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Abstract. Image stacking is a well-known method that is used to improve the quality of images in video data.
A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack,
each pixel has redundant information about its intensity value. This redundant information can be used to sup-
press image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-
resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to
be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving
objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video
data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value
images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The result-
ing images, after applying our proposed image stacking approach, are used to improve baseline algorithms for
vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a
reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore,
we show how our proposed image stacking approach can be implemented efficiently. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.OE.56.8.083102]
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1 Introduction
Aerial videos acquired by airplanes or fixed-wing unmanned
aerial vehicles (UAVs) are a good source of data for ground
surveillance. Such kind of data can be used for applications,
such as automatic traffic monitoring, border surveillance, or
protection of critical infrastructures. In this article, we will
focus on video data acquired with a frame rate of 25 Hz by
a small UAV in top-down view at an altitude of 400 m. The
ground coverage is up to 0.5 km2 with a ground sampling
distance (GSD) of about 0.3 m∕pixel. Such parameters
are usual for so-called full-motion video (FMV) sequences.
Additionally, there is one specific property that we can find
in top-view videos with small-sized objects on the ground
that are observed; there is no significant change in appear-
ance of the objects in the image over time. This is crucial for
the successful application of image stacking.

Image stacking is a well-known method that is used to
improve the quality of images in video data. A set of consecu-
tive images is aligned by applying image registration and
warping.1 In the resulting image stack, each pixel position
contains redundant information about its intensity or color
value. This redundant information can be used to perform
image fusion to suppress image noise,2,3 handle motion
blur,4–6 detect independent motion in images using back-
groundmodels,7,8 or even enhance the spatial image resolution
as done in multiframe super-resolution.9–12 However, the per-
formance of the above-mentionedmethods is usually dependent
on the assumption that the scene is static and that the viewing

angle does not change significantly over time. At the same time,
moving objects can get blurred or distorted as the images inside
the image stack are registered and aligned with respect to (w.r.t.)
the stationary background. Hence, moving objects need to be
handled explicitly as this is done for super-resolution.13,14

In this article, we apply image stacking in an innovative
way: image alignment is not performed w.r.t. the stationary
background but to small moving objects instead. In our aerial
FMV data, moving objects are mainly cars but also other
vehicles on the ground such as motorcycles. Then, we apply
a pixelwise temporal filter (e.g., a median filter as done in
Ref. 3) to the image stack to remove noise and compression
artifacts from the moving objects. More interestingly, we
intentionally add motion blur to the background that sur-
rounds the moving objects. This effect is visualized in Fig. 1.
We aim at detecting the moving vehicle that is marked with a
red cross. As we can see in the zoomed original image (left
box inside each image), there are potential distractors, such
as parked and overtaking vehicles. By applying our proposed
image stacking method (right box inside each image), it takes
only 28 images (∼1 s) to blur the distractors effectively.
Although camera and objects are moving, the observed
vehicle’s appearance is nearly constant over time due to the
top-view camera angle and due to the large distance between
camera and scene. In this way, stationary image content is
removed that can modify the observed object’s appearance
and, thus, can disturb the detection and segmentation proc-
ess, such as (1) partial occlusions by trees, power supply
lines, or buildings, (2) stationary objects close to the observed
object, such as parked vehicles or buildings, and (3) street tex-
tures, such as cobblestones or road markings. To demonstrate
the effectiveness of the proposed approach, two baseline
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object detection and segmentation algorithms are imple-
mented, improved by our image stacking approach, and
evaluated using FMV sequences that contain occlusions,
parked vehicles, and street textures.

The main contributions of this article are:

1. the introduction of image stacking for moving ground
objects observed by a moving airborne camera to
intentionally blur the surrounding stationary background,

2. handling and management of multiple potentially
overlapping image stacks that occur when observing
multiple moving ground objects in parallel, and

3. how to use the proposed image stacking approach to
improve standard moving object detection and seg-
mentation methods.

We briefly mentioned the proposed image stacking
approach in prior work already,15 but no details were given,
such as how image stacks can be initialized, how multiple
image stacks can be managed, and how our proposed
approaches can be implemented efficiently. Furthermore, we
provide an extensive study of the image stacking parameters
that contribute most to the object detection and segmentation
performance. Parts of this article are based on the first
author’s doctoral thesis.16

The remainder of this article is organized as follows:
literature is reviewed in Sec. 2. The baseline moving object
detection and segmentation algorithm are described in
Sec. 3. The proposed image stacking approach is presented
in Sec. 4. Experimental results are given in Sec. 5. We con-
clude in Sec. 6.

2 Related Work
Moving object detection in aerial videos is usually based on
the detection of image regions that move independently of
the camera followed by either segmentation techniques or
machine learning approaches. Independent motion is then
represented either by pixel clusters as done in background
subtraction8,17 and frame differencing18,19 or by clusters of
tracked local image features, such as Kanade–Lucas–Tomasi
features or Harris corners.20–22 Segmentation techniques can
be based on thresholding,23,24 morphological operations,25 edge
detection,15,26 or superpixels27,28 in combination with con-
nected component labeling while machine learning approac-
hes use trained classifiers in a sliding-window framework29–31

often only applied to independently moving image regions.32–34

To further improve those methods, several approaches
exist for spatial information fusion15,26,31,35,36 and consider-
ation of context knowledge, such as street networks or
tracking statistics.18,25,32,33,37–39 Temporal information fusion,
however, is often introduced by using single or multiple
object tracking that is based on initial detections. Pure feature
tracking20 is possible, too but not sufficient in general since
no information is gained about individual object instances.
Hence, it remains unclear if the track contains one object
completely or partially, or even multiple objects moving in
the same direction at similar velocity. Actually, our method is
applied between object detection and object tracking and,
thus, can be used to further improve multiple object tracking
by providing more reliable initial detections.

