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Abstract. The optical monitoring device was used for
imaging industrial and municipal activated sludge pro-
cesses. The results were utilized to predict the important
effluent quality parameters (BOD, COD, N, P, SS) indicat-
ing the efficiency of the wastewater treatment processes.
The optimal subsets of variables for each model were
searched using mathematical variable selection meth-
ods. The models based on optical monitoring and pro-
cess variables from the early stage of the treatment
process can be used to predict the effluent quality hours
in advance compared with traditional measurements,
which enables the optimization of process control, keep-
ing the process in a stable operating condition and avoid-
ing environmental risks and excessive operation costs.

Introduction

A wastewater treatment process should efficiently re-
move oxygen-demanding substances, excessive nutri-
ents and toxicants from wastewater. Both industrial and
municipal wastewaters are most commonly treated in
complex biological activated sludge processes (ASPs)
where the operation of the treatment process is affected
by several physical, chemical and microbiological fac-
tors. In an ASP, flocculation is in a critical role and the
key element for the efficient operation of an ASP is a
good bacterial balance in biomass, which is very sensi-
tive to internal and external disturbances such as major
changes in the quality and quantity of the influent.

The disturbances in the bacterial balance are most
often shown as dysfunctional flocculation and settling
properties. Recovering from the disturbances is slow
which causes long-lasting challenges to process control
and possible environmental damages as low-quality
effluent is discharged to waterways [1-3].

More attention must be focused on the optimal oper-
ation of the wastewater treatment processes to meet the
limitations to effluent discharges and keeping operating
costs decent. Predictive information on the status of the
process and the effluent quality enable the optimization
of the process operation and thereby avoiding environ-
mental risks and excessive operation costs. Convention-
al process measurements and expert knowledge, that are
important in process operation, are, however, not ade-
quate to give the early warnings of changes in the treat-
ed wastewater quality. Therefore, new measurement
devices and methods are required.

Automatic optical monitoring of floc morphology
characteristics in the ASP yields fast new objective
information about the quality of the treatment process
and reveals the reasons for settling problems. In addi-
tion, combined to predictive modelling, the quality of
the treated wastewater is shown in advance, hours be-
fore problems occur and would be noticed by traditional
process measurements [4—7]. This valuable predictive
information can be used as assistance in optimizing the
process control.

Study of utilizing the automatic optical monitoring
of activated sludge process combined with mathematical
variable selection and modelling have been carried out
in the industrial and the municipal wastewater treatment
processes, and are summarized in this paper.



Jani Tomperi

Utilizing Optical Monitoring to Predict Quality in Sludge Processes

1 Material and Methods

1.1 Industrial wastewater treatment plant

The industrial wastewater treatment process treats in
addition to the pulp making process wastewaters from
two chemical processes located in the pulp and paper
mill area. The average wastewater flow through the
treatment process is around 30 000 m*/day. The collect-
ed data consisted of optical monitoring results and se-
lected process measurements including the effluent
quality parameters from a period of 13 consecutive
months. The optical monitoring was carried out by regu-
lar but sparse intervals and therefore the dataset includ-
ed only 54 measurement times.

1.2 Municipal wastewater treatment plant

The municipal WWTP treats mainly wastewaters from
domestic sources (85% of the influent flow). WWTP
uses mechanical, biological and chemical processes to
treat the wastewater of over 800,000 inhabitants. The
average daily flow is 280,000 m® of wastewater. The
optical monitoring device was sited at one of the nine
parallel activated sludge process lines. The collected
data consisted of daily optical monitoring results, on-
line process measurements, and various quality parame-
ters that were measured by collecting grab samples only
two to three times a week during a period of 16 months.
Thus, the total amount of data was 94 measurement
times.

1.3 Optical monitoring and image analysis

To replace a laborious, slow and subjective method to
study wastewater samples manually using a microscope,
a small-scale automatic optical monitoring device was
designed especially for in-situ use [8]. The optical
monitoring device was developed and tested in a labora-
tory and at a municipal wastewater treatment plant over
an one-year period, and proved functional for reliable
in-situ monitoring of floc morphology [4,6].

The optical monitoring device (Figure 1) consists of
the imaging unit, the sample handling unit and the con-
trol PC and electronics unit. The control PC and elec-
tronics unit controls the pump and valves synchronized
with image acquisition. The wastewater samples taken
from the aeration tank of ASP are diluded and pumped
through the cuvette of the imaging unit. A cuvette is
illuminated and imaged with a high resolution charge-
coupled device (CCD) camera.
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Figure 1: The online optical monitoring device for
imaging activated sludge process [6].

The automated image analysis program analyzes the
morphological parameters of flocs and filaments from
the wastewater sample videos that consist of hundreds
of images. The image analysis programme calculates
and analyses various size (equivalent diameter, floc
area, filament length, etc.) and shape (fractal dimension,
form factor, roundness, etc.) parameters of each particle
in each image. The parameters are calculated as an av-
erage of the values for individual objects over a single
image. Image processing and analyses methods and the
mathematical formulas of the calculated size and shape
parameters are presented in detail in [8].

