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ABSTRACT

Previous studies of photon-assisted tunneling through normal-metal–insulator–superconductor junctions have exhibited potential for pro-
viding a convenient tool to control the dissipation of quantum-electric circuits in situ. However, the current literature on such a quantum-
circuit refrigerator (QCR) does not present a detailed description for the charge dynamics of the tunneling processes or the phase coherence
of the open quantum system. Here, we derive a master equation describing both quantum-electric and charge degrees of freedom, and dis-
cover that typical experimental parameters of low temperature and yet lower charging energy yield a separation of time scales for the charge
and quantum dynamics. Consequently, the minor effect of the different charge states can be taken into account by averaging over the
charge distribution. We also consider applying an ac voltage to the tunnel junction, which enables control of the decay rate of a supercon-
ducting qubit over four orders of magnitude by changing the drive amplitude; we find an order-of-magnitude drop in the qubit excitation
in 40 ns and a residual reset infidelity below 10�4. Furthermore, for the normal island, we consider the case of charging energy and single-
particle level spacing large compared to the superconducting gap, i.e., a quantum dot. Although the decay rates arising from such a dot
QCR appear low for use in qubit reset, the device can provide effective negative damping (gain) to the coupled microwave resonator. The
Fano factor of such a millikelvin microwave source may be smaller than unity, with the latter value being reached close to the maximum
attainable power.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0062868

I. INTRODUCTION

The quantum-circuit refrigerator (QCR) is a hybrid quantum
device made of a normal-metal island tunnel-coupled to two
voltage-biased superconducting leads.1,2 The device to be refriger-
ated is capacitively coupled to the island. When a tunneling event
occurs between the island and a superconducting lead, it can be
supplemented by a photon transfer between the coupled device and
the tunneling electron. Depending on the voltage bias, the QCR has
either a cooling or a heating effect on the coupled device, which
can be considered to originate from the energy-filtering effect in
the tunneling process promoted by the gaped superconductor den-
sity of states at the superconductor–insulator–normal-metal
junctions.

In the realm of superconducting quantum circuits, the QCR is a
powerful tool to control the effective environment of the coupled
quantum-electric device, with applications in quantum heat transfer,3

fundamental physics explorations,4 and rapid state reset for quantum
information applications.5–7 The QCR is a part of the recent inspiring
theoretical approaches to open quantum systems with applications to
quantum devices8–11 and experiments related to the quantum reservoir
engineering, promoting its usefulness for control and simulation of
quantum-information systems.12–14

Previous theoretical analyses focused on the QCR-induced transi-
tion rates in a harmonic resonator2 or a weakly anharmonic qubit.7

The underlying assumption was that the charging energy of the
normal-metal island is sufficiently small so that possible effects by
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normal-metal charge dynamics can be safely neglected. In this
approach, the QCR-induced transition rates can be interpreted to orig-
inate from a bath, the temperature and coupling strength of which are
voltage-bias tunable, with excellent agreement in comparison with
the experimental results.2,4,6,15 In this work, we go beyond such an
approach and study in more detail the charge dynamics of the QCR by
deriving an extended master equation which accounts for both the
coupled quantum device and the QCR normal-metal island. This ena-
bles us to understand the effect of the charge dynamics on quantum-
circuit refrigeration.

We focus on two experimentally relevant cases. First, we derive
the extended master equation for a highly anharmonic superconduct-
ing qubit. As a result, we obtain an explicit expression for the time
scales of charge relaxation in the normal-metal island. With typical
experimental parameters, i.e., for the charging energy of the normal-
metal island much smaller than the thermal energy set by electron
temperature and for the QCR biased in the cooling regime, the charge
relaxation rate is at least an order of magnitude slower than the
QCR-induced decay rates in the qubit. This implies that during QCR
operation the normal island has essentially no charge dynamics and its
contributions to the transition rates can be safely averaged, in agree-
ment with the assumptions of Refs. 2 and 7.

In the second part, we treat the other extreme limit of the charge
dynamics, namely, the case in which the QCR normal-metal island is
reduced in size such that the charging energy and the single-particle
level spacing are larger than all other relevant energy scales in the sys-
tem. Here, the island can host a single electron at most. In other words,
we consider a single-level quantum dot (QD) coupled to two super-
conducting leads. If such a dot QCR is capacitively coupled to a reso-
nator, there are operational regimes, in which a non-classical state of
light can be induced in the resonator and spontaneous microwave gen-
eration is possible, a situation resembling that of single-atom lasers.16

Here, the microwave generation originates from the peaked density of
states of the superconductor, enabling bias-voltage controlled opera-
tion regimes where the QCR-induced excitation dominates over decay,
resulting in so-called negative damping.

Focusing on the low-temperature solid-state devices, we can
roughly classify cryogenic microwave sources by the type of active
environment: they can be based on superconducting qubits,17–21

single-electron transistors,22,23 or quantum dots.24–29 Most of the
works related to quantum dots are based on the electron tunneling
between two dots whose levels are detuned by applied gate voltages.
The energy of the detuning is equal to the energy of the generated pho-
tons. Such design is limited by the low tunneling rates and calls for
advanced control and fabrication techniques. In this paper, we discuss
microwave generation based on a single QD coupled to two supercon-
ducting leads through tunnel barriers, usually thin insulating layers.
Such structures are particularly interesting due to the counter-intuitive
exploitation of a non-monotonic quasiparticle density of states for
amplification.

This idea was previously discussed in Ref. 30, where a co-planar-
waveguide resonator is coupled to the QD which is attached to super-
conducting and normal-metal leads. The authors also reported
negative damping in this system. However, no estimation of the damp-
ing rate was given, and no detailed description of the distinction
between photon generation and negative damping was provided. Such
distinction is important since it is possible to observe photon

generation not related to the negative damping rate, i.e., heating, as we
reported in Ref. 31. A similar system to that studied in this work has
been also experimentally realized in a single-electron turnstile study.32

The superconducting leads were formed from a superconducting wire
by electrochemical migration and a metallic nanoparticle deposited
from a solution was used as the QD. The system was equipped with a
bottom gate to tune the QD potential. More details about the fabrica-
tion can be found in Refs. 33 and 34. Realizations with nanowire-
based quantum dots are reported in Ref. 35; however, these systems
had no resonator coupled to the QD.

The paper is organized as follows. In Sec. II, we introduce a model
for a QCR coupled to a qubit and present the corresponding master
equation governing the dynamics of the qubit and the charge states of
the QCR. The master equation is solved in experimentally relevant
regimes where the charging energy of the QCR is small compared with
its electron temperature. We also study the case of a classical
alternating-current (ac) voltage control of the QCR as an alternative to
the pure dc bias (see also Ref. 36). In Sec. III, we modify our model
to treat the case of the dot QCR coupled to a resonator, analyze its suit-
ability for cooling a resonator, and study in detail the regime of micro-
wave signal generation. We summarize our findings in Sec. IV.
Appendixes A–C contain mathematical details relating to Sec. II.

II. QCR COUPLED TO A TWO-LEVEL SYSTEM

We consider a system in which a QCR is capacitively coupled to
a highly anharmonic superconducting qubit, as schematically depicted
in Fig. 1. The Hamiltonian modeling the system consists of four terms,

Ĥ tot ¼ Ĥ 0 þ Ĥ N þ Ĥ S þ Ĥ T ; (1)

which are defined in detail below. The core Hamiltonian Ĥ 0 accounts
for the QCR charging energy and the qubit. In the appropriate basis,7

it assumes the form

Ĥ 0 ¼
1

2CN
Q̂

2
N þ Ĥu; (2)

where CN ¼ Cc þ CRm is the total normal-metal capacitance with Cc

the coupling capacitance and CRm ¼ Cm þ Cj the junction capaci-
tance, and Q̂N denotes the charge on the normal-metal island. The
Hamiltonian Ĥu includes the charging, Josephson, and inductive
energies of the qubit. The normal-metal island Ĥ N and the supercon-
ducting lead Ĥ S Hamiltonians are given by

Ĥ N ¼
X

lr

el d̂
†

lrd̂ lr (3)

Ĥ S ¼
X

kr

ekĉ†
krĉkr þ

X
k

ð~Dkĉ†
k" ĉ

†
�k# þH:c:Þ; (4)

where l and k label the eigenstates for electrons with energy el and ek

in the normal metal and the superconductor, respectively, ĉkr and d̂ lr

are the corresponding annihilation operators with spin r, and
~Dk ¼ Dke�i2e

�h Vt is the gap parameter after a time-dependent unitary
transformation Û VðtÞ ¼ Pkr exp ði e

�h Vtĉ†
krĉkrÞ, with V the bias volt-

age and e the elementary charge. In the chosen basis, the tunneling
Hamiltonian Ĥ T captures also the QCR-qubit coupling,

Ĥ T ¼
X
klr

Tlkd̂
†

lrĉkre�ie
�h /̂N�Vtð Þe�ie

�ha/̂0 þH:c:; (5)
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where a ¼ Cc=CN ; /̂0 is the phase of the qubit node coupled to the
QCR, Tlk is the tunneling matrix element, and H.c. denotes the
Hermitian conjugate.

For a highly anharmonic qubit, we can project the total
Hamiltonian Ĥ tot onto the qubit subspace j0i and j1i. The core
Hamiltonian becomes

Ĥ 0 ¼
1

2CN
Q̂

2
N þ

�hx10

2
r̂z; (6)

where x10 is the qubit frequency and r̂z is the Pauli Z matrix. The
projected tunneling Hamiltonian reads

Ĥ T ¼
X
klr

Tlkd̂
†

lrĉkre�i e
�h /̂N�Vtð Þ

� Adr̂z þ Arðr̂þ þ r̂�Þ þ Af Î
� �

þH:c:; (7)

where r̂6 and Î are the other Pauli matrices and the coefficients,

Ad ¼ 1
2
ðM11 �M00Þ; Ar ¼ M10; Af ¼ 1

2
ðM11 þM00Þ; (8)

are given in terms of the matrix elements Mmm0 ¼ hm0je�ie
�ha/̂0 jmi. In

general, the matrix element can also depend on the charge of the
QCR, not only on the qubit states; we disregard this dependence for

simplicity and, for consistency, we neglect charge dispersion in the
qubit spectrum as well. For more on the matrix elements, we refer the
reader to Ref. 7, where explicit equations for the matrix elements of
transmon and C-shunted flux qubits were derived in the regime of
weak anharmonicity, jx21=x10 � 1j � 1, where x21 is the transition
frequency between the second and the first excited states. Note that
after this projection, we only consider tunneling events accompanied
by an exchange of either no photons or a single photon. This approach
is, in general, not appropriate for harmonic or weakly anharmonic
qubits, although it can be a good approximation for low-impedance
qubits or weak qubit-QCR coupling.7

A. Master equation

In the weak tunneling regime, the tunneling Hamiltonian Ĥ T

can be treated as a perturbation, and to calculate transition rates, a
Fermi golden rule approach can be used.2,7 To study the dynamics of
the QCR, we derive instead a master equation for the reduced density
matrix q̂ðqÞ. If not needed below, we do not explicitly express the
dependence on time t. More precisely, we assume the electronic
degrees of freedom in the normal island and superconducting lead to
be in thermal equilibrium at temperature TN, we take the trace of the
total density matrix q̂t over them and project the result onto the eigen-
states of the normal-metal charge jqi; q ¼ 0;61;62;…, with
Q̂N jqi ¼ eqjqi: q̂ðq; q0Þ ¼ hqjTrĉ ;d̂ q̂t jq0i, with Trĉ;d̂ the trace over
the superconducting (̂c) and normal (d̂) electron subsystems. Since we
derive the master equation within the Born–Markov and secular
approximations, the equations of motion for the diagonal part form a
closed set.37 Here, we focus only on the part diagonal in the charge
degree of freedom of the normal-metal island, q̂ðqÞ � q̂ðq; qÞ. Thus,
for each charge value, the reduced density matrix is a 2� 2 matrix that
can be decomposed in terms of Pauli matrices, qlðqÞ ¼ Tr½q̂ðqÞr̂l�
with l ¼ z;6; I and q�ðqÞ ¼ qþðqÞ�.