Few approaches for image stacking exist in the literature
that are somehow related to our proposed method. Prokaj and
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Fig. 1 Motivation for image stacking. The left part of each image shows the zoomed original area around
the red cross rotated upright and the right part shows the stacked image. Please see the text for further
description.
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Medioni40 align and average several samples of a moving
vehicle to set up a template for a regression tracker in wide-
area motion imagery (WAMI) data. Ali et al.41 calculated an
intraclass variation between aligned samples of a vehicle and
compared it to other vehicles in the scene (interclass varia-
tion) to reacquire the vehicle after an occlusion in FMV data.
Finally, Mise and Breckon42 apply multiframe super-resolu-
tion to low-resolution moving objects to enhance the object’s
image quality and, thus, improve the performance of corre-
lation-based object tracking. However, while the above-
mentioned approaches use image stacking to improve object
tracking, our proposed image stacking approach is applied at
an earlier stage to improve object detection and segmentation.

3 Moving Object Detection
In this section, we present the baseline processing chain, in
which the proposed image stacking approach is embedded.
An overview of the algorithm’s pipeline is given in Sec. 3.1,
and the two main submodules are described in more detail in
Secs. 3.2 and 3.3.

3.1 Concept

The concept of the entire moving object detection process,
including the proposed image stacking approach, is visual-
ized in Fig. 2. Incoming image sequences are processed by
two main modules: (1) independent motion detection and
clustering and (2) object detection and segmentation. The
first module is depicted in yellow color and mainly aims
at determining motion that is independent of the camera
motion. Image regions of independent motion are repre-
sented by motion clusters that can contain multiple objects
or even parts of objects due to split and merge effects. There
may even be no object at all, if the motion cluster is the out-
come of imprecise image registration or parallax effects. In
the second module that is depicted in red color, these motion
clusters are used as regions of interest (ROIs) to detect and
segment individual moving objects. Although “object seg-
mentation” and “object detection” can be considered as
two different topics in computer vision, they can be used to
solve the same problem in the context of this article:
improved localization and boundary determination of individ-
ual objects. The proposed image stacking approach (bright

red color) is part of this module and supports the detection
and segmentation process. It is described in detail in Sec. 4.

3.2 Independent Motion Detection

Independent motion detection is used to detect image regions
that move independently of the camera. In our FMV data,
these regions usually represent moving objects, such as
vehicles or motorcycles. To detect independent motion, it is
crucial to estimate the camera motion first. Therefore, we
only use the images of the video sequence without any addi-
tional meta-information, such as camera calibration param-
eters, digital elevation models, or UAV flight parameters.

The image sequence is compensated for camera motion
by the application of image registration.1 Local image fea-
tures are detected with subpixel accuracy and tracked over
time.43 We use Förstner–Harris corners44,45 as local features.
Corresponding corners between subsequent images are used
to estimate frame-to-frame homographies as global image
transformations to register images.46 Outlier correspond-
ences are removed by applying random sample consensus47

with subsequent refinement. Using homographies is possible
since the depth differences in the evaluated scenes are small
compared to the distance of the observing camera, and the
scene can therefore be approximated well with a ground
plane. Those homographies represent the camera motion
as shown in Fig. 2. Robust feature tracks that do not fit
to the camera motion are assumed to be part of moving
objects. Since these features have been tracked for a few
frames, they can be represented not only by their positions
but by motion vectors. Similar motion vectors are grouped to
motion clusters. Therefore, single-linkage clustering48 is per-
formed based on position and velocity of the motion vectors.
The choice of distance thresholds is based on the known
GSD and the expected size of objects. As its output, the in-
dependent motion detection module delivers a set of motion
vectors and motion clusters.

This process is visualized in Fig. 3. One original image
taken from an image sequence of the test dataset is shown in
Fig. 3(a). In Fig. 3(b), we see all detected and tracked local
features represented by red vectors. There are usually around
20,000 motion vectors per image. We apply frame-to-frame
homography estimation to calculate a global image registration
that represents the camera motion. Using this homography,

Object detection and segmentation

Image
stacking

Detection and
segmentation

algorithm

Outlier and
duplicate 
removal

DetectionsMotion
ROIs

Independent motion detection and clustering

Local feature
detection and

tracking

Camera
motion

Image
sequence

Motion
clusters

Homography
estimation

Motion
vectors

Motion
vector

clustering

Independent
motion

detection

Fig. 2 The concept of the moving object detection and segmentation module. The proposed image
stacking approach is highlighted in bright red color. Please refer to the text for further information.
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we can distinguish between stationary and independently
moving feature tracks. Stationary features are depicted in
red color and motion vectors in yellow color in Fig. 3(c).
Clustered motion vectors are used to calculate a local image
registration for local image alignment. On average, each
moving object in the test dataset produces a cluster of
15.57 motion vectors. Hence, robust image alignment based
on small moving objects, which is crucial for the proposed
image stacking approach, is possible as we need at least two
motion vectors to estimate the stack alignment (translation
and rotation). Motion vector clustering leads to the cyan
boxes in Fig. 3(d), where each box represents one motion
cluster.

