AVERAGE ANALYTIC RANK OF ELLIPTIC CURVES WITH PRESCRIBED TORSION

PETER J. CHO AND KEUNYOUNG JEONG

ABsTRACT. We show that average analytic rank of elliptic curves with prescribed torsion G is bounded for every
torsion group G under GRH for elliptic curve L-functions.
1. INTRODUCTION

The distribution of (algebraic or analytic) ranks of elliptic curves defined over @ is one of the most interesting
problems in number theory. One of important features of the distribution is the average rank of elliptic curves.
Let us start with our model for elliptic curves. Our elliptic curves defined over Q are represented by for a pair
(A, B) of integers with 443 +27B2 # 0

EA7B:y2:x2+Ax+B

such that there is no prime p with p* | A and p® | B. Let € be the set of all such pairs and £ has a bijection
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with the set of Q-isomorphism classes of elliptic curves over Q. Then, we can order elliptic curves by the naive
height:

£(X) :{EA,B €& 4] gX%, | B| gX%}_

We can define the average rank of elliptic curves as the limit of the average rank over £(X) as X goes to infinity
if it exists. It is widely believed that the following conjecture initially proposed by Goldfeld [Gol79] would be

true.

Conjecture 1 (Minimalist conjecture). The proportion of elliptic curves with rank 0 and the proportion of

elliptic curves with rank 1 are both %

Recently, Park, Poonen, Voight, and Wood [PPVW19] has brought out a more refined conjecture! which not

only claims Conjecture 1 but also proposes the number of elliptic curves with algebraic rank > r for 1 < r < 20.

Conjecture 2. [PPVW19, Corollary 7.2.6, Theorem 7.3.3|

arXiv:2005.06862v3 [mat

(1) The proportion of elliptic curves with algebraic rank 0 and the proportion of elliptic curves with algebraic
rank 1 are both %
(2) There are only finitely many elliptic curves with algebraic rank > 21.

(3) For 1 < r < 20, the proportion of elliptic curves over Q with algebraic rank > r and height < X is
21—r
X 22 +0(1)

A major breakthrough for Conjecture 1 was made by Bhargava and Shankar [BS15, BS]. They showed that
the proportion of elliptic curves with algebraic rank <1 is at least 0.8375 and with algebraic rank 0 is at least
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LWe note that Conjecture 2 is also suggested by [Wat ' 14, Wat| with a different heuristic method.
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TABLE 1.
G d(G) G d(Q) G d(Q)
0 6/5 Z7./6Z 6 7)127 24
727 2 Z]TZ 12 Z)27 x 1]27 3
737 3 787 12 Z]27 x ZL]AZ 6
YARZYA 4 7./97 18 7.)27 x 7.]6Z 12
Z7/57 6 Z/10Z 18 7.)27 x 7./]8Z 24

0.2062. For the average analytic rank, Brumer [Bru92] showed that it is bounded by 2.3 under GRH for elliptic
curve L-functions. This bound was lowered to 2 and %—Z by Heath-Brown [Hea04] and Young [YouO6] respectively.
On the other hand, Harron and Snowden [HS14] counted elliptic curves with prescribed torsion G. From now
on, we say that an elliptic curve E over Q has torsion G if F(Q) contains a subgroup isomorphic to G.
By a work of Mazur, GG is one of the groups

Z/nZ,  LJ2Z x Z)2mZ
forn € {1,2,---10,12} and m € {1,2,3,4}. Let
Gy = {Z)22,7,/37, LJAZ, 2,27 x 7.)2L}

and G>5 be the set of torsion groups of order > 5. We remark that elliptic curves with torsion G' € G>5 can
be parametrized by the Tate’s normal form (See §2). We often use n and 2 x 2m in place of G = Z/nZ and
Z)27 x 7.)]2mZ to ease the notation.

Let

Ea(X) = {Eap € E(X) : B(Q) > G}

Harron and Snowden showed that

o loglea(X) 1
X—00 log X d(G) ’

where d(G) is given in Table 1. Furthermore, for G = Z /27 and Z/3Z, they obtained the cardinality of E5(X)
with a power-saving error term.

Not much is known about the distribution of (algebraic or analytic) ranks of elliptic curves with prescribed
torsion group G. In [PPVW19, §8.3], they give an upper bound of algebraic ranks of elliptic curves in Eg but
do not give a statement on the distribution of ranks in &g other than this. In their preprint, Bhargava and Ho
[BH, Theorem 1.1] obtained bounds for the average algebraic rank of the families of elliptic curves with marked
torsion point (0,0) of order 2 and 3 respectively, which are 7/6 and 3/2. We show that for any torsion group G

average analytic rank over the family £g is bounded.

