataset was split
into training set and holdout sets according to the Pareto Principle.

2.1.2 Portuguese dataset

Portuguese INbreast dataset originates form Centro Hospitalar de S. João, Breast Centre, Porto, Portugal.13
The original size of the dataset is 117 studies from 108 unique patients. Each study in the dataset contains
digital mammograms in DICOM format. For each study there are segmentation masks for calcifications and
masses. The mass masks were utilized in this work. As the INbreast dataset files ship without parameters for
windowing, all DICOM files were injected a proper Siemens value of interest lookup table (VOI LUT) to enable
better contrast and compatibility for the experiments.

2.2 Post-Processing
As a post-processing step, VOI LUT mapping, i.e., windowing operation described by the DICOM Standard,
was performed to standardize the mammograms. All mammograms were saved as 16-bit PNG files. Moreover,
mammograms were padded and resized for the experiments to 512-by-512 to retain the original aspect ratio of
the imaged breasts. Segmentation masks were formatted accordingly.
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Figure 1. General principle diagrams of encoder-decoder architectures with (a) U-Net and (b) feature pyramid network
(FPN) type decoders.

2.3 Network architectures
In this study, we utilize two convolutional neural network encoder-decoder architectures, namely U-Net15 and
Feature Pyramid Network16 (FPN) (Fig. 1). Both architectures have a contracting encoder part that reduces
spatial dimensions with every layer. Two different ResNet17 encoders with injected pre-trained weights are
evaluated. Pre-trained ResNet22 weights are adapted from Globally-Aware Aware Multiple Instance Classifier10
(GMIC), trained originally with full-resolution mammograms. In addition, we use ResNet34 encoder which is
initialized with ImageNet weights. The encoder is tailed with an upsampling decoder part restoring the spatial
dimensions. As an output, a prediction for each pixel in the input image is produced. Skip connections between
contracting and upsampling parts are for improved segmentation accuracy. FPN uses a method inspired by
image pyramids to generate multiple predictions at different scales, which are then upsampled and concatenated.
Spatial Dropout (PyTorch18 Dropout2d, with rate 0.2) is used to drop entire 2D feature maps to alleviate
overfitting (see also 19). Futhermore, our models have Batch Normalization20 (BN).

In total the ResNet34 encoder has 21,284,672 trainable parameters while the ResNet22 encoder has only
2,799,536 trainable parameters. The FPN decoder has 2,338,049 trainable parameters while the U-Net decoder
has 4,773,025, therefore making the FPN decoder more memory efficient in terms of GPU memory.

2.3.1 Training details

Data augmentations: During the training randomly altered versions of data were generated on the fly to intro-
duce regularization. The SOLT library (https://github.com/MIPT-Oulu/solt version 1.8.1.) was used. SOLT
operates on 8-bit images. All augmentations had a 50% probability of happening (Table 1). No augmentations
were used during inference (i.e., when predicting segmentation masks).

For ResNet34 (with ImageNet weights) each single channel mammogram was replicated to have the input
dimensions of 3-by-H-by-W , where H and W refer to height and width respectively. For ResNet22 the input
dimensions were already 1-by-H-by-W , i.e., single channel. Utilizing the augmentations (Table 1), mean and
standard deviation were computed from the training set to normalize the input data for better convergence.

Loss functions: Two separate losses were applied to calculate the error between the predicted output and
the pixel-wise reference segmentations. First, combination loss Lc of weighted sum of binary cross-entropy22 and
soft Jaccard23 loss was applied as an initial loss, i.e., for 20 epochs. Subsequently, the model was trained for 60
epochs using a soft Focal Tversky24 loss. Best performing model based on validation loss was saved for inference.
The combination loss for class c is defined as

Lc(w) = (1− ω)BCEc(w)− ωJc(w), (1)
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Table 1. Augmentations and their corresponding parameter values or range used in the experiments

Augmentation Parameters

Rotation (deg) [−3, 3]

Scale [0.7, 1.3]

Translation (px) 50

Random Crop (px) [448, 448]

Flip Horizontal
Gamma correction [0.5, 1.8]

Brightness and contrast [30, 100]

Salt and pepper noise 0.1

Gaussian noise 0.5

Gaussian blur (kernel, sigma) [3, 7, 11], [1, 5]
Median blur (kernel, sigma) [3, 7, 11], [1, 5]
Cutout21 20%

where w are the network parameters, BCE is the binary cross-entropy loss. Furthermore, soft Jaccard loss (J)
in (1) is defined as

Jc(w) =
1

N
×

N∑
i=1

gicpiĉ + ϵ

gic + piĉ − gicpiĉ + ϵ
, (2)

where N is the total number of pixels, gic is the binary label for pixel i and class c, and piĉ, is the predicted
probability for pixel i and class c, ϵ is for numerical stability. In the experiments, the weight ω was set 0.5. The
soft Focal Tversky24 loss is defined as

FT c(w) = [1− TIc(w)]
1
γ . (3)

TI in (3) is the Tversky index25,26

TIc =

∑N
i=1 picgic + ϵ∑N

i=1 picgic + α×
∑N

i=1 piĉgic + (1− α)×
∑N

i=1 picgiĉ + ϵ
, (4)

where pic is the probability that pixel i is of the class c, piĉ is the probability that pixel i is of the class ĉ, the
background class, gic is the binary label for pixel i and class c, and giĉ is the binary label for pixel i and class
ĉ, and ϵ is for numerical stability. In the experiments, coefficient α in (4) was set 0.7 and γ in (3) was set 4

3
following 24 . Typically, there exists an imbalance between healthy breast tissue and masses represented by the
segmentation masks. Both Jaccard index and Tversky index alleviate this issue.