Instead of motion vector clustering, background
subtraction8,17 or frame differencing18,19 is the popular
method for independent motion detection. However, for
image stacking, we want to use the temporal information that
is implicitly contained in the motion vectors. Furthermore,
motion vector clustering is less prone to be affected by
noise.20,22,49

3.3 Object Detection and Segmentation

For object detection and segmentation, we use two different
approaches and implement them as a baseline that we want to

improve by the application of image stacking. The first
approach is motivated by appearance-based object detection
using machine learning34 and the second approach is based
on object segmentation by the clustering of edge pixels.49

The result of both methods is bounding boxes that surround
the moving objects. For simplicity and to be consistent with
existing literature, we call those bounding boxes “detections”
even if they are the result of object segmentation.

The feature clustering during independent motion detec-
tion that provides the motion clusters is prone to produce
split and merged detections of moving objects. Split detec-
tions can occur for weakly textured vehicles, and merged
detections appear due to the similar motion direction and
velocity in dense urban traffic.49 Thus, the motion clusters
are considered as initial object hypotheses and define a
search space. Before object detection and segmentation are
applied, the motion clusters are spatially extended in the
motion direction to fully contain objects that are detected
partially by independent motion detection. Those extended
regions are denoted by “motion ROIs.”

For object detection, we train a classifier using 790
vehicle samples and 790 nonvehicle samples. Each sample
has a size of 16 × 32 pixels. We use Integral Channel
Features as a descriptor and train a boosted decision trees
(BDT) classifier using Real AdaBoost.50 This classifier is

(a) Original image (b) Local feature detection and tracking

(d) Motion vector clustering(c) Independent motion detection

Fig. 3 Example for independent motion detection and clustering. Stationary local features are visualized
in red color, and motion vectors moving independently of the camera motion are depicted in yellow.
Motion clusters are represented by cyan boxes.
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applied locally to the motion ROIs in a sliding-window
framework. To consider different vehicle sizes, image rescal-
ing is done with three different scales.34 Note that, in this
work, image rescaling is not used to detect objects in differ-
ent distances (as done in pedestrian detection, for example),
since we perform a scale normalization using the known
GSD before we run the detector. Finally, a nonmaximum
suppression is applied based on the intersection-over-union
(IoU) criterion and the classifier confidence.

For object segmentation, we calculate gradient magni-
tudes using local binary patterns16 and use quantile-based
thresholding for binarization.51 A typical value for the quan-
tile q is 0.15. Thus, we assume that 15% of the pixels inside a
motion ROI belong to moving objects. After the application
of morphological closing and connected-component label-
ing, we calculate bounding boxes for each blob that exceeds
a certain area or size (w.r.t. number of pixels). Each bounding
box represents one moving object. The above-described
approach is chosen because it is able to outperform16 other
segmentation methods that are based on global probability of
boundary,52 superpixels,53 spatiotemporal saliency,54 top-hat
transform,25 or Canny gradient thresholding.26 The main rea-
son, therefore, is the image quality, which is severely limited
by low resolution and atmospheric effects causing noise and
blurry object edges.

Finally, duplicate and outlier detections are removed.
Duplicate detections occur due to overlapping motion ROIs.
They can be rejected by applying the earlier mentioned non-
maximum suppression for object detection and by fusing all
overlapping bounding boxes that exceed a certain IoU
threshold for object segmentation.16 Outliers are detections
that no motion vectors can be associated with. Therefore, we
simply check the number of motion vectors inside the detec-
tion bounding box. Detections with <4 associated motion
vectors are rejected, as we assume them to be stationary.16,34

4 Image Stacking for Moving Objects
The main contribution of this article is presented in this
section: (1) the introduction of image stacking for moving
objects, (2) handling and management of multiple potentially
overlapping image stacks, and (3) the replacement of motion
clusters by image stacks to improve object detection and
segmentation.

Object detection and segmentation as presented before are
working well as long as the object appearance is clearly vis-
ible. However, there are three effects that can affect the object
appearance and decrease the detection and segmentation
performance by causing inaccurate object boundaries or
even producing false positive (FP) or false negative (FN)
detections:

• partial occlusions by trees, power supply lines, or
buildings,

• stationary objects close to the observed object, such as
parked vehicles or buildings, and

• street textures, such as cobblestones or road markings.

To suppress these effects, image stacking is introduced to
mask and blur the stationary background around a moving
object. Several motion ROIs of the same object in subsequent
images are registered and aligned using the motion vectors,
i.e., we apply local image registration as described and

visualized in Figs. 3(c) and 3(d). Each aligned motion
ROI is one layer of the image stack. By calculating the
pixelwise mean or median pixel value, the stationary
background and even other moving objects with a nonzero
relative velocity compared to the observed object are blurred
as seen in Fig. 1. The red cross visualizes a motion vector
that is tracked for 250 consecutive images. The image region
(“stack region”) where stacking is applied is generated using
the motion direction and fixed values for width and length of
the stack area. This stack region is zoomed and visualized
without stacking in the left and with stacking in the right
area of each image. The center of the stack region is fixed
by the position of the motion vector (red cross). After that,
the stack region, which is oriented in the motion vector direc-
tion in the original image, is rotated upright and added to the
stack. The pixelwise mean image of the entire stack is visu-
alized in Fig. 1. For a pixel position ðx; yÞ in the stack S and
in each aligned image Ih with h ∈ f1; : : : ; Hg, the corre-
sponding pixel value Sðx; yÞ is given as

EQ-TARGET;temp:intralink-;e001;326;543Sðx; yÞ ¼
P

H
h¼1 Ihðx; yÞ

H
; (1)

where H is the total number of stack regions added to the
image stack and is called the “stack height.” Since the motion
direction of single motion vectors fluctuates slightly, the
direction of each motion vector can be smoothed by using
the direction of the related motion cluster. This is important
to avoid blurring of the edges of the observed object. After
28 images, the stationary background is fully masked while
the overtaking vehicle disappears later, after 58 images, due
to its smaller relative velocity compared to the observed
object. Parked vehicles or buildings can be very close to
the observed object as seen in image 28, but image stacking
successfully masks these stationary objects.