Theorem 1. Let G be a torsion group. For G = Z/nZ, n = 7,9,8,9,10, and 12 and G = Z/27Z x Z/2mZ,
m = 3,4, we assume the moment conditions (8), (9). Under GRH for elliptic curve L-functions, the average
analytic rank over £ is bounded. In particular when |G| > 5, we have a bound 3 + 5d(G).

For G = Z/2Z and Z/2Z x Z/27, we have additional information on the distribution of analytic ranks. First,
we can show that there are not many elliptic curves with torsion G with a high rank. Let Pg(rg > a) denote
the probability of elliptic curves with torsion G such that analytic rank rg > a.
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Theorem 2 (Theorem 4.7). Assume GRH for elliptic curve L-functions. Let C' be a positive constant, let n a
positive integer. We have, for G = Z/2Z and G = Z/2Z x 7./2Z,

(1+ c>> _ T G ()T R ()"
Ton — (L)%L :

where 09, = 18% and 20% for G = Z/27 and G = Z/27 x 7 /27 respectively. In particular, the probabilities

Pyoz(re > 23) and Pgjo7x7/22(rE > 25) are both at most 0.0234.

Pqg <7’E >

We note that there is an analogue [HeaO4, Theorem 2| of Theorem 2 without torsion restriction, which says

-5

We can also give an explicit bound on the n-th moment of analytic ranks of elliptic curves with torsion G.

Theorem 3 (Theorem 4.6). Assume GRH for elliptic curve L-functions. Let o, = & and 13- for G = Z/2Z

In
and G = Z /27 x 7./27 respectively. For every positive integer n, we have

1 5 1\ 551 (1 |S21/2
lim sup 7|50(X)| E rp < E (9n) E <2> |S2| (6) ’

X—o00

Eecéa(X) S S2CS
|S2|even
where S runs over subsets of {1,2,3,...,n}, and Sy runs over subsets of even cardinality of the set S. In

particular, the average analytic rank of &7 /07 and that of £7,/97.7/27 are at most 9.5 and 10.5 respectively.

Our rank results are obtained from computation of one-level (or n-level) density for the family of elliptic
L-functions arising from £g. Katz and Sarnak’s philosophy claims that the one-level density holds for a test
function with any compact support and this philosophy combined with our results implies that average analytic
rank over g for any G is bounded by % Since it is widely believed that the root numbers are evenly distributed

in &g, our one-level density results give small evidence toward the following folklore conjecture.

Conjecture 3. Let G be a torsion group. The proportion of elliptic curves with rank 0 in £ and the proportion
of elliptic curves with rank 1 in &g are both %

For some numerical data for G = Z /27 x 7./87Z, we refer a result of Chan, Hanselman and Li [CHL19]. Young
[You06, §8] also computed bounds for average analytic rank for families of elliptic curves with some prescribed
torsion GG under not only GRH for elliptic curve L-functions but also GRH for Dirichlet L-functions and some
other assumptions.

Our approach gives a systematic frame to compute the one-level density for any G using a version of Eichler—
Selberg trace formula by Kaplan and Petrow [KP17]. This version of Eichler—Selberg trace formula is indis-
pensable to deal with every torsion group GG. However, to bound up the average rank, we need to count elliptic
curves satisfying a local condition. A local condition at prime p is a property of an elliptic curve E when
reduced modulo p. For example, we say that an elliptic curve E satisfies a local condition good, mult, addi
or a at a prime p if its reduction modulo p has good reduction, multiplicative reduction, additive reduction or
ap(p) =p+1—|E(Fp)| = a respectively. For torsion groups G € G<4, we have

Theorem 4 (Theorem 3.7). For a prime p > 5, a local condition £C, and a group G in G<4,

12

£EC ()| — pUSD e

1EGp(X)| = e(G) - cace(p) - = 1X + O(ha,ce(p, X))
p —
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where cg cc(p) is a constant depending on G,p, LC and hg cc(p, X) is a function whose order of magnitude is
1
less than pX <@ + p2X1_12.

For torsion groups G € G>5, we obtain Theorem 3.9, an analogue of Theorem 4, based on the work of
[CKV] which computes the cardinality of £5(X). As a result of Theorems 4 and 3.9, there are many interesting
phenomena. One of our motivations in this article was comparing the probability for a local condition under no
prescribed torsion with that for the local condition under prescribed torsion.

Corollary 5. For p > 5, LC € {good, mult, a} and a torsion group G, we have

&, [EEL (X))
A Te00] 7 A Teo ]

In other words, the three local conditions above and torsion G are not independent.

The constant cg cc(p) is essentially the probability for an elliptic curve with torsion G to satisfy £C at p.
When £C = mult, we can give an interesting interpretation of cq cc(p).