The equations of motion for the reduced density matrix follows
from the von Neumann equation:

d
dt

qzðqÞ ¼ �iTr Ĥ T ; q̂t

� �
r̂zjqihqj

� �
¼ �ihh r̂zjqihqj; Ĥ T

� �
ii; (9)

d
dt

qþðqÞ ¼ ix10qþðqÞ � iTr Ĥ T ; q̂t

� �
r̂þjqihqj

� �
¼ ix10qþðqÞ � ihh r̂þjqihqj; Ĥ T

� �
ii; (10)

d
dt

qIðqÞ ¼ �iTr Ĥ T ; q̂t

� �
Î jqihqj

� �
¼ �ihh Î jqihqj; Ĥ T

� �
ii; (11)

where hh � ii denotes averaging with respect to the total density matrix.
We can find the averages in the right-hand sides of Eqs. (9)–(11) by
solving the equations governing their temporal evolution within the
standard Born–Markov-secular approximation scheme. The proce-
dure is described in Appendix A of Ref. 38, and hence, here we present
only the final form of the master equation for the reduced density
matrix. For the diagonal part of the reduced density matrix, we have

d
dt

q0ðqÞ ¼ Cþq�1;00q0ðq� 1Þ þ C�qþ1;00q0ðqþ 1Þ

þCþq�1;10q1ðq� 1Þ þ C�qþ1;10q1ðqþ 1Þ
� ðCþq;01 þ C�q;01 þ Cþq;00 þ C�q;00Þq0ðqÞ; (12)

FIG. 1. (a) Effective circuit diagram for a quantum-circuit refrigerator (QCR) capaci-
tively coupled through the capacitance Cc to a two-level system consisting of a
capacitor, a Josephson junction, and an inductor. (b) Schematic diagram of the
density of states of the voltage biased superconductor–insulator–normal-
metal–insulator–superconductor (SINIS) junction. Photon-assisted electron tunnel-
ings are depicted by colorful arrows, such as a blue arrow depicts a tunneling event
which the SINIS junction absorbs a photon from the coupled two-level system. We
refer to the bias-voltage-controlled and capacitively coupled SINIS junction as the
quantum-circuit refrigerator (QCR).
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d
dt

q1ðqÞ ¼ Cþq�1;11q1ðq� 1Þ þ C�qþ1;11q1ðqþ 1Þ

þCþq�1;01q0ðq� 1Þ þ C�qþ1;01q0ðqþ 1Þ
� ðCþq;10 þ C�q;10 þ Cþq;11 þ C�q;11Þq1ðqÞ; (13)

where q0ðqÞ ¼ ½qIðqÞ � qzðqÞ�=2; q1ðqÞ ¼ ½qIðqÞ þ qzðqÞ�=2, and
the transition rates are

C6
q;mm0 ðVÞ ¼

RK

RT
M2

mm0

X
s¼61

FðseV þ �hxmm0 � E6
q Þ; (14)

where the superscript 6 denotes whether the initial charge q increases
or decreases by one electron charge. Here, RK ¼ h=e2 ¼ 25:813 kX is
the von Klitzing constant, RT is the tunneling resistance of the SIN
junction, M2

mm0 � jMmm0 j2 is used as a short-hand notation,
xmm ¼ 0; x01 ¼ �x10, and E6

q ¼ ENð162qÞ with EN ¼ e2=ð2CNÞ
the charging energy of the normal-metal island. The normalized rate
of single-electron tunneling is defined as

FðEÞ ¼ 1
h

ð
de nSðeÞf ðe� EÞ 1� f ðeÞ½ �; (15)

where f denotes the Fermi–Dirac distribution function at temperature
TN. The normalized superconductor density of states is of the form

nSðeÞ ¼ Re
eþ icDDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðeþ icDDÞ2 � D2
q
2
4

3
5

�������
�������; (16)

where cD is the Dynes parameter which accounts for a possible broad-
ening of density of states. The quantities introduced in Eqs. (14)–(16)
are analogous to those of Refs. 2 and 7.

The equation for the off-diagonal part of the reduced density
matrix qþðqÞ is

d
dt

qþðqÞ ¼ i x10 þ dxðqÞ½ �qþðqÞ

þRK

RT
jAf j2 � jAdj2
� 	 X

s;g¼6

FðseV þ Eg
qÞqþðqþ g1Þ

�RK

RT
jAf j2 þ jAdj2
� 	 X

s;g¼6

FðseV � Eg
qÞqþðqÞ

� 1
2

RK

RT
jArj2

X
s;g;�¼6

FðseV þ �x10 � Eg
qÞqþðqÞ; (17)

where the charge-dependent frequency shift

dxðqÞ ¼ PV
ð

dx
2p

1
x

Cþq;00ðxÞ þ C�q;00ðxÞ � Cþq;11ðxÞ � C�q;11ðxÞ
h i


þ 1
xþ x10

� 1
x� x10

� �
Cþq;10ðxÞ þ C�q;10ðxÞ
h i

; (18)

accounts for the second-order perturbation to the qubit energy levels
due to the interaction with the QCR; here, PV denotes the Cauchy
principal value and the rates C6

q;mm0ðxÞ are defined as in Eq. (14) but
with the replacement xmm0 ! x on the right side. As noted in Ref. 38,
such an expression for the frequency shift is not appropriate for weakly
anharmonic systems, like those considered in Ref. 7, since it does not

account for the level repulsion originating from higher levels. The
QCR-induced frequency shift for a harmonic system, a superconduct-
ing resonator, was measured recently.4 Since for typical experimental
parameters we have dxðqÞ � x10 (cf. Ref. 7), we henceforth do not
consider the frequency shift further.

The assumption that the charge degree of freedom can be treated
as a bath under the standard Born–Markov approximation can be
expressed mathematically by assuming that the components of the
density matrix can be factorized, qmðq; tÞ ¼ qmðtÞ�qðqÞ. Then one can
trace out the charge (i.e., sum over q) in Eqs. (12), (13), and (17) to
find

d
dt

q0 ¼ C10q1 � C01q0; (19)

d
dt

q1 ¼ C01q0 � C10q1; (20)

d
dt

qþ ¼ ix10qþ �
1
2

C10 þ C01ð Þqþ �
1
2
C00 1�M11

M00

� �2

qþ; (21)

with

Cmm0 ¼
X

q

Cþq;mm0 þ C�q;mm0

� �
�qðqÞ; (22)

denoting the charge-averaged transition rates. The last two terms in
Eq. (21) give the qubit decoherence rate 1=T2 in the usual combination
1=ð2T1Þ þ 1=Tu. The pure dephasing term / C00 is actually a lower
limit on the QCR-induced pure dephasing, appropriate if the qubit
charge dispersion can be neglected39 as assumed here. See also Ref. 7
for estimates that take the charge dispersion into account.

In Ref. 2, it was argued that one can expect factorization when
the quasi-elastic rates Cii are fast compared to the inelastic transitions
Cij, j 6¼ i, and that one can further simplify the expression for the rates
Cij in Eq. (22) by noting that subleading terms in the Taylor expansion
around q¼ 0 can be neglected when the charging energy EN is
the smallest energy scale in the problem (except for cDD),
Cmm0 	 Cþ0;mm0 þ C�0;mm0 . By solving the two above master equations,
we can reconsider if the factorization assumption holds, and also
when the approximation for the rates is viable.

B. Approximate solution to the master equation

Finding an analytical solution to the master equation, Eqs. (12),
(13), and (17), is clearly only possible in an approximate way. In fact,
the approximation just discussed for the rates Cmm0 hints at a possible
approach, and our first step is to expand the rates C6

q;mm0 as functions
of the charging energy EN. Concretely, for the quasi-elastic rates C6

q;mm
we find at first order,

C6
q;mm 	

RK

RT
M2

mm

X
s¼61

FðseVÞ 1þ bðeV ; 0Þð162qÞ½ �; (23)

where

bðE;xÞ ¼ EN
F0ðE þ �hxÞ þ F0ð�E þ �hxÞ
FðE þ �hxÞ þ Fð�E þ �hxÞ : (24)

A necessary condition for neglecting higher-order corrections (see also
Appendix A) is b� 1. Since from the identity
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F0ðEÞ ¼ 1
h

ð
de nSðeÞf ðe� EÞ 1� f ðeÞ½ � 1

kBTN

eðe�EÞ=ðkBTN Þ

1þ eðe�EÞ=ðkBTN Þ
;

(25)

it follows that F0ðEÞ < FðEÞ=ðkBTNÞ, we conclude that b < EN=
ðkBTNÞ and the necessary conditions becomes EN=ðkBTNÞ � 1. A
more careful analysis based on the equations presented in Appendix A
of Ref. 7 shows that the inequality is saturated [bðE; 0Þ 	 EN=ðkBTNÞ]
in the so-called thermal activation regime, Eco < E � D, with

Eco	D�kBTN ln

ffiffiffi
p
p

kBTN

cDD

 !
þ1

2
ln ln

ffiffiffi
p
p

kBTN

cDD

 !" #( )
: (26)

At lower energies, kBTN � E < Eco, we have bðE; 0Þ 	 EN=E, and for
E� kBTN we have bðE; 0Þ 	 EN=ð2kBTNÞ. At higher energies,
E
 D, we find again bðE; 0Þ 	 EN=E.

Expansions similar to that in Eq. (23) can also be performed for
the decay C6

q;10 and excitation C6
q;01 rates; they can be obtained by the

replacements FðseVÞ ! FðseV6�hx10Þ; bðeV ; 0Þ ! bðeV ;6x10Þ in
Eq. (23), with positive (negative) sign for the decay (excitation) rate.
Focusing on the case V¼ 0, we have bð0;x10Þ 	 EN=ð�hx10Þ, and
since qubits are usually operated at temperatures kBTN � �hx10 we
find that the decay rate has a relatively much weaker dependence
on the QCR charge than the elastic rate. Conversely, using the
identity Fð�EÞ ¼ e�E=ðkBTN ÞFðEÞ, we estimate bð0;�x10Þ
	 EN ½1=ðkBTNÞ � 1=ð�hx10Þ�, and hence the excitation rates has a
somewhat stronger dependence on charge in comparison with the
elastic rate. As discussed in Ref. 7, the useful QCR parameters are such
that at V¼ 0 we expect C6

q;01 � C6
q;10 � C6

q;mm. Therefore, we can
neglect the charge dependence of the decay and excitation rates: for
the decay rate, because its charge dependence is weaker by the small
factor kBTN=ð�hx10Þ; for the excitation rate because the rate itself is
already small compared to the other rates. Although we have consid-
ered the validity of this approximations only at V¼ 0, we can use
them also at finite bias thanks to the inequality b < EN=ðkBTNÞ; we
caution, however, that there are combinations of temperature TN and
bias V for which C10 
 C00,7 in which cases the results derived below
may not be quantitatively correct.

