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Almost uniform domains and Poincaré inequalities

Sylvester Eriksson-Bique and Jasun Gong

Abstract

Here we show existence of many subsets of Euclidean spaces that, despite having empty
interior, still support Poincaré inequalities with respect to the restricted Lebesgue measure.
Most importantly, despite the explicit constructions in our proofs, our methods do not depend on
any rectilinear or self-similar structure of the underlying space. We instead employ the uniform
domain condition of Martio and Sarvas. This condition relies on the measure density of such
subsets, as well as the regularity and relative separation of their boundary components.

In doing so, our results hold true for metric spaces equipped with doubling measures and
Poincaré inequalities in general, and for the Heisenberg groups in particular. To our knowledge,
these are the first examples of such subsets on any (nonabelian) Carnot group. Such subsets also
give new examples of Sobolev extension domains, also in the general setting of doubling metric
measure spaces.

In the Euclidean case, our construction also includes the non-self-similar Sierpiński carpets
of Mackay, Tyson and Wildrick, as well as higher dimensional analogues not treated in the
literature. When specialized to the plane, our results lead to new, general sufficient conditions
for a planar subset to be 2-Ahlfors regular and to satisfy the Loewner condition. Two of these
conditions, uniform separation and regularity of boundary components, are also necessary. The
sufficiency is obtained with an additional measure density condition.
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1. Introduction

1.1. Poincaré inequalities and Sierpiński sponges

Let (X, d) be a complete metric space that supports a doubling measure μ. We wish to
understand the following question:

If X supports a (1, p)-Poincaré inequality, then when does a subset Y of X, equipped with its
restricted measure and metric, support a (1, q)-Poincaré inequality, and for which exponents
q ∈ [1,∞)?
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244 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

This question is motivated by the desire to construct a new, general class of examples that
include so-called uniform domains and more generally, Sobolev extension domains. Below, our
main results will give criteria to guarantee such examples, in both the Euclidean and the general
metric space setting. To this end, we begin with some definitions.

Definition 1.1. Let r0 > 0. A proper metric measure space (X, d, μ) with a Radon measure
μ is said to be D-doubling at scale r0 — or (D, r0)-doubling for short — if for all r ∈ (0, r0)
and any x ∈ X, we have

0 < μ(B(x, 2r)) � Dμ(B(x, r)).

If (X, d, μ) is D-doubling at scale r0 for all r0 > 0, then X is said to be D-doubling.

We will assume that the support of the measure equals the space, supp(μ) = X.

Definition 1.2. Let r0 > 0 and 1 � p < ∞. A proper metric measure space (X, d, μ) with a
Radon measure μ is said to satisfy a (1, p)-Poincaré inequality at scale r0 (with constant
C � 1) if for all Lipschitz functions f : X → R and all x ∈ X and r ∈ (0, r0) we have for
B := B(x, r) and CB := B(x,Cr)

 
B

|f − fB | dμ � Cr

( 
CB

Lip [f ]p dμ

) 1
p

. (1.3)

If r0 = ∞, then say that X satisfies a (global) (1, p)-Poincaré inequality (with the same
constants).

A space satisfying a Poincaré inequality and the doubling property is called a PI-space.
Here, for any measurable and locally integrable f : X → R its average value on a ball is

fB :=
 
B

f dμ :=
1

μ(B)

ˆ
B

f dμ,

and its pointwise Lipschitz constant is

Lip [f ](x) := lim sup
y→x

|f(x) − f(y)|
d(x, y)

.

In the literature, there are different definitions of Poincaré inequalities, all of which coincide
with our definition in the case of complete metric spaces. For a detailed discussion of these
issues, we refer to [19, 22, 26].

Poincaré inequalities play a profound role in analysis and the regularity of functions. In the
general setting of metric measure spaces, they are crucial hypotheses for nontrivial definitions
of generalized Sobolev spaces [10, 18, 39] and differentiability of Lipschitz functions [10].
Moreover, open subsets Ω ⊂ X supporting a (1, p)-Poincaré inequality and with a lower bound
on their measure density are important examples of sets admitting extensions of Sobolev spaces.
See [7, 20, 25] and below for more related historical discussion and references. We remark that
applying our work there requires some care, as our constructions lead to closed sets. However,
one can also consider Sobolev extension problems with other gradients which make sense also
for closed sets.

Poincaré inequalities also play a profound role in the study of geometry of metric spaces,
specifically in regards to quasi-conformal mappings between them [23]. Planar metric spaces
that are Ahlfors 2-regular and that support a (1,2)-Poincaré inequality are examples of sets
which admit uniformization by slit carpets, see [31, Section 7]. Such inequalities are also
important in determining the so-called conformal dimension of a space [30]. In general,
conformal dimension measures the extent to which Hausdorff dimension can be lowered by
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ALMOST UNIFORM DOMAINS 245

quasi-symmetric maps, and it is known that any Ahlfors regular space satisfying a Poincaré
inequality has conformal dimension equal to its Hausdorff dimension.

However, a good understanding of the geometric conditions that guarantee such inequalities,
in particular for subsets, has remained a challenge. Particular examples of subsets in the plane
satisfying Poincaré inequalities were given by Mackay, Tyson and Wildrick [31]. We briefly
discuss a construction here that includes theirs.

Let n = (ni)∞i=1 be a sequence of odd positive integers with ni � 3. As a convention, put

n−1 =
(

1
ni

)∞

i=1

.

Fix a dimension d � 2. We define the Sierpiński sponge associated to n in Rd as follows.

(1) At the first stage, put S0,n = [0, 1]d and T 1
0,n = [0, 1]d and T0,n = {T 1

0,n}.
(2) Assuming that we have defined sets Sk,n and T j

k,n and collections of cubes Tk,n at the
kth stage, for k ∈ N:
• subdivide each T ∈ Tk,n into (nk+1)d equal subcubes;
• excluding the central subcube in T , index the remaining subcubes in any fashion as T j

k+1,n

and let Tk+1,n = {T j
k+1,n} be the collection of all such subcubes. We note that for k ∈ N,

the side length of each subcube T j
k,n is therefore

sk =
k∏

i=1

1
ni

;

(For consistency, let s0 = 1.)
• define the k + 1’th order pre -sponge as the set

Sk+1,n =
⋃

T∈Tk+1,n

T.

(3) For technical purposes later, let k � 1 and define Rn,k to be the sub-collection of central
cubes removed from cubes T ∈ Tk−1,n at the k’th stage and put

Rn,k =
k⋃

l=1

Rn,l.

The Sierpiński sponge associated to the sequence n is then defined as

Sn =
⋂
k�0

Sk,n. (1.4)

When d = 2, we also refer to these sets as Sierpiński carpets, and the constant sequence
n = (3, 3, 3 . . .) yields the usual ‘middle-thirds’ Sierpiński carpet, which is denoted by S3.

The main result by Mackay, Tyson and Wildrick [31] states that Sierpiński carpets
with positive Lebesgue measure satisfy Poincaré inequalities. Their proof was a tour de
force in constructing so-called Semmes families of (rectifiable) curves and then applying a
characterization of Poincaré inequalities from Keith [26]. (For precise definitions and a further
discussion, see [40].)

However, even slight variations of their construction, such as removing a ‘nearly central’
square instead of a central one, would require a new construction of a curve family with new,
equally technical details to check. Our motivation was therefore to find more general and robust
methods that apply to all dimensions, as well as to non-Euclidean geometries too.

First of all, our methods lead to the following higher dimensional analogue of their result.
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246 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Theorem 1.5. Let n = (ni) be a sequence of odd integers with ni � 3, and let d � 2. Then
the following conditions are equivalent for the Sierpiński sponge Sn in Rd.

(1) n−1 ∈ �d(N).
(2) The space (Sn, | · |, λ) satisfies a (1, p)-Poincaré inequality for all p > 1.
(3) The space (Sn, | · |, λ) satisfies a (1, p)-Poincaré inequality for some p > 1.

In addition, we have the following complementary case.

(4) If Sn has zero λ-measure, then there is no D-doubling measure μ, for any D ∈ [1,∞),
such that (Sn, | · |, μ) satisfies a (1, p)-Poincaré inequality with p ∈ [1,∞).

The borderline case of p = 1 can also be fully characterized in terms of n. The case of d = 2
appeared before in [31]. The general borderline case for all d � 2 is presented in a separate
paper by the authors (Eriksson-Bique and Gong, in a forthcoming), and the approach involves
substantially different methods.

A crucial aspect of our theorem is the sharp characterization of the exponents p. In what
follows, we also obtain essentially sharp characterizations for the given ranges of exponents in
more general Euclidean constructions, and even in the general metric space context!

1.2. The planar Loewner problem

Motivated by this result, we consider general sets of the form Y = Rd \
⋃

R∈R R, for some
countable collection R of open subsets and study when Y inherits a Poincaré inequality. (Bear
in mind that the elements of R will still have good geometric properties, but are not necessarily
polyhedral, or even Lipschitz.)

The case of d = 2 is particularly interesting, due to the connections with quasi-conformal
geometry. In particular, for d = 2 the conditions given for R are not only sufficient, but also
close to necessary. This also gives a partial answer to the following question.

Question 1.6 (‘Planar Loewner problem’). Classify all closed subsets of the plane which
are Ahlfors 2-regular and 2-Loewner.

Although we will not explicitly define the Loewner condition here, we recall that a closed
Ahlfors 2-regular subset is 2-Loewner if and only if it satisfies a (1,2)-Poincaré inequality; for
a more general definition and further discussion, see [23].

Although natural to pose, this question has not been extensively studied in the literature.
Prior results exist only for some specific cases. We now give a new, general, and sufficient
condition for an affirmative answer to this problem. To formulate it, consider collections of
removed sets R and subcollections of sets that meet a given ball B(x, r),

R(x, r) = {R ∈ R : R ∩B(x, r) �= ∅},
and consider further, for N ∈ N, an ‘N -fold density function’ for R relative to balls:

sN (x, r) = inf

⎧⎨
⎩

∑
R∈R(x,r)\I

λ(R)
r2

: I ⊂ R, |I| � N

⎫⎬
⎭, (1.7)

where λ(R) denotes the usual area, or Lebesgue measure, of R.

Theorem 1.8. A closed subset Y of R2 satisfies a (1, p)-Poincaré inequality for every
p ∈ (1,∞) if it is of the form

Y = Ω \
⋃

R∈R
R,
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ALMOST UNIFORM DOMAINS 247

where the following conditions hold for Ω and for R, for some constants K � 1 and s > 0:

(1) the set Ω is closed, each R ∈ R is open, and each boundary ∂Ω and ∂R for R is a
K-quasi-circle;

(2) R is uniformly relatively s-separated, that is, for all R,R′ ∈ R ∪ {∂Ω},

Δ(R,R′) :=
d(R,R′)

min(diam(R),diam(R′))
� s;

(3) there exists N ∈ N such that

lim sup
r→0

sup
x∈Y

sN (x, r) = 0.

Indeed, Condition (3) requires the density of R at any x ∈ Y to vanish, but allowing at each
scale r for the N largest ‘obstacles’ in R to be excluded. A slightly stronger statement, which
allows for the density only becoming sufficiently small, is given in Theorem 4.46.

Theorem 1.8 is new even when the collection of obstacles R and Ω have simple geometry,
such as when Ω and every R are disks. It is known from [31, Corollary 1.9] that there exist
subsets of this form with empty interior and which satisfy a (1,2)-Poincaré inequality. Such
sets, called circle carpets, are constructed implicitly via uniformization and can therefore
only be approximated numerically. In contrast, here we give a procedure that yields explicit
circle carpets satisfying Poincaré inequalities, with a sharp characterization of the range of
exponents. This flexibility extends to other shapes and higher dimensions, as described in
Corollary 4.31.

To reiterate, the conditions for the sets R ∈ R come in three forms: the regularity of their
boundaries, their separation, and their density. The first two conditions in the statement are
necessary for a subset to be Loewner, as given in Theorem 4.40. These conditions also appear
elsewhere in the literature; for instance, they are the relevant conditions in Bonk’s work on
uniformization of planar subsets [8]. Moreover, the conditions on summability also bear close
resemblance to the summability conditions arising in other work on uniformizing planar metric
spaces [21, 34].

1.3. Metric spaces and Carnot groups

In the proof of Theorem 1.8, the most crucial feature about the collection R is that R2 \R is a
uniform domain, for each R ∈ R. Such sets were first studied in [32, 42]; see Definition 4.12.
Roughly speaking, these correspond to domains Ω without ‘outer cusps’. Domains in Euclidean
space with Lipschitz boundaries are uniform domains, for example, in all dimensions.

In fact, uniformity is a purely metric property. A crucial result of Björn and Shanmugalingam
asserts that uniform domains Ω in a doubling metric measure space X inherit a Poincaré
inequality from X; see [7]. Motivated by this, we therefore formulate a more general theorem
for metric spaces.

To this end, call a domain co-uniform if its complement is uniform and its boundary is
connected. The uniform sparseness condition, mentioned below, combines Conditions (2) and
(3) in Theorem 1.8 above; for precise statements, see Definitions 4.21 and 4.20. Note that the
sequence n plays an analogous role as the one in Theorem 1.5, in that it handles the density
of the omitted subsets.

Theorem 1.9. Let X be an Ahlfors Q-regular complete metric measure space admitting a
(1, p)-Poincaré inequality, and let n be a sequence of positive integers with n−1 ∈ �Q(N).

If Ω is a bounded, A-uniform subset of X and if {Rn,k}∞k=1 is a uniformly n−sparse collection
of co-uniform subsets of Ω, then the set
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248 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Sn = Ω \
⋃
k

⋃
R∈Rn,k

R,

with its restricted measure and metric, is Ahlfors Q-regular and satisfies a (1, q)-Poincaré
inequality for each q > p. Moreover:

• if p > 1, then it also satisfies a (1, p)-Poincaré inequality;
• if the union of all sets from Rn,k, over all k ∈ N, is dense in Ω, then Sn has empty interior.

The ranges of the exponents in Theorem 1.9 are sharp. In particular, only for p = 1 do such
removals of sets lead to a loss in range, namely the loss of the (1,1)-Poincaré inequality; see
[31] for an example. For p > 1, no such loss occurs, due to the seminal self-improvement result
of Keith and Zhong [28].

For some spaces, such as the Heisenberg group in particular and step-2 Carnot groups in
general, the existence of uniform domains is well known, at all scales and locations within these
spaces. In such cases, Theorem 1.9 can be used to give new examples of subsets with Poincaré
inequalities and empty interior; see Subsection 4.3 for these examples, as well as some of the
definitions relevant to these geometries. Due to a recent result by Rajala [38], it is likely that
the result applies to any Carnot group.

1.4. Sobolev extension domains

As a corollary of our theorems, we obtain many new examples of Sobolev extension domains,
both in Euclidean and non-Euclidean spaces. To wit, an open subset Ω ⊂ X is called a (Sobolev)
extension domain if there exists a bounded extension operator E : N1,p(Ω) → N1,p(X); in the
case where Ω is open in X = Rd the Newtonian Sobolev space N1,p(Ω), as introduced in [39],
coincides with the classical Sobolev space W 1,p(Ω). This definition, when employing N1,p(Ω),
makes sense even for closed subsets Ω, while classically the interest has been mostly for open
domains. However, the case of closed sets, as well as the relationship between open and closed
extension domains is subtle.

The first examples of extension domains were given by Jones [25]. In general, a sufficient
condition for Ω to be an extension domain is if Ω supports a (1, q)-Poincaré inequality for q < p.
This condition, however, is not necessary unless p is sufficiently large, as discussed in [7].

It remains a difficult problem to give both necessary and sufficient conditions for a domain
to be an extension domain. In fact, this has essentially been solved only for simply connected
domains in the plane [46]. Our examples give flexible constructions of infinitely connected
domains in Rd for d � 2, as well as in step-2 Carnot groups and in general metric spaces, that
are Sobolev extension domains. These examples are new even in the planar setting. See [7, 20]
for more related discussion and references, as well as the PhD thesis [46].

1.5. Methodology: removing subsets versus ‘fillings’ of spaces

Thus far, the results in this article apply to subsets Y obtained by removing, from an initial
set, infinite collections R of well-behaved subsets at all locations and scales. As we will see
later, these results are special cases of Theorem 2.7 and Corollary 4.19, where such sets Y
are viewed from a different perspective. In particular, we view the intermediate sets Ωr, each
obtained by removing a finite sub-collection of subsets in R up to a given scale r > 0, as good
approximations (or ‘fillings’) of Y ; in particular, each Ωr is doubling and supports a Poincaré
inequality, both at scale r, and Ωr also contains Y with small complement.

In fact, these three properties alone are sufficient for Y to support a Poincaré inequality,
provided that the associated constants are uniform in r. No explicit removals of sets are actually
needed for our proofs; the fillings Ωr only need to satisfy these properties axiomatically, and
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ALMOST UNIFORM DOMAINS 249

they need not be defined, a priori, in terms of any removed set. Similarly as for Sobolev
extension domains [20], it is the measure density of the sets Ωr that is crucial. (In fact, the
smallness of Ωr \ Y is given in terms of measure density; see Definition 2.6.)

The sufficiency of these properties in turn relies crucially on a new characterization of
Poincaré inequalities, as studied by the first author [14, 15]. Roughly speaking, spaces
supporting a Poincaré inequality cannot ‘see’ sets of small density: points that have small
measure density, relative to a given set, can be connected by a quasi-geodesic that meets that
set in correspondingly small length. This correspondence, moreover, depends quantitatively
but nontrivially on the exponent p. Since we formulate density in terms of maximal functions,
we refer to this characterization as ‘maximal p-connectivity’.

Intuitively, Ωr provides improved behavior for Y without adding much density. Once such
fillings are available, pairs of points in Y that are at most a distance r apart can be joined by
rectifiable curves inside Ωr. Such curves may not lie entirely in Y , but as the measure density
of Ωr \ Y is small, by maximal connectivity there must be curves which spend little time in this
set. The ‘bad’ portions of these curves can then be removed and replaced by ‘good’ portions,
via a delicate iteration argument.

This filling process is subtle, and the dependence of the exponent p on the quality of the
filling is nontrivial. This will be illustrated in the examples below in Subsection 2.2.

Interestingly, we avoid throughout this paper any discussion about the modulus of curve
families, and we do not construct any curve families to estimate such moduli. However, in
recent work it is shown that such curve families always exist on spaces satisfying Poincaré
inequalities. Thus, our tools can be considered to implicitly construct Semmes families of
curves. See [1, 13].

1.6. General structure of paper

In Section 2, we first recall basic notions and relevant notation, and then give precise definitions
for fillings of subsets. The section concludes with the statement of our main result, Theorem 2.7,
as well as auxiliary results and the strategy of the proof.

In Section 3, we prove Theorem 2.7; it states that subsets admitting such fillings, or ‘fillable
subsets’, must also satisfy Poincaré inequalities. The proof requires Theorems 2.18 and 2.19,
which are characterizations of (1, p)-Poincaré inequalities and will be proven later.

In Section 4, we apply Theorem 2.7 first to Sierpiński sponges, and then to general metric
measure spaces with co-uniform domains removed. We conclude this section with new examples
of subsets of the Heisenberg group that satisfy Poincaré inequalities, as well as a discussion of
our sufficient condition for planar Loewner subsets. All of these applications use the results in
Section 2, but readers may choose to see how these results are applied first, before reading those
technical proofs. (To preserve the flow of discussion, the proofs of certain technical results, such
as Theorem 4.22, are postponed to the Appendix. )

Lastly, in Section 5 we prove Theorems 2.18 and 2.19 by introducing a certain ‘path-
connectivity’ function associated to metric measure spaces. (Readers who are primarily
interested in the classification of Poincaré inequalities may opt to read Section 5 independently
of the other sections.) In the Appendix, we prove Theorem 4.22, as well as other auxiliary
results about uniform domains.

2. Intermediate results

2.1. Notation and basic notions

Throughout the paper, we will work on complete and proper metric measure spaces X equipped
with some Radon measure μ. Consistently, Y refers to a closed subset of X which will be shown
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250 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

to support Poincaré inequalities. In the Euclidean case X = Rn, we will also denote such subsets
by S, suggestively for ‘sponge’.

Remark 2.1 (Types of constants). As a convention, we refer to certain constants as
structural constants if they describe fixed parameters for standard hypotheses or
conditions. These include the doubling constant D � 1, the constant C � 1 in the Poincaré
inequality (as well as uniformity constants A > 0 that imply such inequalities), the choice of
exponent p � 1, and the scale parameter r0 > 0.