Corollary 6 (Corollary 3.11). Let p be a prime > 5 and G € G<4. Then, cg mui(p) is proportional to the
ratio of the number of the cusps of corresponding modular curve X;(N) and X(2). For G € G5, there is a
set of primes p of positive density such that c¢g mut(p) is proportional to the number of cusps of corresponding

modular curves.

We note that cg mut(p) can be interpreted as the probability that an elliptic curve with prescribed torsion G

has multiplicative reduction at p. For details and other examples, we recommend to see Corollaries 3.11 to 3.13.

2. LOCAL DENSITY AND THE MOMENTS OF CLASS NUMBERS

2.1. Model. When we count the elliptic curves containing a torsion group G, we divide GG into the two cases.
Let
Gt ={Z/22,7/3L,L/AZ, 7|27 x L]2Z}
and G>5 be the set of torsion groups of order > 5. We often use n and 2 x 2m in place of G = Z/nZ and
Z)27 x 7./]2mZ to ease the notation.
For each torsion subgroup, we should clarify the model we use. When G in G<4, we recall the result of [GT12,
Theorem 1.1] shows that E4 p : y?> =a®+ Ax + B for A, B € Z has a G as a torsion subgroup if and only if

(A7 B) = cpG(a7 b)
for some a,b € Z, where ®¢ = (fg,9c) for
f2(a7 b) =a, 92(a7 b) b + ab
f3(a,b) = 6ab + 27a%, gs(a,b) = b* — 2745,
fa(a,b) = —3a® + 6ab® — 2b*, g4(a,b) = (2a — b2)(a + 2ab? — b%),
foxa(a,b) = —(a® +3b*) /4, gaxa(a,b) = (b — a®b) /4.
We recall that the set

(1)

1 1
g(X):{(AB)622: |Al < X5,|B| < X2,4A% 4+ 27B* # 0, }

if p* divides A, then p® does not divide B.

which parametrizes all elliptic curves 4 g whose height is less than X and each isomorphism class appears only
at once, by the minimality condition. When G is in G<4, the set

Ea(X)={(A,B) € &(X): (A, B) = dg(a,b) for some a,b € Z}
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parametrizes all elliptic curves with prescribed torsion subgroup G.
For G in G>5, we use Tate’s normal form

(2) E(u,v) :y? + (1 —v)zy — uy = 2 — uz?,

which parametrizes all elliptic curves with prescribed torsion subgroup G of order > 4. For each (G, parameters

u and v can be expressed as a rational function of one variable ¢. It can be summarized as follow: (for example,
[Kub76, Table 3])

G u(t) u(t)

4 t 0

5 t t

6 t+12 t

7 3 — 12 2 —t

8 (2t —1)(t — 1) (2t — 1)(t — 1)/t

9 2t -1t —t+1) t2(t —1)

10 |32t —1)(t—1)/(—t> +3t —1)2 t(2t —1)(t —1)/(—t*> + 3t — 1)
12 (3t2 — 3t + 1)(t —2t2)(2t — 2t2 — 1)/(t — 1)* | (32 =3t + 1)(t — 2t%)/(t — 1)3
2x4|t2-1/16 0

2% 6 |v(t)+v(t)? (10 — 2t)/(t* — 9)

2x 8| (2t +1)(8t2 + 4t +1)/(8t2 — 1)? (2t 4+ 1)(8t2 + 4t + 1) /2t(4t + 1)(8t% — 1)

For each torsion subgroup G, we first obtain an equation over Z[t] by clearing the denominator of each
coefficient. After that we take the usual coordinate change and obtain an equation of the form 32 = 2% +
fa(t)z + ga(t). For t = %, the homogenization fg(a,b) = b/ f(a/b) and gg(a,b) = b489g;(a/b) of fg and
ga and change of coordinate give

(3) y2 = :L'g + fG(a7 b)l’ + gG(av b)

For simplicity, we use fox4(a,4b)/8%, gaxa(a,4b)/8% and faxg(a + 3b,b), gaxe(a + 3b,b) for foxa, gaxa, foxe and
goxg- One can check that fox4, gaxa and foxg, gaxe represent all isomorphism classes of elliptic curves with the
corresponding torsion. In Appendix 5, the table for f¢ and gg is provided. For any torsion subgroup G in G>5
we have 3deg fo = 2deg g, and we define d(G) as

3deg fo = 2deg gq = 2d(G).
On the other hand, it is very crucial to recognize that the set
{(4,B) € &(X) : (4, B) = (fa,96:)(a,b) for some a,b € Z}

might not parametrize all isomorphism classes of elliptic curves with torsion subgroup G in G>5. The reason is
as follows: The Tate normal form parametrizes all isomorphism classes of elliptic curves with prescribed torsion,
but to parametrize all the curves we need to consider all t € Q, in other words all relatively prime integer pairs
(a,b). But if there is an integer e > 1 such that e* | fg(a,b) and €° | gg(a,b), then the minimal elliptic curve
isomorphic to E,,(4b),9¢(a,p) May N0t appear in the above set since it is removed by the minimality condition.