1.4 Variable selection and modelling

The measured optical monitoring variables were used
together with the process measurements to develop
predictive models for the traditional quality variables of
treated wastewater including suspended solids (SS),
eutrophication in waterways causing nitrogen (N) and
phosphorus (P), chemical oxygen demand (COD) and
biochemical oxygen demand (BOD) that indicate the
amount of dissolved oxygen required to oxidize the
organic substances in wastewater [1]. All the data pro-
cessing, variable selection and modelling were per-
formed using Matlab (The MathWorks Inc.) and self-
developed scripts.

At first, dataset was inspected and unrealistic values
were deleted and replaced with linear interpolation.
Before variable selection and modelling, the dataset was
scaled between [-2,+2] using the nonlinear scaling
method based on generalized moments, norms and
skewness (presented in more detail in [9]).
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Five mathematical variable selection methods (cor-
relation, stepwise, forward, genetic algorithm (GA),
successive projections algorithm (SPA) + GA) that did
not take into account any deterministic models or chem-
ical or biological knowledge about the activated sludge
process, were used to find the optimal subsets of input
variables for the models. Variable selection is important
step to reduce the number and choose the optimal input
variables that have significant relationships with the
output variable but are not strongly correlated to each
other and do not include noise. Using too many input
variables increase the risk to develop an over-fitted
model which has an excellent training result but is not
usable with a new upcoming data. For a very large da-
taset one variable selection method can be used for the
variable elimination before the final variable selection
by another method. The more detailed backgrounds of
the above mentioned variable selection methods are
presented for example in [6].

The quality of the developed model depends highly
on the quality and length of the dataset. Data should
include a sufficient number of samples and it should be
fully representative of the full spectrum of all possible
conditions. For efficient training and validation, both
subsets of the data have to be long and representative
enough of all possible conditions. Splitting the dataset
to two subsets may cause a significant loss of data in
training the model. Due to the small size of the dataset
available in this study, a static split into the training and
validation subsets of data was not a feasible approach.
Instead, a 5-fold cross-validation was used to predict the
fit of a model for a validation set without an explicit
validation set. In k-fold cross-validation, the whole data
is used for training and validating the model by random-
ly partitioning the dataset into k subsets of equal size
and using k-1 parts of the data for training and one part
for validation and repeating this k times until each of the
subsets is used once as the validation data. Final estima-
tion is produced by combining these k results of the
folds [10,11]. In this study, multivariable linear regres-

sion (MLR) was utilized to predict the output variable
as a linear combination of selected input variables and
the performance of the model was evaluated by the
coefficient of determination (R*) and Root Mean Square
Error (RMSE).

2 Results and Discussion

The results of utilizing the automatic optical monitoring
of activated sludge process combined with mathematical
variable selection and modelling in the industrial [7] and
municipal [6, 12] wastewater treatment plants are sum-
marized in the following. It is important to bear in mind
that the results based solely on a mathematical analysis
may not accurately correspond the actual situation in the
wastewater treatment process. The complexity of a
wastewater treatment process easily causes quasi-
correlations. A high correlation between variables not
always mean strong real-world causality and there may
be also many hidden factors that affect in the real pro-
cess but are not shown in the data analysis due to the
limited amount of data or measurements and due to the
analysis method.

The best modelling results (industrial and municipal
WWTP) are presented in Table 1. In both studies, input
variables selected by the GA method resulted the best
models. However, for example forward selection, that is
computationally much faster method that GA, yielded
almost as good results. The behaviour of effluent COD
model in the industrial WWTP is presented in Figure 2
and the behaviour of the effluent SS model in the mu-
nicipal WWTP is presented in Figure 3. The results
show that the models are not perfect but generally good
and accurate to show the level and changes of the efflu-
ent quality variables in various operation conditions.
The earlier studies have stated that based on the optical
monitoring the settling problem in the industrial WWTP
occurred during the study period was most likely caused
by dispersed growth [13] and in the municipal ASP the
poor settling was caused by filamentous bulking [4].

BOD COD N P SS

R? RMSE R? RMSE R? RMSE R’ RMSE R? RMSE
Industrial WWTP  0.71  0.69 0.76  0.50 0.69  0.63 0.58  0.74 0.67  0.58
(GA subset)
Municipal WWTP  0.55  0.64 0.55  0.64 0.63  0.61 0.69  0.52 0.79 047
(GA subset)

Table 1: The best modelling results for the industrial and municipal WWTP effluent quality parameters using input

variables selected by GA. Modified from [6,7].
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It was also discovered that according to the data
analyses the municipal process is more temperature
related than the industrial. The effluent quality has a
clear seasonal pattern correlating the wastewater tem-
perature [6, 7].
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Figure 2: Model for effluent COD at the industrial

WWTP [7].
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Figure 3: Model for effluent SS at the municipal

WWTP [6].

3 Conclusions

The optical monitoring device is a valuable tool for
monitoring the changes in floc morphology. The objec-
tive, continuous and fast method includes several mor-
phological characterization variables and enables ob-
serving the changes in the wastewater quality. Com-
bined to predictive modelling it has potential to be uti-
lized in controlling the process, keeping the process in
stable operating conditions and avoiding environmental
risks.
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The data were collected during the Measurement,