Moreover, conditions on a metric space X that depend on the scale parameter — that
is, an upper (distance) bound between points on X — are referred to as local conditions.
In particular, a locally D-doubling metric measure space refers to a (D, r0)-doubling
metric measure space for some r0 > 0 and a local (1, p)-Poincaré inequality refers to a
(1, p)-Poincaré inequality that is valid at scale r0, for some r0 > 0.

The same convention will apply to other conditions in the sequel. Note, in this con-
vention, the scale r0 is assumed to be uniform throughout the space. Our convention is
therefore slightly different from others, such as in [6], where the scale can vary with the
point.

Open balls in a metric space are denoted by B = B(x, r), and their inflations by CB =
B(x,Cr), despite the ambiguity that balls may not be uniquely defined by their radii. If
multiple metrics are used, we indicate the one used with a subscript, for example, Bd(x, r) to
mean the ball with respect to the metric d.

By a curve γ in a metric space X, we mean a Lipschitz map γ : I → X, where I ⊂ R
is a bounded closed interval. As a convention, we assume that all rectifiable curves are
parametrised by arc-length unless otherwise specified, in which case it satisfies Lip (γ)(t) :=
lim sups→t

d(γ(t),γ(s))
|s−t| � 1, t ∈ I.

A metric space X is called Λ-quasi-convex if for every x, y ∈ X there exists a curve γ
connecting x to y with Len(γ) � Λd(x, y). Such a curve γ, when it exists, is called a Λ-quasi-
geodesic. A space X is called Λ-quasi-convex at scale r0 > 0, if the same holds for every
x, y ∈ X with d(x, y) � r0.

Frequently, we restrict the metric and measure onto some subset A ⊂ X. On A the measure
is denoted μ|A, and d|A×A, but we will often avoid this cumbersome notation. Also, metric balls
in A are simply intersections Bd|A×A

(x, r) = B(x, r) ∩A, and they are denoted occasionally by
BA(x, r).

Related to Definition 1.1, a metric space X is said to be N -metric doubling, for some
N ∈ N, if for every ball B(x, r) there exist x1, . . . , xm ∈ X for some m � N such that

B(x, r) ⊂
m⋃
i=1

B(xi, r/2).

Clearly, every metric space equipped with a D-doubling measure is D4-metric doubling. Later
we will specialize to doubling measures with certain quantitative growth, as below.

Definition 2.2. A proper metric measure space (X, d, μ) is said to be Ahlfors

Q-regular with constant C > 0 if for all 0 < r < diam(X) and any x ∈ X we have

1
C
rQ � μ(B(x, r)) � CrQ.

The space is said to be Ahlfors Q-regular up to scale r0 if the same holds for r ∈ (0, r0).
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ALMOST UNIFORM DOMAINS 251

We define the centered Hardy-Littlewood maximal functions as

Mf(x) := sup
0<r

 
B(x,r)

f dμ. (2.3)

Msf(x) := sup
r∈(0,s)

 
B(x,r)

f dμ.

Here and in what follows, we will use a localized version of the Maximal Function Theorem,
see [33, Theorem 2.19]. The proof below, given for completeness, is a slight modification of the
classical argument.

Lemma 2.4. If X = (X, d, μ) is a D-doubling metric measure space at scale 8R, then

μ({MRf > λ} ∩B(x, r)) �
D3‖f |B(x,r+R)‖L1

λ

for all x ∈ X, all f ∈ L1(X), and all r,R, λ > 0.

Proof. Put Eλ := {MRf > λ} ∩B(x, r). For each y ∈ Eλ, there exists ry ∈ (0, R) so thatˆ
B(y,ry)

|f | dμ > λμ(B(y, ry)), (2.5)

so {B(y, ry)}y∈Eλ
clearly covers Eλ. A standard 5-covering theorem [33, Theorem 2.1] (or

alternatively [17, Theorems 2.8.4–2.8.6]) then asserts that there is a countable, pairwise-disjoint
subcollection of balls Bi := B(yi, ryi

) for i ∈ I with each yi ∈ Eλ and so that⋃
y∈Eλ

B(y, ry) ⊂
⋃
i∈I

B(yi, 5ryi
).

Using the fact that
⋃

i∈I Bi ⊂ B(x, r + R), we then obtain

μ(Eλ) �
∑
i

μ(B(yi, 5ryi
)) � D3

∑
i

μ(Bi) �
D3

λ

∑
i

ˆ
Bi

|f | dμ � D3

λ

ˆ
B(x,r+R)

|f | dμ

as desired. �

2.2. Poincaré inequalities via fillings

In this subsection, we make precise the notion of filling and ‘fillable set’, the main tools in
proving our results. One useful property of fillings Ωr is that they satisfy a Poincaré inequality
a priori only at scales comparable to r. For our applications, this property will be easy to check,
in that the geometry of the filling at scale r will be kept simple.

Definition 2.6. Let ε ∈ (0, 1), p ∈ [1,∞), and C,D � 1. Given a closed subset Y of a
complete space X, a closed subset Ωr ⊆ X is called an ε-filling of Y at scale r > 0 with
constants (D,C, p) if the following conditions hold.

(1) Y ⊂ Ωr.
(2) For every x ∈ Y , the density condition μ(Ωr∩B(x,r)\Y )

μ(Ωr∩B(x,r)) < ε holds.
(3) The restricted space (Ωr, d|Ωr×Ωr

, μ|Ωr
) is D-doubling and satisfies a (1, p)-Poincaré

inequality at scale 2r,
 
B

|f − fB |dμ � Cs

( 
CB

Lip (f)pdμ
)1/p

,

where B = BΩr
(x, s) is any ball in Ωr with s � 2r.
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252 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Then, Y is called p-Poincaré ε-fillable up to scale r0, with constants (D,C) — or
(ε,D,C, p)-PI fillable up to scale r0, for short — if there exists an ε-filling at scale r of
Y with constants (D,C, p) and any r ∈ (0, r0).

We say that Y is asymptotically p-Poincaré fillable if for some fixed constants (D,C)
and for any ε > 0 there exists r0 > 0 such that Y is (ε,D,C, p)-PI fillable up to scale r0.

In terms of these sets, we can now give sufficient conditions for a subset to satisfy a Poincaré
inequality.

Theorem 2.7. Fix structural constants (p,D,C, r0) and let X be a D-doubling metric
measure space. Then, for every q > p, there exist εq, Cq, Cr > 0 with the following properties.

(a) If Y is a p-Poincaré, εq-fillable subset of X up to scale r0 with constants (D,C), then it
satisfies a (1, q)-Poincaré inequality with constant Cq at scale r0/Cr.

(b) Further, if Y is an asymptotically p-Poincaré fillable subset of X, then it satisfies a local
(1, q)-Poincaré inequality for every q > p.

Here the constants εq and Cq, C
′ are independent of the original scale r0, but depend on the

other structural constants and on the exponent q.

Remark 2.8. Note that X is not assumed, a priori, to support a Poincaré inequality; only
the fillings Ωr from Definition 2.6 do. In many cases, including our applications in Section 4,
we will assume that X is a p-PI space, in which case good choices of Ωr will inherit Poincaré
inequalities from X.

Note that the local Poincaré inequality could be improved to a semi-local one [6] (that is,
(1.3) holds at every scale, with constant depending on the scale and location only), if the space
is proper and connected. In the case of bounded metric spaces, like non-self-similar Sierpiński
carpets, this semi-local property further improves to the usual global type.

Remark 2.9. It is crucial in Part (a) of the previous theorem that the density parameter
εq be allowed to depend on the structural constants D,C, p.

Here we give some examples involving fillings of subsets and how the exponent of the Poincaré
inequality can depend subtly on how the set is filled. In each case, we construct a filling with
arbitrarily good Poincaré inequalities, namely local (1,1)-Poincaré inequalities. The subset,
however, only inherits the Poincaré inequality if the density parameter is sufficiently small,
relative to a controlled constant in the Poincaré inequality of the filling.

Example 2.10. Let X = [−1, 1]2, which is a (1,1)-PI-space, while the subset

Y = [−1, 0] × [0, 1] ∪ [0, 1] × [−1, 0]

is a (1, p)-PI-space only for p > 2. However, if we ‘thicken’ Y at the origin, then the filling

Y
h

r = Y ∪B(0, hr)

satisfies a (1, q)-Poincaré inequality at scale r with constant Ch
q , where

Ch
q ≈q

{
h

q−2
q , if 1 � q < 2,

log(1/h), if q = 2.

and where Ch
q can be bounded independent of h for q > 2. Here, the ratio implied in ≈q depends

on q, but not on h, and could be made explicit.
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ALMOST UNIFORM DOMAINS 253

Figure 1. An approximant of the space Y with the squares removed at the first three levels.
The image is rotated by 90◦.

For every r > 0, we can set Ωr = Y
h

r , and see that Y is q-Poincaré h2-fillable up to scale
1 with constants (D,Ch

q ), for some uniform doubling constant D. By Theorem 2.7 then Y
satisfies a (1, q)-Poincaré inequality for q > 2, as expected. However, for q ∈ [1, 2], the Poincaré
constant Ch

q blows up as h → 0, so the subset Y need not, and does not, satisfy a (1, q)-Poincaré
inequality for q ∈ [1, 2].

The following example is closely related to the discussion of fat Sierpiński carpets and sponges
in Section 4.1.

Example 2.11. Let X = [0, 1]2, and let C1/3 be the usual ‘middle thirds’ Cantor set in
[0,1] and denote by Ik the open removed intervals of length 3−k in the construction of C1/3.
Now define the set of squares

R =
{
I ×
(

1 − 3−k

2
,
1 + 3−k

2

)∣∣∣∣I ∈ Ik, k ∈ N

}
and denote the complement of their union as

Y = [0, 1]2 \
⋃

R∈R
R.

Unlike the standard ‘middle-ninths’ Sierpiński carpet, only the squares intersecting the line
y = 1

2 are removed. (See Figure 1.)
Putting α = log(2)

log(3) for the Hausdorff dimension of C1/3, we now claim that Y with the
restricted Lebesgue measure and Euclidean distance satisfies a (1, p)-Poincaré inequality if and
only if p > 2 − α. To see why, both of the sets

Y+ = Y ∩ [0, 1] ×
[
0,

1
2

]
and Y− = Y ∩ [0, 1] ×

[
1
2
, 1
]
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254 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

are uniform domains (see Definition 4.12) and therefore satisfy (1,1)-Poincaré inequalities (see
Theorem 4.14). Moreover, we have

Y = Y+ ∪ Y− and Y+ ∩ Y− = C1/3 × {1
2
},

so Y arises from gluing Y± along a α-dimensional set and by [23, Theorem 6.15], it satisfies
a (1, p)-Poincaré inequality for p > 2 − α. On the other hand, Y does not satisfy a Poincaré
inequality for p ∈ [1, 2 − α]; indeed, consider the function

u(x, y) = max
{

min
{

1
h

(
y − 1

2

)
, 1
}
, 0
}
.

On [0, 1] × (1/2, 1/2 + h], we have Lip (u) = 1
h , so if q < 2 − α, then for all h < 1

3 , we have

 
[0,1]2

∣∣u− u[0,1]2
∣∣ dλ � 1

6
� h

2−α−q
q ≈q

( 
[0,1]2

Lip (u)q dλ

)1/q

,

which contradicts the (1, q)-Poincaré inequality as h → 0. The case q = 2 − α is similar, but
we consider the function

u(x, y) =

{
1, if y � 1

2 ,

min
{

max
{

log
(

h
y− 1

2

)
, 0
}
, 1
}
, if y > 1

2 .

Again Y has certain good fillings that consist of

Ωr = [0, 1]2 \
⋃

R∈R,diam(R)�r/9

R.

At scale r, only finitely many sets R with diameters larger than r/9 are near points in Ωr. It
follows that Ωr satisfies (1,1)-Poincaré inequalities at scales comparable to r with constants
(D,C) independent of r.

However, for balls centered on y = 1/2 the density of Ωr \ Y is bounded from below, say
by some constant δ > 0. Thus, these are only (δ,D,C, 1)-PI-fillable and not asymptotically 1-
Poincaré fillable. This corresponds to the fact that we obtain only a (1, p)-Poincaré inequality
for p > 2 − λ, instead of for all p > 1.

2.3. Poincaré inequalities via ‘maximal’ connectivity

The proof of Theorem 2.7 is based on general techniques that reduce the Poincaré inequality
to a certain connectivity property at all scales and with sets (or ‘obstacles’) of prescribed
densities. These densities are in turn measured in terms of maximal functions.

The starting point is this very notion of connectivity: roughly speaking, ‘if a set E has small
measure density (in a scale invariant way), then there are curves of unit speed that spend only
a short time within E’.

Definition 2.12. Let δ > 0 and C, p � 1. We say that a pair of points x, y ∈ X for a metric
measure space (X, d, μ) is (C, δ, p)-max connected, if for every τ > 0 with r := d(x, y), and
every Borel-measurable set E such that

MCr(1E)(x) < τ and MCr(1E)(y) < τ, (2.13)

there exists a 1-Lipschitz curve γ : [0, L] → X, for some L > 0, such that:

(1) γ(0) = x;
(2) γ(L) = y;
(3) Len(γ) � Cr;
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ALMOST UNIFORM DOMAINS 255

(4) the following integral inequality holds:ˆ
γ

1E ds � δτ
1
p r. (2.14)

We say that a space (X, d, μ) is p-maximally connected at scale r0 with constants (C, δ) —
or (C, δ, p)-max connected at scale r0, for short — if every pair x, y ∈ X with d(x, y) < r0
is (C, δ, p)-max connected.

Remark 2.15. Since the measure is assumed to be Borel regular, it is enough to verify
Definition 2.12 for all open (or all closed) ‘obstacles’ E. Indeed, if ε > 0 and E ⊂ X is
any Borel set, we can find using Borel regularity an open set E′ so that E ⊂ E′ and
MCr(1E′\E)(x),MCr(1E′\E)(y) < ε. The case of closed sets is only slightly harder, and, as
we do not use it anywhere, we only sketch the details. One can for each open set E exhaust
it with closed sets Ek = {x : d(x,X \ E) � 1

k}. One then finds a sequence of curves γk for
each Ek, and since Ek−1 ⊂ int(Ek), then after passing to a subsequence and using monotone
convergence, we can find a curve γ which satisfies (1)–(4) for E.

A technical issue with checking for maximal connectivity is that the desired maximal function
estimates for X are not directly related to those for the filling Ωr. Furthermore, it can be
challenging to prove the property for all density ‘levels’ τ > 0. This is dealt with the following
variants of this connectivity.

Definition 2.16. We say that a metric measure space (X, d, μ) is p-maximally con-

nected at level τ0 and scale r0 (with constants (C, δ)) — or (C, δ, τ0, p)-max connected

at scale r0, for short — if the p-maximal connectivity conditions of Definition 2.12 hold for
only τ = τ0, instead of for all τ .

This condition may seem technical at first. The core point, however, is that it allows for
characterizing Poincaré inequalities in terms of sufficiently good avoidance of obstacles of a
fixed level, so one need not consider obstacles of every level. Further, this ‘fixed-level’ property
is inherited by sufficiently dense subsets.

Lemma 2.17. Suppose X is D-doubling and (C, δ, τ0, p)-max connected at scale r0 and that
Y is a closed, Λ-quasi-convex subset of X. If x, y ∈ Y satisfy d(x, y) < r0, as well as

MCr1X\Y (x) <
τ0
2

and MCr1X\Y (y) <
τ0
2
,

then the pair (x, y) is (ΛC,Λδ, τ0
2 , p)-max connected relative to Y with its restricted measure

and distance.

We will only sketch the main form of the argument, since the lemma will not be used directly
and a variant appears later. The main idea, however, is replacing bad portions of an initial
curve with better ones, as depicted in Figure 2.

Proof. By Remark 2.15, it suffices to consider open sets. Let E ⊂ Y be a relatively open
arbitrary open set with MY

Cr1E(z) < τ0/2 for z = x, y but where the maximal function is
computed relative to Y ; for F = E ∪ (X \ Y ), it then follows that MCr1F (z) < τ0, where the
maximal function is once again relative to X.

Thus the definition of max-connectivity gives a curve γ that spends at most δτ
1/p
0 r in the

complement of Y and the set E. The set γ−1(X \ Y ) consists of countably many disjoint
maximal open intervals (ai, bi), so we can replace each γ|(ai,bi) by a Λ-quasi-geodesic in Y
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256 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

X

x y
E

γ i

γ | (a i ,b i )

B (x, Cr )

Y

Figure 2. Proof of Lemma 2.17. Connectivity involves constructing a curve in the gray subset
Y between a pair of points x, y while avoiding the dark gray subset E as well as possible. The
connectivity of X is used to give a ‘proto-curve’, whose portions γ|(ai,bi) in the complement X \ Y
are replaced by detours γi constructed using quasi-convexity (the dash-dotted line segment).

that joins γ(ai) and γ(bi). This produces a new curve γ′ which lies entirely in Y , is at most
ΛCd(x, y) long, and spends at most Λδτ1/p

0 r time in E, as desired. �

Our connectivity property is related to the (1, p)-Poincaré inequality via the following two
theorems. We discuss their applications first in the next section, and their proofs will appear
later in Section 5.

Theorem 2.18. Fix structural constants (p,D,C, r0). If X is D-doubling at scale r0 and
satisfies a (1, p)-Poincaré inequality at scale r0 with constant C, then X is (C0,Δ, p)-max
connected at scale r0/2, where C0 and Δ depend solely on the structural constants.

The converse also holds true, but requires a sufficiently small value for δ.

Theorem 2.19. Fix structural constants (p,D,C, r0). There exists δp,D > 0 such that if
X is D-doubling at scale r0 and (C, δ, τ0, p)-max connected at scale r0 for some τ0 ∈ (0, 1)
and some δ ∈ (0, δp,D), then it also satisfies a (1, p)-Poincaré inequality at scale r0/Cr with
constant Cp, where Cp, Cr are independent of scale r0 but depends quantitatively on all the
other structural constants, as well as δ and τ0.

As emphasized in the notation, the above constant δp,D depends only on p and D and no
other structural constants.

However, a small parameter value for δ is not serious; the next result assures that such values
for δ always occur at some density level τ but for slightly larger exponents than p.

Lemma 2.20. With the same constants as in Theorem 2.18, let X be a D-doubling metric
measure space that is (C,Δ, p)-max connected at scale r, and let q > p. For each δ ∈ (0, 1),
there exists τ0 = τ0(q, δ) ∈ (0, 1) so that X is (C, δ, τ ′, q)-max connected at scale r for any
τ ′ ∈ (0, τ0).
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ALMOST UNIFORM DOMAINS 257

Proof. Choose τ0(q, δ) = min{1, ( δ
Δ )

pq
q−p } and τ ′ ∈ (0, τ0(q, δ)). We will show (C, δ, τ ′, q)-max

connectivity. Let x, y, E be as in the Definitions 2.12 and 2.16 at scale r, that is, d(x, y) < r
and

MCd(x,y)(1E)(x) < τ ′

MCd(x,y)(1E)(y) < τ ′.

By (C,Δ, p)-max connectivity, there is a curve γ connecting x to y with length at most Cd(x, y)
and with ˆ

γ

1E ds � Δτ ′
1
p d(x, y).

By our choice of τ0, we have Δτ ′1/p = (Δτ ′1/p−1/q)τ ′1/q � δτ ′1/q, and thus we also have
ˆ
γ

1E ds � δτ ′
1
q d(x, y),

and in particular, γ already verifies the (C, δ, τ ′, q)-max connectivity condition. �

To reiterate, to prove that a p-fillable subset Y satisfies a (1, p)-Poincaré inequality, by
Theorem 2.19 it is sufficient to prove the maximal connectivity property for Y at a certain
level and for fixed choices C and δ < δp,D. Similarly as in Lemma 2.17, this property will be
‘inherited’ from a filling Ωr at a comparable scale.

With these general statements at hand, we will employ the following strategy for the proof
of Theorem 2.7.

(1) Theorem 2.18 guarantees that any filling Ωr of Y will satisfy maximal connectivity
properties with exponent p and some initial parameter Δ.

(2) From Lemma 2.20, we obtain (C, δ, τ0, q)-maximal connectivity for Ωr at scale r for
arbitrarily small parameters δ, but at the expense of a slightly larger exponent q.