Optimizer: For the optimizer, we used the Adam27 with multi-step learning rate scheduler18 . Optimizer
weight decay was set at 1e-4. Learning rate was set at 1e-4 in the beginning. Learning rate was decayed utilizing
a multiplicative factor of 0.1 after 40, 50 and 60 epochs.

Training: We used the Finnish dataset for training the model variants. We used training batch size of 32
and validation batch size of 32 for the 512 × 512 resolution inputs. Number of threads was 24. Furthermore,
5-fold cross-validation was implemented for the training using a K-fold iterator with non-overlapping groups,
with anonymous patient ID as group identifier. The encoder was frozen for first 2 epochs of the training.

System: The experiments were conducted using Python 3.6.13 and PyTorch 1.3.1. Furthermore, the models
were trained and evaluated on a single NVIDIA Titan RTX graphics card with 24 GB of memory running on
Ubuntu 18.04.
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2.4 Evaluation
For evaluation, model predictions (predicted segmentation masks) were averaged over the 5 cross-validation
folds. Furthermore, 0.5 was used as a threshold value to produce the prediction maps. Dice score (DCS) and
Intersection over Union (IoU), both ranging from 0 to 1, were used as evaluation metrics.

3. EXPERIMENTAL RESULTS

For the clinically-realistic Finnish mammography screening holdout dataset encoder-decoders with U-Net decoder
performed the best (Table 2). In the FPN decoder case ResNet22 and ResNet34 yielded comparable performance.
When predicting masses for the Portuguese INbreast dataset models with ResNet22 encoder yielded higher Dice
scores (Table 2). Overall, the models performed well for INbreast. Important thing to notice is that the models
in both cases were trained only on Finnish training data.

Table 2. Dice scores (DCS) and Intersection over union (IoU) metrics for different models and dataset evaluations. SD
denotes standard deviation

Dataset Model Pre-trained weights DCS (±SD) IoU (±SD)

OUDSM:
ResNet34UNet ImageNet 0.7677 (±0.2134) 0.6625 (±0.2322)

ResNet22UNet GMIC 0.7189 (±0.2529) 0.6115 (±0.2593)

ResNet34FPN ImageNets 0.7328 (±0.2259) 0.6202 (±0.2380)

ResNet22FPN GMIC 0.6858 (±0.2676) 0.5759 (±0.2696)

INbreast:
ResNet34UNet ImageNet 0.7890 (±0.1906) 0.6803 (±0.1913)

ResNet22UNet GMIC 0.8430 (±0.1091) 0.7410 (±0.1358)

ResNet34FPN ImageNet 0.8015 (±0.1149) 0.6825 (±0.1465)

ResNet22FPN GMIC 0.8050 (±0.1586) 0.6974 (±0.1851)

In addition, for visual analysis, we depicted a comparison between the reference segmentation masks and the
predicted ones (Fig. 2). Some of the predictions resemble the reference annotations with a high detail.

4. DISCUSSION

Overall, the results show that there are no large differences between results achieved with ResNet22 encoder and
those with ResNet34. U-Net and the model with FPN decoder also give comparable performance. The lower
computational cost of the FPN might make that particular architecture more appealing. The U-Net usually
provides more detailed predictions than FPN, where predictions are made on different scales and then up-scaled,
whereas in U-Net only the final feature map is utilized. Furthermore, it is unclear what is the role in terms
of segmentation performance of the additional two channels in ImageNet trained ResNet34 for this application.
Xie and Richmond28 have used a model pre-trained on gray-scale ImageNet for disease classification from chest
X-rays, with results outperforming color ImageNet initialization in terms of speed and accuracy.

We observed that the quantitative results had variabilities between the two datasets. Both dataset are
imbalanced in terms of malignant and benign cases, and furthermore there is within class variation in morphology
(shape, structure, texture/pattern and size). Based on empirical results,24 the Focal Tversky loss helps alleviate
the training issues typical for applications having small areas of interests (when compared to the pixel area of
whole image). Furthermore, reference segmentation is sometimes not known accurately, i.e., there is no pixel-level
reference mask available for all masses which can be concluded by post-analysis of the raw data and annotations.
Cases which have received an assessment score ’malignancy cannot be excluded’ in the screening are particularly
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Figure 2. Qualitative segmentation results. Mammograms and reference masks courtesy of Breast Research Group,
INESC Porto, Portugal.

difficult, as those may contain nonspecific texture suggesting, for example, a potential mass, but end up receiving
a normal histology response.

The main benefit from pre-trained weights from breast cancer classification appeared during the model
training where some of the randomly split cross-validation folds had received more challenging samples. Even
though the model corresponding that particular fold did not become strong in the segmentation task, it was able
to achieve better train time Dice score than the ImageNet based counterpart.

Finally, solutions which utilize a two-stage framework, i.e., perform mass segmentation for masses localized
first with a detection network, e.g., Yan et al.29 and Baccouche et al.,30 are able to receive better segmentation
results (e.g., for INbreast DCS 0.8044 and DCS 0.9528 for Yan et al. and Baccouche et al., respectively). As
lesion shape and margin are important cues when performing the classification to malignant or benign, accurate
predicted segmentations have a key role. Our future studies will steer towards learning the mass characteristics
for localized candidate in the original resolution.

5. CONCLUSIONS

In this paper, we have evaluated encoder-decoder methods, trained on a subset of Finnish mammography screen-
ing dataset, to assess the presence of masses in digital screening mammograms. We found no large differences be-
tween results achieved with ResNet22 encoder, pre-trained for breast cancer evaluation, and those with ResNet34,
pre-trained on ImageNet. In comparison to refined datasets, clinically-realistic datasets introduce new challenges
due to the natural reasons for the reference not being known with 100% accuracy, and this should be further
addressed in the future.
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