Here the problem is that the map (fq, ga) does not care the minimality condition. Following [CKV, Theorem
3.3.1], we define a defect of (a,b) to be

e(a,b) =e= max ¢

6/4‘fG(a7b)
6,6‘9G(a7b)
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We slightly modify the definition of ®¢ as follows:

P(a,b) = (fG(e‘i’ b)j gc(jﬁ, b)>

where e is a defect of (a,b). We remark that the image of ®¢ satisfies the minimality condition, so
(4)

parametrizes all isomorphism classes of elliptic curves with torsion subgroup G. We define a height of an integer
pair (A, B) by max(|A[3,|B|?) and

Ea(X)={(A,B) € £(X) : (A,B) = ®¢(a,b) for relatively prime integers a,b}

Mg(X) = {(a,b) € Z* : (a,b) = 1,h(®¢(a,b)) < X} .

Hence ®¢ is a map from Z? to Z? when G is in G<4 and from Mg (X) to 7Z? when G is in G>5. Also, we define
ME(X) as a set of elements of Mg(X) with defect e. Now we compute all defects for the torsion groups G,
except G = Z /27 x Z/6Z and Z/27 x 7/8Z.

Lemma 2.1. Let G be a group in G>5 \ {Z/2Z x Z/6Z,7)2Z x Z/8Z}, and let e be the defect of a relatively
prime integer pair (a,b). Then, the defect e(a,b) is 1,2,3, or 6. Explicitly, we have
(i) e has a prime divisor 2 if and only if

o G=17Z/6Z and (a,b) = (1,1) (mod 2) or,

o G=17Z/8Z and (a,b) = (1,0) (mod 2) or,

e G =7Z/10Z and (a,b) = (1,0) (mod 2) or,

o G =17Z/12Z and (a,b) = (1,0) (mod 2) or,

o G=171J2Z x Z/AZ and (a,b) = (1,1) (mod 2).
(ii) e has a prime divisor 3 if and only if

o G=1ZJ7Z and (a,b) = (1,2) or (2,1) (mod 3) or,

e G=17Z/9Z and (a,b) = (1,2) or (2,1) (mod 3) or,

e G=7/12Z,a #0, and b =0 (mod 3).

Proof. By the argument [CIKV, p.17], the defect e is a divisor of the least common multiplier of the two resultants
Res(fa(a,1),9a(a, 1)) and Res(fa(1,b), ga(1,b)). Sagemath [Sag| gives

G l.c.m of resultants G l.c.m of resultants
Z/57 2163365 Z/10Z 272310853
Z/6Z —224339 7127 2963156
Z]TZ 2323727 )27 X 7.]AZ 224336
ALY/ 218372 7./27 x 7./6Z 2192378
Z)9Z —248317 Z)27. x 7./]8Z 25763144

Hence any prime divisor of e should divide 6|G].

First, we find all the pairs pairs (a,b) € (Z/p°Z)? such that a, b are relatively prime to p and p* | fg(a,b) and
1% | ga(a,b) for each prime divisor p of 6/G|. Then, there is no such pair (a,b) except for the following 4 cases:

e when G =7Z/67Z and (a,b) = (1,1) (mod 2), 2 exactly divides e

e when G =Z/7Z and (a,b) = (1,2

' (

,1) (mod 3), 3 exactly divides e.

) or (2
e when G =7Z/9Z and (a,b) = (1,2) or (2,1) (mod 3), 3 exactly divides e.
) =

e when G =7Z/2Z x Z/4Z and (a,b

(1,1) (mod 2), 2 exactly divides e.
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Now, we consider the pairs (a,b) for which only one of a and b is a multiple of p. When G = Z /57 and p = 2,
if only one of the a or b is divided by 2 then 2% does not divide f5(a,b) because the coefficients of a* and b* are
not divided by 2*. Hence we can conclude that 2 does not divide the defect e for arbitrary (a,b). Considering
the coefficients of fg and gg (see Appendix 5), the same argument shows that the possible prime divisors of
defect are (with the previous four cases)

e when G =7Z/8Z and (a,b) = (1,0) (mod 2), 2 divides e.

e when G =Z/10Z and (a,b) = (1,0) (mod 2), 2 divides e.
e when G =7Z/127Z and (a,b) = (1,0) (mod 2), 2 divides e.
e when G =7Z/12Z, a # 0, and b =0 (mod 3), 3 divides e.