(3) Similarly to Lemma 2.17, due to quasi-convexity (see Lemma 3.2) Y inherits the maximal
connectivity property from its filling Ωr, but with δ′ slightly larger than δ. This parameter δ′

can be ensured to be less than the given threshold δp,D, however, by an initially small choice
of δ in the previous step.

(4) Using maximal connectivity and quasi-convexity (again), we show Y satisfies a (1, q)-
Poincaré inequality via Theorem 2.19.

Here q > p is needed to apply the argument from Lemma 2.20. If p > 1, this could be avoided
via Keith–Zhong [28], since we could first improve the Poincaré inequality for each Ωr to an
exponent p′ < p.

3. Proof that ‘fillable’ sets satisfy Poincaré inequalities

3.1. Initial geometric considerations

Now, we show that the underlying (restricted) measure of a fillable subset is well behaved.
More precisely, we show that a fillable subset Y inherits the doubling property from its fillings
Ωr. Recall that throughout this paper, Y ⊂ Ωr ⊂ X, where Ωr will be the relevant fillings.

Lemma 3.1. Fix structural constants (p,D,C, r0). If Y is (ε,D,C, p)-PI fillable up to scale
r0 for some ε ∈ (0, 1), then Y is ( D

1−ε , r0)-doubling.
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258 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Proof. Let r ∈ (0, r0) and x ∈ Y . From item (2) of Definition 2.6, we have

μ(Ωr ∩B(x, r)) = μ(Ωr ∩B(x, r) ∩ Y ) + μ(Ωr ∩B(x, r) \ Y )

< μ(Y ∩B(x, r)) + ε μ(Ωr ∩B(x, r))

∴ (1 − ε)μ(Ωr ∩B(x, r)) < μ(Y ∩B(x, r)).

Since Ωr is assumed D-doubling with respect to the restricted measure μ|Ωr
and since Y is a

subset of Ωr, it follows that

μ(Y ∩B(x, 2r)) � μ(Ωr ∩B(x, 2r)) � Dμ(Ωr ∩B(x, r)) � D

1 − ε
μ(Y ∩B(x, r)).

So the claim follows with doubling constant D
1−ε . �

We next show that PI-fillable subsets Y are quasi-convex. This connectivity property is
derived from stronger ones, that is, the Poincaré inequalities of the fillings Ωr. For clarity later,
given f ∈ L1(X) and R > 0 we specify the choice of metric space for maximal functions by
using the shorthand

Mr
Rf(x) := sup

ρ∈(0,R)

 
B(x,ρ)∩Ωr

|f | dμ

M0
Rf(x) := sup

ρ∈(0,R)

 
B(x,ρ)∩Y

|f | dμ,

where Ωr is as in Definition 2.12.

Lemma 3.2. Fix structural constants (p,D,C, r0). There exist ε0,Λ, r1 > 0, depending solely
on the structural constants, so that if Y is a (ε,D,C, p)-PI fillable subset of a metric space X
at scale r0, for some ε ∈ (0, ε0), then it is Λ-quasi-convex at scale r1.

Proof. By hypothesis, Y is (ε,D,C, p)-fillable up to scale r0, for some ε ∈ (0, ε0), so there
exist fillings Ωr for every r ∈ (0, r0) with Y ⊂ Ωr ⊂ X that are D-doubling at scale 2r, that
support a (1, p)-Poincaré inequality at scale r with constant C, and so that

μ(Ωr ∩B(z, r) \ Y )
μ(Ωr ∩B(z, r))

< ε < ε0

holds for all z ∈ Y . From Theorem 2.18, we conclude that the fillings Ωr are (C0,Δ, p)-max
connected for some C0 and Δ at scale r/2. Choose τ0 = 1

Δp4p so that Δτ
1/p
0 r � r/4 and fix

ε0 = D−(10+�log2(C0))�)τ0 and Λ = 2C0 and r1 =
r0

25C0
.

Since C0 and Δ depend only on the structural constants, by Theorem 2.18, the same is true
of ε0, Λ, and r1.

We now show that Y is Λ-quasi-convex at scale r1. For every x, y ∈ Y with r = d(x, y) < r1,
we will construct a Λ-quasi-geodesic joining x and y, using a recursive argument.

Base case(s). Fix R = 25C0r. The initial curve will be constructed in ΩR and will lie almost
entirely in Y . To begin, define an obstacle

E := X \ (Y ∪B(x, r/16) ∪B(y, r/16)).

In particular, this implies for ρ ∈ ( 1
16r,R) that

μ(ΩR ∩B(x, ρ) ∩ E)
μ(ΩR ∩B(x, ρ))

� μ(ΩR ∩B(x,R) \ Y )
μ
(
ΩR ∩B(x, 1

16r)
) � D10+�log2(C0)�μ(ΩR ∩B(x,R) \ Y )

μ(ΩR ∩B(x,R))
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ALMOST UNIFORM DOMAINS 259

and since μ(ΩR ∩B(x, ρ) ∩ E) = 0 holds whenever ρ ∈ (0, 1
16r), it follows that

MR
C0r1E(z) < D10+�log2(C0)�ε < τ0 for z = x, y. (3.3)

For future consistency of notation, put x1,1 := x and y1,1 := y and xi,1 := yi,1 := y for i � 2.
Also define ri,1 = d(xi,1, yi,1), in which case∑

i

ri,1 = r1,1 � r.

Recall that ΩR is (C0,Δ, p)-max connected at scale R/2 > r. By applying Definition 2.12 to
E, equation (3.3) guarantees the existence of a C0-quasi-geodesic γ1 : [0, L1] → ΩR, for some
length†L1 ∈ (0, C0r), joining x and y in ΩR ⊂ X, and so thatˆ

γ1

1E ds � Δτ
1/p
0 r � r/4. (3.4)

Consider the exit times

t1,1 := sup
{
t ∈ [0, L1] | d(γ1(t), x) � r/8

}
T1,1 := inf

{
t ∈ [0, L1] | d(γ1(t), y) � r/8

}
.

Since Y is closed, the set E is open and it follows that γ−1
1 (E) ∪ (0, t1,1) ∪ (T1,1, L1) is open in

R, so it is a countable union of open intervals

(0, t1,1) ∪ (T1,1, L1) ∪ γ−1
1 (E) =

∞⋃
i=1

(ai, bi)

with ai � bi and where each pair xi,2 := γ1(ai) and yi,2 := γ1(bi), of distance ri,2 := d(xi,2, yi,2)
apart, also lie in Y . (If the union is finite, then there exists N ∈ N so that an = bn for n � N .)
Also,

γ−1
1 (X \ Y ) ⊂

∞⋃
i=1

(ai, bi). (3.5)

Equation (3.4) thus implies that∑
i

ri,2 � len(γ1 ∩ Ωr \ Y ) +
r

4
�
(

Δτ
1/p
0 +

1
4

)
r � r

2
.

Since γ1 is parametrized by length, and Len(γ1) � Λr = Λr1,1, it trivially holds that

γ1 \ Y ⊂
∞⋃
i=1

B(xi,1,Λri,1). (3.6)

Recursive step. Let k ∈ N be given, with k � 2, and suppose the sequence ((xj,k, yj,k))∞j=1 in
Y × Y has already been defined, with rj,k := d(xj,k, yj,k) < r0 and with the property that∑

j

rj,k � 21−kr. (3.7)

Assume further that a Ck-quasi-geodesic γk−1 : [0, Lk−1] → X joining x and y has already been
defined for some Lk−1 ∈ (0, Ck−1r), where

Ck−1 := 2(1 − 2−(k−1))C0 (3.8)

†Recall the convention that all rectifiable curves are assumed to be parametrized with respect to arc-length,
unless otherwise specified. The only time below that we will need this we will indicate such curves by an asterisk.
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260 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

and with the property that there exist {ajk−1, b
j
k−1}∞j=1 ⊂ [0, Lk−1] with

xj,k = γk−1(a
j
k−1) and yj,k = γk−1(b

j
k−1) and rj,k = d(xj,k, yj,k)

and which satisfies the avoidance properties

γ−1
k−1(X \ Y ) ⊂

∞⋃
j=1

(ajk−1, b
j
k−1), (3.9)

γk−1 \ Y ⊂
∞⋃
j=1

B(xj,k−1,Λrj,k−1). (3.10)

By applying the same argument as in the base case, with xj,k and yj,k and rj,k in place of x
and y and r, take fillings Ωj,k := Ω25C0rj,k of Y that are (C0,Δ, p)-max connected at scales
24C0rj,k. Using obstacles

Ej,k := X \ (Y ∪B(xj,k, rj,k/16) ∪B(yj,k, rj,k/16)),

and estimating similarly as (3.3), there exist C0-quasi-geodesics γj,k : [0, Lj,k] → Ωj,k ⊂ X
joining xj,k to yj,k in Ωj,k, so that

∞∑
j=1

ˆ
γj,k

1Ej,k
ds �

∞∑
j=1

Δτ
1/p
0 rj,k

(3.7)

� 2−1−kr (3.11)

and whose lengths Lj,k � C0rj,k satisfy

H1

⎛
⎝⋃

j

γj,k

⎞
⎠ �

∑
j

Lj,k �
∑
j

C0rj,k
(3.7)

� 21−kC0r. (3.12)

As before, for each j ∈ N, set exit times

tj,k := sup
{
t ∈ [0, Lj,k] | d(γj,k(t), xj,k) � rj,k/8

}
Tj,k := inf

{
t ∈ [0, Lj,k] | d(γj,k(t), yj,k) � rj,k/8

}
.

The preimage γ−1
j,k (X \ Y ) is open in R and satisfies

(0, tj,k) ∪ (Tj,k, Lj,k) ∪ γ−1
j,k (X \ Y ) =

∞⋃
l=1

(al∗j,k, b
l∗
j,k)

for sequences of pairs al∗j,k � bl∗j,k. Reindexing i = i(j, l) as needed, put

xi,k+1 := γj,k(ai∗k ), where ai∗k := al∗j,k

yi,k+1 := γj,k(bi∗k ), where bi∗k := bl∗j,k

ri,k+1 := d(xi,k+1, yi,k+1).

Based on (3.7) and (3.11) and our choice of tj,k and Tj,k, it holds that
∞∑
i=1

ri,k+1 =
∞∑
j=1

∞∑
l=1

d(γj,k(al∗j,k), γj,k(b
l∗
j,k))

�
∞∑
j=1

(
rj,k
4

+
ˆ
γj,k

1Ej,k
ds

)
� 1

4
· 2−(k−1)r + 2−1−kr � 2−kr.
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ALMOST UNIFORM DOMAINS 261

Toward a new curve, consider sub-curve lengths

Lj
k−1 := len(γk−1

(
[ajk−1, b

j
k−1]

)
)

L∗
k := len(γk−1) +

∞∑
j=1

(Lj,k − Lj
k−1).

for all j and k. We further define a parametrization for a curve of length L∗
k, and where each

γj,k replaces γk−1|[aj
k−1,b

j
k−1]

, as follows:

γ∗
k(t) :=

⎧⎨
⎩γj,k

(
Lj,k

bjk−1−aj
k−1

(
t− ajk−1

))
, if t ∈ [ajk−1, b

j
k−1] for some j ∈ N,

γk−1(t), otherwise.

Let γk be the arclength parametrisation of γ∗
k . Let ajk, b

j
k correspond to aj∗k , bj∗k under

this reparametrization. By equation (3.9), γk−1(t) can only lie in X \ Y whenever t ∈
[ajk−1, b

j
k−1] for some j ∈ N, that is, where the images of γj,k and γk agree. With the same

reindexing i = i(j, l), this gives the avoidance property

γ−1
k (X \ Y ) ⊂

∞⋃
i=1

(aik, b
i
k) (3.13)

and since the γj,k have length at most Λrj,k, the other avoidance property follows:

γk \ Y ⊂
∞⋃
i=1

B(xi,k,Λri,k). (3.14)

From (3.7) and (3.8), it follows that

len(γk) � L∗
k � len(γk−1) +

∞∑
j=1

Lj,k

� 2(1 − 2−(k−1))C0r + C0

∞∑
j=1

rj,k

� 1 − 2−(k−1)

1 − 1
2

C0r + 2−(k−1)C0r =
1 − 2−k

1 − 1
2

C0r = 2(1 − 2−k)C0r. (3.15)

By construction, for each k ∈ N there exists j1, j2 ∈ N so that x = aj1k−1 and y = bj2k−1, so γk
therefore joins x and y. By the previous estimate, it is therefore a Ck-quasi-geodesic with

Ck := 2(1 − 2−k)C0,

which completes the induction step.
A limiting curve. Putting γ′

k(t) := γk(Λr
Lk

t), it follows that {γ′
k}∞k=1 is a family of 1-Lipschitz

functions on [0,Λr], each joining x to y. By the Arzelá–Ascoli theorem, there therefore exists a
sublimit function γ : [0,Λr] → X that is 1-Lipschitz and joins x and y. Since γ is 1-Lipschitz,
we obtain

Len(γ) � Λr � Λd(x, y),

and γ is the desired Λ-quasi-geodesic connecting x to y.
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262 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

We lastly claim that γ([0, L]) ⊂ Y . From the inclusion (3.10) and the estimate (3.7), the
Hausdorff 1-content of γk \ Y satisfies

H1
∞(γk \ Y ) � H1

∞(γk ∩
∞⋃
j=1

B(xj,k,Λrj,k)) � 21−kΛr

and therefore vanishes, as k → ∞; we therefore conclude H1(γ \ Y ) = 0 since γ is continuous
and Y is closed. Indeed, if γ spent any time in the complement of Y , then by continuity, the
Hausdorff content of γk \ Y would have a definite lower bound for large k, contradicting the
previous limit calculation. �

3.2. Proof of Theorem 2.7, Part (a)

In light of Theorem 2.19, it suffices to prove the following statement instead of the original
statement of Theorem 2.7:

Theorem 3.16. Let X be a metric measure space, fix structural constants (p,D,C, r0),
and let δ > 0 be arbitrary. For every q > p, there exist εq, τ ∈ (0, 1), C ′ � 1 and r1 ∈ (0, r0),
such that if ε ∈ (0, εq), then every (ε,D,C, p)-fillable subset Y of X up to scale r0 is:

(1) 2D-doubling at scale r1; and
(2) (C ′, δ, τ, q)-max connected at scale r1.

Remark 3.17 (Dependence on parameters). Here r1 is the only constant that depends on
the original scale r0. In fact, it suffices that r1 = r0/(20C ′); see the end of Step 1 of the proof.
As for εq, τ , and C ′, they all depend on the remaining structural constants but εq and τ depend
additionally on δ and q.

Proof. We proceed in three steps: (1) fixing parameters for definiteness, (2) passing the
density conditions (2.13) from points in Y to points in the fillings Ωr, and then (3) constructing
the quasi-geodesics explicitly.

Step 1: Fixing parameters and their dependencies. Let δ ∈ (0, 1) and q > p be given. Let
Λ = Λ(D,C, p) be the constant from Lemma 3.2, and let ε0 be the filling threshold for Λ-quasi-
convexity to be guaranteed for Y . Each filling Ωr satisfies (1, p)-Poincaré inequalities at scale
r, so by Theorem 2.18 and Lemma 2.20 there exists a constant C0 � 1 such that for any δ′ > 0
there is some τ0 ∈ (0, 1) such that Ωr is (C0, δ

′, τ ′, q)-max connected at scale r/2 — that is, it
is q-maximally connected at scale r/2 and level τ ′ with constants (C0, δ

′) for each τ ′ ∈ (0, τ0).
Now choose δ′ ∈ (0, 1) sufficiently small so that both conditions below hold:

Λ(6(2D)
4
q + 2)δ′ < δ, (3.18)

(2Λ + 2C0 + 4Λ(2D)
4
q )δ′ � C0. (3.19)

In particular, (3.18) implies δ′ � 1
4 . This fixes τ0 ∈ (0, 1) with dependence on data τ0 =

τ0(C,D, δ′, q) as from Theorem 2.18 and Lemma 2.20, in which case the fillings Ωr are
(C0, δ

′, τ0, q)-max connected at scale r/2. In particular, we may assume τ0 < C−q
0 .

Next, choose τ ∈ (0, 1) with analogous dependence τ = τ(C,D, δ, q) so that

(2D)4τ � τ0
2
,

and let m = m(C0) ∈ N and n = n(τ, δ, p) ∈ N satisfy

2m−1 < C0 + 1 < 2m and
1
2
δ′τ1/p � 2−n < δ′τ1/p < δ′τ1/q. (3.20)
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ALMOST UNIFORM DOMAINS 263

Letting εq := min{ 1
4D

−(5+n+m)τ, ε0}, it follows that εq < 1
2 and each ε ∈ (0, εq) satisfies

((2D)4τ + 4D5+n+mε)1/q < 2(2D)4/qτ1/q (3.21)
and in particular, that

(2D)4τ + 4D5+n+mε < τ0. (3.22)

Now let ε ∈ (0, εq) and r0 > 0 be given, and assume that Y is a (ε,D,C, p)-PI fillable subset of
X, up to scale r0. Since εq � 1

2 , it follows from Lemma 3.1 that Y is (2D, r0)-doubling.
Fix C ′ = 2C0. We now show Y is (C ′, δ, τ, q)-max connected at scale r1 = r0/(20C ′).
Step 2: Finding nearby dense points. To verify (C ′, δ, τ, q)-max connectivity at scale 1

20C′ r0,
take an arbitrary pair x, y ∈ Y satisfying r := d(x, y) ∈ (0, 1

20C′ r0) and an arbitrary Borel set
E such that

M0
C′r1E(x) < τ and M0

C′r1E(y) < τ. (3.23)
Our goal is to construct a curve γ in Y with length at most C ′r which connects x and y withˆ

γ

1E ds � δτ1/qr.

Let Ω2C′r be a filling of Y from Definition 2.6, so

μ(Ω2C′r ∩B(x, 2C ′r) \ Y )
μ(Ω2C′r ∩B(x, 2C ′r))

< ε (3.24)

and as a shorthand, for ρ > 0 put

B2C′r(x, ρ) = B(x, ρ) ∩ Ω2C′r.

Computing first with (3.24) and the D-doubling property of Ω2C′r yields

μ(B2C′r(x, 2C ′r) \ Y )
(3.24)

� εμ(B2C′r(x, 2C ′r))

(3.20)

� Dm+1εμ(B2C′r(x, r))
(3.20)

� Dm+n+1εμ(B2C′r(x, δ′τ1/qr))

as well as the estimate below, where BY is the ball in Y :
μ(BY (x, δ′τ1/qr)) � μ(B2C′r(x, δ′τ1/qr)) − μ(B2C′r(x, 2C ′r) \ Y )

� (1 −Dm+n+1ε)μ(B2C′r(x, δ′τ1/qr))
(3.22)

� 3
4
μ(B2C′r(x, δ′τ1/qr)).

(3.25)
Putting R := (1 + 2δ′τ1/q)r, for l = 4Dn+m+5ε consider the set

D :=
{
x′ ∈ B2C′r(x, δ′τ1/qr) : M2C′r

C0R 1Ω2C′r\Y (x′) > l
}
,

and note that C0(1 + 3δ′τ1/q)r � C ′r, so Lemma 2.4 implies

μ(D) � D3

l
μ(B2C′r(x,C0(1 + 3δ′τ1/q)r) \ Y )

� D3

l
μ(B2C′r(x, 2C ′r) \ Y )

(3.24)

� D3ε

l
μ(B2C′r(x, 2C ′r))

(3.20)

� Dn+m+5ε

l
μ(B2C′r(x, δ′τ1/qr)) =

μ(B2C′r(x, δ′τ1/qr))
4

(3.25)

� μ(BY (x, δ′τ
1
q r))

3
.
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264 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

A similar argument with l = (2D)4τ yields

μ({x′ ∈ BY (x, δ′τ1/qr);M0
δ′τ1/qr1E(x′) > l}) � (2D)3μ(E ∩B(x, 2δ′τ1/qr))

l

(3.20)

� (4D)4μ(BY (x, δ′τ1/qr))
l

M0
C′r1E(x)

� (4D)4μ(BY (x, δ′τ1/qr))
l

τ

<
μ(BY (x, δ′τ

1
q r))

2
.