Within the introduced approximations, the master equation
assumes the form

_q0ðqÞ ¼ ð1� gÞf 1þ bð1þ 2qÞ½ �q0ðqþ 1Þ
þ 1þ bð1� 2qÞ½ �q0ðq� 1Þ � 2 1� b½ �q0ðqÞg

þ 1
2
Cd q1ðqþ 1Þ þ q1ðq� 1Þ½ � � Cuq0ðqÞ; (27)

_q1ðqÞ ¼ ð1þ gÞf 1þ bð1þ 2qÞ½ �q1ðqþ 1Þ
þ 1þ bð1� 2qÞ½ �q1ðq� 1Þ � 2 1� b½ �q1ðqÞg

þ 1
2
Cu q0ðqþ 1Þ þ q0ðq� 1Þ½ � � Cdq1ðqÞ; (28)

_qþðqÞ ¼ i~x10qþðqÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
f 1þ bð1þ 2qÞ½ �qþðqþ 1Þ

þ 1þ bð1� 2qÞ½ �qþðq� 1Þg

�2 1� b½ �qþðqÞ �
1
2

Cu þ Cdð ÞqþðqÞ; (29)

where we use the short-hand notation b ¼ bðeV; 0Þ and we have
rescaled the time variable by half of the average elastic transition rate,

t ! Celt ; CelðeVÞ ¼ RK

RT

M2
00 þM2

11

2

X
s¼61

FðseVÞ: (30)

The parameter g accounts for the difference in the elastic matrix ele-
ments, g ¼ ðM2

11 �M2
00Þ=ðM2

11 þM2
00Þ, and is usually small g� 1.

We will neglect g hereinafter; it can be treated perturbatively (see the
Appendix B). The up/down rates are the normalized excitation and
decay rates: Cu ¼ ðCþq;01 þ C�q;01Þ=Cel and Cd ¼ ðCþq;10 þ C�q;10Þ=Cel,
where in our approximation the rates C6

q;mm0 are calculated at zeroth
order in EN=ðkBTNÞ and are, therefore, independent of charge q.
Similarly, ~x10 ¼ x10=Cel is the normalized qubit frequency.

Focusing first on the coupled equations (27) and (28), we look
for solutions decaying exponentially in time, qmjðq; tÞ ¼ e�kj tqmjðqÞ.
We find that further progress can be made by distinguishing
“charge-type” solutions from “qubit-type” solution; linear combina-
tions of solutions of the first type are such that the qubit polarization is
time-independent, which explains the chosen nomenclature. The
charge-type solutions can be found by making the Ansatz,

q0jðqÞ ¼
Cd

Cu þ Cd
�qjðqÞ þ d�q jðqÞ
� �

;

q1jðqÞ ¼
Cu

Cu þ Cd
�qjðqÞ � d�q jðqÞ
� �

:

(31)

As discussed in Appendix B, assuming c ¼ Cd � Cu � 1 implies that
d�qj is a small correction that can be neglected; here, we note that this
condition can be satisfied not only when the up/down rates are similar,
but also when they are both small compared to the elastic rates. Under
this assumption, the equation for �q j is

�kj�qj ¼ 1þ bþ �C=2
� 	

�q jðqþ 1Þ þ �q jðq� 1Þ � 2�qjðqÞ
� �

þ2bq �qjðqþ 1Þ � �qjðq� 1Þ
� �

þ 4b�qjðqÞ; (32)

with �C ¼ ðCu þ CdÞ=2. To find an approximate solution to this finite
difference equation, we convert it into a differential equation by treat-
ing q as a continuous variable and Taylor expanding �qðq 6 1Þ up to
the second order,

�qjðq 6 1Þ 	 �q jðqÞ6 @q�q jðqÞ þ
1
2
@2

q �qjðqÞ: (33)

After the identification of the derivative with the momentum operator
p ¼ �i@q conjugate to q, and the canonical transformation
p ¼ ~p þ 2ibq=ð1þ bþ �C=2Þ, the equation assumes the form of the
time-independent Schr€odinger equation for an harmonic oscillator,

kj�qj ¼ 1þ bþ �C=2
� 	

~p2 þ 4b2

1þ bþ �C=2
q2 � 2b

" #
�qj: (34)

Therefore, we can immediately find the decay rates as
kj ¼ 4bj; j ¼ 0; 1; 2;…. For the stationary state j¼ 0, the distribution
function is Gaussian,

�q0ðqÞ ¼
1
Z

e�2bq2
; (35)

where Z is a normalization constant (see also Appendix B); by
comparing this expression to the standard form e�H =ðkBTQÞ=Z with
H ¼ EN q2 the normal-island charging energy and TQ an effective
temperature for the charge, we find kBTQ ¼ EN=ð2bÞ; in equilibrium,
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bðeV ¼ 0Þ ¼ EN=ð2kBTNÞ and hence TQ¼TN. We have also verified
that this definition reproduces the numerical results for finite bias pre-
sented in the Appendix of Ref. 2.

For the qubit-type modes, we start from the Ansatz,

q0jðqÞ ¼ ~qjðqÞ þ d~q jðqÞ; q1jðqÞ ¼ �~q jðqÞ þ d~qjðqÞ: (36)

Assuming again c� 1, we neglect d~qj, and the equation for ~qj is thus
given by

�kj~q j ¼ 1þ b� �C=2
� 	

~qjðqþ 1Þ þ ~qjðq� 1Þ � 2~qjðqÞ
� �

þ2bq �q jðqþ 1Þ � �q jðq� 1Þ
� �

þ 4b� 2�Cð Þ�q jðqÞ: (37)

Proceeding as described above (Taylor expansion plus canonical trans-
formation, leading to harmonic oscillator equation), we arrive at
kj ¼ 4bjþ Cu þ Cd . Therefore, for each charge-type mode there exist
a corresponding qubit-type mode that decays faster by the rate
2�C ¼ Cu þ Cd . However, the charge dependencies of the modes
are identical, ~q jðqÞ ¼ �qjðqÞ, under the condition �C � 1 (see
Appendix B).

Equation (29) can also be solved in a similar manner, and looking
for solutions of the form qþðtÞ ¼ eði~x10�kjÞtqþjðqÞ, we find
kj ¼ 4bjþ �C, with the last terms being as usual half the (excess) decay
of the qubit-type modes. Here, the assumption c� 1 is not needed;
note that by neglecting g, we are neglecting a small pure dephasing
contribution analogous to that discussed below Eq. (22).

Within the approximations used, the above results imply that at
leading order the full reduced density matrix q̂ can be written as

q̂ðq; tÞ ¼ q2ðtÞ
X
j¼0

aj�qjðqÞe�4bjCel t ; (38)

where q2ðtÞ is a 2� 2 matrix describing the usual temporal evolution
of the qubit over the time scale defined by T1 ¼ 1=ð2�CÞ, and the coef-
ficients aj are determined by the initial conditions (together with nor-
malization); here, we have restored dimensionful time units by
undoing the rescaling in Eq. (30). The relaxation of the charge takes
place over the time scale sQ ¼ 1=CQ where

CQ Vð Þ ¼ 4b eV; 0ð ÞCel eVð Þ: (39)

The time sQ represents the non-equilibrium generalization of the
QCR’s RC-time; indeed, at equilibrium (V¼ 0) and assuming
M2

00 þM2
11 ’ 2 (cf. Table I) we find sQ ¼ RT CN=ð2cDÞ, with the

Dynes parameter and the factor 2 accounting for the high subgap
resistance of the two contacts. For sQ � T1, we can neglect all terms
with j> 0, and we arrive at the factorization discussed above Eq. (19).
We note that since b� 1, this requirement is more stringent than
simply asking for the elastic rates to be faster than the inelastic ones
(1=Cel < T1). This inequality is satisfied for the typical parameters
considered in Ref. 7, but, in general, the condition sQ � T1 is violated.
However, we now argue that this does not affect the theoretical esti-
mates for the rates of the previous works.2,7

Let us assume that to begin with, we wait for a sufficiently long
time t 
 sQ, so that we start from the equilibrium state at V¼ 0.
Manipulation of the qubit, e.g., by microwave drives, affects the qubit
part q2 of the density matrix, but not the charge part, which therefore
remains �q0ðqÞ. When the qubit needs to be reset, the bias voltage is
quickly increased to the operating point Von at which the qubit
dynamics is dominated by the QCR-induced decay rate (at V¼ 0 non-
QCR mechanism are dominating, so that the QCR does not affect the
qubit). The value of Von depends on device parameters and also on the
temperature regime (high or low, as defined in Ref. 7); for our pur-
poses, one only needs to know that in the high-temperature thermal
activation case bðeVon; 0Þ 	 EN=ðkBTNÞ and in the low-temperature
one bðeVon; 0Þ 	 EN=½2ð�hx10 þ Eco � DÞ�. With these expression,
one can check that at Von the condition CQðVonÞ � Con

10 holds, see
Fig. 2. Since the QCR is kept at Von for a time of order 1=Con

10 , the
charge distribution does not change much over that time, and the fac-
torized form of the density matrix, q̂ðq; tÞ ¼ q̂2ðtÞ�q0ðqÞ can be used
at all times, where the charge-dependent factor is always the one in
equilibrium. Calculating the charge-averaged transition rates as
defined in Eq. (22), we remind that because of the symmetry of �q0ðqÞ,
the corrections due to the finite charging energy are in fact decreased
by the factor b2 	 ½EN=ðkBTNÞ�2.

In the above considerations, we have explicitly considered only
the qubit decoherence caused by the QCR itself. However, the working
principle of the QCR assumes that at zero bias other mechanisms, not
the QCR, are the major source of decoherence. Such mechanisms can

TABLE I. Parameter values used in numerical calculations. The matrix elements M2
mm0

are evaluated numerically (see Ref. 7) for an offset-charge-sensitive transmon with
EJ=EC ¼ 20, cf., Ref. 40; with this choice, the qubit has higher anharmonicity than
for typically larger EJ=EC ratio and also higher matrix element M01 at given a. To
counteract this latter increase, we choose a lower coupling capacitance Cc (and
hence total normal-metal capacitance CN) than in Ref. 7, so that the QCR-induced
qubit decay rate at zero bias is smaller than the bare qubit relaxation rate.

Cc CN RT cD D

QCR 5 fF 15 fF 50 kX 10�5 200 leV

x10=ð2pÞ M2
00 M2

11 M2
10

Qubit 5 GHz 0.99 0.97 0.01

FIG. 2. Charge relaxation rate CQ of Eq. (39) (solid lines) and QCR-induced qubit
decay rate C10 (dashed lines) as functions of normalized bias voltage eV=D for
different normal-metal electron temperatures kBTN=D ¼ 0:043 (red) and
kBTN=D ¼ 0:0043 (blue). The black dashed horizontal line gives the qubit bare
relaxation rate 1=ð250 lsÞ, see, e.g., Ref. 40. The red (blue) vertical dotted line
marks the on-voltage eVon ¼ D� �hx10 (eVon ¼ Eco þ �hx10) for kBTN=D
¼ 0:043 (kBTN=D ¼ 0:0043). Parameters are given in Table I.
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be included in the master equation and, as discussed in Appendix C,
only affect the factor q2ðtÞ in Eq. (38), so that the qubit decoherence
rates are given by the sum of the rates due to the QCR and the other
mechanisms. Next, we use the factorized form to analyze an alternative
qubit reset protocol.