4.1 Concept

The concept of the proposed image stacking approach is
visualized in Fig. 4. It shows the processing that is imple-
mented in the image stacking module depicted in bright
red color in Fig. 2. As there can be multiple moving objects
in the scene, there usually are multiple image stacks and we
aim at having at least one image stack per object. New image
stacks are initialized either by using motion vectors or detec-
tions. New motion vectors are associated to existing stacks
based on position and motion to improve the robustness of
image alignment for small moving objects. Image stacks are
updated by adding the corresponding aligned image area of
the current image to the stack. Finally, image stacks replace
related motion ROIs in the original unstacked image for the
application of the object detection and segmentation algo-
rithms. As seen in Fig. 2, image stacking can be skipped if
image alignment is not robust or if the stack height H is not
sufficiently large, yet. In this case, the motion clusters in the
original unstacked image are used for object detection and
segmentation.

4.2 Image Stack Initialization

The implementation of image stacking in a fast and efficient
way is not easy. In a feasibility study,15 it was demonstrated
that generating and initializing a stack for each motion vector
in the image can lead to hundreds of detections (and stacks)
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per object, but adequate duplicate removal of sufficiently
overlapping bounding boxes improves the performance of
object segmentation with respect to detection rate and pre-
cision. However, this method is highly inefficient w.r.t.
processing time and needs to be improved for implementa-
tion. The main difference between the feasibility study and
this concept is the introduction of “master vectors” as rep-
resentatives for clustered motion vectors. Each master vector
is a virtual motion vector and owns exactly one image stack.
In Fig. 5, master vectors are visualized as colored crosses.
Thus, the total number of image stacks decreases from sev-
eral hundred to <50 per image. The master vector lies in
the center of its related image stack.

To initialize an image stack, one has to detect a cluster of
similar motion vectors. This cluster can be different from the
motion clusters, which are the result of independent motion
detection and clustering. The reason is that moving objects
driving with a small relative velocity close to each other may
be clustered together in the same motion cluster while image
stacking aims at initializing at least one stack per object.
Only in this way, it is possible to benefit from the blurring
effect since the first object is assumed to be focused and
sharp in the first stack while the second object gets blurred
over time due to its velocity difference, and vice versa, the
second object stays sharp in the second stack while the first
object is blurred. If only one stack is initialized for two
objects, the blurred object may be missed by the detection

and segmentation algorithm. This effect is visualized in
Fig. 5 with two vehicles overtaking each other. Each master
vector has between 3 and 50 related motion vectors. These
related motion vectors are represented by dots in the same
color as their master vector. The blue master vector is not in
the center of its cluster since it was initialized while both
objects were merged in one large bounding box. In contrast,
the magenta master vector was initialized later when both
objects were detected separately. After 1 s or 25 stacked
images, the pixelwise mean image shows that usually only
one object stays sharp per stack. Two strategies have been
implemented for image stack initialization.

1. The results of object detection and segmentation are
called “detections.” These detections are assumed to
have a higher detection rate compared to the motion
clusters that are prone to produce splits and merges.
By using them as feedback information to initialize
stacks, the ratio of stacks to objects is close to 1, which
is most efficient. Even for merged detections there will
be separate image stacks, if each single object has been
correctly detected at least once. Immediately after that,
the individual stacks are initialized. This is the case in
Fig. 5. The blue master vector is not in the center of its
cluster as it was initialized while both objects were
merged in one large bounding box. The magenta
master vector was initialized later when both objects
were detected separately for at least one time step. To
avoid any information loss, the blue master vector is
kept and not reinitialized. However, objects that can-
not be detected and segmented separately at all end up
in a common image stack. In such a case, the blurring
effect is assumed to be weak for each object, and
detection performance is similar to using no image
stacks.

2. A weak detection performance can lead to the initial-
ization of image stacks for merged detections. In this
way, image stacking may even decrease the overall
detection performance. To use the motion vectors and
motion clusters instead of the detections, “k-means
clustering”55 is introduced. k is the number of clusters
after clustering and can be chosen based on the known
standard vehicle size and the size of the related motion
cluster. Then, the motion vectors are grouped using
position and motion. This approach is less efficient
since usually more stacks than objects are initialized
and the calculation of k-means is time-consuming.

Both approaches are evaluated in Sec. 5.

4.3 Association of Motion Vectors to Image Stacks

Due to occlusions or varying object appearance, existing
motion vectors can disappear and new motion vectors can
appear at any time in the image sequence. A master vector
is deleted if it loses all related motion vectors. While each
master vector can have many related motion vectors, each
motion vector can be related to only one master vector. A
new motion vector is associated to a master vector by apply-
ing a k-nearest neighbors (k-NN) algorithm.48 k-NN is a vot-
ing algorithm searching for the k nearest motion vectors in
the image area around the new motion vector. Each neighbor
votes for its master vector, and the new motion vector is

Image stacking
Image stack
initialization

Image stack
update

Association
of vectors
to stacks

Replacement
of clusters 
by stacks

Image
sequence

Detections

Motion
clusters

Motion
vectors

Image 
stacks

Motion
ROIs

Fig. 4 The concept of the image stacking submodule. Please refer to
the text for further information.