For the first three cases we can check that there is no (a,b) € (Z/2°Z)? such that 2° | f(a,b) and 2° | ga(a,b),
which implies that 22 { e. Similarly for the fourth case, we can check that there is no (a,b) € (Z/3%Z)? such
that 3% | fo(a,b) and 35 | gg(a,b). For cross-check, we refer Appendix 5 for our fg and gg. O

Remark 1. We note that one may calculate the defects for the remaining two groups by following the proof of
Lemma 2.1. For example for G = Z/27Z x 7Z/6Z when a = 0 (mod 4) and b # 0 (mod 2), 2% exactly divides
e(a,b) and when a = 2 (mod 4) and b = 1 (mod 2), 23 divides e(a,b). It seems that the defect is 2* but to
check it we need more computing power. Instead, we omit G = Z/27Z x Z/6Z and Z/27 x 7./87 cases.

2.2. Weights for local conditions. We define a weight for a local condition as the number of preimages of
(fa, 9a) modulo p.

Definition. For a prime p > 5, and a pair J € (Z/pZ)?, let Wg. s be the set of pairs I € (Z/pZ)? with
(fas9c)(I) = J modulo p.

For a given J, |W¢, | is morally a weight to determine the number of elliptic curves E with mod p reduction
Ej and E(Q)tor > G. By the definition of Wg s, the identity

> Weul=p

JE(Z/pL)?

follows directly.
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Proposition 2.2. For a prime p > 5, the sums of |[Wg, 5| over J = (A,B) € IF‘?, satisfying 4A3 + 27B% = 0
(mod p) are summarized as follows:

G p > Woul|G p > [Wo.l
Z./27. : 2p — 1 Z)97 1 (mod 3),79 € (F))? 8p— 7
YARY/ : 2p — 1 Z)9Z 1 (mod 3),79 & (F))? 5p — 4
7.)AZ : 3p—2 7.)97 2 (mod 3),79 € (F,[v/=3]%)? | 6p—5
7.)27. x 7.]27. | - 3p —2 7.)9Z 2 (mod 3),79 & (F,[v/=3]%)% | 3p — 2
Z/5Z +1  (mod 5) 4p—3 Z/10Z +1  (mod 5) 8 —7
Z/5Z +2  (mod 5) 2p—1 Z/10Z +2  (mod 5) dp —3
Z/6Z : dp — 3 Z/12Z 1 (mod 12) 10p —9
Z)77 vz € (Fplv/=3]%)3 | 6p— 5 7)127Z 57,11 (mod 12) 6p — 5
Z]TZ v7 & (Fp[v/=3]%)3 | 3p — 2 Z)27. x TJAZ | - 4p — 3
787 +1 (mod 8) 6p—5 7)27 x 7./6Z | - 6p—5
Z/8Z +3 (mod 8) dp — 3 Z)2Z x ZJ8Z |1 (mod 8),> 11 10p—9
ZJ27 x Z/8Z | 7 (mod 8),> 11 8p—7
Z)27 x Z/8Z | 5 (mod 8),> 11 6p— 5
7)27 x 7./87 | 3 (mod 8),> 11 4p — 3

where y7 = 4(637+147+/—3) and y9 = 4(—9+3\/—3). Here - means that there is no condition on p. Furthermore,

we have
2p—1) forp=1 mod 12,

(5) Z (Wi (—3a2,203)| = (p—1)  forp=5 or 11 mod 12,
a=ate(Z/pL)" 0 for p =7 mod 12.

Proof. We note that for p > 5, the pair I = (0,0) in (Z/pZ)? is the only pair such that (fg,g9q)() = (0,0)
(mod p). For the groups G with order < 4, one can directly check it. We show the case of G = Z/3Z. We
parametrize (A, B) satisfying 443 4+ 27B% = 0 by (—3a?,2a?) for a € Z/pZ. Directly solving the equations
®¢(a,b) = (A, B), we know that [W;3 (4 p)| is equal to the number of distinct zeros of the polynomial

h(z) =hap(x)=3"-2%+2-3%. A. 2" +22.3%. B.2? — A%,

when A # 0. Since h_3,2 943(2) is factored into

5(2_ a\3 o
3 <w _5) (* +a),
the number of distinct zeros of h_gz,2 943 () is 4 if —a and a/3 are both quadratic residues modulo p, 2 if either
—a or /3 is a quadratic residue, and 0 if neither —« nor «/3 is a quadratic residue. From this observation, it
is easy to see that the sum of distinct zeros of h_s,2 543 (x) over o € Z/pZ is 2(p—1) +1 = 2p — 1. Furthermore,
if —1 and 3 are quadratic residue which is equivalent to p = 1 (mod 12), then the sum of [W3 342 243)| over
quadratic residues « in Z/pZ is equal to the sum of [W3 (_3,2 943)| over all non-zero residues « in Z/pZ. Hence,
we obtain the G = Z/3Z row and the equation (5).