C. AC control of the QCR

Above and in the previous works,2,7 we have only considered the
QCR to be controlled by a dc voltage bias V. We employed V¼ 0 for
the off-state, in which the QCR does not affect the qubit, and a voltage
of roughly D=e for the on-state, see Fig. 2. In this section, we study
another way to operate the QCR. Instead of tuning the dc bias back
and forth, we fix it at eVoff ¼ Eco � �hx10, the bias at which the QCR-
induced qubit relaxation rate begins to increase exponentially with the
bias voltage. To turn on the QCR, we add an ac voltage drive of fre-
quency XAC and amplitude VAC such that the total time-dependent
voltage is

VðtÞ ¼ Voff þ VAC cos XACt: (40)

This kind of rf controlled QCR was coined in Ref. 36 as rf QCR and it
was shown theoretically and experimentally that one can change the
QCR-induced dissipation rate by orders of magnitude by changing the
rf drive power. However, Ref. 36 treated the effect quantum mechani-
cally by including the drive mode into the core Hamiltonian of the
circuit and using the theory of photon-assisted tunneling of the two-
mode system to extract the effective damping rate of the primary
mode of interest. In contrast, we consider a classical drive voltage lead-
ing to a much more convenient treatment of the problem than that
developed in Ref. 36.

Consequently, in our case, the voltage-dependent phase factor in
the tunneling Hamiltonian Ĥ T , Eq. (7), becomes

exp i
e
�h

ðt

0
ðVoff þ VAC cos XACt0Þdt0

" #

¼ exp i
e
�h

Voff t þ VAC

XAC
sin XACt

� �� �
: (41)

Following the approach of Ref. 41, we use the Jacobi–Anger expansion
to rewrite the phase factor of Eq. (41) as

exp i
e
�h

Voff t þ VAC

XAC
sin XACt

� �� �

¼ J0
eVAC

�hXAC

� �
eieVoff t=�h þ

X1
k¼1

Jk
eVAC

�hXAC

� �

� eiðkXACþeVoff =�hÞt þ ð�1Þke�iðkXAC�eVoff =�hÞt
h i

; (42)

where Jk are Bessel functions of the first kind of order k. Using this
expansion, we can derive the master equation following similar steps
as in Sec. II A. Consequently, the charge-dependent normalized rates
FðseV þ �hxmm0 � E6

q Þ are multiplied by the factor fJ0½eVAC=
ð�hXACÞ�g2, and we have additional terms of the form fJk½eVAC=
ð�hXACÞ�g2FðseV þ k�hXAC þ �hxmm0 � E6

q Þ, in which the ac drive
introduces an energy shift k�hXAC. Owing to such shifts, the validity of
the secular approximation calls for more stringent conditions to be
met than in the absence of shifts, but here we simply assume these

conditions to be fulfilled, i.e., that there are no significant effective
degeneracies introduced by the drive.

As discussed in Sec. II B, to calculate the transition rates we can
average over the charge distribution; the resulting qubit relaxation
rate, including the ac drive, is given by

C10 	
2RK

RT
M2

10

X
s¼61

X1
k¼�1

n
fJk eVAC=ð�hXACÞ½ �g2

� FðseVoff þ k�hXAC þ �hx10Þ
o
: (43)

For the qubit excitation rate, C01;þ�hx10 is replaced with ��hx10 on
the right side of Eq. (43). This result resembles that in Ref. 36, where
the photon-assisted tunneling processes involving k photons in the
drive mode of angular frequency XAC effectively change the bias volt-
age by k�hXAC as can be also interpreted from Eq. (43). As in Ref. 7, we
aim for the fastest possible qubit decay with the highest possible fidel-
ity. Therefore, we consider here the reset infidelity 1�F r where,
assuming that the QCR-induced excitation is the main contributor to
the excitation rate, the fidelity is defined by

F r ¼ 1� C01

C10
; (44)

and the reset time

T10% ¼
ln ð10Þ
C10

: (45)

In the absence of the ac drive, VAC ¼ 0, we have J0ð0Þ ¼ 1 and
Jkð0Þ ¼ 0 for k>0. Turning on the drive with small amplitude
x ¼ eVAC=ð�hXACÞ � 1; J0ðxÞ decreases quadratically in x whereas
J1ðxÞ increases linearly, and JkðxÞ / xk are negligible for k>1; since
by definition the normalized rate F(E) entering the decay rate increases
exponentially for E above the maximal off-voltage Voff , we have
FðeVoff þ �hXAC þ �hx10Þ 
 FðeVoff þ �hx10Þ, showing that indeed
the QCR can now quickly relax the qubit. On the other hand, the nor-
malized rate entering the excitation rate increases exponentially only if
eVoff þ �hXAC � �hx10 > Eco; therefore, for XAC < 2x10 we have a
regime where the relaxation (excitation) rate is large (small), giving
low infidelity and fast reset. As eVAC=ð�hXACÞ is further increased,
contributions from higher orders k>1 also become relevant.

As a concrete example, we calculate numerically infidelity and
reset time as functions of the ratio eVAC=ð�hXACÞ and of the ac drive
frequency XAC for the low-temperature case kBTN=D ¼ 0:0043, using
the parameters in Table I; the results are presented in Fig. 3. Based on
the discussion above, we restrict the ac frequency to XAC < 2x10

¼ 2p� 10 GHz. At a small but finite value of eVAC=ð�hXACÞ, for
example, eVAC=ð�hXACÞ ¼ 0:5, contributions from orders up to k¼ 2
are relevant; we find that the infidelity is lower at XAC=ð2pÞ 	 5 GHz
than at 10 GHz, with an exponential decrease in between when reduc-
ing the frequency as the condition eVoff þ 2�hXAC � �hx10 > Eco is
not satisfied anymore and hence FðeVoff þ 2�hXAC � �hx10Þ does not
contribute significantly to C01. By further increasing the ratio
eVAC=ð�hXACÞ, higher-order terms with k> 2 contribute more and
more to the quantities of interest, giving rise to the step-like structures
evident in panels (a) and (c); for our parameters, we find a nearly opti-
mal operating point at XAC=ð2pÞ ¼ 1:5 GHz and eVAC=ð�hXACÞ
¼ 4:5, where we achieve a reset infidelity of 7:8� 10�5 within T10% 	
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40 ns. These results are comparable to those attainable via dc control
with equal QCR parameter values.

A potential drawback of the ac control may arise in real devices due
to the unavoidable presence of stray capacitive coupling between the drive
and the qubit. Indeed, in the dc case such a coupling may lead to a slight
change in the qubit frequency due to the charge dispersion [which we
have neglected above, see text after Eq. (8)], which can be compensated by
adjusting the dc bias to the correct optimal point. In the ac case, on the
other hand, if the drive frequency is close to the qubit frequency, it could
potentially rotate the qubit away from the ground state and hence decrease
the reset fidelity. However, given that the unwanted stray coupling will be
much weaker than the engineered QCR-qubit coupling and that, for the
typical parameters considered, the optimal driving frequency XAC=2p
� 1:5 GHz is far detuned from the qubit frequency x10=2p � 5 GHz,
we do not expect a significant impact on the fidelity. Therefore, the ac
drive provides a viable alternative way to operate the QCR.

III. QUANTUM DOT QCR COUPLED TO A RESONATOR

In the QCR design studied thus far, the normal-metal island is so
large that the charging energy is small compared to temperature,
EN � kBTN . This smallness slows down the dynamics of the charge but
does not affect the QCR ability to, e.g., reset a qubit. In this section, we
consider the opposite regime of large charging energy and study the sys-
tem in which the normal-metal island is replaced with a quantum dot.
The charging energy of the quantum dot is much larger than that of the
normal-metal island because of its small size; in fact, we assume that both
the single-particle level spacing of the dot de and the charging energy EN

are large compared to the gap D. As a result, only three charge states, the
empty state j0i and the spin up j"i and down j#i states, are relevant.

The working principle of such a dot QCR is depicted in Fig. 4,
which should be contrasted to Fig. 1(b). We will consider here the dot
QCR connected to a harmonic oscillator. The effective circuit diagram

is thus identical to that in Fig. 1(a) but without the Josephson junction
(EJ¼ 0). Similarly to Sec. II, we will derive the master equation for the
diagonal part of the reduced density matrix qlðmÞ, where l ¼ 0; "; #
denotes one of the three dot states and m ¼ 0; 1; 2;… the number
state in the oscillator.

A. Model

The Hamiltonian modeling the system can be cast in a form simi-
lar to Eq. (1),

Ĥ tot ¼ Ĥ 0 þ Ĥ QD þ Ĥ S þ Ĥ T ; (46)

with

Ĥ 0 ¼
e2

2CQD
n̂ � nbð Þ2 þ Q̂

2
0

2C
þ Û

2
0

2L

¼ EN n̂ � nbð Þ2 þ �hxr mþ 1
2

� �
jmihmj ; (47)

where CQD ¼ Cc þ CRm þ Cg ¼ Cc þ Cm þ Cj þ Cg is the total
quantum dot capacitance, nb ¼ Cg Vg=e is the dimensionless offset
charge, n̂ ¼ d̂

†

"d̂" þ d̂
†

#d̂# is the dot number operator, xr ¼ 1=
ffiffiffiffiffiffi
LC
p

is the resonator frequency, and jmi are resonator number states. The
dot charging energy being included in Ĥ 0, the quantum dot
Hamiltonian Ĥ QD is simply

Ĥ QD ¼ eQD

X
r¼";#

d̂
†

rd̂r; (48)

where the dot level energy eQD is measured with respect to the equilib-
rium chemical potential. Since in the following we consider only sym-
metric bias for the two junctions with respect to the dot level, we may
set eQD ¼ 0. The tunneling Hamiltonian Ĥ T reads

FIG. 3. (a) Infidelity 1�F r of Eq. (44)
and (c) reset time T10% of Eq. (45) as
functions of the ac drive frequency
XAC=ð2pÞ and the ratio between ampli-
tude VAC and frequency XAC for the low-
temperature case TN=D ¼ 0:0043. We
set the off voltage to eVoff ¼ Eco � �hx10
with Eco of Eq. (26). We sum the harmon-
ics from k¼�10 to k¼ 10 to arrive at
numerically accurate results. Solid lines in
panels (b) and (d) show line traces from
panels (a) and (c), respectively, as indi-
cated by the red vertical lines at
XAC=ð2pÞ ¼ 1:5 GHz. We show also
traces for XAC=ð2pÞ ¼ 1 GHz (dashed
lines) and XAC=ð2pÞ ¼ 2 GHz (dotted
lines) for comparison. The parameter val-
ues are given in Table I.
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Ĥ T ¼
X

kr

Tkd̂
†

rĉkreie
�hVte�ie

�ha/0 þH:c:; (49)

with a ¼ Cc=CQD, and the superconducting leads Hamiltonian Ĥ S is
as in Sec. II. We assume that the dot and the leads are weakly coupled,
so that the normal-state elastic tunneling rate cL is small compared to
the gap, cL � D, and therefore, Andreev processes can be
neglected.42,43 The energy difference between the empty and the one-
electron charge states is expressed as ~EQD ¼ ENð1� 2nbÞ. When the
offset charge is nb ¼ 0:5, the three charge states have equal energies;
this is the charge degeneracy point at which Coulomb blockade is
lifted in the normal state.44

Using the approach outlined in Sec. II A, we find the master
equation (also known as Pauli master equation or rate equations) for
the occupation probability qlðmÞ of the resonator state m conditioned
on the dot state l,