Image stack 1 Image stack 2

Sharp

Blurred

Blurred

Sharp

Master vectors

Fig. 5 Image stacks for two vehicles with small relative velocity of
about 10 km∕h (about 0.4 pixels per frame). The master vector of
each stack is visualized as a colored cross. The first vehicle is
sharp and the second is blurred in the first stack, while the first vehicle
is blurred and the second is sharp in the second stack.
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associated to the master vector with the most votes. The
search space can be significantly reduced by only consider-
ing motion vectors in the same motion cluster. A typical
value for k is 3. This process is shown in Fig. 6. Each master
vector (image stack) is visualized with a cross in a different
color. The associated motion vectors are displayed as dots in
the same color as their related master vectors. After k-NN
using the motion vectors and clusters, the new motion vec-
tors are associated to master vectors.

4.4 Image Stack Update

With each new incoming image, image stacks are updated in
two steps: (1) the position of the master vector is updated and
(2) the current stack area is added as a new layer to the image
stack. Since the master vector is a virtual motion vector, its
position and orientation can only be updated by its related
motion vectors. Each related motion vector stores its relative
position and orientation to the master vector right after it has
been associated. This way, it can suggest a position and
orientation of its related master vector in the current image.
The final master vector position and orientation are deter-
mined by calculating the median of all suggested positions
and orientations. Hence, even few incorrectly tracked related
motion vectors will not affect the final master vector.

The stack area surrounding the updated master vector is
rotated in upright position and added to the image stack
as shown in Fig. 7. There are two considered strategies to
arrange the image stack.

4.4.1 Accumulation image

One image with the size of the rotated stack area is initial-
ized. Each pixel value is zero. To append a new stack area,
it is rotated in an upright position, and each pixel value of

the rotated stack area is added to the accumulation image.
The stack height is stored by incrementing a counter variable
with each appended stack area. The accumulation image is
a very efficient way to arrange the image stack since only one
image has to be kept in the memory and new layers are sim-
ply added to this image. The motion ROI can be calculated
very fast by dividing each pixel by the stack height. This is
the mean pixel value of all stack areas appended to the stack
just as described by Eq. (1). The main disadvantage of this
approach is that a slightly varying object appearance due to
changes in the camera angle or UAV altitude will strongly
affect the resulting motion ROI by blurring the observed
object.

4.4.2 Circular buffer

To avoid this self-blurring effect, old stack areas can be
replaced after a certain time and, hence, the stack can be
arranged as a circular buffer. The size of the circular buffer
directly corresponds to the stack height. It is fixed and deter-
mined a priori. In this way, the maximum number of stack
areas in the stack is limited. New stack areas are added to the
buffer and as soon as the buffer is full, the oldest stack area is
replaced by the new one. The motion ROI is calculated either
by the pixelwise mean or median pixel value of all stack
areas. This is much more time-consuming than the first
approach with the accumulation image. Figure 7 shows a
circular buffer with stack height H ¼ 5 and where the stack
area at position 4 is replaced. The standard buffer size used
in this article is H ¼ 50 since all stationary objects and most
objects moving relative to the observed object disappear in
the motion ROI.

The comparison and evaluation of both approaches will
be presented in Sec. 5. An image stack is initialized as
soon as the master vector is initialized. Hence, a region of

Master vectors and related
motion vectors before

association of new vectors

Master vectors and related
motion vectors after

association of new vectorsMotion vectors and clusters

New associated
motion vectors

Fig. 6 Association of newmotion vectors to master vectors (colored crosses). Associated motion vectors
are visualized as dots in the color of its master vector.
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the stack area can be outside of the image borders. To add the
whole area to the stack but minimize the influence of the
outer region for the calculation of motion ROIs, the pixels
in these regions are set to the mean of the gray-value range.
We set this value to 127.

4.5 Replacement of Motion Clusters by Image
Stacks

The replacement of motion clusters by motion ROIs that are
provided by image stacking is optional. Motion ROIs are
used, if suitable stacks are available, and motion clusters are
used otherwise. A suitable image stack has to meet the
following four criteria:

1. The velocity and the direction of the master vector
have to be close to the velocity and the direction of
the motion cluster.

2. The extended motion cluster has to be fully inside the
stack area.

3. The master vector has to be inside the motion cluster.
4. The stack height has to exceed a minimum thresh-

old Hmin.

This process of finding suitable image stacks is shown in
Fig. 8. Image stacks shall be found for the lower motion clus-
ter (cyan rectangle). The extended motion cluster is visual-
ized with a dashed cyan rectangle. There are two vehicles
inside the motion cluster, and for each vehicle, an image
stack has been initialized (shown in magenta and blue color).
For both stacks, all four criteria are fulfilled, so two suitable
image stacks have been found. These image stacks replace
the original motion cluster by replacing the original image
with the stacked image. This stacked image can be calculated
using the pixelwise mean of all images in the accumulation
image or all images in the circular buffer as described in
Eq. (1) or the pixelwise median of all images in the circular
buffer using the following equation:

EQ-TARGET;temp:intralink-;e002;326;480Sðx; yÞ ¼ median
h∈H

½Ihðx; yÞ�; (2)

where S is the stacked image, Ih is the h’th original image in
the stack at pixel position ðx; yÞ, and H is the size of the
circular buffer with h ∈ f1; : : : ; Hg.

4.6 Discussion

Image stacking is introduced to improve the object detection
performance by considering temporal context. Since only
motion vectors and no object representations are used, image
stacking takes place on feature level before multiple object
tracking is applied on object level. Object detection and seg-
mentation are applied to each motion ROI (stacked image)
separately and the original image motion cluster is discarded,
if suitable image stacks have been found. As soon as a
motion cluster has been replaced by suitable image stacks,
the aim is to detect only the sharp object in each stack and,
thus, avoid a potential merged detection containing back-
ground structures or several moving objects. If a blurred
object is detected, too, this detection is suppressed by the
outlier and duplicate removal module. In contrast to the first
implementation of image stacking,15 the approach presented
here can be processed in real time. The runtime will be ana-
lyzed in detail in Sec. 5.