As a result of the previous estimates, there exist x′ ∈ B(x, δ′τ1/qr) ∩ Y ⊂ Ω2C′r so that

4Dn+m+5ε > M2C′r
C0R 1Ωr\Y (x′) (3.26)

as well as

(2D)4τ > M0
δ′τ1/qr1E(x′). (3.27)

With R as before, note that any s ∈ (δ′τ1/qr, C0R) and x′ ∈ B(x, δ′τ1/qr) satisfy

B(x′, s) ⊂ B(x, s + δ′τ1/qr) ⊂ B(x, 2s) ⊂ B(x,C ′r).

Then, doubling and our previous assumption (3.23) on x yield
 
B2C′r(x′,s)

1E dμ =
μ(E ∩B(x′, s))
μ(B2C′r(x′, s))

� μ(E ∩B(x, s + δ′τ1/qr))
μ(BY (x′, s))

� τ
μ(BY (x, s + δ′τ1/qr))

μ(BY (x′, s))
� τ

μ(BY (x, 2s))
μ(BY (x′, s))

� τ
μ(BY (x′, 4s))
μ(BY (x′, s))

� (2D)2τ.

As for s ∈ (0, δ′τ1/qr) and for x′ satisfying (3.27), we have
 
B2C′r(x′,s)

1E dμ =
μ(E ∩B(x′, s))
μ(B2C′r(x′, s))

� μ(E ∩B(x′, s))
μ(BY (x′, s))

� (2D)4τ,

so the previous two estimates combine to yield

M2C′r
C′R (1E)(x′) � (2D)4τ. (3.28)

Put Fr = E ∪ Ω2C′r \ Y . Subadditivity of the maximal function and equations (3.26) and (3.28)
further yield

M2C′r
C′R (1Fr

)(x′) � M2C′r
C′R (1E)(x′) + M2C′r

C′R (1Ω2C′R\X)(x′) � (2D)4τ + 4D5+n+mε
(3.22)
< τ0.

Similarly, since M0
C′r1E(y) < τ , there exists y′ ∈ B(y, δ′τ

1
q ) ∩ Y ⊂ Ω2C′r so that

M2C′r
C′R 1Fr

(y′) < τ0.

Step 3: Arranging quasi-geodesics. The space Ω2C′r is (C0, δ
′, (2D)4τ + 4D5+n+mε, q)-max

connected at scale C ′r. Since

d(x′, y′) � d(x′, x) + d(x, y) + d(y, y′) � δ′τ1/qr + r + δ′τ1/qr � R � 2r < C ′r,
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ALMOST UNIFORM DOMAINS 265

x y

y ʹ

x ʹ

ΩR \ Y

E γ
γ x γ y

γ ʹi

x i

yi

Figure 3. Connectivity involves constructing a curve γ that almost avoids a prescribed obstacle
E with small density. In the proof of Theorem 3.16, this requires first finding a curve in the filling
ΩR from nearby points x′, y′, and then patching the curve with ‘detours’ γ′

i to fully avoid ΩR \ Y ,
and γx, γy to connect x and y. In the figure, the solid black curve indicates γ in the filling ΩR,
with the dotted parts indicating the parts replaced by the dash-dotted detours.

there thus exists L > 0 and a rectifiable curve γ1 : [0, L] → Ω2C′r of length at most C0R and
so that γ1(0) = x′ and γ1(L) = y′ and

ˆ
γ1

1E ds �
ˆ
γ1

1Fr
ds � δ′

(
(2D)4τ + 4D5+n+mε

)1/q
R

(3.21)

� 2δ′(2D)4/qτ1/qr. (3.29)

We now modify γ1 so that it lies entirely in Y and joins x and y. This is done by replacing
portions of the curve with curves in Y , and appending two segments on each end. (See Figure 3.)
This uses the Λ-quasi-convexity of Y at scale r1 = r0

2C0
from Lemma 3.2.

First, the set γ−1
1 (Ω2C′r \ Y ) is open and can be expressed as a (possibly finite) union of

countably many open disjoint intervals:

γ−1
1 (Ω2C′r \ Y ) =

⋃
i

(ai, bi).

Let xi = γ1(ai) and yi = γ1(bi). Since Y is Λ-quasi-convex, we can find curves γ′
i : [0, Li] → Y

connecting xi to yi, which are parametrized by length and satisfy
∑
i

Li �
∑
i

Λd(xi, yi) � Λ
ˆ
γ1

1Fr
ds � 2Λδ′(2D)4/qτ1/qr.

Similarly as in the proof of Lemma 3.2, define a curve by patching the intervals (ai, bi) with
the curves γ′

i, that is,

γ∗
2(t) :=

{
γ′
i

(
Li

bi−ai
(t− ai)

)
, if t ∈ [ai, bi] for some i ∈ N,

γ1(t), otherwise,

and let γ2 be its arclength parametrization. Now, γ2 lies entirely in Y , since γ1 only lies outside
of Y in the intervals (ai, bi). Further,⎧⎪⎪⎨

⎪⎪⎩

ˆ
γ2

1E ds �
ˆ
γ1

1E ds +
∑
i

Li

� 2δ′(2D)4/qτ1/qr + 2Λδ′(2D)4/qτ1/qr � 6Λδ′(2D)4/qτ1/qr,

(3.30)
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266 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

and

Len(γ2) � Len(γ1) +
∑
i

Li � C0R + 4Λδ′(2D)4/qτ1/qr.

Next, the pairs of points x, x′ and y, y′, can be joined by Λ-quasi-geodesics γx and γy,
respectively. Taking the concatenated curve

γ := γx ∪ γ2 ∪ γy,

it follows from (3.29) that the required avoidance holds
ˆ
γ

1E ds � len(γx) +
ˆ
γ2

1E ds + len(γy)

(3.30)
< Λδ′τ1/qr + 6Λδ′(2D)4/qτ1/qr + Λδ′τ1/qr

(3.18)
< δτ1/qr,

as well as

Len(γ) � Len(γx) + Len(γ2) + Len(γy)

� Λδ′τ1/qr + C0R + 4Λδ′(2D)4/qτ1/qr + Λδ′τ1/qr

�
(
C0 + (2Λ + 2C0 + 4Λ(2D)4/q)δ′τ1/q

)
r

(3.19)

� 2C0r = C ′r.

This curve satisfies the desired estimates, and shows (C ′, δ, τ, q)-max connectivity. �

We now apply the previous theorem to obtain Poincaré inequalities for fillable sets.

Proof of Theorem 2.7, Part (a). Fix structural constants (p,D,C, r0), which in turn fix the
constant C ′ = C ′(D,C, p) in Theorem 3.16. Next, let q > p be given and let δq,2D ∈ (0, 1) be
as in Theorem 2.19 under the choice of structural constants (q, 2D,C ′, r0).

Applying now Theorem 3.16 and Remark 3.17, there exists εq > 0 such that if ε ∈ (0, εq) and
if Y is (ε,D,C, p)-PI fillable, then Y is also 2D-doubling and (C ′, δq,2D, τ, q)-max connected
for some τ , both at scale r1 = r0/(20C ′).

Since δq,2D was chosen as in Theorem 2.19, the space Y satisfies a (1, q)-Poincaré inequality
with constant Cq = Cq(q,D,C ′, τ) at scale r1/C

′
r = r0/Cr for some constants Cr and C ′

r. �

Proof of Theorem 2.7, Part (b). By Part (a), there is a density parameter εq such that
the (1, q)-Poincaré inequality holds. Now, if Y is asymptotically p-Poincaré fillable, then there
exists for any ε > 0 a scale rε > 0 where Y is (ε,D,C, p)-PI fillable. Choosing ε ∈ (0, εq) for
any fixed q > p, the local (1, q)-Poincaré inequality follows. �

4. Application: Generalized Sierpiński sponges and uniform domains

Here we apply the general filling theorem to prove Poincaré inequalities in various new contexts.

4.1. Sierpiński sponges

In this subsection, we prove Theorem 1.5 for sponges Sn. A crucial property is the following
separation condition, given below, for sub-cubes R ∈ Rn,k removed through stages 1 through
k in the construction of Sn.
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ALMOST UNIFORM DOMAINS 267

Lemma 4.1. If R,R′ ∈ Rn,k with R �= R′, then

d(R,R′) � 1
3
sk−1 and d(R, ∂[0, 1]d) � 1

3
sk−1.

In particular, the removed sub-cubes are uniformly 1
3
√
d
-separated.

Proof. Without loss of generality, let R ∈ Rn,l and R′ ∈ Rn,l′ with k � l � l′. Let T be the
unique cube in Tl−1,n that contains R. Clearly R′ ∩ T ⊂ ∂T and nl � 3, so

d(R,R′) � d(R, ∂T ) � 1
3
sl−1 � 1

3
sk−1

and moreover

1
3
sl−1 � 1

3
sl � 1

3
min

{
diam(R)√

d
,
diam(R′)√

d

}
.

The same argument works for ∂[0, 1]d. �

To clarify the relationship between Case (4) in Theorem 1.5 and the other cases below, we
note that the set Sn has positive Lebesgue measure if and only if n−1 ∈ �d(N), that is

∞∑
i=1

1
nd
i

< ∞,

and this follows directly from Lemma 4.3.
The proof of Theorem 1.5 will be given in separate lemmas. First, Case (4) is proven directly

from certain consequences of Poincaré inequalities, namely Cheeger’s Rademacher Theorem
[10]. To keep the discussion self-contained, we introduce the relevant notions in context, below.

Proof of Case (4) of Theorem 1.5. If Sn supports a (1, p)-Poincaré inequality for some p � 1
with respect to some doubling measure μ, then Cheeger’s theorem [10] holds. In particular,
there exist a partition {Sj

n} of Sn and Lipschitz maps ϕj : Sj
n → Rmj so that for every Lipschitz

function f : Sn → R there exists a unique L∞-vectorfield Djf : Sj
n → Rmj so that, for μ-a.e.

x ∈ Sj
n, it holds that

f(y) − f(x) −Djf(x) · (ϕj(y) − ϕj(x))
|x− y| → 0

as y → x. By a result of Keith [27, Theorem 2.7], the components ϕj
k of each ϕj can be chosen

to be distance functions of the form

ϕj
k(x) = |x− xj

k|

for some xj
k ∈ Sj

n. Each is (classically) differentiable everywhere except at xj
k, so each Djf(x)

can be replaced with the vectorfield

∇ϕj(x)Djf(x) : Sj
n → Rd,

where ∇ϕj is the d×mj matrix whose columns are the gradients of the components. In other
words, each f is μ-a.e. differentiable with respect to the linear coordinate functions xj as well
as the generalized ‘coordinates’ ϕj . Thus, for every Ui the chart φj can be chosen using a
subset of the coordinates. Since on every positive μ-measured subset of Sn the coordinates xj

are linearly independent on Sn, then we need all the coordinates and we can choose the charts
as φj(x) = x. The result of De Philippis, Rindler and Marchese [12], which proves a conjecture
of Cheeger, ensures that φj(Sj

n) = Sj
n has positive Lebesgue measure. �
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268 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

As we will see, the equivalence of Conditions (1)–(3) is a special case of Theorem 2.7. We
begin with checking properties of the Lebesgue measure λ restricted to Sn.

Lemma 4.2 (Basic volume estimate). Let T ∈ Tn,k, then

exp

(
−2

∞∑
i=k+1

1
nd
j

)
� λ(T ∩ Sn)

λ(T )
=

∞∏
i=k+1

(
1 − 1

nd
i

)
� exp

(
−

∞∑
i=k+1

1
nd
j

)
.

Proof. It is easy to show inductively that

λ(T ∩ Sn) = λ(T )
∞∏

i=k+1

(
1 − 1

nd
i

)
,

from which the estimate follows, since e−2x � 1 − x � e−x for x = 1
nd
j

∈ [0, 1
2 ]. �

Lemma 4.3. If n is a sequence of odd positive integers with n−1 ∈ �d(N), then Sn is Ahlfors
d-regular for some constant CAR = CAR(n, d). In particular, Sn is 2dCAR-doubling.

Proof. Given x ∈ Sn, r ∈ (0,diam(Sn)) = (0,
√
d), and ρ ∈ (0, r], let Q(x, ρ) be the cube with

center x and edges parallel to the coordinate axes and of length ρ/
√
d, so Q(x, r) ⊂ B(x, r).

Choose k � 1 so that

8
√
dsk � r < 8

√
dsk−1 (4.4)

and let Tx,r ∈ Tk−1,n be such that x ∈ Tx,r and define

Tx,r := {T ∈ Tk,n | T ⊂ Q(x, r) ∩ Tx,r}.

Let R ∈ Rk,n be the central square of Tx,r. Then Tx,r covers Q(x, r
2 ) ∩ Tx,r \R. Moreover

λ
(
Q
(
x,

r

2

)
∩ Tx,r

)
� λ
(
Q
(
x,

r

2

)
∩ Tx,r \R

)
+ λ(R).

Thus,

2|Tx,r|sdk � |Tx,r|sdk + λ(R) � λ
(
Q
(
x,

r

2

)
∩ Tx,r \R

)
+ λ(R) � λ

(
Q
(
x,

r

2

)
∩ Tx,r

)
,

since |Tx,r| � 2, and λ(R) = sdk. The estimate

|Tx,r|sdk � 1
2
λ(Q(x,

r

2
) ∩ Tx,r) �

1
2

min{r/(2
√
d), sk−1/2}d � rd

2
(
24
√
d
)d (4.5)

follows easily from (4.4), because Q(x, r
2 ) ∩ Tx,r is a rectangle with side lengths at least

min{r/(2
√
d), sk−1/2}. Thus, using the fact that for any k and any T ∈ Tn,k,

λ(T ∩ Sn) = cn,kλ(T ), where cn,k =
∞∏

j=k+1

(
1 − 1

nd
j

)
. (4.6)

Lemma 4.2 implies

λ(B(x, r) ∩ Sn) � λ(Q(x, r) ∩ Sn ∩ Tx,r)

�
∑

T∈Tx,r

λ(T ∩ Sn)
(4.6)
= cn,k

∑
T∈Tx,r

λ(T ) � cn,k|Tx,r|sdk
(4.5)

� cn,0
2

rd

(24
√
d)d

.
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ALMOST UNIFORM DOMAINS 269

The result then follows with constant CAR = 2(24√d)d

cn,0
. Note that the upper bound for Ahlfors

regularity is trivial. �

Lemma 4.7. The set Sn is an asymptotically 1-Poincaré fillable subset of Rd.

Proof. Let D = 2dCAR be the doubling constant from Lemma 4.3. Now, consider the
domains Y1 = Rd and Y2 = [0, 1]d and Y3 = Rd \R, for R ∈ Rn,k. Each of these satisfies a
Poincaré inequality with inflation factor 1, that is, CB ∩ Yi = B ∩ Yi; see equation (4.8); this
follows, for example, from [19] and the chained ball condition which is easy to verify in this
case. In particular, for each i = 1, 2, 3 and for any ball B := B(x, s) and any Lipschitz function
f on Yi, we have  

B∩Yi

|f − fB∩Yi
| dλ � CPIs

 
B∩Yi

Lip [f ] dλ, (4.8)

where the constant CPI is independent of i, B and f . This holds, a priori, for any Lipschitz
function in Rd and taking extensions as necessary, for any Lipschitz function defined on Yi ∩B.

For each ε ∈ (0, 1), choose δ ∈ (0, ε/4) so that

1 − (1 − δ)d <
ε

4d+1
√
d
d
λ(B(0, 1))

in which case it holds, for all r > 0, that

λ(B(x, r) \B(x, r(1 − δ))) = λ(B(0, 1)) ·
(
1 − (1 − δ)d

)
rd <

εrd

4d+1
√
d
d
. (4.9)

Next, choose j0 ∈ N so that both
∑∞

i=j0
1
nd
i

< ε
4 and ni � 25

√
dδ−1 for all i � j0. We now claim

that Sn is 1-Poincaré ε-fillable (Definition 2.6) at scale

r0 = sj0+1 =
j0+1∏
i=1

1
ni

with the above constants (CPI , D).
To see why, let r ∈ (0, r0) and x ∈ Sn be given. Since d, nj0+1 ∈ N, it follows that 2

√
d

δ sj0 �
1

nj0+1
sj0 = r0, so choose k � j0 so that

2
√
d

δ
sk+1 � r <

2
√
d

δ
sk.

Now let Ωr := Sk,n. To show fillability, we need to show (i) doubling, (ii) a local Poincaré
inequality and (iii) an ε-density bound. By Lemma 4.3, the set Ωr, which contains Sn and is
contained in [0, 1]2, is Ahlfors 2-regular when equipped with the (restricted) Lebesgue measure
and hence doubling.

With (i) now settled, we show the local Poincaré inequality (ii). Based on our choice of j0
and k, we have

sk−1 = nksk >
25
√
d

δ

δ

2
√
d
r � 24r

in which case Lemma 4.1 implies

d(R,R′) � 1
3
sk−1 > 4r (4.10)
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270 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

for all R,R′ ∈ Rn,k with R �= R′. Thus for each x ∈ Sn there is at most one R ∈ Rn,k that
meets B(x, 2r). Also, if such a cube R exists, then similarly from Lemma 4.1, it follows
that

d(R, ∂[0, 1]d) � 2r

so B(x, 2r) would not intersect ∂[0, 1]d.
Now, for arbitrary x ∈ Sn, fix a ball B(x, s) ∩ Ωr with s � 2r. As before, at most one R can

meet B(x, s), so

B(x, s) ∩ Ωr = B(x, s) ∩ Yi

holds for some i = 1, 2, 3 as above, and equation (4.8) is precisely the local Poincaré inequality
for Ωr at scale s, as desired.

Finally, we show the density bound (iii); that is, condition (2) in Definition 2.6. First
observe that B(x, r) ∩ Ωr contains a cube with side length r/(4

√
d), in which case it holds

that

λ(B(x, r) ∩ Ωr) �
rd

4d
√
d
d
. (4.11)

Now, consider all remaining (k + 1)’th order subcubes that are sufficiently near x, that is,

Tx,r = {T ∈ Tk+1,n | T ∩B(x, (1 − δ)r) �= ∅}.

From our previous choice of k, we have for all T ∈ Tx,r that

diam(T ) � 2
√
dsk+1 < δr,

and thus T ⊂ B(x, r). The cubes in Tk+1,n that are contained in Ωr ∩B(x, r) thus cover Ωr ∩
B(x, r) except for a portion of the annulus B(x, r) \B(x, (1 − δ)r) as well as the removed
cubes in Rk+1,n which intersect B(x, r). Let R be the union of such removed cubes. These
extra portions have small volume, as we will see.

Each cube in Rk+1,n that intersects B(x, r) is contained in a cube in Tk,n of side length sk,
and such larger cubes have pairwise-disjoint interiors. If r � sk, then there are at most 3d such
cubes, so for dimensions d � 2 we have

λ(R) � 3dsdk+1 � 3d
(

δr

2
√
d

)d

�
(

3δ
2
√

2

)d

rd � (
√

2δ)drd.

If r � sk, then there are at most ( 2r
sk

+ 2)d such cubes. Recalling that sk = nk+1sk+1, our
previous choices of j0 and k now yield

λ(R) �
(

2r
sk

+ 2
)d

sdk+1 =
2dsdk+1

sdk
(r + nk+1sk+1)d � 2d

nd
k+1

(
1 +

nk+1δ

2
√
d

)d

rd

= 2d
(

1
nk+1

+
δ

2
√
d

)d

rd � 2dδd
√
d
d
rd � (

√
2δ)drd.

Note that δ < ε
4 < 1

4 from before implies that 2 − δ >
√

2 as well as

√
2δ � (1 − (1 − δ))(2 − δ) � (1 − (1 − δ))

d−1∑
m=0

(1 − δ)m = 1 − (1 − δ)d,
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ALMOST UNIFORM DOMAINS 271

so the previous paragraph, the choice of δ from before, and (4.9)–(4.11) imply∑
T∈Tx,r

λ(T ) � λ(B(x, r) ∩ Ωr) − λ(B(x, r) \B(x, (1 − δ)r)) − λ(R)

� λ(B(x, r) ∩ Ωr) −
εrd

4d+1
√
d
d
− (

√
2δ)drd

�
(
1 − ε

2

)
λ(B(x, r) ∩ Ωr).