_qrðmÞ ¼
cL

de

X
m0;s¼6

M2
mm0 q0ðm0ÞFdðseV � ~EQD � �hxr lÞ
�

�qrðmÞFdðseV þ ~EQD þ �hxrlÞ
�
; (50)

_q0ðmÞ ¼
cL

de

X
m0;s¼6

M2
mm0 q"ðm0ÞFdðseV þ ~EQD � �hxr lÞ
h

þq#ðm
0ÞFdðseV þ ~EQD � �hxr lÞ

�2q0ðmÞFdðseV � ~EQD þ �hxr lÞ
i
; (51)

where r ¼"; # and l ¼ m�m0. We assume that the
superconductor–insulator–quantum-dot and the quantum-
dot–insulator–superconductor junctions are identical. The prefactor
cL=de with the level spacing de in the denominator is defined as to
coincide with RK=2RT [cf., Eqs. (12)–(14)] in the regime of level spac-
ing being the smallest energy scale. The normalized rate of single-
electron tunneling is

FdðEÞ ¼
1
h

nSðEÞ 1� f ðEÞ½ �de; (52)

where we assume the quasiparticle excitations of the superconductor
to be at thermal equilibrium with temperature TS; as we will see, the
relevant energies are of the order of the gap, so that for usual operating
temperatures TS � D, we can neglect the distribution function term,
since f ðEÞ � 1. Note that because the quantum dots has well-
separated energy levels, the normalized rate in Eq. (52) probes directly
the superconducting density of states and thus displays a sharp peak at
E ’ D 1þ cD=

ffiffiffi
3
p� 	

, in contrast to the smooth behavior of F(E) in Eq.
(15). The matrix elements for the harmonic oscillator can be given
explicitly in terms of Laguerre polynomials2 as functions of the dimen-
sionless impedance normalized by the coupling strength,45

f ¼ pa2 Zr

RK
; Zr ¼

ffiffiffiffi
L
C

r
: (53)

For later use, we give here only approximate equations for M2
m�1;m

valid at f� 1,

M2
m�1;m 	

mfð1�mfÞ; mf� 1

sin2 2
ffiffiffiffiffiffi
mf
p

� p
4
þ 9

48
ffiffiffiffiffiffi
mf
p

� �
p
ffiffiffiffiffiffi
mf
p ; mf
 1:

8>>><
>>>:

(54)

Note that in the regime of interest the matrix elements are approxi-
mately functions of the product mf, but, in general, they depend on
both m and f.

In practical devices, and/or for measurement purposes, the reso-
nator is usually coupled to the environment via a transmission line.
This coupling introduces an additional loss mechanism, which we
model by adding the following terms to the right sides of Eqs.
(50)–(51),

ctr ðmþ 1Þqlðmþ 1Þ �mqlðmÞ
� �

; (55)

where l ¼"; #; 0 and ctr characterize the strength of the coupling.
The latter can be related to the transmission line impedance, resonator
impedance, and coupling capacitor—see Ref. 2 for details. For simplic-
ity, we assumed a low-temperature environment compared with the
resonator frequency, so that the thermal excitations of the resonator
can be neglected. We show next that the dot QCR can be used to more
quickly empty the resonator from photons in comparison with simply
waiting for them to leak into the transmission line. This operation
regime is the identical to that for refrigeration and qubit reset.2,7

In Sec. III C, a different regime will be discussed in which the dot QCR
can be used to pump photons into the resonator; interestingly, non-
classical states can be generated in the resonator when pumping by the
QCR is balanced by the loss due to the transmission line.

Before proceeding, we note that because of the indistinguishabil-
ity between spin up and down states in our system (which could be
lifted by magnetic field or ferromagnetic junctions, for example), we
can simplify the master equation by considering the combinations
q6ðmÞ ¼ q"ðmÞ6 q#ðmÞ. The equation for q�

_q�ðmÞ ¼ �
cL

de

X
m0 ;s¼6

M2
mm0q�ðmÞFdðseV þ ~EQD þ �hxrlÞ

þ ctr ðmþ 1Þq�ðmþ 1Þ �mq�ðmÞ½ �; (56)

decouples from those for qþ and q0 and implies the decay of any spin
imbalance; we will not consider this equation any further. The

FIG. 4. Schematic diagram of the density of states of the voltage biased supercon-
ductor–insulator–quantum dot–insulator–superconductor (SIQDIS) junction. The
energy difference between the empty and one-electron states of the quantum dot,
which can be tuned by the gate voltage Vg, is zero in this figure. Photon-assisted
electron tunnelings are depicted by colorful arrows: a blue arrow depicts a tunneling
event in which the SIQDIS junction absorbs a photon from the resonator, and a red
arrow an event where a photon is emitted into the resonator. Notice that in the
depicted biasing regime, the process where a photon is emitted into the resonator
(red arrow) is more likely due to the peaked density of states in the superconduct-
ing leads. We refer to the bias-voltage-controlled and capacitively coupled SIQDIS
junction as the dot QCR.
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equation for qþ is obtained from Eq. (50) with Eq. (55) added to the
right side and with the replacements r!þ and q0 ! 2q0.

B. Regime of positive damping

To estimate the rate at which the number of photons in the reso-
nator decreases when the dot QCR is active, we can restrict our atten-
tion to the simplest situation in which there is initially only one
photon. Since the goal is to make the decay much faster, in our calcula-
tion we can neglect the effect of the transmission line. Restricting the
possible resonator states to m ¼ 0; 1, we write the master equation in
a matrix form

_~q ¼ M~q; (57)

where

~q ¼

qþð0Þ
qþð1Þ
q0ð0Þ
q0ð1Þ

0
BBBB@

1
CCCCA; M ¼

�Aþ 2B�

Bþ �2A�

 !
; (58)

with

A6 ¼
C6

00 þ C6
01 0

0 C6
11 þ C6

10

 !
; B6 ¼

C6
00 C6

10

C6
01 C6

11

 !
; (59)

and the transition rates are defined by

C6
mm0 ¼

cL

de
M2

mm0

X
s¼6

FdðseV 6 ~EQD þ �hxr lÞ: (60)

Now let us first consider the charge-degeneracy point where
~EQD ¼ 0. For cooling, we want the excitation rates C6

01 to be much
smaller than the decay rates; this can be achieved by requiring
eV þ �hxr > D, so that the decay rate is large due to the finite super-
conducting density of states, and at the same time eV � �hxr < D, so
that the excitation rate is small due to the smallness of the subgap
density of states; this defines a voltage window for cooling
D� �hxr < eV < Dþ �hxr . We can therefore neglect the excitation
rates. Assuming low resonator impedance Zr ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
� RK [which

implies f� 1 and hence M2
00 	 M2

11 (Ref. 2)] the dynamical matrix
depends only on two parameters,

~M ¼

�C0
00 0 2C0

00 2C0
10

0 �C0
00 � C0

10 0 2C0
00

C0
00 C0

10 �2C0
00 0

0 C0
00 0 �2C0

00 � 2C0
10

0
BBBB@

1
CCCCA; (61)

where C0
mm0 are transition rates for ~EQD ¼ 0. The eigenvalues of ~M

are 0,�3C0
00, and

E6 ¼ �
3
2
C0

00 �
3
2
C0

10 6
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðC0

00Þ
2 þ 2C0

00C
0
10 þ ðC0

10Þ
2

q
: (62)

The eigenstates corresponding to the two eigenvalues independent
of C0

10; ð2=3; 0; 1=3; 0ÞT and ð1=2; 0;�1=2; 0ÞT , represent, respec-
tively, the steady state with no photons in the resonator and equal occu-
pation probability of the three degenerate dot states and the fast decay

of charge disequilibrium within the no-photon subspace. When C0
10

� C0
00, the other two eigenvalues are approximately Eþ ’ �4C0

10=3
and E� ’ �3C0

00; the latter rate gives again the fast decay of charge dis-
equilibrium, albeit in the one-photon subspace. The Eþ rate is the decay
of the one-photon state to no photons and can be obtained by averaging
over the occupation probabilities of the dot charge states (probabilities
2/3 and 1/3 for statesþ and 0) the decay rates from 1 to 0 photons given
the charge state (C0

10 and 2C0
10, respectively). Similar to the case of a

large normal island, we find that for fast elastic transitions, we can effec-
tively treat the charge states as a bath, even though at most one electron
can occupy the dot, as the charge steady state is reached quickly, inde-
pendent of the photon number. In contrast, when C0

00 ! 0, the eigen-
values E6;�C0

10 and �2C0
10 coincide with the decay rates of the one

electron and the empty states, respectively, showing that the decay rate
of the one-photon state depends on the initial state of the dot.

We show in Fig. 5(a) the elastic C0
00, decay C0

10, and excitation C0
01

rates as function of bias in the relevant cooling window for realistic device
parameters, see Table II. Interestingly, due to the peak in the superconduct-
ing density of states, there is a region of voltage around eV � D� �hxr in
which the decay rate is larger than the elastic one, while at higher and lower
voltages the opposite holds. Note that even at the peak, the predicted relaxa-
tion rate is smaller than that estimated in experiment with a metallic-island
QCR.1,2 Moreover, at a fixed bias voltage V the transition rates can strongly
depend on the deviation from charge degeneracy, that is, on the value of
~EQD 6¼ 0. This is the case for the relaxation rates near eV 	 D� �hxr , see
Fig. 5(b) (cf., also the end of Subsection III C). The relaxation rates are
weakly dependent on ~EQD at higher bias eV � D, but this decrease in sen-
sitivity to ~EQD, and hence to charge noise, comes at the cost of a further
reduction in the attainable relaxation rate. We therefore conclude that use
of the dot QCR for cooling is not advantageous. We focus next on a regime
not possible with the normal-island QCR.

C. Regime of negative damping: Analytical approach

In Subsection III B, we have defined the bias voltage range for
cooling jeV � Dj < �hxr at charge degeneracy ~EQD ¼ 0. As the volt-
age increases toward the upper limit of this range, the excitation rate
starts to increase [cf., Fig. 5(a)] and in fact, because of the non-
monotonicity of the normalized rate Fd of Eq. (52), around the peak at

eVp ’ Dþ �hxr þ cDD=
ffiffiffi
3
p

; (63)

the excitation rate is, for typical parameters, much larger than the decay
rate, C0

01=C
0
10 	 ð33=4=4

ffiffiffiffiffi
cD
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�hxr=D

p

 1. This means that the

dot QCR can be used to pump photons into the resonator at a rate faster
than that at which it absorbs photons from the resonator. Such a pump-
ing cannot be performed with the normal-island QCR, since its normal-
ized rate F [Eq. (15)] is a monotonic function: the peak in the

TABLE II. Typical parameter values for a dot QCR coupled to a resonator. The quantum
dot parameters are obtained from Ref. 32, where a large charging energy (>50 meV)
is reported. The resonator parameters are as in Ref. 4.

de cL cD D

Dot QCR 1 meV 2 leV 10�4 200 leV
xr=ð2pÞ Zr

Resonator 4.67 GHz 35 X
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superconducting density of states is counteracted by the integration over
the flat normal-metal density of states, see Figs. 1 and 4.