Figure 9 shows examples for each of the three situations
where image stacking improves object detection as men-
tioned in the beginning of Sec. 4. These are (1) partial occlu-
sion by a tree in Fig. 9(a), (2) a parked vehicle close to the
observed moving vehicle in Figs. 9(b) and 9(c), and (3) dis-
turbing street textures in Fig. 9(d). The observed object is
located in the center of each image. Since image stacking
will improve object detection and segmentation only in
such situations, only minor improvement of detection perfor-
mance is expected. Furthermore, image stacking can even
cause additional false detections if moving objects with
small relative motion merge due to blurring. This effect
becomes apparent in Fig. 5.

Stack area

Master

vector

Upright rotated
stack area

Rotate

Circular buffer

Accumulation
imagePixelwise

add

Replace

Fig. 7 Image stack update and stack arrangement either as accumulation image or circular buffer.
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Important parameters for image stacking are the size of
the stack area A, the minimum stack height Hmin, and the
stacking strategy. A has to be chosen large enough so that
the stack region fully covers even large objects such as
trucks. Hmin is the threshold of stack height H that has to be
exceeded before a stack is returned as motion ROI. This is
important since small stacks of H ¼ 10 or less are prone to
cause objects merging due to blurring. If Hmin is too large
(e.g., 50 or 100), fewer image stacks are used, and potential
benefit decreases as objects may already be outside of the
camera view before Hmin is reached and the motion ROI is
returned. Good results have been achieved with A ¼ 100 ×
300 pixels, Hmin ¼ 25, and circular buffer instead of

accumulation image. The influence of varying these param-
eters for object detection and segmentation is analyzed in
Sec. 5.

5 Experiments and Results
Four gray-value video sequences are used in our experi-
ments. Sample frames for each sequence are visualized in
Fig. 10. While the first three sequences SEQ 1, SEQ 2, and
SEQ 3 are coming from your own top-view aerial video data,
the fourth is the EgTest01 sequence taken from the publicly
available video verification of identity (VIVID) dataset.56

To the best of our knowledge, no further publicly available
FMV datasets currently exist that contain challenging urban

Extended

motion

cluster

Stack 1

area

Stack 2

area

Rotated

Stack 1

area

Motion ROI

Motion ROI

Replace

motion

cluster

Found

fitting

stack

Rotated

Stack 2

area

Fig. 8 Replacement of motion clusters by image stacks (motion ROIs). Two suitable image stacks are
found for the extended motion cluster (dashed cyan rectangle) and replace the original image of the
motion cluster.

Partial
occlusion
by a tree

Parked
vehicle

Disturbing
street

texture

Parked
vehicle

Original image Stacked image 

(a)

Original image Stacked image Original image Stacked image Original image Stacked image

(b) (c) (d)

Fig. 9 Examples for successful application of image stacking. The observed object is located in the
center of each image.
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scenarios with dense traffic. WAMI datasets, such as
Columbus large image format57 or Wright-Patterson air
force base,58 cannot be used here due to their low frame rate.

Although the EgTest01 sequence is recorded in oblique
view, we consider this sequence in our experiments as we
want to show some limitations of applying our proposed
method to oblique view videos. The number of frames is
approximately between 200 and 2000, and the frame rate
is between 25 and 30 Hz. Our own data consist of busy
urban scenes. There are between 5 to 20 moving objects
per frame. With a GSD of about 0.345 m∕pixel, a standard
car covers an area of ∼10 × 20 pixels in the image. Some
statistics of the evaluated sequences are given in Table 1.

Moving objects are represented by bounding boxes. The
ground truth (GT) was labeled manually. We distinguish
between vehicles (red boxes in Fig. 10) and nonvehicles,
such as moving motorcycles or pedestrians (orange boxes in
Fig. 10). This is important as we compare a model-based
vehicle detection approach and a model-free object segmen-
tation approach. Since the vehicle detection approach is not
able to detect nonvehicles, we declare nonvehicles as “do not
care” objects for the quantitative evaluation to guarantee a
fair comparison between the two approaches. In the original
GT of the EgTest01 sequence, only one object is labeled for
an evaluation of single object tracking. We extended the GT
manually to all six moving vehicles.

A detection is true positive (TP), if the bounding boxes of
GT and detection overlap at least 10% w.r.t. to the IoU
criterion.59 In contrast to the PASCAL criterion of 50% over-
lap,60 we choose this small overlap as for small objects cov-
ering only 50 to 200 pixels even small deviations in size or
position of the detection bounding box from the GT bound-
ing box can induce a significantly lower overlap. For the

quantitative evaluation, we use standard measures, such as
precision, recall, and f-score,61 as well as the normalized
multiple objects detection accuracy (N-MODA) and the nor-
malized multiple object detection precision (N-MODP).62

5.1 Parameter Optimization

Four parameters are selected for optimization: minimum
stack height Hmin and stack area A are continuous parame-
ters, whereas stack initialization and stack arrangement are
discrete parameters. The height of a stack has to exceedHmin

before the motion cluster is replaced by the stack for object
detection and segmentation. If Hmin is not exceeded, the
motion cluster is used instead. A is the spatial extend of a
stacked area in the image. With a larger size, it is more likely
that extended motion clusters are inside the stack area and
can be replaced by stacks. Two approaches for stack initial-
ization are proposed in Sec. 4.2: initialization by k-means
clustering of moving corners and initialization by detections.
Finally, two different methods are introduced for stack
arrangement in Sec. 4.4: accumulation image and circular
buffer. The stack image of a circular buffer can be calculated
by pixelwise mean or median. Maximization of the f-score
for SEQ 1 is chosen as optimization criterion.