Also, from Lemma 4.2 for every T ∈ Tx,r we get

λ(T ∩ Sn) � exp

(
−2

∞∑
i=k

1
nd
i

)
λ(T ) �

⎛
⎝1 −

∞∑
i=j0

2
nd
j

⎞
⎠λ(T ) �

(
1 − ε

4d
√
d
d

)
λ(T )

and as a result,

λ(B(x, r) ∩ Sn) �
∑

T∈Tx,r

λ(T ∩ Sn)

�
(
1 − ε

2

) ∑
T∈Tx,r

λ(T )

�
(
1 − ε

2

)2

λ(B(x, r) ∩ Ωr) � (1 − ε)λ(B(x, r) ∩ Ωr).

Thus subtracting λ(B(x, r) ∩ Ωr) from both sides yields the result. �

The equivalence of Conditions (1) through (3) in Theorem 1.5 is now easy to see.

Proof of (1) ⇔ (2) ⇔ (3) in Theorem 1.5. The statement (2) ⇒ (3) is trivial. Note that the
contrapositive of (4) also proves that (3) ⇒ (1).

As for (1) ⇒ (2), Lemma 4.3 shows that Sn is in fact Ahlfors d-regular. Then Lemma 4.7
shows that Sn is asymptotically 1-Poincaré fillable, and thus by Theorem 2.7 it satisfies a
local (1, p)-Poincaré inequality at scale r0 = r0(p, d,n) for any p > 1. However, since Sn is
connected and uniformly doubling, then as a consequence of [6, Theorem 1.3] the entire space
Sn satisfies a (global) (1, p)-Poincaré inequality. Note that, while the reference [6] deals with
so-called ‘semi-local” inequalities, in our case of bounded diameter these suffice for a global
inequality. �

4.2. General metric carpets

In this section, we extend the proof of the previous section to give examples of Sierpiński
sponges in general metric spaces. In particular, we prove Theorem 1.9.

The crucial role here is played by uniform domains. We note that conventionally, uniform
domains are assumed to be open sets. Our definition, however, will allow for closed sets as well.
Indeed, one can show that if a closed set Ω is uniform, then its interior int(Ω) is uniform. The
converse holds, at least in doubling metric spaces, if Ω is the closure of its interior. It is worth
noting that, on the other hand, a closure of a nonuniform domain may be uniform, such as in
the case of a slit disk. However, our starting point will always be closed sets.

Definition 4.12 (Uniform Domains). Given a metric space X = (X, d), A > 0, a subset
Ω ⊂ X, and points x, y ∈ Ω, a continuous curve γ : [0, 1] → Ω is called an A-uniform curve

(with respect to x, y, and Ω) if it connects x and y with diamγ � Ad(x, y) and

d(γ(t),Ωc) � A−1 min(diam(γ|[0,t]),diam(γ|[t,1])). (4.13)
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272 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

We say that Ω is A-uniform up to scale r if for all x, y ∈ Ω with d(x, y) < r there exists an
A-uniform curve with respect to x, y, and Ω.

Lastly, Ω is A-uniform if it is A-uniform up to scale r, for all r > 0.

Alternative definitions, and their mutual equivalence, are discussed in [32, 42]. For example,
if the space is doubling and quasi-convex, then γ could be assumed to be a rectifiable curve
and diameter could be replaced with length in the definition. So in the context of uniformity
(and only in this context), by a ‘curve’ we allow for curves to be continuous only, and not
necessarily Lipschitz.

We remark, that in the case Ω = X, the condition is vacuously satisfied if X is quasi-convex,
as the distance to an empty set is interpreted to be infinity.

For us, uniform domains are quite flexible to construct, and they inherit good geometric
properties from the spaces containing them. In particular, there is the following version of [7,
Theorem 4.4].

Theorem 4.14 (Björn-Shanmugalingam). Let 1 � p < ∞. If (X, d, μ) is D-doubling and
satisfies a (1, p)-Poincaré inequality with constant C, and if Ω is a closed, A-uniform domain up
to scale r0 in X, then, with its restricted measure and metric, Ω is also D-doubling and satisfies
a (1, p)-Poincaré inequality at scale r0/2 with constants D = D(D,A) and C = C(D,C,A, p).

Remark 4.15. To be clear, in [7, Theorem 4.4] only the global case of r0 = ∞ and an
open set Ω is explicitly discussed. Next, we briefly indicate the required modifications. Indeed,
uniformity implies that ∂Ω is porous, and thus has measure zero. See, for example, [9, Lemma
3.2] for a result on and definition of porosity. Then, as remarked before Definition 4.12, Ω̃ =
int(Ω) is an open uniform domain, and satisfies the Poincaré inequality at scale r0/C by the
argument in [7, Theorem 4.4]. Since ∂Ω has measure zero, and Ω̃ is dense in Ω, the Poincaré
inequality and doubling also hold for Ω. Following their proof, these properties hold initially
at some scale r0/C with a constant C.

However, following the proof of [6, Theorem 4.4] and under the additional hypothesis that Ω
is metric doubling and A-uniform up to scale r0, we may upgrade the scale to r0 with a uniform
constant. In [6], the proof uses properness and connectivity to get nonquantitative bounds
on the number of balls involved and that need to be chained. However, the only modification
needed is a quantitative bound on the number of such balls needed, which follows here from
doubling and uniformity. We refer the reader to the proof of [6, Theorem 4.4] for more
details.

Remark 4.16. There are many examples of uniform domains.

(1) Bounded convex subsets of Rd are uniform, where the uniformity constant A depends
on the eccentricity of the convex subset.

(2) Compact domains with Lipschitz-regular boundaries in Rn are uniform, as well as their
complements. The constants depend quantitatively on the Lipschitz constants of the local
representations and the sizes of the charts covering the boundary.

(3) C1,1-compact domains and their complements in any step-2 Carnot group, including the
(first) Heisenberg group, are uniform with respect to their Carnot–Carathéodory metrics [37].
Here, C1,1-regularity is with respect to the Euclidean smooth structure. For an introduction
to Carnot groups, we refer the reader to [37]. See also Section 4.3 for a discussion of the
Heisenberg group (from a purely metric space perspective).

(4) Let f : X → Y be a quasi-symmetric map between metric spaces (X, d) and (Y, d′), that
is, that there is a homeomorphism η : [0,∞) → [0,∞) with necessarily η(0) = 0 and η(t) → ∞
as t → ∞ so that
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ALMOST UNIFORM DOMAINS 273

d′(f(x), f(y))
d′(f(x), f(z))

� η

(
d(x, y)
d(x, z)

)
for all x, y, z ∈ X.

If Ω is a uniform domain in X, then f(Ω) is also uniform in Y . The constants are quantitative
with respect to the uniformity of Ω and the distortion function η.
In particular, if f : Rd → Rd is a K-quasi-conformal map, then it is η-quasi-symmetric [43],
and so f(B(0, 1)) and f(Rd \B(0, 1)) are uniform.

(5) Recently, Rajala [38] has proven that in any quasi-convex doubling space there exists
an abundance of uniform domains. In fact, every bounded domain can be approximated by
uniform domains in the Hausdorff metric. (The dependence on constants is not given explicitly
there, but can likely be made explicit in some cases.)

Our main theorem has an immediate consequence for uniform domains, or more generally,
what we call ‘almost-uniform’ domains.

Definition 4.17. A subset Y of X is called (ε, A)-almost uniform at scale r0 if for
every r ∈ (0, r0) there is a connected, closed subset Ωr of X that is A-uniform up to scale 4r,
and so that Y ⊂ Ωr and for every x ∈ Y it holds that

μ(Ωr ∩B(x, r) \ Y )
μ(Ωr ∩B(x, r))

< ε. (4.18)

Corollary 4.19. Let (p,D,C,A) be structural constants and r0 > 0.
If (X, d, μ) is a D-doubling space that satisfies a (1, p)-Poincaré inequality with constant

C, then for any q > p there exists ε > 0, depending on the structural constants, such that if
Y ⊂ X is (ε, A)-almost uniform at scale r0 > 0, then Y with its restricted metric and measure
satisfies a (1, q)-Poincaré inequality at scale r1 = r1(D,C,A, r0).

Moreover, if Y is (ε, A)-almost uniform for all ε ∈ (0, 1
2 ), then it satisfies a (1, q)-Poincaré

inequality for every q > p.

Proof. By applying Definition 4.17 and Theorem 4.14 to Y , for each r ∈ (0, r0) the filling Ωr

with its restricted measure is D-doubling at scale 2r and satisfies a (1, p)-Poincaré inequality
at scale 2r with constant C = C(D,C,A, p) independent of r. Thus, together with Y ⊂ Ωr we
see that for each r > 0 the filling Ωr satisfies Definition 2.6 and thus the claim follows from
Theorem 2.7. �

Instead of prescribing a priori ‘fillings’ to subsets in the sense of Theorem 2.7, we now return
to the perspective in the Introduction (Subsection 1.3) and consider constructions on general
PI-spaces akin to Sierpiński sponges. In this original but opposite viewpoint, we first consider
complements of certain domains.

Definition 4.20. Let A > 0. An open, bounded subset Ω of a metric space X is called
A-co-uniform if X \ Ω is A-uniform and ∂Ω is connected.

To define ‘metric sponges’ in terms of dyadic decompositions is nontrivial, as compared with
Sierpiński sponges in Rd. In general, metric measure spaces need not admit dyadic decompo-
sitions; even in the case of doubling measures, the cells of a Christ dyadic decomposition do
not necessarily form a collection of uniform domains with a uniform constant.

We therefore define a construction in terms of removed sets (or ‘obstacles’) instead. As there
is no guarantee of self-similarity in an arbitrary metric space, these sets are given in terms of
a strengthening of item (2) of Theorem 1.8, the uniform relative separation property applied
to co-uniform domains instead of quasi-disks; see item (5) below.
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274 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Definition 4.21. Let n = {nk}∞k=1 be a sequence of positive integers, and consider scales,
given inductively as s0 = 1 and

sk =
1
nk

sk−1

for k ∈ N. A sequence of collections of domains {Rn,k}∞k=1 in Ω forms a uniformly n-sparse
collection of co-uniform sets in Ω if there exist constants δ, L > 0 and A � 1 so that
for each R ∈ Rn,k:

(1) R ⊂ Ω;
(2) R is A-co-uniform and Ω is A-uniform;
(3) diam(R) � Lskdiam(Ω);
(4) d(R,Ωc) � δsk−1diam(Ω);
(5) if moreover R′ ∈ Rn,k′ with k � k′, then d(R,R′) � δsk−1diam(Ω).

Moreover, {Rn,k} is called dense in Ω whenever
⋃

k∈N

⋃
R∈Rn,k

R is dense in Ω. We lastly
define

Sn := Ω \
⋃
k

⋃
R∈Rn,k

R.

It is worth mentioning here that Condition (5) appears as equation (4.10) and was crucial
in the proof for Sierpiński sponges. It will be similarly useful in the sequel.

Recall that Theorem 1.9 asserts that:

• On an Ahlfors-regular p-PI space, the complement of a uniformly sparse collection of
co-uniform sets is also an Ahlfors-regular p-PI space.

As an initial, geometric idea of the proof, we now state our main technical tool.

Theorem 4.22. Fix structural constants A1, A2, C,D � 1. Let X be a C-quasi-convex, D-
metric doubling metric space, let Ω be an A1-uniform subset of X, and let S be a bounded,
A2-co-uniform subset of X. If

S ⊂ int(Ω),

then Ω \ S is A′-uniform in X, with dependence A′ = A′(A1, A2, C,D, d(S,Ωc)
diam(S) ).

For clarity, we postpone its proof to the Appendix. Applying it to an induction argument,
however, yields the following useful result: cutting out a finite collection of co-uniform domains
preserves uniformity. For simplicity, it is formulated in terms of the relative distance, from item
(2) of Theorem 1.8:

Δ(E,F ) :=
d(E,F )

min{diam(E),diam(F )} .

Corollary 4.23. Fix structural constants A1, A2, C,D � 1. Let X be a D-metric doubling,
C-quasi-convex metric space, let Ω be a A1-uniform domain in X and for i = 1, . . . , N let Si

be a A2-co- uniform domain in X such that Δ(Si, Sj) � ε for i �= j and d(Si,Ωc) � εdiam(Si).
Then Ω \

⋃N
i=1 Si is also uniform in X.

Proof. Order the elements Si so that diam(Si) � diam(Sj) for i � j and define recursively

Ωi =

{
Ω \ S1, if i = 1
Ωi−1 \ Si, if 2 � i � N.
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ALMOST UNIFORM DOMAINS 275

Put A′
0 = A1. By Theorem 4.22, we have that Ω1 is A′

1-uniform with A′
1 = A′(A′

0, A2, C,D, ε),
where A′ is now treated as a function of the given parameters.

Proceed by induction and assume now that Ωn is A′
n-uniform with dependence A′

n =
A′(A′

n−1, A2, C,D, ε). By the separation condition, we know that

d(Sn+1,Ωc
n) � εdiam(Sn+1).

Therefore, again by Theorem 4.22, we have that Ωn+1 is An+1-uniform with dependence
A′

n+1 = A′(A′
n, A2, C,D, ε). �

As in the proof of Theorem 1.5, we need analogues of Lemmas 4.2 and 4.3, but for uniformly
sparse collections of co-uniform sets instead of Sierpiński sponges. Their proofs being similarly
straightforward, we postpone them to the Appendix and focus on how they imply Theorem 1.9
instead.

Lemma 4.24. Let Ω ⊂ X be an A-uniform subset, and assume that (X, d, μ) is Ahlfors
Q-regular with constant CAR. Then Ω is Ahlfors Q-regular with constant CAR,Ω = (4A)QCAR

when equipped with the restricted measure and metric.

Lemma 4.25. Under the hypotheses of Theorem 1.9, if r � skdiam(Ω), then

μ

⎛
⎝B(x, r) ∩

∞⋃
l=k+1

⋃
R∈Rn,l

R

⎞
⎠ � Cδr

Q
∞∑

i=k+1

1

nQ
i

,

holds for each x ∈ Sn, where Cδ depends quantitatively on CAR and Q, as well as on δ and L
from Definition 4.21.

We are now ready to verify the Poincaré inequality, for metric space sponges formed from
uniformly sparse collections of co-uniform sets.

Proof of Theorem 1.9. Scale the statement so that diam(Ω) = 1. The domains Y1 = X and
Y2 = Ω and Y3 = X \R are uniform domains with some constant A by definition, for any R ∈⋃∞

k=1 Rn,k. So, each Yi is uniformly Ahlfors Q-regular with constant CAR,Y by Lemma 4.24.
Let C be the constant of the Poincaré inequality of X, and D be the doubling constant of X.
These fix the structural constants (p,D,C,A) in Corollary 4.19. Applying this corollary yields
an ε > 0.

Local doubling and Poincaré inequalities will follow once we show that Sn is almost uniform.
Let Cδ be the constant from Lemma 4.25. Choose first Kε ∈ N so large that

∞∑
i=Kε

1

nQ
i

� ε

CδCAR,Y

and so that ni � 25A
δ for every i � Kε. Then, define r0 = δsKε+1/(24AL). Now, we show that

Sn is (ε, A)-almost uniform at level r0, with the aforementioned fixed structural constants. To
that avail, let x ∈ Sn and r ∈ (0, r0) be arbitrary. Choose k � Kε so that

δsk
24A

< r � δsk−1

24A
.

Analogously as for Sierpiński sponges, put

Rn,k =
k⋃

l=1

Rn,l and Sn,l = Ω \
⋃

R∈Rn,l

R

and just as in the proof of Lemma 4.7, define the filling Ωr := Sn,l.
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276 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Since 8Ar � δsk−1/2, there is at most one R ∈ Rn,k which intersects B(x, 8Ar), so

Ωr ∩B(x, 8Ar) = Yi ∩B(x, 8Ar) (4.26)

for some i = 1, 2, 3. Since Yi is A-uniform, any y ∈ B(x, 4r) can be connected to x with an
A-uniform curve with respect to Yi, so by (4.26) that same curve is an A-uniform curve with
respect to Ωr. That is, Ωr is A-uniform at scale 4r.

So to satisfy Definition 4.17 we only need to check the density condition (4.18). But, by the
choice of Kε, we have sk+1 � r, and thus by Lemma 4.25

μ

⎛
⎝B(x, r) ∩

∞⋃
l=k+1

⋃
R∈Rn,l

R

⎞
⎠ � Cδr

Q
∞∑

i=k+1

1

nQ
i

� ε

CAR,Y
rQ.

Since Ωr \ Sn lies in
⋃∞

l=k+1

⋃
R∈Rn,l

R, we estimate its density in B(x, r) to be

μ(Ωr \ Sn ∩B(x, r))
μ(Ωr ∩B(x, r))

�

μ

⎛
⎝B(x, r) ∩

∞⋃
l=k+1

⋃
R∈Rn,l

R

⎞
⎠

μ(Ωr ∩B(x, r))
�

ε
CAR,Y

rQ

1
CAR,Y

rQ
� ε.

Here, we again used (4.26) and that Yi are Ahlfors CAR,Y -regular, for some i = 1, 2, 3.
This verifies all the conditions in Definition 4.17, in which case the conclusion of the Theorem

follows by Corollary 4.19. Finally, the remark on density is trivial, and the remark on the
exponent p follows from Keith–Zhong [28], since our spaces are complete. To be more specific,
Keith–Zhong is applied first to X to improve its Poincaré inequality, and then the first part
is applied to obtain a better inequality for the fillable set Y . The density is also explained in
more detail in the context of the Heisenberg group below.

Finally, an estimate as above using Lemma 4.25 gives the Ahlfors regularity of Sn for balls
of size r < r0. Since Ω is bounded, the Ahlfors regularity then follows immediately. Indeed,
the upper bound in Ahlfors regularity follows from that of X, and the lower bound from
μ(B(x, r)) � μ(B(x, r0)) if r � r0. Further, the local Poincaré inequality upgrades to a Poincaré
inequality (since Ω is bounded) from [6, Theorem 7.3] once we see that Sn is connected. To see
this, let x, y ∈ Sn be arbitrary, and let γ be any continuous curve in Ω connecting x, y. Let

E = (γ ∩ Sn) ∪
∞⋃
k=1

⋃
R∈Rn,k,R∩γ �=∅

∂R.

The set E is easily seen to be a connected compact subset of Sn (since ∂R are connected by
assumption), and thus Sn is connected. �

4.3. Non-Euclidean examples: Heisenberg meets Sierpiński

We briefly discuss the (first) Heisenberg group H, which is a nilpotent Lie group of step 2 and
in particular, a topological 3-manifold. Though the same results apply to all step-2 Carnot
groups, we restrict our discussion to this case, for ease of exposition.

When equipped with the so-called Carnot–Carathéodory metric dCC induced from its Lie
algebra of vector fields, H becomes a highly non-Euclidean metric space. In particular, recent
theorems of Cheeger and Kleiner [11] imply that (H, dCC) admits no isometric (or even bi-
Lipschitz) embedding into any Hilbert space. Their proof uses the fact that H satisfies a
(1,1)-Poincaré inequality and therefore a Rademacher-type theorem for Lipschitz functions.

As for specific properties, topologically we have H = R3 but the group law

(x, y, t) × (u, v, w) = (x + u, y + v, t + w +
1
2
(xv − uy))

 20524986, 2021, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12032 by U

niversity O
f O

ulu, W
iley O

nline L
ibrary on [30/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALMOST UNIFORM DOMAINS 277

induces a Lie group structure on H with an associated nilpotent Lie algebra. For simplicity,
instead of the Carnot–Carathéodory distance dCC on H, as discussed say in Montgomery’s
book [35], we introduce the Koranýı norm

N(x, y, t) =
(
(x2 + y2)2 + t2

) 1
4 ,

which induces another distance d(p, q) = N(q−1p), between points p, q ∈ H, that is bi-Lipschitz
equivalent to dCC . Moreover, N(x, y, t) �

√
‖(x, y, t)‖2 if ‖(x, y, t)‖2 � 1.

It is known that the Haar measure on H is the usual Lebesgue measure λ on R3 and that
H is Ahlfors 4-regular with respect to it. Somewhat surprisingly, (H, dCC , λ) satisfies a (1, p)-
Poincaré inequality. The p = 2 case was first observed by Jerison [24]; for the optimal exponent
p = 1, see the proof of Lanconelli and Morbidelli [29]. (For more discussion about the geometry
of these spaces, as well as the general theory of Carnot groups, we refer the reader to [4], [35],
or [44].)