For a quantitative understanding of the pumping regime, we
return to the master equations (50) and (51) which, focusing on the
case ~EQD ¼ 0, we rewrite in terms of qðmÞ ¼ qþðmÞ þ q0ðmÞ and
qzðmÞ ¼ qþðmÞ � 2q0ðmÞ; the former represents the probability of
having m photons in the resonator, as the dot states are summed over.
We now need to retain the loss into the transmission line since, as dis-
cussed above, in the pumping regime the QCR-induced excitation rate
is larger than the decay rate. The equations are then

_qðmÞ ¼ cL

de

X
m0 ;s¼61

M2
mm0

4
3
qðm0ÞFdðseV � �hxr lÞ

�

� 4
3
qðmÞFdðseV þ �hxrlÞ � 1

3
qzðm0ÞFdðseV � �hxr lÞ

þ 1
3
qzðmÞFdðseV þ �hxr lÞ

�
þctr ðmþ 1Þqðmþ 1Þ �mqðmÞ½ �; (64)

_qz ðmÞ ¼
cL

de

X
m0;s¼61

M2
mm0 �

4
3
qzðm0ÞFdðseV � �hxrlÞ

�

� 5
3
qzðmÞFdðseV þ �hxr lÞ � 2

3
qðm0ÞFdðseV � �hxrlÞ

þ 2
3
qðmÞFdðseV þ �hxr lÞ

�
þctr ðmþ 1Þqzðmþ 1Þ �mqzðmÞ½ �: (65)

In looking for an approximate solution, we remind that near the volt-
age bias point Vp of Eq. (63) we can neglect the one-photon decay rate
in comparison with the one-photon excitation rate. Higher photon
decay processes are negligible for the same reason, while higher pho-
ton excitation transition are further suppressed by the small subgap

density of states in the superconducting leads. As for the elastic rates,
they cannot, in general, be neglected, because at low photon number
their matrix element M2

mm 	 1� ð2mþ 1Þf (valid for mf� 1) is
much larger than the one-photon matrix element, see Eq. (54).
Keeping only one-photon excitation and elastic transitions, as well as
loss into the transmission line, in the steady state _q ¼ _qz ¼ 0, the
master equation simplifies to

0 ¼ 4
3

M2
�1qðm� 1Þ � 4

3
M2

1qðmÞ

� 1
3

M2
�1qzðm� 1Þ þ 1

3
M2

1qzðmÞ

þ~ctr ðmþ 1Þqðmþ 1Þ �mqðmÞ½ �; (66)

0 ¼ �3d0M2
0qzðmÞ �

4
3

M2
�1qzðm� 1Þ

� 5
3

M2
1qzðmÞ �

2
3

M2
�1qðm� 1Þ

þ 2
3

M2
1qðmÞ þ ~ctr ðmþ 1Þqzðmþ 1Þ �mqzðmÞ½ � ; (67)

where we used the short-hand notation M2
i ¼ M2

m;mþi and introduced
the dimensionless parameters

~ctr ¼ ctr
cL

de

X
s¼61

Fd seVp � �hxr
� 	� ��1

	
4ctr

ffiffiffiffiffi
cD
p

33=4cL

(68)

and

d0 ¼

X
s¼61

Fd seVpð ÞX
s¼61

Fd seVp � �hxr
� 	 	 4

33=4

ffiffiffiffiffiffiffiffiffiffi
cDD
2�hxr

s
: (69)

For typical parameters, d0 � 1 since the resonator frequency is high
compared with the broadening of the density of states, xr 
 cDD=�h.

FIG. 5. (a) Transition rates C0
mm0 of Eq. (60) as a function of the bias voltage of the tunnel junction V at charge degeneracy, ~EQD ¼ 0. (b) Decay rates C6

10 of Eq. (60) as a func-
tion of eV for different ~EQD. The solid and dashed lines are for Cþ10 and C�10, respectively. In both (a) and (b), the capacitance ratio is a ¼ Cc=CQD ¼ 1=3, and other parame-
ters are given in Table II. Note that since the charging energy is large compared to the gap, while the resonator frequency is smaller than the gap, the chosen values of ~EQD
correspond to a small offset charge deviation from charge degeneracy, jnb � 1=2j � 1.
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It should be noted that since in simplifying the master equation we
have assumed the one-photon transitions to be dominant, the simplifi-
cation is not applicable for photon numbers near those values at which
the oscillatory nature of the matrix element M2

m;m�1 [cf., Eq (54)] ren-
ders it sufficiently small (the simplification is valid at small m though);
as we will see below, we are not concerned with those values.

Thanks to its structure, Eq. (66) assumes a more compact form
when approximating it as a differential equation: by summing it to the
equation obtained by shifting m! m� 1 and neglecting derivatives
in m of third order or higher, we find

0 	 @m
4
3

M2
�1qðm� 1Þ � 1

3
M2
�1qzðm� 1Þ � ~ctrmqðmÞ

� �
: (70)

Furthermore, treating Eq. (67) as an equation for qz given q, with the
same procedure and accuracy46 we obtain

M2
�1 þ d0M2

0

� 	
qzðm� 1Þ 	 2

9
@m M2

�1qðm� 1Þ
� �

: (71)

The term proportional to d0 is in most cases negligible: for mf
 1 and
m values where our simplification applies, the matrix elements M2

m;m�1
and M2

mm are of equal order of magnitude while d0 is small; only if
mf �

ffiffiffiffiffi
cD
p

is the d0 term relevant, a situation possible only if
ffiffiffiffiffi
cD
p

� f.
We drop this term for now and comment on its role later in this section.

Neglecting the d0 term, substituting Eq. (71) into Eq. (70) we
obtain

0 ¼ 4
3

M2
�1qðm� 1Þ � 2

27
@m M2

�1qðm� 1Þ
� �

� ~ctrmqðmÞ; (72)

where the integration constant has been set to zero since qðmÞmust decay
sufficiently fast at large m. We now focus on the regime of small photon
number, mf� 1. Then using Eq. (54) we approximate Eq. (72) as

0 ¼ 4
3
f 1� fmð Þ � ~ctr

� �
qðm� 1Þ

� 2
27

f 1� fmð Þ þ ~ctr

� �
@mqðm� 1Þ : (73)

The solution to this equation is a Gaussian, qðmÞ / e�ðm��mÞ2=ð2r2
mÞ,

centered at the mean photon number

�m ¼ 1
f

1� 3~ctr

4f

� �
; (74)

and with variance

r2
m ¼

19
18

�m
3~ctr=4f

1� 3~ctr=4f
: (75)

These expressions are valid when j1� 3~ctr=4fj � 1, and they show
that if 3~ctr=4f > 1, then �m < 0, meaning that the probability distribu-
tion has a maximum at m¼ 0 because the relatively strong coupling to
the transmission line effectively counteracts the dot QCR pumping.
For weaker coupling to the transmission line

ctr < cð1Þtr �
cLf

31=4 ffiffiffiffiffi
cD
p ¼ pcL

31=4 ffiffiffiffiffi
cD
p

Cc

CQD

� �2 Zr

RK
; (76)

the probability maximum is at �m > 0 and �m increases with
decreasing ~ctr, indicating that pumping becomes more and more

effective as the coupling to the transmission line is decreased. It can
be shown that the above condition for effective pumping is
unchanged even if, at small �m, the term proportional to d0 in Eq.
(71) is taken into consideration.

A useful quantity to consider is the Fano factor

F ¼ r2
m

�m
; (77)

since F<1 signals that the resonator hosts a non-classical state of light
with sub-Poissonian statistics.47 In its regime of validity, mf� 1, Eq.
(75) predicts that the Fano factor is large, F
 1, but decreases with
decreasing ~ctr. We can extend the above considerations to large m
(mf
 1) as follows: by multiplying and dividing the last term in Eq.
(72) by M2

1 , we can reinterpret that equation as a first-order differen-
tial equation for gðmÞ ¼ M2

�1qðm� 1Þ

0 ¼ 4
3
� ~ctrm

M2
1

� �
gðmÞ � 2

27
þ ~ctrm

M2
1

� �
@mgðmÞ: (78)

The coefficient in round brackets multiplying the first-order derivative
is always positive. In contrast, the coefficient in front of g can change
sign, and when the weak-coupling condition (76) is satisfied, there
exists �m > 0 solving the equation

4
3

M2
�m;�mþ1 � ~ctr �m ¼ 0: (79)

The term proportional to ~ctr characterizes the transmission line-
induced loss and the matrix element term the gain due to the
photon-assisted tunneling; their equality defines the mean photon
number where the gain and loss are balanced. As the coupling to
the transmission line gets weaker, there can be multiple solutions to
this equation, see Fig. 6. Here, we focus only on the regime of single
solution,48

cð1Þtr > ctr > cð2Þtr 	 0:017cð1Þtr ; (80)

which spans almost two orders of magnitude in the coupling strength
to the transmission line.

For m near �m, Eq. (78) can be approximated as

0 ¼ �aðm� �mÞgðmÞ � @mgðmÞ; (81)

where

a ¼ 18
19 �m

1� �m
@mM2

1

M2
1

����
�m

 !
: (82)

When the conditions in Eq. (80) are met, a is positive (but see Refs. 49,
60, and 61), and the solution to Eq. (81) is a Gaussian centered at �m
with variance r2

m ¼ 1=a. The Fano factor,

F ¼ 1
a �m
	 19

27
1þ 4

3

ffiffiffiffiffiffiffi
�mf
p

cos 4
ffiffiffiffiffiffiffi
�mf
p

þ 9=24
ffiffiffiffiffiffiffi
�mf
p� 	

1� sin 4
ffiffiffiffiffiffiffi
�mf
p

þ 9=24
ffiffiffiffiffiffiffi
�mf
p� 	

" #�1

; (83)

is smaller than unity in the validity regime (�mf � 1) and becomes as
small as F 	 0:14 when ctr ! cð2Þtr .50 Note that the cross-over from
super-Poissonian (F > 1) to sub-Poissonian (F < 1) value for the vari-
ance takes place around �mf � 1, corresponding to the value where M2

1 is
maximal and hence its derivative changes sign, as one could expect from
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Eq. (82). The non-monotonicity of M2
1 also implies a counterintuitive

non-monotonic dependence of �m on the coupling strength between dot
QCR and resonator via the parameter f: at small f, the condition (76) is
not met, �m < 0, and the distribution is maximal at m¼ 0; as f increases,
Eq. (76) is satisfied, �m becomes positive and increases rapidly with f [cf.,
Eq. (74)]; at f ¼ fmax ’ 1:875~ctr; �m reaches its maximum value
�mmax 	 0:85=fmax;51 finally, as f is further increased, �m slowly decreases.

The above analysis indicates that the dot QCR can induce non-
classical states of light in the resonator, with F < 1, which may be use-
ful in metrology because of their narrow photon distribution.52 Above,
we have neglected the possibility of photon absorption by the QCR; in
Sec. III D we study numerically its effect as well as that of deviation
from charge degeneracy. Here, we note that the main effect of single-
photon absorption by the dot QCR is to suppress the matrix element
in Eq. (79) by a factor 1� d1 with

d1 ¼

X
s¼61

Fd seVp þ �hxr
� 	

X
s¼61

Fd seVp � �hxr
� 	 	 d0ffiffiffi

2
p ; (84)

and d0 of Eq. (69). This suppression leads to a small decrease in �m and
hence to a small increase in the Fano factor. The absorption of n pho-
tons has a similar effect, but in the regime �m � 1=f is quantitatively
weaker due to the suppression of the matrix element by�fn�1 in com-
parison with the single photon transitions, cf., the inset in Fig. 6. This
figure also shows that for larger �m, the two- and three-photon absorp-
tion processes must be taken into account, whereas we can neglect
transitions with n � 4 provided that we stay in the single-solution
regime defined by Eq. (80). The results of this section remain approxi-
mately valid for small deviations from charge degeneracy,
j~EQDj� cDD, upon the substitution ~ctr ! ~cðsÞtr , where,

~cðsÞtr ¼ ctr
cL

2de

X
s;t¼61

Fd seVp þ t~EQD � �hxr

� �" #�1

; (85)

a result that can be obtained by showing that, in the ~EQD range men-
tioned above, the effect of the antisymmetric (in ~EQD) part of Fd in
Eqs. (50) and (51) can be neglected. Since the term in square brackets
is smaller than the corresponding one in Eq. (68), the average photon
number �m decreases, and the Fano factor F increases, with the devia-
tion from charge degeneracy.