The optimization results are visualized in Fig. 11. Stack
initialization is evaluated for both the model-based vehicles
detection approach and the model-free object segmentation
approach in Fig. 11(a). For both approaches, k-means clus-
tering performs worse compared to initialization by detec-
tions, so the latter one is chosen to initialize stacks. In
Fig. 11(b), the f-score ofHmin for all three stack arrangement
methods is depicted. 10 ≤ Hmin ≤ 250 is the chosen range
clearly demonstrating that Hmin ¼ 25 is the best value for

Fig. 10 Aerial videos used for the experiments. Moving objects GT is represented by bounding boxes:
red color for vehicles and orange color for motorcycles, bicycles, or pedestrians. Sequences 1–3 are
taken from our data and the rightmost one from the VIVID dataset.56
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each method. Figure 11(c) shows the optimization for stack
area A. The f-score of the three stack arrangement
approaches is plotted against the stack area size in pixels.
With 1∶2 and 1∶3, two different ratios of width to length
of A are evaluated. The variance of the f-score is smaller
for ratio 1∶3 compared to 1∶2, so 1∶3 is further considered.
115 × 345 pixels is the best value for the stack area since
there is no improvement of the f-score anymore for larger
values. In all evaluations, the accumulation image achieves
a worse maximum f-score than the circular buffer. Event-
ually, the circular buffer with pixelwise median image is
chosen since it performs slightly better compared to the pix-
elwise mean image.

5.2 Experimental Results

In this section, the object segmentation and the vehicle detec-
tion approach are evaluated with and without the proposed
image stacking method for each of the four aerial videos. The
aim is to determine the situations in which the application of
image stacking is beneficial and to measure the potential
improvement. The quantitative evaluation is presented in
Table 2. Bold font indicates an improvement compared
to the approach without image stacking. In SEQ 1, image

stacking reduces the number of FPs and FNs by 76 for
the segmentation approach and by 14 for the detection
approach, respectively. A similar result is achieved for
SEQ 2, where the number of FPs and FNs is decreased by
29 and 19, respectively. The improvement of the f-score is
between 0.002 and 0.011.

However, image stacking does not really improve the
results for the sequences SEQ 3 and EgTest01. The number
of FPs and FNs is reduced by only 16 and 15 for object
segmentation, respectively. At the same time, the perfor-
mance of the vehicle detection approach is even decreased.
In SEQ 3, there are no occlusions and only few merged
detections, so that image stacking cannot generate much
benefit here. Furthermore, slightly imprecise tracking of the
motion vectors can result in blurry observed objects, which
lead to an even higher number of FN detections. The reason
is that due to object blurriness, the quantile-based threshold
for object segmentation and the classifier’s confidence value
threshold for object detection are not exceeded anymore. In
the EgTest01 sequence, there are no merged detections, no
partial occlusions, and only few disturbing street textures.
Image stacking works well as long as the object appearance
is stable. If this is not the case, the object gets blurred or
deformed in the image stack. As mentioned earlier in Sec. 5,
the camera angle and, thus, the vehicle appearance are vary-
ing in EgTest01. This is difficult to handle for the classifier
that was only trained with top-view samples. It is even more
challenging, when the turning vehicles at the beginning of
the scene get deformed during image stacking as demon-
strated in Fig. 12.

In general, there is stronger improvement in both accuracy
(f-score and N-MODA) and precision (N-MODP) for object
segmentation compared to the vehicle detection approach.
The main reason is that outlier removal as described in
Sec. 3.3 is able to cover most situations where stacking can
improve vehicle detection: due to the fixed size of the sliding
window, usually no undersegmentation occurs in case of
merged detections. Instead, objects are either missed or FP
detections appear. These FPs are reduced by both image
stacking and outlier removal. At the same time, underseg-
mentation as occurring regularly in object segmentation can-
not be handled well by outlier removal but only by image
stacking.

The qualitative evaluation is done separately for object
segmentation in Fig. 13 and vehicle detection in Fig. 14.
Four image sections are chosen for each of the two methods.
GT is visualized in the top row, and the approach without and
with image stacking is depicted in the center and lower row.
Orange GT bounding boxes represent moving motorcycles,

Table 1 Statistics of the aerial video datasets.

Video Frames Frame rate (Hz)

GT

Moving objects Single detections Moving vehicles Single detections

SEQ 1 400 25 42 4785 40 4731

SEQ 2 200 25 39 2662 18 1373

SEQ 3 400 25 38 5023 36 4946

EgTest01 1821 30 6 6866 6 6866

min

min

Circular buffer mean
Accumulation image

Circular buffer median
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or
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or
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segmentation

 approach
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detection
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init. by k-means
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(c) Stack area 

(a) Stack initialization

with width/length ratio 1:2 with width/length ratio 1:3

(b) Minimum stack height

Fig. 11 Optimization of the stacking parameters using f -score and
SEQ 1.
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bicycles, or persons that are not considered for evaluation
(ignore regions). The cyan and red boxes in the center and
lower row visualize motion clusters and detections, respec-
tively. The red arrows point at the improvement by image

stacking. In Figs. 13(a) and 13(b), typical merge situations
are shown where two objects drive close to each other
and cause undersegmentation. They can be separated by
image stacking since each object has its own stack without

Table 2 Quantitative evaluation for image stacking.