In the spirit of the prior subsection, we now show the existence of metric sponges in the
Heisenberg group, so it suffices to show the existence and uniform sparsity of co- uniform
domains in H. To this end, we proceed in two steps:

(1) Geometric preliminaries. Recall that on H there are natural dilations

δs(x, y, t) = (s−1x, s−1y, s−2t)

that are also Lie group automorphisms. Moreover, for any g ∈ H, the left-translation

Lg(x) = g × x

is an isometry in both the Lie group and the metric space senses, so consider the ‘conformal
mappings’

Aλ,g = Lg ◦ δλ.

Now if E,Ω are fixed, bounded subsets of H with C1,1-boundary, then a result of Morbidelli
[37] implies that Ω and H \ E are A-uniform domains for some A > 0. (As an example, the
Euclidean unit ball Beucl(0, 1) as a subset of H has boundary ∂E = ∂Beucl(0, 1) with this
regularity.)
Further, since Aλ,g act by an isometry and a scaling map, the domains

Aλ,g(H \ E) = H \Aλ,g(E)

remain A-uniform as λ ∈ (0,∞) and g ∈ H vary.
(2) The iterative construction. Fix a sequence n = {ni}∞i=1 in N such that n−1 ∈ �4(N) and

ni � 3 for all i ∈ N, and define scales {sk}∞k=0 exactly as in Definition 4.21. We will define
inductively our obstacles by first choosing center points at every scale, and then choosing
collections of scaled and translated copies of the Euclidean unit ball with these centers as the
obstacles. (In what follows, all the metric notions will be with respect to the distance on H
defined above.)
First, let Ω = Beucl(0, 1), so diam(Ω) � 2. Now define G1 = {0} and

R1,n = {As1,0(Beucl(0, 1))}

and let S1,n = Ω \Beucl(0, s1) be the ‘pre-sponge’ at the first stage.
Assuming Gk,Rk,n, Sk,n have already been defined at some stage k ∈ N, we next define
Gk+1,Rk+1,n, Sk+1,n at the next stage as follows. Let Gk+1 be a collection of points such
that each g ∈ Gk+1 satisfies

d(g, ∂Sk,n) � sk and d(g, g′) � sk (4.27)
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278 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

for each g′ ∈ Gk+1. (Such a collection could be empty.) Moreover, call Gk+1 maximal if no
other collection of points G′ satisfying (4.27) strictly contains Gk+1. Putting

Rk+1,n = {Ask+1,g(Beucl(0, 1)) | g ∈ Gk+1},

the (k + 1)-stage pre-sponge is

Sk+1,n = Sk,n \
⋃

R∈Rk+1,n

R = Ω \
k+1⋃
l=1

⋃
R∈Rl,n

R.

Finally, define

Sn =
∞⋂
k=1

Sk,n.

Lemma 4.28. Let n, Gk,Rk,n, Sn, A be as above. Then, the sets {Rn,k}∞k=1 in Ω form a
uniformly n-sparse collection of co-uniform subsets in Ω.

Moreover, if each Gk+1 is chosen to be maximal, relative to {Gi}ki=1, then {Rn,k}∞k=1 is dense
in Ω and Sn has empty interior.

Proof. First, let Rk ∈ Rk,n and Rl ∈ Rl,n be arbitrary with k � l, so Rk =
Ask,gk(Beucl(0, 1)) and Rl = Asl,gl(Beucl(0, 1)) for some gk ∈ Gk and gl ∈ Gl.

To show the separation property, as a first case let k > l, so (4.27) implies that

d(gk, Rl) � d(gk, ∂Sl,n) � d(gk, ∂Sk−1,n) � sk−1, (4.29)

in which case the Triangle inequality further implies

d(Rk, Rl) � d(gk, Rl) − sk � sk−1 − sk � sk
2
.

As for k = l, applying (4.29) with l − 1 = k − 1 in place of k, as well as (4.27), yields

d(Rk, Rl) � d(gk, gl) − d(gk, ∂Rk) − d(gl, ∂Rl) � sk−1 − 2sk � sk−1 −
2sk−1

3
� 1

6
sk−1diam(Ω).

Similarly if k � l, then (4.27) implies

d(Rk,Ωc) � d(Rk, ∂Sk−1,n) � d(gk, ∂Sk−1,n) − sk � sk−1 −
sk−1

2
=

1
2
sk−1 � 1

6
sk−1diam(Ω),

so δ = 1
6 yields the desired separation. Moreover, diam(Rk) � 2sk follows from construction,

so the diameter bound follows with L = 2.
As in (1) before the statement of the Lemma, each Rk has C1,1-boundary, so each X \Rk

is A-uniform with A independent of k; the same is true of Ω. It follows that the collection
{Rn,k}∞k=1 is uniformly n-sparse.

As for density, let x ∈ Ω be arbitrary, let r ∈ (0, 1
3s1), and choose k � 1 so that

sk+1 < r � sk.

Now, Beucl(x, sk+1) and hence Beucl(x, r) must intersect some Rl ∈ Rl,n for some l � k + 2,
otherwise Gk+2 ∪ {x} would form a larger collection of points satisfying the desired separation
bounds; this, however, would contradict maximality of Gk+2.

Finally, we can apply Lemma 4.28 and Theorem 1.9 to conclude the following result.

Corollary 4.30. Let Gk, nk,Rk,n, Sn,Ω, A be defined as above. Then Sn is a compact
subset of H which has empty interior, is Ahlfors 4-regular, and satisfies a (1, p)-Poincaré
inequality for any p > 1.
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ALMOST UNIFORM DOMAINS 279

In conclusion, we note that the above construction applies to all step-2 Carnot groups, such
as higher dimensional Heisenberg groups, or for that matter, any Carnot group where uniform
domains exist at all scales and locations. Moreover, replacing the left-translations Lg with
Euclidean translations x �→ x + g and the anisotropic dilations δs with Euclidean dilations, the
analogous construction still works for Euclidean spaces Rd. In this case, this gives new examples
of Sierpiński carpets and sponges supporting Poincaré inequalities, where the complementary
domains are self-similar copies of E, with Rd \ E uniform.

Corollary 4.31. Let d ∈ N with d � 2, let Ω be a uniform domain in Rd, and let E be
a bounded open subset of Ω that is co-uniform in Rd with 0 ∈ E and diam(E) � 1. Given a
sequence n = (ni)∞i=1 in N with each ni � 3 and with n−1 ∈ �d(N), if {Gk}∞k=1 is a sequence of
uniformly n-sparse collections of points in Ω, defined analogously as above, then the set

S = Ω \
∞⋃
k=1

⋃
g∈Gk

(skE + g)

is Ahlfors d-regular and satisfies a (1, p)-Poincaré inequality for each p > 1. Moreover, S can
be chosen to have empty interior.

4.4. The problem of classifying Loewner carpets

The previous subsections gave a general construction for ‘sponges’ that satisfy Poincaré
inequalities, including on Euclidean spaces.

By varying the choice for subsets E in Corollary 4.31, we obtain many new possibilities
beyond those in [31]. Instead of symmetry considerations, it is enough to impose regularity and
sparsity conditions on E. For example, permissible subsets include E convex, E with connected
and smooth boundary, or E any quasi-ball — that is, E = f(B(0, 1)) where f : Rd → Rd is
any quasi-conformal map. Moreover, rescaled translates skE + g of a single subset E can be
replaced by collections of uniformly co-uniform subsets {Egk}, provided that each Egk contains
the origin and has at most unit diameter.

Motivated by Corollary 4.31, we return to the planar case and study whether such examples
of carpets are generic. In this context, we can make stronger conclusions.

We begin with the following theorem from [45], which gives topological criteria for carpets.
Recall that a point x on a connected metric space X is called a cut point if X \ {x} is
disconnected and it is called a local cut point if there exists r > 0 so that x is a cut point
of B(x, r). Also, S3 will be the usual 1/3-Sierpiński carpet, which in our notation from the
introduction corresponds with Sn with n = (1/3, 1/3, . . . ).

Theorem 4.32 (Whyburn). Let S be a compact, connected, and locally connected subset
of R2 with empty interior. If S has no cut points, then it is homeomorphic to S3.

In what follows we refer to such sets S as topological carpets, which must satisfy

R2 \ S = D0 ∪
∞⋃
i=1

Di,

where {Di}∞i=0 is a dense collection of open, pairwise-disjoint Jordan domains, with Di bounded
for i � 1 and with D0 unbounded. (To be clear, a connected open subset D ⊂ R2 is called a
Jordan domain if ∂D coincides with a Jordan curve.)

In fact, the Loewner condition for planar carpets implies being a topological carpet.
Formulated below as Corollary 4.34, it is an easy consequence of the following result [23,
Theorem 3.3].

 20524986, 2021, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12032 by U

niversity O
f O

ulu, W
iley O

nline L
ibrary on [30/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



280 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Theorem 4.33 (Heinonen–Koskela). Let S be a Ahlfors Q-regular metric measure space
that satisfies a (1, Q)-Poincaré inequality. Then, there is a constant C � 1 such that it is
C-quasi-convex as well as C-annularly quasi-convex, that is for every z ∈ S and any r > 0, if
x, y ∈ S \B(z, r), then there exists a curve γ in X \B(z, r/C) connecting x to y with Len(γ) �
Cd(x, y).

Corollary 4.34. If a compact subset S of R2 is Loewner — that is, it satisfies a
(1,2)-Poincaré inequality and is Ahlfors 2-regular — and has empty interior, then S is a
topological carpet.

Proof. It is well known from [10, 40] that p-PI spaces are quasi-convex, and are therefore
both connected and locally connected. Moreover, Loewner spaces lack local cut points, by
Theorem 4.33. Thus the conditions of Theorem 4.32 are met, and we know that S is a
topological carpet. �

This motivates the following definition.

Definition 4.35. A compact subset S ⊂ Rn is called a p-Poincaré sponge if it has empty
interior, is Ahlfors n-regular, and satisfies a (1, p)-Poincaré inequality. If n = 2, then S is also
called a p-Poincaré carpet.

In particular, if n � 3 and p � n, then S is called a Loewner sponge. Also, if instead
p � n = 2, then S is called a Loewner carpet.

It is now natural to reformulate the Planar Loewner problem (Question 1.6):

Question 4.36. Can one classify Loewner carpets, or even p-Poincaré carpets, in terms of
the construction from Corollary 4.31 ?

There are few techniques available to treat the case of sponges in dimensions d � 3, but
for d = 2 techniques such as uniformization (see, for example, [8]) provide more possibilities
for carpets.

In this subsection, we give a partial answer to Question 4.36. In particular, we give sufficient
conditions for a topological carpet to be a p-Poincaré carpet, or even Loewner. In fact, two of
these conditions are also necessary.

To formulate our result, we proceed with a well-known characterization of quasi-disks (that is,
quasi-balls in dimension d = 2) from the literature [5, 41]. This first requires a few geometric
definitions. A Jordan curve γ : S1 → R2 is of C-bounded turning, for some C � 1, if for
every s, t ∈ S1 it holds that

min{diam(γ(J1)),diam(γ(J2))} � Cd(γ(s), γ(t)), (4.37)

where J1, J2 are the two open arcs in S1 that satisfy J1 ∪ J2 = S1 \ {s, t}.
A Jordan curve γ : S1 → R2 is called a η-quasi-circle, if there exists γ′ : S1 → R2 with

the same image as γ, and which is η-quasi-symmetric, as given in Item (4) of Remark 4.16. A
quasi-disk is a domain of the form D = f(B(0, 1)), where f : R2 → R2 is quasi-symmetric.

Theorem 4.38 (Beurling–Ahlfors). A bounded Jordan domain D is a quasi-disk if and only
if ∂D is a quasi-circle.

Theorem 4.39 (Tukia–Väisälä). A Jordan curve γ is a quasi-circle if and only if it of
bounded turning.

 20524986, 2021, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12032 by U

niversity O
f O

ulu, W
iley O

nline L
ibrary on [30/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALMOST UNIFORM DOMAINS 281

Now recall the notion of relative distance from item (2) of Theorem 1.8: a collection of
sets R is called uniformly relatively s-separated if Δ(E,F ) � s for every disjoint pair
E,F ∈ R.

Theorem 4.40. If S is a Loewner carpet, then there are countably many pairwise disjoint,
Jordan domains Di,Ω such that

S = Ω \
∞⋃
i=1

Di.

and where each ∂Di and ∂Ω form a uniformly relatively s-separated collection of uniformly
η-quasi-circles for some s > 0 and some distortion function η : [0,∞) → [0,∞).

Proof. As S is closed, we decompose the complement into open components

R2 \ S =
∞⋃
i=0

Di

where at most one component, say D0, is unbounded. Define Ω = R2 \D0. Since S is Loewner,
by [23, Theorem 3.3], it lacks local cut points. Further, by Theorem 4.33 we obtain that S is
C-quasi-convex and C-annularly quasi-convex, with C � 1. It then follows from Theorems 4.32
and 4.33 that the Di are Jordan domains with pairwise disjoint closures.

Put Cb = 2C2 + 1. We now show that each ∂Di is of Cb−bounded turning, for all i ∈ N. (For
i = 0, the argument is similar and we omit it here.)

Let γ : S1 → ∂Di be a parametrization of the boundary as a Jordan curve. Let s, t ∈ S1 be
arbitrary and distinct and let J1, J2 be the arcs in S1 defined by these points. Now, if γ(J1) or
γ(J2) is contained in the ball B(γ(s), CbRst), where

Rs,t = |γ(s) − γ(t)|,

then (4.37) clearly follows. So assume instead that

γ(Jj) � B(γ(s), CbRs,t)

for both j = 1, 2, so there are points xj ∈ γ(Jj) \B(γ(s), 2C2Rs,t) for both j = 1, 2.
Since S is C-quasi-convex, there is a rectifiable curve σS joining γ(s) and γ(t) of length

at most CRs,t within S. It is well known, say by Moore’s work [36, Theorem 1], that there
exists a simple subcurve σ′

L in σS that also joins γ(s) and γ(t). Also, since Di is a Jordan
domain, there is a simple curve σD joining γ(s) and γ(t) while intersecting ∂Di only at those
two points. Form the Jordan curve σ by concatenating the two simple arcs σ′

L and σD. Since
σ ⊂ Di ∪B(γ(s), CRst), we know that x1, x2 �∈ σ.

The curve σ divides R2 into two components U, V so that ∂U = σ = ∂V . Since Di is an open
set containing a point of ∂U and ∂V , we must have that Di intersects both U and V . However,
since Di is Jordan, every point in Di \ σ can be connected either to x1 or x2 while avoiding
σ. Now, if x1, x2 ∈ U , then every point of Di \ σ would belong to U , which is not possible.
Similarly for V , and thus xi must lie in separate components of R2 \ σ, that is, one belongs to
U and another to V . In particular, σ separates the points x1, x2.

However, xj ∈ S, and by annular quasi-convexity there exists a curve connecting x1 and x2,
within S and contained in R2 \B(γ(s), 2CRs,t) and thus avoiding σ. Thus x1 and x2 belong
to the same component of R2 \ σ, which is a contradiction.

We now show uniform s-separation for s = 1
24C2+2 ; that is, for all Di, Dj with Di �= Dj that

d(Di, Dj) � smin{diam(Di),diam(Dj)}. (4.41)
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282 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Supposing otherwise, there would exist a pair, say Di, Dj , where (4.41) fails. Choose a pair of
points a ∈ ∂Di, b ∈ ∂Dj with |a− b| = d(Di, Dj). Next, let � be the line segment joining a and
b, which is contained in R2 \ (Di ∪Dj). Choose two points x1 ∈ Di, x2 ∈ Dj with

d(x1, a) � diam(Di)/2 � 8C2d(Di, Dj) and d(x2, b) � 8C2d(Di, Dj).

The points x1, a divide ∂Di into two arcs J1, J2. Next, since Ji are connected, we can find
points si ∈ Ji with d(si, a) = 2Cd(Di, Dj). Thus d(s1, s2) � 4Cd(Di, Dj). By the annular
quasi-convexity condition, and combined with [36, Theorem 1], we can find a curve σL

connecting s1 to s2 within B(a, 4C2d(Di, Dj)) \B(a, 2d(Dj , Dj)). Again find a curve σD within
Di connecting si, and form the Jordan curve σ by concatenation of σL and σD. As above, this
curve will separate x1 and a. However, since σ cannot intersect �, and x2 can be connected to
� while lying strictly within Dj , we see that x2 lies in the same component defined by σ as
a. Hence, x2 lies in a different component of R2 \ σ than x1. But this contradicts the annular
quasi-convexity condition, just as before. �

The assumptions of uniform separation and uniform quasi-disks have appeared before in [8,
Theorem 1.1].

Theorem 4.42 (Bonk). If S = Ω \
⋃

i∈I Di, where Di and Ω, for i ∈ I are an at most
countable collection of uniformly η-quasi-disks, with {∂Ω} ∪ {∂Di}i uniformly relatively
separated, then there exists a quasi-symmetry f : R2 → R2, such that

f(S) = B(0, 1) \
⋃
i∈I

B(xi, ri).

In other words, every such set S is quasi-symmetric to a similar set with circle boundaries.
One can also find quasi-symmetric maps with images with square boundaries, or any other
self-similar shapes. The proof follows from identical arguments to [8, Theorem 1.6].

As a corollary, we obtain a result, which is known to many specialists.

Corollary 4.43. If S is a Loewner carpet, then there exist quasi-symmetries f : S → S′

and g : S → S′′ so that

S′ = B(0, 1) \
⋃
i∈I

B(xi, ri) and S′′ = [0, 1]2 \
⋃
i∈I

Qi,

where {B̄(xi, ri)}i∈I is a pairwise disjoint collection of disks in B(0, 1) and {Qi}i∈I is a
collection of open squares in [0, 1]2 with pairwise disjoint closures.

This reduces the classification of Loewner carpets to the problem of classifying square carpets.
As of now, though, no such classification exists, even with such explicit boundaries. However,
we give instead a sufficient condition in terms of an assumption on density. Let R := {Di}i∈I

be a countable collection of connected open sets in R2, consider the indices of those sets near
a fixed ball, denoted as

I(x, r) := {i ∈ I : Di ∩B(x, r) �= ∅}, (4.44)

and for N ∈ N, consider a variant of the ‘N -fold density function’ from (1.7), given as

sN (x, r) := inf

⎧⎨
⎩

∑
i∈I(x,r)\J

λ(Di)
r2

: J ⊂ I, |J | � N

⎫⎬
⎭. (4.45)

Note that if Di are uniform quasi-disks, then diam(Di)2 ∼ λ(Di).
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ALMOST UNIFORM DOMAINS 283

The following is a more quantitative version of Theorem 1.8, which can be considered its
corollary.

Theorem 4.46. Let Ω, Di, for i ∈ I, be a countable collection of uniform η-quasi-disks
such that Di ⊂ Ω and that {∂Ω} ∪ {∂Di}i are uniformly relatively s-separated. Fix N ∈ N.
For every p ∈ (1,∞), there exists εp,N > 0, depending on s, η, such that if

lim sup
r→0

sup
x∈X

sN (x, r) < εp,N ,

then S = Ω \
⋃

i∈I Di is a p-Poincaré carpet. In particular, if there exists N ∈ N such that

lim
r→0

sup
x∈X

sN (x, r) = 0,

then S is a Loewner carpet.

We remark, that for self-similar Sierpiński carpets Sn it follows from the proof in Theorem 1.5
that

lim
r→0

sup
x∈X

s1(x, r) = 0.

Proof. It is sufficient to show the first claim.
Firstly, as a consequence of Theorem 4.38, the set R2 \Di is a quasi-symmetric image of

R2 \B(0, 1). Then, since uniformity is preserved under quasi-symmetries [32], we see that the
Di are co-uniform domains in the sense of Definition 4.20 with the same uniform constant.
Similarly, the Di are all uniform domains and there is a constant Cd, independent of i, so that
diam(Di)2 � Cdλ(Di). Similarly Ω is a uniform domain. Let D � 9 be the metric doubling
constant of R2.

Now fix N and define for any subset J ⊂ I the set

ΩJ := Ω \
⋃
i∈J

Di.

By Corollary 4.23, each ΩJ , with |J | � D8N , is an A-uniform domain with constant A
depending only on N, s, η and in particular, independent of J , so by Lemma 4.24 it is also
Ahlfors 2-regular with constant Cλ depending only on N, s, η.