D. Regime of negative damping: Numerical results and
microwave generation

Having explored analytically the solution to the master equations
(50)–(51) with the inclusion of the transmission line [cf., Eqs. (64) and
(65)] in the pumping regime near charge degeneracy, we now turn to
its numerical solution for quantitative predictions. Focusing first on
the charge degenerate case, we compare our analytical results (dotted
curves) to the numerical ones (dashed) obtained by retaining only
elastic and one-photon transitions. In Fig. 7(a), we show a typical
example for the photon number distribution qðmÞ; only small devia-
tions from the analytical (Gaussian) prediction are visible, validating
our approach. In Figs. 7(b) and 7(c), we show the average photon
number �m and the Fano factor F, respectively, as functions of the cou-
pling strength ctr to the transmission line. As the coupling increases,
�m decreases and F increases, and good agreement is evident between
numerical and analytical results.

We can include in our numerical calculations the effects of two-
and three-photon transitions; the results are shown as solid lines in
Fig. 7. In the three panels, we find that the average photon number
slightly decreases and the Fano factor slightly increases compared to
the one-photon case, as qualitatively predicted at the end of Sec. III C.
In panels (b) and (c), the relative differences between dotted and solid
lines are larger at small ctr; this is due to the larger relevance there of
multi-photon transitions, see the matrix elements in the inset of Fig. 6.

We can also investigate the deviation from charge degeneracy,
~EQD 6¼ 0. As expected, �m decreases and F increases as j~EQDj increases,
see Fig. 8. Within the approximations made (retaining only up to sin-
gle photon transitions and assuming j~EQDj� cDD), the replacement
in Eq. (85) leads to results that agree with the numerical ones (dot and
dashed lines, respectively). However, with the inclusion of higher pho-
ton processes and at larger deviations from charge degeneracy, the
effects are more pronounced. The sensitivity on the value of ~EQD can
be suppressed by raising cD, at the price of further reduction of �m and
increase in F at charge degeneracy. We return to this point below after
discussing negative damping. In agreement with the above analysis at
charge degeneracy, strengthening the coupling to the transmission line
leads to overall decrease in �m and increase in F, see the dot-dashed
curves in Fig. 8.

Above, we focused on the state of the cavity. However, as previ-
ously remarked, the steady-state is reached by balancing the dot QCR
pumping with the loss into the transmission line; in other words, radi-
ation is emitted by the cavity. The rate at which the photons leak into
the transmission line is ctr

P
m mqðmÞ 	 ctr �m. Multiplication of this

rate by the photon energy yields the generated power

P ¼ ctr �m�hxr: (86)

Based on the analysis in Sec. III C and our numerical results, we con-
clude that the maximum power is reached at charge degeneracy and

FIG. 6. Main panel: matrix element 4M2
1=3 (solid line). Dashed lines are straight

lines ~c trm with different slopes; ~cð1Þtr and ~cð2Þtr are related to cð1Þtr of Eq. (76) and cð2Þtr
of Eq. (80) via Eq. (68). Note that the dashed line with the smallest slope intersects
the solid curve multiple times. Inset: matrix elements 4M2

1=3; 4M
2
2=3; 4M

2
3=3, and

4M2
4=3 in order from steeper to flatter near the origin.
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limited by the (first) maximum value M2
1;max 	 0:34 of the matrix

element M2
1 to be

Pmax ’ 3�1=4M2
1;max

cLffiffiffiffiffi
cD
p �hxr: (87)

Unsurprisingly, Pmax grows with the transition rate between supercon-
ducting leads and quantum dot; it also grows as the superconducting
density of states becomes more peaked. For an order-of-magnitude
estimate, we use the parameters in Table II to get Pmax � 38 fW. This
maximum power can be delivered only if the dot QCR-cavity coupling
and cavity-transmission line coupling are appropriately matched,
f=ctr ’ 3:29

ffiffiffiffiffi
cD
p

=cL.53 In this case, the Fano factor is of order unity;
therefore, depending on the application it may be advantageous to
weaken the coupling to the transmission line ctr to below the matching
value: while this decreases the power, it would also bring the Fano fac-
tor below unity, as previously predicted for single-atom,16 supercon-
ductor/quantum dot/normal lead,54 and transmon-based21 microwave
sources. Interestingly, if ctr is increased instead, the dynamics of the
system is dominated by single-photon transitions only, and the behav-
iors of mean photon number and Fano factor as functions of deviation
from charge degeneracy (dot-dashed lines in Fig. 8) resemble those
calculated for a biased double quantum dot coupled to a resonator as
functions of detuning between resonator frequency and the frequency
of the (effective) two-level system describing the dots.29,55

A potential issue in using the dot QCR-cavity system as a micro-
wave source is its possible sensitivity to charge noise, similar to that
observed in masers based on a superconducting qubit18 and on double
quantum dots.26 Indeed, in the previous paragraph we assumed charge
degeneracy, but �m (and hence the power) quickly decreases, while the
Fano factor increases, as the charge degeneracy condition nb ¼ 1=2 is
violated; in fact, under our assumptions we require 1� 2nb to be small
compared to cD. Increasing cD by two orders of magnitude decreases
the sensitivity to charge noise by an equal amount, while decreasing
the maximum power by only one order of magnitude; in principle, the

Dynes parameter can be increased by using normal/superconductor
bilayers in place of the superconducting electrodes.56 Alternatively, the
use of a superconductor with higher gap than Al would also decrease
the charge noise sensitivity while only slightly decreasing the maxi-
mum power, as the latter is largely determined by the coupling to
transmission line. Taking Nb or NbN as examples, this would likely
result in junctions with larger cD � 10�2 as well.57,58

As we show, it may be possible to stabilize the source against
charge noise by monitoring the current through the quantum dot and
then adjusting the gate voltage accordingly. The current IR leaving the
right lead (IL entering the left lead) can be calculated as the time deriv-
ative of the electron number in that lead,41

IR ¼
2pjejcL

de

X
m;m0

M2
mm0 2q0ðm0ÞFdðeV � ~EQD � �hxr lÞ
�

�qþðmÞFdð�eV þ ~EQD þ �hxrlÞ
�
; (88)

IL ¼
2pjejcL

de

X
m;m0

M2
mm0 qþðmÞFdðeV þ ~EQD þ �hxr lÞ
�

�2q0ðm0ÞFdð�eV � ~EQD � �hxr lÞ
�
; (89)

with l ¼ m�m0. In the steady state, it follows from the master equa-
tions [cf., Eqs. (50) and (51)] that the two currents are equal,
IR ¼ IL � I. In Fig. 9, we show with solid lines the numerical results
for the normalized current as function of ~EQD, using the parameter
values as in Fig. 8(a). The two plots are similar, with the current maxi-
mum being very close in position to ~EQD ¼ 0, a result resembling
again that for a double quantum dot system.29 In our case, the similar-
ity between the two plots is a consequence of the current’s two main
contributions originating from the inelastic 1-photon transitions from
the QCR (dominant near charge degeneracy) plus the elastic transi-
tions (relevant away from degeneracy), see the dotted/dashed lines in
Fig. 9. Therefore, adjusting the gate voltage as to maximize the current
through the dot will also keep the output power at its maximum value.

FIG. 7. (a) Photon distribution qðmÞ as a function of m. The black solid (dashed) curve is the numerical result including up to three (single-)photon transitions, and the red solid
curve is its Gaussian fitting. The dotted curve is the analytical Gaussian result, where the mean photon number and the variance are obtained using Eqs. (79) and (82), respec-
tively, with the correction factor in Eq. (84) included. (b) Mean photon number �m and (c) Fano factor F as functions of the resonator-transmission line coupling strength ctr
(bottom axis) or the dimensionless parameter ~c tr=f (upper axis), see Eqs. (53) and (68). Solid (dashed) and dotted lines are numerical results including up to three- (single-
)photon transitions and analytical results, respectively. The Fano factor is calculated by using Eqs. (79) and (82) in Eq. (83). In this figure, we have set f ¼ 0:001, which corre-
sponds to using a ’ 0:48 in Eq. (53). For panel (a), ctr ¼ 1:2� 107 s–1; the other parameters are given in Table II.
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IV. SUMMARY AND OUTLOOK

In this work, we study the QCR by deriving a master equation for
the reduced system density matrix. This allows us to investigate the
dynamics of excess charge on the QCR normal-metal island that is
coupled to the qubit. The charge relaxation rates, which characterize
how fast the excess charge distribution of the QCR reaches the steady
state, are found to be much lower than the qubit reset rates. It validates
the approximations carried out in our previous work where we calcu-
lated the transition rates by Fermi’s golden rule.2,7 Based on our the-
ory, we also study ac-voltage control of the QCR, with the control-
signal frequency comparable to the frequencies of the superconducting
qubits. We find that with typical parameter values it is possible to
achieve a reset infidelity of 7:8� 10�5 with the order-of-magnitude
reset time of T10% 	 40 ns. This is comparable to previous results
achieved by pure dc control6 and provides a simple complementary
approach to that in Ref. 36.

We also use the master equation approach to study a modified
QCR coupled to a resonator, where a quantum dot takes the place of
the normal-metal island; the charging energy and the level spacing of

the quantum dot are assumed to be larger than the superconducting
gap. Due to the corresponding constraints on the capacitance between
the QCR and the resonator and the lower number of electron states in
on the QCR island, the tunneling rates are significantly lower than in
the original metallic QCR. This may prevent the utilization of such
device for qubit reset. In addition, our results show that this variant of
the QCR may be sensitive to charge noise.

Interestingly, biasing the quantum dot QCR with an appropriate
voltage, we find that the excitation rates are much higher than the
relaxation rates. Thus, the dot QCR provides effectively negative
damping into the microwave resonator, a phenomenon observed in
other types of devices, such as voltage-biased Josephson junctions,59 to
lead to coherent microwave emission. In this regime we can solve the
master equation under the assumption that the excitation rates are
dominant. We also find numerical solutions for the master equation
which are consistent with our analytical results. The maximum gener-
ated power achievable with realistic experimental parameters is �38
fW, and at the maximum power the Fano factor is of order unity.
However, non-classical states of light with Fano factor smaller than
unity can be obtained, although with lower power. The source is sus-
ceptible to charge noise, which is a typical problem of quantum-dot
lasers. We propose here that feedback control of the dot gate voltage
based on monitoring the tunneling current will help stabilize the out-
put of the source.