Let (a,b) be a pair such that 4fg(a,b)® + 27g5(a,b)? = 0 (mod p). Then, this (a,b) determines « in Z/pZ
satisfying (fa, g9q)(a,b) = (—3a?,2a?). Hence, if we find such all pairs (a,b) (including the (0,0) pair), then the
number of the pairs is the sum we want to know. We will consider the discriminant of E( s 4.b),9c(ab)), inStead
of (fa, gG)(a7 b).
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Let Ag(a,b) be the discriminant of Es., .)@p)- Then, we have

G Ag(a,b)

Z/5Z 2123126555 (a? — 11ab — b?)

7./6Z —283124%%(9a + b)(a + b)3

Z)77 2123124707 (a — b)7(a® — 8a®b + 5ab® + b3)

Z/87Z 212312482 (—2a + b)*(—a + b)®(8a% — 8ab + b?)

Z)9Z 2123120909 (a — b)%(a® — ab + b?)*(a® — 6a2b + 3ab® + b?)

Z/10Z 212312p5(—2a + b)?(—a + b)a'®(—4a? + 2ab + b?)(a® — 3ab + b?)?

Z)12Z 212312p2(—2a 4 b)%(—a + b)*2a'?(6a® — 6ab + b?)(2a® — 2ab + b*)3(3a® — 3ab + b?)*
)27 x ZJAZ | 2832b%a?(a — b)*(a + b)*

727 x Z./67Z | 2'83'2a2(a — 6b)?(a + 6b)%b5(a — 2b)%(a + 2b)°

727 x Z./87 | 2293'2b%a8(2a + b)8(4a + b)8(8a® — b?)?(8a® + 8ab + b?)%(8a® + 4ab + b*)*

First, let’s treat the cases where Ag(a,b) is a product of linear polynomials and quadratic polynomials. For

example, consider
Ag(a,b) = 2"32a%0*(—2a + b)*(—a + b)®(8a® — 8ab + b?).

So in this case we have four types of (a,b) satisfies the condition which are a = 0,b = 0,2a/b = 1,a/b =1, and
a/b is a zero of the quadratic polynomial 8¢2 — 8¢ + 1. The first four cases give (p — 1)-pairs, and the quadratic
polynomial has a zero in [, when p = 1,7 (mod 8). Since the value of 8t2 —8t+1att=1,1/2is 1, there
is no overlap among those solutions. Hence we verified the case of G = Z/8Z. The other cases can be handled
similarly.

Now, let’s verify the cases where Ag(a,b) contains a cubic polynomial. For this purpose, we need the following

lemma.

Lemma 2.3. Let f(t) = t> + at + b be a polynomial over F,, with the discriminant A = (—4a® — 27b%). The
number of zeros (without multiplicity) of f(t) is

(1) zero if and only if A = 81u? is square and (—b+ pu\/—3)/2 is not cube in the field F,[\/=3].

(2) one if and only if A is non-square.

(8) two if and only if A is zero.

(4) three for other cases.

Proof. The first, second and fourth statements are shown in [Dic06] and the third one follows from the fact that

a monic cubic which has two zeros and has no degree two term is parametrized by (t — 2a)(t + a)?. O

When G = Z/7Z, there is a polynomial (a® — 8a®b + 5ab? + b?) in Ag(a,b). We obtain (3 — 2t — %) by
change of coordinate. In this case the discriminant of this polynomial is 2401 = 7%, so when p > 7 then the
number of zeros is one of 0 or 3. Also, u = 49/9 and the number of zeros is determined by %(—% + %\/—_3)
which is equal to 4(—637 + 147\/—=3) up to a cube. We note that the 0 or 1 is not a solution of the given
polynomial which means that there is no overlap, so we obtain the row for G = Z/7Z. When G = 7 /97, we can

prove it similarly. O

We need to prove some elementary but not simple properties of ®g. We put

G [{0y]Z/22]72/32]2/42 | 7/22 x 2.)2Z. | G in G=5
@] 2| 3 4 6 6 2d(G)
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Lemma 2.4. For G € Gy, there is a positive integer r(G) such that the number of the preimages of ®¢ is r(G)
1
except O(X =@ )-points.

Proof. The cases G = Z/27,7./3Z are essentially in [HS14, Lemma 5.5] with r(Z/2Z) = 1 and r(Z/3Z) = 2.
For G = Z/AZ, assume that there are (a’,b") # (a,£b) such that

(—3a% + 6ab® — 2b*, (2a — b?)(a® 4 2ab® — b)) = (=3a"? + 6’ — 24, (2d' — V') (d”? + 24'V? — V'Y)).

The elliptic curve Eg,(,) has a 4-torsion point (a, b(—b? + 3a)). Since an elliptic curve over rational numbers
does not have Z /47 x Z/AZ as a subgroup, (a,b) and (a’,b") also satisfy

(a,b(—=b* + 3a)) = (a’, £V (—b"* + 3d")).