With A, Cλ, and Cd now fixed, let ε > 0 be the constant from Corollary 4.19 such that any
(ε, A)-almost uniform subset of R2 necessarily satisfies a (1, p)-Poincaré inequality. Define

εp,N = 2−3A−2C−1
λ C−1

d D−8ε. (4.47)

Now, by assumption there exists r0 > 0 such that

sup
x∈X

sN (x, 2Ar) < εp,N

for all r ∈ (0, r0). Fix such an r ∈ (0, r0).
To construct the filling, take an Ar-net† N = {xi} of S and define a covering of S by balls

B = {B(xi, 2Ar)}. By the D-metric doubling condition, for x ∈ S, each B(x, 24Ar) intersects
at most D8 many balls in B. Let Nx,r be the collection of the indices i so that B(x, 24Ar) ∩
B(xi, 2Ar) is not empty. In other words, we have |Nx,r| � D8 for any x ∈ S.

†A set N is a ε-net, if it is maximal subject to the condition that for each xi, xj ∈ N distinct it holds that
d(xi, xj) � ε.
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284 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Now for each B(xi, 2Ar) ∈ B, let I(xi, 2Ar) be the set of indices as in (4.44), and choose a
subset Ji ⊂ I(xi, 2Ar) with |Ji| � N so that

∑
j∈I(xi,2Ar)\Ji

λ(Dj)
(2Ar)2

= sN (xi, 2Ar) < εp,N .

By choice of εp,N , we have that if j ∈ I(xi, 2Ar) \ Ji, then diam(Dj) � r, as otherwise

λ(Dj) � C−1
d diam(Dj)2 � (23A2εp,N )r2

would be a contradiction. In particular, if Dj is such that Dj ∩B(xi, 2Ar) �= ∅ and diam(Dj) �
r, then j ∈ Ji.

Now let J =
⋃

xi∈N Ji, and define Ωr := ΩJ = Ω \
⋃

i∈J Di. We will show that Ωr is our
desired filling.

We first show the local uniformity at scale 4r. Take x, y ∈ Ωr with d(x, y) � 4r. Define

J =
⋃

i∈Nx,r

Ji.

Since |Nx,r| � D8, we have |J | � D8N . Consider now some j ∈ J with Dj ∩B(x, 8Ar) �= ∅. If
diam(Dj) � r, then we have an i so that B(xi, 2Ar) ∩Dj ∩B(x, 24Ar) �= ∅ and we must have
i ∈ Ji ⊂ J by the choice of εp,N and the previous two paragraphs. If instead diam(Dj) � r, we
can take any B(xi, 2Ar) which intersects Dj and thus B(x, 24Ar) with j ∈ Ji ⊂ J . Either way,
any j ∈ J such that Dj ∩B(x, 8Ar) �= ∅ will satisfy j ∈ J . It follows that, for each ρ ∈ (0, 8Ar],

Ωr ∩B(x, ρ) = ΩJ ∩B(x, ρ) = ΩJ ∩B(x, ρ).

Since ΩJ is A-uniform, we have that x, y can be connected by an A-uniform curve within
gΩJ , which will also automatically be an A-uniform curve within Ωr. Similarly, we obtain that
Ωr is Ahlfors 2-regular with constant Cλ up to scale 2r.

Next, we show the desired density bound. We have that

Ωr \ S ∩B(x, r) = ΩJ \ S ∩B(x, r) ⊂
⋃

i∈Nx,r

⋃
j∈I(xi,2Ar)\Ji

Dj . (4.48)

Then the choice in equation (4.47), Inclusion (4.48) and Ahlfors regularity of ΩJ lead to

λ(Ωr \ S ∩B(x, r))
λ(B(x, r) ∩ Ωr)

=
λ(ΩJ \ S ∩B(x, r))
λ(B(x, r) ∩ ΩJ)

�

∑
i∈Nx,r

∑
j∈I(xi,2Ar)\Ji

λ(Di)

1
Cλ

r2

= 4A2Cλ

∑
i∈Nx,r

sN (xi, 2Ar) < 8A2D8Cλεp,N < ε,

which is the desired density condition; the Poincaré inequality follows. �

5. General Poincaré results

We begin with some basic definitions. In what follows, X = (X, d) always refers to a metric
space.

Definition 5.1. A Lipschitz map γ : K → X from a compact subset K of R is called a
curve fragment in X. The domain K is also denoted by Dom(γ).
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ALMOST UNIFORM DOMAINS 285

Length for curve fragments is defined analogously as for curves, that is

Len(γ) := sup
n∈N

sup
t1,...tn∈K

n−1∑
i=1

d(γ(ti), γ(ti+1)),

where we further assume ti � tj for i � j. Furthermore, the set

Undef(γ) = (min(K),max(K)) \K,

is always a countable union of disjoint open intervals, called gaps, as follows:

Undef(γ) =
⋃
i

(ai, bi). (5.2)

From this, we define the total gap size as

Gap(γ) :=
∑
i

d(γ(ai), γ(bi)).

The path integral of a Lipschitz function f : X → R over a curve fragment γ is canonically
defined as ˆ

γ

f ds =
ˆ
K

f(γ(t))dγ(t) dt,

where dγ(t) is the metric derivative of γ, that is,

dγ(t) := lim
h→0

d(γ(t), γ(t + h))
h

,

which exists for almost every t ∈ K. This coincides with the definition of Ambrosio [2] for
curves, when first embedding the metric space X into a Banach space, such as L∞, and filling
in the gaps of γ with line segments to construct a curve. This enlarged curve has a well-defined
metric derivative and integral, and the ones for curve fragments are obtained by restriction.
For a similar discussion, see [3, 14].

We will employ the proof of the characterization of (global) Poincaré inequalities from [23,
Lemma 5.1], in order to prove new characterizations.

Definition 5.3. Let 1 � p < ∞. A proper metric measure space (X, d, μ) is said to satisfy a
pointwise (1, p)-Poincaré inequality at scale r0 > 0 with constant C � 1, if for all locally
Lipschitz functions f : X → R and all x, y ∈ X with r := d(x, y) ∈ (0, r0), we have

|f(x) − f(y)| � Cr
(
MCrLip [f ]p(x)

1
p + MCrLip [f ]p(y)

1
p

)
. (5.4)

By [23, Lemma 5.15], this is equivalent to a Poincaré inequality. The proof in [23] covers
global Poincaré inequalities, but the same argument applies to the local version as well. For
completeness, we state the result and show the modifications, which only involve tracking the
scales of the balls/pairs of points used.

Theorem 5.5. Let D � 1. For a proper space X, the following conditions are equivalent.

(1) X is (D, r0)-doubling and satisfies a (1, p)-Poincaré inequality with constant C1 � 1 at
some scale r0 > 0.

(2) X is (D, r2)-doubling and satisfies a (1, p)-pointwise Poincaré inequality with constant
C2 � 1 at scale r2 > 0.
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286 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Here, the constants in Items (1) and (2) depend quantitatively on one another, with r2 =
r0/2 when going from (1) =⇒ (2) and r0 = r2/(2C2) when going (2) =⇒ (1). Also, in either
direction,

1
C

� C1

C2
� C

for some universal constant C = C(D, p).

Proof. Assume throughout that f is an arbitrary Lipschitz function.
We first prove (1) ⇒ (2). Choose r2 = r0/2 and let x, y ∈ X satisfy r := d(x, y) < r2.

Consider balls Bi = B(x, 21+ir) for i � 0 and Bi = B(y, 21−ir) for i > 0, all of which have
radius less than r0 and thus the local Poincaré inequality can be applied to them. Then for
i � −1, we obtain Bi+1 = 2Bi, as well as

|fBi
− fBi+1 | �

 
Bi

|f − fBi+1 | dμ

� D2

 
Bi+1

|f − fBi+1 | dμ � D2C122+ir

( 
C1Bi+1

Lip [f ]p dμ

) 1
p

while for i � 0, we have Bi+1 ⊂ Bi ⊂ 4Bi+1 and

|fBi
− fBi+1 | �

 
Bi+1

|f − fBi
| dμ

� μ(Bi)
μ(Bi+1)

 
Bi

|f − fBi
| dμ � D2C121−ir

( 
C1Bi

Lip [f ]p dμ

) 1
p

.

Thus, we get by a telescoping sum argument that

|f(x) − f(y)| �
∑
i∈Z

|fBi
− fBi+1 | � 4D2C1r

(
M2C1r(Lip [f ](x)p)

1
p + M2C1r(Lip [f ](y)p)

1
p

)
.

Next, we prove (2) ⇒ (1). Let r0 = r2/(2C2) and fix B = B(x, r) with r < r0. By subtracting
the median from f , we can assume that

min (μ({f � 0} ∩B), μ({f � 0} ∩B)) � 1
2
μ(B).

Now define E±
k = {±f � 2k} ∩B. We first prove a weak type bound using a covering argument.

Now if z ∈ E±
k and y ∈ {±f � 0} ∩B, then

d(z, y) � 2r < 2r0 < r2,

so by the pointwise Poincaré inequality, there exist w ∈ X and rw � C2r such that 
B(w,rw)

Lip [f ]p dμ � 2kp−1

rpCp
2

, (5.6)

and either z ∈ B(w, rw) or y ∈ B(w, rw).
Suppose first that rw � r0/8 for each w so arising. Now by an easy argument such as in [23,

Lemma 5.1], the collection of balls B(w, rw) cover either E±
k or {±f � 0} ∩B. In the latter

case then we get a cover of {±f � 0} ∩B, and thus using the 5B-Covering Lemma [33] (since
we have doubling at scale 2r0), we get

μ(E±
k ) � 1

2
� μ({±f � 0} ∩B) � D3pCp

2 r
p

2kp−1

ˆ
2C2B

Lip [f ](x)p dμ. (5.7)

In the case that they cover E±
k , we obtain the same estimate by covering E±

k directly.
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ALMOST UNIFORM DOMAINS 287

If instead rw > r02−3 for some w, then the claim follows easily from doubling and using a
single ball. By applying Maz’ya’s trick, that is, applying the above argument with the truncated
function

u±
k (x) = ±(min(max(±f, 2k−1), 2k) − 2k−1)

in place of f and at level 2k−1 in place of 2k, and since

Lip u±
k = 1E±

k−1\E
±
k

Lip f

almost everywhere (see, for example, [3, Lemma 2.6]), then analogously as (5.7) we obtain

μ(E±
k ) � 2p+1D3pCp

2 r
p

2kp

ˆ
2C2B∩(E±

k−1\E
±
k )

Lip [f ](x)p dμ, (5.8)

which when multiplied by 2kp and summed over k gives 
B

|f |p dμ � 2p+1D3pCp
2 r

pμ(2C2B)
μ(B)

 
2C2B

Lip [f ](x)p dμ. (5.9)

Then, via Hölder’s inequality, doubling and the triangle inequality, we obtain 
B

|f − fB | dμ � 2
 
B

|f | dμ

� 2
( 

B

|f |p dμ

) 1
p

� 23D5+log2(C2)C2r

( 
2C2B

Lip [f ](x)p dμ

) 1
p

,

which concludes the proof. �

The proofs of Theorems 2.18 and 2.19 can be more succinctly formulated with a certain
function that measures the connectivity of a space by rectifiable curves. Let p ∈ [1,∞) be
fixed. Since we consider a local notion of connectivity, we include the scale r0 > 0 used.

First define Γx,y(L) to be the set of Lipschitz curve fragments connecting x to y and with
length at most Ld(x, y), let LSC0,1(X) be the collection of lower semi-continuous functions
from X to [0,1], and let Ep

x,y,C(τ) be the class of τ -admissible functions

Ep
x,y,C(τ) := {g ∈ LSC0,1(X) |

(
MCd(x,y)g

p(x)
) 1

p < τ,
(
MCd(x,y)g

p(y)
) 1

p < τ}.

Finally, define the connectivity function as follows:

αp
r0,C

(L, τ) := sup
x∈X

sup
y∈B̄(x,r0)

sup
g∈Ep

x,y,C(τ)

inf
γ∈Γx,y(L)

´
γ
g ds + Gap(γ)

d(x, y)
.

Clearly αp
r0,C

(L, τ) � 1 always holds, since the trivial curve fragment γ : {0, d(x, y)} → X with
γ(0) = x and γ(d(x, y)) = y attains the bound 1. For every c � 1, it is also clear that

αp
r0,C

(L, cτ) � cαp
r0,C

(L, τ), (5.10)

whereas nontrivial consequences occur for X when (5.10) holds for all c > 0.

Lemma 5.11. Let 1 � p < ∞, let D � 1, let r0 > 0, and let X be a (D, r0)-doubling metric
measure space. If for some C,C ′, L � 1 with C � 2C ′, we have

αp
r0,C

(L, τ) � C ′τ

for all τ ∈ (0, 1], then X satisfies a pointwise (1, p)-Poincaré inequality with constant 2C ′ at
scale r0, and moreover a (1, p)-Poincaré inequality at scale r0/(2C ′).
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288 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Proof. Let x, y ∈ X with r := d(x, y) ∈ (0, r0) be arbitrary and let f : X → R be any
Lipschitz function. By scale invariance of the Poincaré inequality, it suffices to assume that
f is 1/2-Lipschitz, so by defining

τ := max
(
(MCr(Lip f)p(x))

1
p , (MCr(Lip f)p(y))

1
p

)
� 1

2
,

then, by a variant of the Vitali–Caratheodory theorem (see [16, Lemma 2.5] for details) for any
small ε ∈ (0, 1

2 ), there exists a lower semi-continuous g : X → R so that Lip f � g < 1 (except
possibly at x, y) and so that

max
(
(MCrg

p(x))
1
p , (MCrg

p(y))
1
p

)
� τ + ε � 1.

Since f is assumed 1/2-Lipschitz, every curve fragment γ∈ Γx,y(L) satisfies

|f(x) − f(y)| �
ˆ
γ

g ds + Gap(γ)

so by infimizing over γ ∈ Γx,y(L), letting ε < τ and by the definition of τ above, we have also

|f(x) − f(y)| � rαp
r0,C

(L, 2τ)

� 2C ′rτ � 2C ′r((MCrLip [f ]p(x))
1
p + (MCrLip [f ]p(y))

1
p ).

This is the desired pointwise estimate at scale r0. Here, we use Cr � 2C ′r, which is needed
for the precise constants in our pointwise estimates†. Finally by Lemma 5.5, we also have a
(1, p)-Poincaré inequality at scale r0/(2C ′). �

The crucial part of the proof of Theorem 2.19 is the following estimate.

Lemma 5.12. Let 1 � p < ∞, let D � 1, and let X be a (D, r0)-doubling metric measure
space. If τ0 ∈ (0, 1) and δ ∈ (0, 1

2D
−5/p) are such that X is (C, δ, τ0, p)-max connected at scale

r0, then

αp
r1,2C

(L, τ) � C ′τ (5.13)

for every τ ∈ (0, 1) and for the choice of parameters

L =
C

1 − δτ
1/p
0

and r1 =
r0
5C

and C ′ =
2D5/pC

τ
1/p
0 (1 − 2δD5/p)

. (5.14)

Proof. Fix τ, δ, r1 > 0 as in the statement, and let Λ = 2D5/pτ
−1/p
0 . Let x, y be arbitrary

with r := d(x, y) ∈ (0, r1), and let g ∈ Ep
x,y,2C(τ). Define

E = { z | (MCrg
p(z))

1
p > Λτ }.

We first prove that E has a desired maximal function bound at x and y.
Let s ∈ (0, Cr) be arbitrary. We first show that, for every z ∈ E ∩B(x, s), we have

MCrg
p(z) � M2sg

p(z). (5.15)

†We remark, that one could also, alternatively, deal with two constants, that is an estimate of the form

|f(x) − f(y)| � Cd(x, y)((MΛrLip [f ]p(x))
1
p + (MΛrLip [f ]p(y))

1
p ), where C,Λ would be constants and not

necessarily equal. As we already have many constants to keep track of, we simplify these as equal with the
slightly unfortunate restriction of C � 2C′. However, as C′ can always be made larger, this is not significant
for us.
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ALMOST UNIFORM DOMAINS 289

This is trivial when 2s � Cr. Then consider 2s < Cr; for the same reasons, the averages of
g at scales R ∈ (2s, Cr) are strictly smaller than the left-hand side of equation (5.15). Since
g ∈ Ep

x,y,2C(τ), for such R our choice of Λ implies
 
B(z,R)

gp dμ � D

 
B(x,2R)

gp dμ � Dτp <
Λpτp

2
<

MCrg
p(z)

2
.

Thus the supremum of MCrg
p(z) must already be attained for radii R ∈ (0, 2s).

Then, from equation (5.15), we have E ∩B(x, s) = {z ∈ B(x, s)|(Mmin{2s,Cr}g
p)

1
p > Λτ}.

Noting first that

min{2s, Cr} + s � Cr + s � 2Cr and min{2s, Cr} + s � 4s,

by Lemma 2.4 applied to the scale s < r0/4, and the maximal function bound for g and by
local doubling, we get

 
B(x,s)

1E dμ �
μ({Mmin{2s,Cr}g

p > Λpτp} ∩B(x, s))
μ(B(x, s))

�
D3

´
B(x,min{2s,Cr}+s)

gp dμ

μ(B(x, s))Λpτp
<

D5

Λp
<τ0.

In this application of Lemma 2.4 we need the doubling at a larger scale. Taking the supremum
over s, we get MCr1E(x) < τ0 and symmetrically MCr1E(y) < τ0. Let ε > 0 be arbitrary. By
Definition 2.16, there exists a curve γ : I → X, withˆ

γ

1E ds � δτ
1
p

0 r.

Let O = γ−1(E), which is open since the Hardy–Littlewood maximal function is lower semi-
continuous, and define K = (I \O) ∪ {min(I),max(I)}. Then, defining γ′ = γ|K , we obtain a
curve fragment γ′ : K → X with

Len(γ′) � Len(γ) � Cr.

Now let Undef(γ′) =
⋃

i(ai, bi) as in (5.2) and note that for every gap (ai, bi) of γ′, we have
γ((ai, bi)) ⊂ E and

di := d(γ(ai), γ(bi)) � Len(γ|[ai,bi]∩K) �
ˆ
γ|[ai,bi]

1 ds =
ˆ
γ|[ai,bi]

1E ds.

Thus summing over i gives

Gap(γ′) �
ˆ
γ

1E ds � δτ
1
p

0 r.

Now, clearly γ′ avoids E except possibly at x, y. Thus, by the lower semi-continuity of g, we
also have g(γ′(t)) � Λτ for every t ∈ K. In particular,ˆ

γ′
g ds � ΛτLen(γ′) � ΛτCr. (5.16)

By the assumption, δτ
1/p
0 < 1

2 , so each of these gaps is of size less than r1. By our prior
estimates, we obtain ∑

i

di = Gap(γ′) � δτ
1
p

0 r.
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290 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Now let ε > 0 be given. We have M2Cdi
(gp(γ′(t))1/p < Λτ for t = ai, bi, so by the definition of

αp
r1,2C

(L,Λτ) there are curve fragments γi of length at most Ldi connecting γ′(ai) and γ′(bi)
and ˆ

γi

g ds + Gap(γi) � αp
r1,2C

(L,Λτ)di + 2−iε.

Now, by a dilation and translation, we can assume that the domains of γi are [ai, bi], and
that the curves are uniformly Lipschitz. Thus, we can define a new curve γ′′ by the choices
γ′′(t) = γ′(t) for t ∈ K and γ′′(t) = γi(t) for t ∈ [a′i, b

′
i]. This is clearly Lipschitz and

Len(γ′′) � Len(γ′) +
∑
i

Len(γi) � (C + δτ
1/p
0 L)r � Lr.

Further, using the above estimates and estimate (5.16)

inf
γ∈Γx,y(L)

ˆ
γ

g ds + Gap(γ) �
ˆ
γ′′

g ds + Gap(γ′′) �
ˆ
γ′
g ds +

∑
i

ˆ
γi

g ds + Gap(γi)

� CΛτr + δτ
1/p
0 rαp

r1,2C
(L,Λτ) + ε.

Letting first ε → 0, taking suprema over g and y and x, and dividing by r, we obtain

αp
r1,2C

(L, τ) � CΛτ + δτ
1/p
0 αp

r1,2C
(L,Λτ).

Finally combining this with equation (5.10), our initial choice of Λ yields

αp
r1,2C

(L, τ) � 2D5/pC

τ
1/p
0

τ + 2δD5/pαp
r1,2C

(L, τ),

and solving for αp
r1,2C

(L, τ) gives

αp
r1,2C

(L, τ) � 2D5/pC

τ
1/p
0 (1 − 2δD5/p)

τ = C ′τ

as desired. �

We now have all the tools to prove Theorems 2.18 and 2.19. The argument for the first result
is similar to the one presented in [14], so we only sketch the details.