Interesting future research directions include the possibility of
phase locking of the QCR microwave source in a similar fashion as
has been shown in Ref. 59 for a Josephson junction source. For
microwave technologies and quantum-information research, it may
be fruitful to investigate the use of this device for cryogenic signal
generation, and at least theoretically establish its basic parameters
as an amplifier. In comparison with the Josephson junction source
where the noise temperature of the source output is governed by
the electron temperature of the shunt resistor, the quantum dot

FIG. 8. Average photon number �m (a) and Fano factor F (b) as functions of the
deviation from charge degeneracy ~EQD ¼ ENð1� 2nbÞ. Solid lines: numerical
results setting f ¼ 0:001 (as in Fig. 7), ctr ¼ 1:2� 106 s–1, and the other parame-
ters (except for cD) as given in Table II. Dashed lines: numerical results with equal
parameter values but including only elastic and one photon transitions. Dotted lines:
analytical results based on the replacement in Eq. (85). Dot-dashed lines: numerics
with cD ¼ 10�4 and ctr ¼ 1:2� 107 s�1; in panel (b), the results have been sup-
pressed by a factor of 5 for clarity.

FIG. 9. Normalized current I as a function of the deviation from charge degeneracy
~EQD ¼ ENð1� 2nbÞ. Solid lines: numerical results of the total current using equal
parameter values to those in Fig. 8(a). Dotted, dashed, dotted long-dashed, and
dotted short-dashed lines are also calculated with these parameters (but only for
cD ¼ 10�4) and represent the following contributions to the current originating,
respectively, from elastic transitions, inelastic 1-photon emission, 1-photon absorp-
tion, and the sum of these three terms.
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may provide voltage control over this temperature owing to the dis-
crete energy spectrum.
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APPENDIX A: MASTER EQUATION AT SECOND
ORDER IN EN=TN

In looking for an approximate solution to the master equation,
in Sec. II B we consider the first-order expansion of the transition
rates in the small factor b � bðeV ; 0Þ � EN=TN � 1, see Eq. (24).
We argue there that for the inelastic rate, only the zeroth order
terms are important, while we keep both zeroth- and first-order
terms for the elastic rates. Here, we give further evidence that such
an expansion is justified by including the second-order terms for
the elastic rates, while completely neglecting the inelastic ones for
simplicity. More precisely, we assume M00 ¼ M11 (so that g¼ 0)
and M01 ¼ 0; then, in rescaled time units, Eq. (30), all three compo-
nents of the master equation, Eqs. (12), (13), and (17) (in the rotat-
ing frame), take the same form, cf., Eqs. (27)–(29),

_qðqÞ ¼ 1þ bð1þ 2qÞ þ 1
2

cð1þ 2qÞ2
� �

qðqþ 1Þ

þ 1þ bð1� 2qÞ þ 1
2

cð1� 2qÞ2
� �

qðq� 1Þ

�2 1� bþ 1
2

c 1þ 4q2
� 	� �

qðqÞ ; (A1)

where

c ¼ E2
N

F00ðeVÞ þ F00ð�eVÞ
FðeVÞ þ Fð�eVÞ : (A2)

It can be shown that jcj < bEN=TN and therefore jcj � b, see
Fig. 10.

Following the steps that lead to Eq. (34), with the canonical
transformation now being p ¼ ~p þ 4i ~mðbþ cÞ with 2 ~m ¼ 1=ð1
þbþ c=2Þ, we arrive at

kjqj ¼
~p2

2 ~m
þ 1

2
~m ~x2q2 � 2bþ 2c

� �
qj

þ 2cq2~p2 þ 16i ~mcðbþ cÞq3~p � 32 ~m2cðbþ cÞ2q4
� �

qj; (A3)

where ~x2 ¼ 16ðbþ cÞðbþ 2cÞ. The terms in the second line can be
recognized as anharmonic corrections to the harmonic oscillator
Hamiltonian in the first line. Introducing as usual the creation
and annihilation operators via q ¼ ða† þ aÞ=

ffiffiffiffiffiffiffiffiffiffiffi
2 ~m ~x
p

and
p ¼ iða† � aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~m ~x=2

p
, and considering the second line within first-

order perturbation theory, at first order in c we find

kj ¼ 4bj� 2cjðjþ 1Þ: (A4)

This shows that for slowly decaying modes with j� TN=EN , the
corrections to the decay rates due to higher-order terms can be
neglected.

APPENDIX B: CORRECTIONS TO THE
DISTRIBUTION FUNCTION

We state in Sec. II B that the correction terms d�q j and d~qj are
small for g; c� 1. Here, we show why this is the case and
also comment on the validity of the approximation introduced
using Eq. (33).

Let us introduce the notations

D q½ � ¼ qðqþ 1Þ þ qðq� 1Þ � 2qðqÞ; (B1)

Db q½ � ¼ 1þ bð1þ 2qÞ½ �qðqþ 1Þ
þ 1þ bð1� 2qÞ½ �qðq� 1Þ � 2ð1� bÞqðqÞ: (B2)

After substituting the Ansatze (31) and (36) into Eqs. (27) and (28),
we obtain the following two sets of coupled equations:

�kj�qj ¼ Db �qj
� �þ �C

2
D �qj
� �

þ c
4
D d�qj
� �þ cd�qjðqÞ � gDb d�qj

� �
; (B3)

�kjd�q j ¼ Db d�qj
� �� �C

2
D d�q j
� �� 2�Cd�q jðqÞ

� c
4
D �qj
� �� gDb �qj

� �
; (B4)

FIG. 10. The ratio of c of Eq. (A2) to b � bðeV ; 0Þ of Eq. (24) multiplied by
TN=EN as a function of eV=D for different island temperatures, corresponding to
EN=TN 	 0:009 (red), 0.018 (brown), and 0.046 (blue).

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 3, 042001 (2021); doi: 10.1116/5.0062868 3, 042001-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/aqs


and

�kj~q j ¼ Db ~q j
� �� �C

2
D ~q j
� �� 2�C~q jðqÞ

þ c
4
D d~qj
� �þ cd~qjðqÞ � gDb d~q j

� �
; (B5)

�kjd~q j ¼ Db d~qj
� �þ �C

2
D d~qj
� �� c

4
D ~qj
� �� gDb ~qj

� �
: (B6)

It is clear that in the limits g; c! 0, we can set the corrections to
zero, d�qj ¼ d~qj ¼ 0. Therefore, for g; c� 1 one can solve the
equations by iterations: first one solves Eqs. (B3) and (B5) for �q j
and ~qj neglecting the corrections terms in their second lines; those
solutions provide non-homogeneous terms in Eqs. (B4) and (B6)
for the corrections. After solving the latter equations, one could
then improve the solution by substituting the first-order corrections
back into Eqs. (B3) and (B5) to find second-order terms, and so on.
We do not pursue this further here and turns instead our attention
to the approximation in Eq. (33).

Even setting c ¼ g ¼ 0, Eqs. (B3) and (B5) are not identical. A
trivial difference is the third term on the right side of Eq. (B5), which
leads to the increase by 2�C of the decay rates discussed below Eq.
(37), but does not influence the dependence of the solution on q (in
the harmonic oscillator picture, it amounts to a shift in the reference
point for energy). On the contrary, the second terms on the right
sides of the two equations have opposite signs and affect the charge
dependence, but not the decay rates; the latter are calculated in Sec.
II B for c� 1 and arbitrary value of �C. Here, we assume the more
stringent condition �C � 1, which implies c� 1; then, we can treat
the terms proportional to �C as small perturbations, and an iterative
solution can be constructed for the average and difference of �q j and
~qj, in a way similar to that described in the previous paragraph.

We focus here on the main equation for the average
qj ¼ ð�qj þ ~qjÞ=2, which reads simply

�kjqj ¼ Db qj½ �; (B7)

with Db of Eq. (B2). Since the small parameter b appears there multi-
plied by 1 6 2q, one might expect that an approximate solution can
be found when bq� 1, which is a more stringent condition than the
necessary one, b� 1. This requirement is confirmed by calculating
the ratio between successive terms in the expansion in Eq. (33) for
the two slowest approximate solutions, q0 ¼ e�2bq2

and q1 ¼ qe�2bq2

(up to normalization)—solutions that are straightforwardly guessed
from the harmonic oscillator analogy. Improved solutions can be
obtained with the replacement e�2bq2 ! e�2bð1�b2=3Þq2�4b3q4=3, as can
be checked by substitution into Eq. (B7) and subsequent Taylor
expansion in b. Clearly, the last term in the exponent gives a small
correction when ðbqÞ2 � 1, while suppressing the tails of the distri-
bution more strongly than in a Gaussian distribution. We conclude
by noting that numerical implementation and solution of the full
equations (27) and (28) are straightforward and confirm all the
results presented here and in the main text.

APPENDIX C: TOTAL QUBIT DECOHERENCE

The inclusion of non-QCR decoherence mechanisms into the
master equation, Eqs. (12), (13), and (17), is straightforward:
the corresponding rates do not depend on the QCR charge and the

qubit transitions do not change the charge state. Therefore, we sim-

ply add the terms Cð0Þd q1ðqÞ � Cð0Þu q0ðqÞ to the right-hand side of

Eq. (12), Cð0Þu q0ðqÞ � Cð0Þd q1ðqÞ to the right-hand side of Eq. (13),

and �ð12 Cð0Þu þ 1
2 Cð0Þd þ Cð0Þu ÞqþðqÞ to the right-hand side of Eq.

(17). Hereinafter, we use superscript (0) to denote non-QCR rates,
while as in Sec. II B subscripts are used to denote qubit excitation
(u), decay (d), and pure dephasing (u). The same terms [with rates
now expressed in units of the elastic rate Cel of Eq. (30)] are added
to the right-hand sides of Eqs. (27)–(29). For the latter equation,
this gives simply the expected increase in each decay rate kj by the
non-QCR mechanisms. We focus next on Eqs. (27)–(28).

The above additions do not alter the structure of Eqs.
(B3)–(B6), but lead to a redefinition of some of the coefficients
appearing there once the Ansatz in Eq. (31) is modified to

q0jðqÞ ¼
Cd þ Cð0Þd

Cu þ Cd þ Cð0Þu þ Cð0Þd

�qjðqÞ þ d�qjðqÞ
� �

;

q1j qð Þ ¼
Cu þ C 0ð Þ

u

Cu þ Cd þ C 0ð Þ
u þ C 0ð Þ

d

qj qð Þ � dqj qð Þ
� �

;

(C1)

while Eq. (36) is unchanged. Then, in Eqs. (B3) and (B4), one
should make the replacements,

�C
2
D �½ � !

�C1

2
D �½ �; (C2)

c
4
D �½ � !

c1

4
D �½ �; (C3)

cd�q j ! c2d�qj; (C4)

2�Cd�q j ! 2�C2d�qj; (C5)

with

�C1 ¼
1
2

Cu

Cu þ Cð0Þu

Cd þ Cð0Þd

� �
þ d $ u

" #
; (C6)

�C2 ¼
1
2

Cd þ Cð0Þd

� �
þ d $ u

h i
; (C7)

c1 ¼
Cu

Cu þ Cð0Þu

Cd þ Cð0Þd

� �
� d $ u; (C8)

c2 ¼ Cd þ Cð0Þd

� �
� d $ u: (C9)

In Eq. (B5), the replacements are

cd~q j ! c2d~qj; (C10)

2�C~q j ! 2�C2~qj; (C11)

and Eq. (B6) is unaffected. Since the revised equations differ from
the original ones only in their parameters, all the considerations
Appendix B and in the main text remain unchanged, so long as the
dimensionless rates in Eqs. (C6)–(C9) are in the perturbative
regime of being small compared to unity. In particular, we find that
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the decay rates discussed below Eq. (34) do not change, while those
below Eq. (37) increase by the term C0

u þ C0
d , thus proving the claim

at the end of Sec. II B that only the temporal evolution of q2ðtÞ in
Eq. (38) is altered by the non-QCR decoherence mechanisms.
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