If b2 # b2, we obtain bb' = 0. Without loss of generality we may assume that &’ = 0, then we have 3a = b.
Then, a 4-torsion point (a,b(—b*+3a)) is a 2-torsion point, which is a contradiction. We note that r(Z/4Z) = 2.
Let G =7/27 x 7Z/2Z. By a similar argument, we need to count (A, B) such that

a® + 30% b® — ba® a” + 307 b? —Va”
(A’B)_<_ 47 4 >_<_ 4 4 )

a+b b—a_b _fd+V Y —d Y
2 7 2 N 2 72 7 '

We note that since A and B are integers, a and b should have the same parity. The set equality allows the

and

identity of y-coordinates on the first equation, and it holds if and only if one of the following six linear systems

for Ay = I, and

-1 0 _3 L 3 3 —
Ay = ,Ag = ), 43 = T ) A= 2] As =
0 1 —2 —2 —2 —2 -

Consequently, for (a,b) satisfying a = b (mod 2), the (not necessarily distinct) six points

a—3b —a—> —a+3b —a—2> a+3b a—0> —a—3b a—0»
(aab)7(_a7b)7< 2 9 2 >7< 2 ) 2 >7< 2 5 2 >, and < 2 s 2 )

corresponds to the same (A, B). We find a domain where the representatives for the above (not necessarily

D= D=

DO D=
[
DI Nl o
SN——

DO D=
N[ —

distinct) six points. We claim that the following set
X:{(a,b)GZXZ:aZO,bZ%,aEbmodZ}

is the collection of all the representatives of the above (not necessarily distinct) six points. On the other hand,
the number of points such that the number of their preimages is strictly less than six is O(X %) Hence, we
obtain the result with 7(Z/2Z x Z/27Z) = 6. O

For G € G>5, we can prove analogous statement by using the argument of [CKV].

1

Lemma 2.5. For G € G5, there is an integer 7(G) such that the preimages of ®¢ is 1(G) except O(X <@ )-

points.
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Proof. Essentially it is proved in the proof of [CKV, Theorem 3.3.1], so here we give a sketch. For a G € G>5 and
corresponding congruence subgroup I', there is a bijection between the set of Q-isomorphism classes of elliptic
curve with I-structure and rational points of the modular curve Yr (see [CKV, Proposition 3.1.1]). By choosing
a coordinate that defines an embedding Yr — Ab, the proof of [CKV, Theorem 3.3.1| gives a bijection from
Yr(Q) to the set

{(a,b) € 2% |f6(a.b)] < X7, |ga(a,b)] < X3, (a,0) = 1}

Now, the natural map from the elliptic curve with I'-structure to the set of elliptic curves which has I'-structure
is r(G)-to-one map by |[CKV, Lemma 3.1.8] except negligible set comes from the curves with I"-structure for
I C T and curves whose j-invariants is 0 or 1728. O

Let J be an element in (Z/pZ)? such that E; is an elliptic curve and W s is non-empty. Then for each (a,b) €
We.s we have a change of coordinate from E(u,v) whose equation is (2) to E; : y*> = 2% + fa(a,b)x + ga(a,b)
which is defined earlier. Since the change of coordinate gives an isomorphism between the groups of [F)-points,
the image of (0,0) of E(u,v) also goes to a torsion point of maximal order. When G is cyclic, it defines a map
Ve, g Wea, g — E;(F,) whose image is in the set of points of maximal order in G.

Lemma 2.6. Let G € Gy, G = Z/5Z, Z/6Z, or /27 x Z.JAZ, and J € (Z/pZ)? for p > 5 such that E; is an

elliptic curve. Then,
E;[F,) > G if and only if  J = ®g(a,b)
for some (a,b). Furthermore, |Wg. ;| is the number of embedding of G into E;(F,).

Proof. When G € G<y, for the if and only if part we will use the computation of [GT12]. For example when
G = Z/AZ, assume that (z1,w) is a point of order 4 of an elliptic curve E4 p/F,. From the computation of the
first coordinate of [3](x1,w1) = (21, —w1) for w; # 0, we have

B= % (5;1:% — Az £ \/(3x§ —2A)(A + 3x§)2> :

Hence, B is in [, if and only if there exists xo € F,, such that 3x% —2A = x% The computation of the second
coordinate gives that w? = (311 — x2)(z2 + 371)?/8, so we have x5 # 3r; and there exists z3 € IF)* such that
23 = (31 — x2)/2. By the change of variables a = z; and b = x3, we have (A, B) = ®4(a,b) with points of
order 4, (x1,w;) = (a,£b(—b*> + 3a)). For the converse, we know that (a,+b(—b> + 3a)) are points of order 4
of Eg,(ap)- The other cases with order < 4 can be proved similarly, but we remark that the first equation of

[GT12, p. 92| should be
1
(—22,0), <§(22 +4/23 — 421),0> ;.