Proof of Theorem 2.18. Assume that the space satisfies a (1, p)-Poincaré inequality at scale r0
with constant C1 = C, so by Theorem 5.5 it also satisfies a pointwise (1, p)-Poincaré inequality
at scale r0/2 with constant C2. To prove the maximal connectivity condition, fix x, y ∈ X,
put r = d(x, y), fix τ ∈ (0, 1), and fix a Borel set E with MC2r1E(z) < τ for z = x, y. By
Remark 2.15, it is sufficient to assume E open. We will construct a curve γ with controlled
length and which almost avoids the set E. Define

Fx(z) = inf
γ

ˆ
γ

(1E + τ) ds.

The infimum is taken over rectifiable curves γ connecting x to y.
Since the space is Λ-quasi-convex at scale r0/2 with Λ depending only on C and D (see, for

example, [10]), this infimum is finite.† It is easy to see that Lip [Fx] � Λ(1E + τ). Thus, by
the pointwise Poincaré inequality, we have

Fx(y) = Fx(y) −Fx(x) � C2Λr(MC2r1E(x) + MC2r1E(y) + 2τ).

†This step requires a proof using a local Poincaré inequality which is a fairly straightforward modification of
the previous one. See, for example, [6, Proposition 4.8].
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ALMOST UNIFORM DOMAINS 291

Thus, there must be some curve γ such thatˆ
γ

(1E + τ) ds � C2Λr(MC2r1E(x) + MC2r1E(y) + 3τ) < C2Λ(2τ + 3τ)r < 6C2Λτr.

In particular, Len(γ) � 6C2Λr. The same inequality also verifies the (C0,Δ, p)-maximal
connectivity condition (2.14) for γ with constants C0 = 6C2Λ and Δ = 6C2Λ. �

Proof of Theorem 2.19. Let δp,D = 1
2D

−5/p. If the space is (C, δ, τ0, p)-max connected and
δ ∈ (0, 1

2D
−5/p), then by Lemma 5.12 we have

αp
r1,2C

(L, τ) � C ′τ

for r1 = r0/5C, with 2C � C ′. So by Lemma 5.11, the space satisfies a (1, p)-Poincaré inequality
at scale r1/(2C ′) = r0/(10CC ′) with constant Cp, where Cp depends quantitatively on C ′ and
hence on δ,D,C, τ0, and p. �

Appendix. On preserving uniformity by removal processes

Here we give a proof of Theorem 4.22, our main technical tool in the construction of metric
sponges. This requires some preliminary lemmas for uniform domains.

A.1. Initial properties of the measure. One useful property of a uniform domain Ω
corresponds roughly to the boundary ∂Ω being porous (see, for example, [9] for a definition).
We recall a variant of [7, Lemma 4.2] first, and sketch the proof.

Lemma A.1 [7]. If Ω is an A-uniform subset of X then it satisfies the following corkscrew
condition: for all x ∈ Ω and r ∈ (0,diam(Ω)), there exists y ∈ BΩ(x, r) so that

B
(
y,

r

4A

)
⊂ Ω ∩B(x, r).

Proof. Let x ∈ Ω and r ∈ (0,diam(Ω)) be arbitrary. Choose y ∈ Ω so that

d(x, y) � diam(Ω)
2

.

Then, let γ be the A-uniform curve connecting x to y. By continuity, there is a t such that
d(γ(t), x) = r/4, and thus also d(γ(t), y) � r/4. Therefore,

d(γ(t),Ωc) � 1
A

min{diam(γ|[0,t]),diam(γ|[t,1])} � r

4A
,

and thus B(γ(t), r
4A ) ⊂ Ω and

B
(
γ(t),

r

4A

)
⊂ B

(
γ(t),

r

2

)
⊂ B(x, r),

which completes the proof. �

From this, we conclude useful properties of the restricted measure on Ω, such as Ahlfors
regularity and a basic volume (or measure) estimate for removed ‘ obstacles’.

Proof of Lemma 4.24. Let x ∈ X, r ∈ (0,diam(Ω)) and let CAR,Ω = (4A)QCAR. Firstly, the
upper bound in the Ahlfors Q-regularity condition is trivial:

μ(B(x, r) ∩ Ω)) � μ(B(x, r)) � CARr
Q � CAR,Ωr

Q.

 20524986, 2021, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.12032 by U

niversity O
f O

ulu, W
iley O

nline L
ibrary on [30/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



292 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

Now, by Lemma A.1, there is a y ∈ B(x, r) ∩ Ω such that B(y, r
4A ) ⊂ Ω, in which case

μ(B(x, r) ∩ Ω)) � μ
(
B
(
y,

r

4A

))
� rQ

(4A)QCAR
� rQ

CAR,Ω

and the result follows. �

Proof of Lemma 4.25. Scale the statement so that diam(Ω) = 1. Fix Cδ = C3
AR(2L(1 +

δ))Qδ−Q and, for l > k, let Rl
x,r be the set of all R ∈ Rn,l so that R ∩B(x, r) �= ∅. It is

sufficient to prove that

μ

⎛
⎝ ⋃

R∈Rl
x,r

R

⎞
⎠ � Cδ

nQ
l

rQ

for every l > k; the desired estimate follows from summation over l.
Given R ∈ Rl

x,r let xR ∈ R ∩B(x, r), so R ⊂ B(xR, Lsl) follows from Definition 4.21. Since
r � sk > sl, we have

B(xR, δsl−1/2) ⊂ B(x, r + δsk) ⊂ B(x, (1 + δ)r).

By separation, the balls B(xR, δsl−1) are disjoint for distinct R. We then estimate using Ahlfors
regularity

μ

⎛
⎝B(x, r) ∩

⋃
R∈Rn,l

R

⎞
⎠ �

∑
R∈Rl

x,r

μ(R) �
∑

R∈Rl
x,r

μ(B(xR, Lsl))

� C2
AR(2Lsl)Q

δQsQl−1

∑
R∈Rl

x,r

μ(B(xR, δsl−1/2))

� C2
AR2QLQ

δQnQ
l

μ(B(x, (1 + δ)r))

� C3
AR(2L(1 + δ))Q

δQnQ
l

rQ =
Cδ

nQ
l

rQ.

as desired. �

A.2. Preserving uniformity. One of the forthcoming technical issues in removing a set R is
that an arbitrary uniform curve relative to a pair of points in X \R may travel ‘too far away’
from R. To resolve this, we verify the following result, in whose proof we use the argument
from [42, Theorem 4.1].

To fix notation, for a metric space X = (X, d) and for ε > 0 we denote ε-neighborhoods of
subsets Y of X by

Nε(Y ) :=
⋃
x∈Y

B(x, ε).

Lemma A.2. Fix D,C,A � 1. Let X be a C-quasi-convex, D-metric doubling metric space.
If S is a bounded, A-co-uniform domain in X, then for every ε > 0 there is a constant Lε =
Lε(C,D,A) such that for every x, y ∈ Nεdiam(S)(S) \ S, there exists a Lε-uniform curve γ with
respect to x, y, and X \ S with γ ⊂ N4(C+A2)εdiam(S)(S).

Proof. The statement is scale invariant, so assume diam(S) = 1. Fix ε > 0. Let x, y ∈ Nε(S) \
S be arbitrary. If d(x, y) � ε, the result follows simply by choosing the A-uniform curve with
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ALMOST UNIFORM DOMAINS 293

respect to x, y, and X \ S. Thus assume d(x, y) > ε, in which case

d(x, y) � 2ε + diam(S) � 2ε + 1.

Let Sε be a maximally ε-separated subset of NCε(S) \ S, that is for each distinct a, b ∈ Sε

we have d(a, b) � ε. The union
⋃

s∈Sε
B(s, 2ε) covers NCε(S) \ S, so by quasi-convexity,

connectivity of ∂S, and doubling, there exists M0 ∈ N with dependence M0 = M0(ε, C,D)
as well as a chain of points {xi}Mi=1 in Sε ∪ {x, y} ⊂ NCε(S) \ S satisfying x1 = x, xM = y,
3 � M � M0, and

ε

2
� d(xi, xi+1) < 2ε.

Note, quasi-convexity is used simply to ensure that the points x, y can be connected to ∂S.
For i = 1, . . . ,M − 1, let γi : [0, 1] → X be the A-uniform curve with respect to xi, xi+1, and
X \ S, so diam(γi) � 2Aε. By continuity, there exists ti ∈ [0, 1] such that

ε

4
� min{diam(γi|[0,ti]),diam(γi|[ti,1])}.

Then for i = 1, . . . ,M − 2, let γ′
i be the A-uniform curve with respect to γi(ti), γi+1(ti+1),

and X \ S. Define γ to be the concatenation of γ1|[0,t1] with γM |[tM−1,1] and all the γ′
i. Direct

calculation and Definition 4.12 imply that

diam(γ′
i) � Ad(γi(ti), γi+1(ti+1))

� A(d(γi(ti), xi+1) + d(xi+1, γi+1(ti+1))) � A(diam(γi) + diam(γi+1)) � 4A2ε,

and d(γ′
i(t), S) � ε

8A2 for t ∈ [0, 1]. Now,

diam(γ) � 4MA2ε � 4MA2d(x, y).

Also, if γ(t) intersects with γ′
i, then

d(γ(t), S) � ε

8A2
� diam(γ)

32MA4
� 1

32MA2
min{diam(γ|[0,t]),diam(γ|[t,1])}.

As for the cases when γ(t) coincides with a point on γ1(s) or γM (s), the estimate follows
from the A-uniformity of γ1 and γM . To clarify, this involves some case checking. We
expand only the case of γ(t) coinciding with γ1(s), when we have d(γ(t),Ωc) = d(γ1(s),Ωc) �
1
A min{diam(γ1|[0,s]),diam(γ1|[s,1])}. We also have diam(γ1|[0,s]) = diam(γ|[0,t]), so if the mini-
mum is attained with diam(γ1|[0,s]) the inequality is immediate. If the minimum is attained by
the second option, then we have diam(γ1|[s,1]) � ε/4 � 1

4Adiam(γ|[0,t]) by the choice of t1. In
combination, we get that γ is an 32MA4-uniform curve contained in N2(C+A)εdiam(S)(S). The
containment follows since γ′

i ⊂ N2(C+A)εdiam(S)(S). �

We will need the following simple lemma on uniform domains.

Lemma A.3. Let Ω be an open domain and let x, y ∈ Ω. If γ : [0, 1] → Ω is an A-uniform
curve with respect to x, y, and Ω, then for every t ∈ [0, 1] it holds that

d(γ(t),Ωc) � 1
4A

min{d(x,Ωc) + diam(γ|[0,t]), d(y,Ωc) + diam(γ|[t,1])}.

Proof. Up to symmetry, assume diam(γ|[0,t]) � diam(γ|[t,1]). If

diam(γ|[0,t]) �
d(x,Ωc)

2
,
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294 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

then the claim follows from A-uniformity. If, on the other hand,

diam(γ|[0,t]) �
d(x,Ωc)

2
,

then, by the Triangle inequality,

d(γ(t),Ωc) � d(x,Ωc) − d(γ(t), x)

� d(x,Ωc) − diam(γ|[0,t]) �
d(x,Ωc)

2
� 1

4
d(x,Ωc) +

1
4
diam(γ|[0,t])

which, with A � 1, is the desired result. �

We are now ready to show that for co-uniform subsets S of uniform domains Ω, their relative
complements Ω \ S are also uniform.

Proof of Theorem 4.22. Let AΩ = A1 > 0 and AS = A2 > 0 be the uniformity constants of
Ω and X \ S, respectively. Fix ε = d(S,Ωc)

diam(S) . Without loss of generality, assume diam(S) = 1.
Letting δ0 ∈ (0,min{1/AΩ, 1/AS}) to be determined later, we show that Ω \ S is A′-uniform
for some A′ � 1/δ0, that is, that for each x, y ∈ Ω \ S, there is a curve γ so that

d(γ(t),Ωc ∪ S) � 1
A′ min{diam(γ|[0,t]),diam(γ|[t,1])} (A.4)

and where diam(γ) � A′d(x, y).
Let x, y ∈ Ω \ S be arbitrary. If d(x, y) < ε

3(AS+AΩ) , the claim follows by either using the
uniformity of X \ S or the uniformity of Ω, depending on which of S or Ωc is closer to x or y.
Thus, without loss of generality assume d(x, y) � ε

3(AS+AΩ) . Also, without loss of generality,
assume x, y /∈ ∂S. The case of either x, y ∈ ∂S can be obtained by using the uniformity of Ω
to connect points x′, y′ ∈ Ω \ S̄ to x, y, respectively, with

max{d(x, x′), d(y, y′)} � 1
A2

Ω

d(S,Ωc).

By uniformity of Ω, there is an AΩ-uniform curve γ0 : [0, 1] → X with respect to x, y, and Ω,
so define the set

B =
{
t ∈ [0, 1] | d(γ0(t), S) < δ0 min{diam(γ0|[0,t]),diam(γ0|[t,1])}

}
.

If B = ∅, then γ0 satisfies (A.4) with δ0 in place of 1
A′ , and thus γ = γ0 would be the desired

curve. Otherwise, B is open, and hence a countable union of disjoint open intervals,

B =
⋃
i∈J

Ii

for some possibly finite subset J ⊂ N with Ii = (ai, bi). Note that for each z = ai, bi we have
equality in the above condition, that is

d(γ0(z), S) = δ0 min{diam(γ0|[0,z]),diam(γ0|[z,1])}. (A.5)

Let C ′ = 4(C + A2
S + ε) and let L = Lε/(3C′) = Lε/(3C′)(C,D,AS) be the constant from

Lemma A.2. We now replace each γ0|Ii with a new curve γi so that the concatenation satisfies
(A.4); in particular, we claim that we can choose γi to have

d(γi,Ωc) � max{d(γ0(ai), S), d(γ0(bi), S)}
4

+
ε

12C ′ d(γ0(ai), γ0(bi)) (A.6)
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ALMOST UNIFORM DOMAINS 295

and with the constant C ′′ = max{L,AS},

diam(γi) � C ′′d(γ0(ai), γ0(bi)) (A.7)

holds for each i ∈ N.
We proceed by cases, as follows. Suppose first that

ε

3C ′ > max{d(γ0(ai), S), d(γ0(bi), S)} (A.8)

is true. So by Lemma A.2 with ε/(3C ′) in place of ε, there is a curve γi in Nε/3(S) that joins
γ0(ai) and γ0(bi) and which is L-uniform with respect to X \ S. In particular, (A.7) holds with
C ′′ = L and our choice of ε yields

d(γi(t),Ωc) � d(S,Ωc) − d(γi(t), S) � ε− ε

3

so (A.6) follows from (A.8) and

d(γ0(ai), γ0(bi)) � diam(S) + d(γ0(ai), S) + d(γ0(bi), S) � 1 +
2ε
C ′ .

If (A.8) is false, then instead by co-uniformity, there is a AS-uniform curve γi with respect
to γ0(ai), γ0(bi), and X \ S. We now claim that the distance estimates (A.6) and (A.7) hold
for these curves γi. To this end, by symmetry we may assume that

d(γ0(ai), S) � max
{ ε

3C ′ , d(γ0(bi), S)
}
.

Introduce the short-hand notation xi := γ0(ai), yi := γ0(bi). Assume now that δ0 < ε
32AΩASC′ ,

which with (A.5) implies

d(xi,Ωc) � 1
AΩ

min{diam(γ0|[0,ai]),diam(γ0|[ai,1])} =
1

δ0AΩ
d(xi, S) � 1

δ0AΩ

ε

3C ′ .

Then combining the previous estimates and the choice of δ0 yields

d(xi, yi) � diam(S) + 2d(xi, S) � 6C ′δ0AΩ

ε
d(xi,Ωc) � 1

8AS
d(xi,Ωc),

and

d(xi, yi) � diam(S) + 2d(xi, S) � 6C ′

ε
d(xi, S).

We have (A.7) and therefore

d(γi,Ωc) � d(xi,Ωc) − diam(γi) � d(xi,Ωc) −ASd(xi, yi)

� d(xi, S)
2

=
max{d(xi, S), d(yi, S)}

2
.

In particular, (A.6) holds in both cases for the γi as constructed.
In either case, C ′′-uniformity of γi with respect to X \ S and Lemma A.3 imply that for all

t in the domain of γi

d(γi(t), S) � 1
C ′′

min{d(xi, S) + diam(γi|[ai,t]), d(yi, S) + diam(γi|[t,bi])}
4

. (A.9)

Now, similarly to the proof of Lemma 3.2 reparametrize each γi to have domain Ii = [ai, bi]
and define the concatenation γ : [0, 1] → X by γ(t) = γi(t) if t ∈ Ii, and γ(t) = γ0(t) for all
other t ∈ [0, 1]. This concatenated curve is the desired uniform curve and we will proceed to
estimate its diameter and distance to S ∪ Ωc.
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296 SYLVESTER ERIKSSON-BIQUE AND JASUN GONG

The diameter bounds for γi in (A.7) give rather directly that γ is continuous. By (A.7), each
γi has diameter at most

diam(γi) � C ′′d(xi, yi) � C ′′diam(γ0),

so it follows that the concatenation γ has diameter at most

diam(γ) � diam(γ0) + 2max
i

diam(γi) � (1 + 2C ′′)diam(γ0) � AΩ(1 + 2C ′′)d(x, y).

To check the uniformity condition (4.13), we again proceed by cases. Supposing first that t /∈ Ii
for any index i, put U0 = [0, t] and U1 = [t, 1]. For k = 0, 1 we have from (A.7)

diam(γ|Uk
) � diam(γ0|Uk

) + 2 max
i,Ii⊂Uk

diam(γi|Ii) � (1 + 2C ′′)diam(γ0|Uk
) (A.10)

Then, we get

d(γ(t),Ωc) � 1
AΩ

min
k=0,1

diam(γ0|Uk
) � 1

AΩ(1 + 2C ′′)
min
k=0,1

diam(γ0|Uk
), (A.11)

and (from the definition of B)

d(γ(t), S) � δ0 min
k=0,1

diam(γ0|Uk
) � δ0

(1 + 2C ′′)
min
k=0,1

diam(γ0|Uk
). (A.12)

Now consider the remaining case where t ∈ Ii for some i ∈ J , in which case Uk ∪ Ii and
Uk ∩ Ii and Uk \ Ii are all intervals for k = 0, 1. Similarly as above,

diam(γ|Uk
) � diam(γ0|Uk\Ii) + diam(γi|Uk∩Ii) � (1 + 2C ′′)(diam(γ0|Uk\Ii) + d(xi, yi)). (A.13)

Taking a minimum over k = 0, 1 in (A.13) gives

min
k=0,1

diam(γ|Uk
) � (1 + 2C ′′)( min

k=0,1
diam(γ0|Uk\Ii) + d(xi, yi)). (A.14)

Combining our work with ε
12C′ � δ0 gives the following.

d(γ(t),Ωc)
(A.6)

� max{d(xi, S), d(yi, S)}
4

+
ε

12C ′ d(xi, yi)

(A.5)
(A.14)

�
δ0 min

k=0,1
diam(γ|Uk

)

1 + 2C ′′

d(γ(t), S)
(A.9)

� 1
C ′′

min{d(xi, S) + diam(γi|[ai,t]), d(yi, S) + diam(γi|[t,bi])}
4

(A.5)

� δ0
4C ′′ min

k=0,1
{diam(γ0|Uk\Ii) + diam(γi|Uk∩Ii),diam(γ0|Uk∪Ii) + diam(γi|Ii\Uk

)}

(A.13)

� δ0
4C ′′(1 + 2C ′′)

min
k=0,1

diam(γ|Uk
).

In the ultimate inequality, we bound each of the terms in the minimum first, and then combine
the bound. Now, the previous two estimates give for t ∈ (ai, bi) that

d(γ(t), S ∪ Ωc) � δ0
4C ′′(1 + 2C ′′)

min
{

diam(γ|[0,t]),diam(γ|[t,1])
}
. (A.15)

The estimates (A.15) together with the diameter bound show that the curve γ is A′–uniform
for

A′ = max
{

4C ′′(1 + 2C ′′)
δ0

, (1 + 2C ′′)AΩ

}
. �
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