Video Evaluation measure Object segmentation Object segmentation + stacking Vehicle detection Vehicle detection + stacking

SEQ 1 TP 4322 4389 4463 4461

FP 223 214 83 67

FN 409 342 268 270

Precision 0.952 0.954 0.982 0.985

Recall 0.913 0.928 0.943 0.943

f -score 0.931 0.940 0.962 0.964

N-MODA 0.866 0.882 0.925 0.928

N-MODP 0.621 0.632 0.696 0.694

SEQ 2 TP 1265 1274 1181 1196

FP 190 170 47 43

FN 108 99 192 177

Precision 0.869 0.882 0.961 0.965

Recall 0.921 0.928 0.860 0.871

f -score 0.894 0.905 0.908 0.916

N-MODA 0.782 0.804 0.825 0.839

N-MODP 0.573 0.575 0.593 0.593

SEQ 3 TP 4755 4752 4802 4761

FP 200 181 165 140

FN 191 194 144 185

Precision 0.960 0.963 0.967 0.971

Recall 0.961 0.961 0.971 0.963

f -score 0.961 0.962 0.969 0.967

N-MODA 0.920 0.924 0.937 0.934

N-MODP 0.608 0.610 0.705 0.699

EgTest01 TP 6812 6807 6726 6677

FP 128 108 73 69

FN 54 59 140 189

Precision 0.982 0.984 0.989 0.990

Recall 0.992 0.991 0.980 0.972

f -score 0.987 0.988 0.984 0.981

N-MODA 0.973 0.976 0.968 0.962

N-MODP 0.527 0.544 0.526 0.518

Note: Improvement by image stacking is highlighted in bold.
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disturbing background. The right truck in Fig. 13(c) is par-
tially occluded by a tree, while there is disturbing street tex-
ture in Fig. 13(d). Object segmentation is still possible but
imprecise. Image stacking compensates for the occlusion
and the street texture leading to more precise segmentation
results. In Fig. 14, merged detections (a), FPs (b), and
FNs (c) occur for the vehicle detection approach. The reason
is ambiguities of the classifier when there are more prominent
object contours between objects than for the real individual

objects. In these cases, image stacking helps since the clas-
sifier confidence is higher inside the individual stacks with
exactly one sharp object per stack. The partial occlusion
in Fig. 14(d) is successfully handled with image stacking
although only the shadow is detected for the left truck.

In summary, image stacking is able to improve both the
object segmentation and the vehicle detection approach. The
improvement may look minor; however, there are only few
situations where the application of image stacking is benefi-
cial, such as partial occlusions, merged detections, and
ambiguous detections in dense traffic. There is less improve-
ment for vehicle detection since both image stacking and out-
lier removal handle similar problems and, thus, complement
each other. In our data, vehicle detection outperformed object
segmentation in all sequences. The reason is that vehicle
detection, which is based on a sliding-window approach,
makes assumptions about vehicle size and appearance that
are satisfied in the evaluated sequences. The model-free
object segmentation approach achieves better performance in
cases where those assumptions are violated, such as in
sequence EgTest01.

The runtime for managing about 20 stacks per image
varies between 48 and 870 ms. This strong variation is
dependent on the choice of the stack arrangement: while
stack initialization and association of motion vectors to
stacks (Sec. 4.2), and replacement of motion clusters by
stacks (Sec. 4.3) take less than 20 ms altogether, stack update

Image stack

Frame 242

Fig. 12 Image stacking may not work for turning vehicles and oblique
camera angle (EgTest01). The stacked object is blurred and its shape
is deformed. This can cause additional FNs for the vehicle detection
approach.

Object
segmentation

+
image

stacking

Ground
truth

(a) (b) (c) (d)

Object
segmentation

Fig. 13 Examples taken from the qualitative evaluation of the proposed image stacking approach applied
to moving object segmentation. Merged detections can be handled, if there is a relative velocity differ-
ence between the vehicles (a) and (b). Furthermore, imprecise segmentation due to occlusion by
(c) a tree and (d) distracting street texture can be handled.
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(Sec. 4.4) claims between 28 ms, if the accumulation image
is used, and up to 850 ms, if the stack is arranged as a circular
buffer. Optimization can be achieved by fast, approximated,
or incremental calculation of the median pixel values in the
circular buffer.63,64 Furthermore, we do not perform any par-
allel processing of the image stacks, which is expected to
strongly reduce the runtime.

6 Conclusions and Outlook
The main goal of our proposed image stacking approach is to
remove disturbing image structures from the background of
moving objects on the ground observed by airborne cameras
in top view. Those structures are usually not moving and
can thus be smoothed to isolate the observed object from
the background. Especially, model-free object segmentation
can benefit from this approach since object contours can be
well-isolated by image stacking. There is less benefit for slid-
ing window-based vehicle detection since the assumptions
that are made implicitly (e.g., about object size or object
width/length ratio) tackle similar problems as the image
stacking approach. Furthermore, imprecise image registra-
tion of moving image regions that are used for image
stacking is the most prominent limiting factor for vehicle
detection as vehicles can be blurred affecting the classifier’s
confidence. However, improvement may be possible when

using deep learning-based local feature matching for image
registration with higher accuracy.65

There are several potential applications for image stack-
ing besides improved object detection and segmentation.
Among these applications is super-resolution for moving
objects, generating appearance templates without back-
ground for visual object tracking or reidentification, or tem-
poral filtering to suppress image noise, compression artifacts,
or artifacts of a disturbed wireless connection.
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