Now we prove the second statement when G' € G<4. When G'is cyclic, it suffices to prove that ¥ j is bijective.
For example G = Z/4Z, we note that for J = ®4(a,b), the 2-tuple (a, —b) also corresponds to the same J but
they induce the two points of order 4, (a, +b(—b? + 3a)). Therefore, for each points of order 4 in E4 p(F,) there
is an (a,b) € Wy (a,p). For the converse, let ®4(a’,b') = (A, B) and (a/,b' (b +3a’)) = (a,b(—b*+3a)). If b # V/
then we have a = a’ and bb' = 0 which implies that the one of the points (a’,b'(—b"? + 3a’)) and (a, b(—b? + 3a))
is of order 2. The cases G = Z /27 and Z/3Z can be dealt similarly.

We treat the case G = Z/27Z x Z/2Z separately. We recall that E; has a Z/2Z x Z/2Z if and only if
J = (fax2(a,b), g2x2(a,b)). Hence if E; does not have full 2-torsion, then |Way2 s| should be zero. It is easily
deduced that if ; does not have full 2-torsion, then Wy ; should be empty. If E; has the full 2-torsions, then
b® + Ab+ B = 0 (mod p) has three zeros and A = faya(a,b) = —(a® + 3b?)/4 for some a. This a is not zero,
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since if so then foy2(0,0) = —3b%/4 and gax2(0,b) = b%/4 50 4f252(0,b)3 + 27gax2(0,b)?> = 0 (mod p). Hence,
there are exactly six (a,b) such that

b* + Ab+ B =0, 4A = —(a* +3b*) (mod p).

Since this equation is equivalent to a system of equation J = (fax2(a,b), gax2(a,b)), we can conclude that if
E(F,) > 7/27 x 7,27 then [Ways.,| = 6.

When G = Z/5Z by taking homogenization and computing the multiples of the points, we know that the
points

(3a® — 18ab + 3b?, £108ab?),  (3a® + 18ab + 3b?, £108a°b)

are points with order 5 of E; where J = ®¢(a,b). When (a,b) gives one of above four points, then other three
come from (—b,a), (b, —a) and (—a, —b).

We claim that the four pairs are all the pairs (¢, d) such that ®5(c,d) = J and

3a® — 18ab + 3b* = 3¢ — 18cd + 3d2, 3a® + 18ab + 3b* = 3¢% + 18¢d + 3d?,

or

3a? — 18ab + 3b% = 3¢? + 18¢d + 3d?, 3a? + 18ab + 3b = 3¢ — 18¢d + 3d>.

Both systems do not generate new pairs. Therefore, W5 is injective and |W¢ ;| is less than or equal to the
number of points of order 5 in Ej.

Let P be a point of order 5 in E;(F,) and E; : y?> = 2° + Az + B. Let a1 and x5 be the x-coordinates of P
and 2P. Then by the duplication formula, we have

r} — 2A2? — 8Bz + A? x5 — 2Ax35 — 8Bxy + A2
4(z3 + Azy + B) - 4(z3 + Azy + B) -

From the identity above, we can see that 21 + x9 and 1 + 2x9 are squares in Fy. Let /221 + 29 and v/z1 + 222
be one of the square roots of 2z1 + x5 and z1 + 225 respectively. Then, by putting

a_\/2$1+l‘2+\/l‘1+2l‘2 b_\/2$1—|—l‘2—\/l‘1+2l‘2
- 6 ) - 6 )

we have
x1 = 3a® + 18ab + 3b?, x5 = 3a® — 18ab + 3b2,

and one can check easily that A = fg(a,b) and B = gg(a,b). Hence for the point P of order 5, we found
(a,b) € W such that P = (3a® — 18ab + 3b?, 108ab?) which shows the surjectivity of Us.
As we did in the Z/5Z-case, we can show that

(—9a? — 18ab + 3b*, +(108a>b 4 108ab?))

are points of order 6 of elliptic curve E; where J = ®¢(a,b) for some a,b € F),. Since (—a, —b) also gives a same
points, we have a map W¢ from Ws ; to the points of order 6 of E;(F).
We claim that (¢,d) = £(a,b) are all the pair such that ®¢(a,b) = Ps(c,d) and Vg(a,b) = Vg(c,d). Consid-
ering the z-coordinates of multiplies of the point Wg(a,b) we have
—9a? — 18ab + 3b* = —9¢? — 18¢d + 3d?,
27a® 4 18ab + 3b* = 27c? + 18cd + 3d°,
—9a® + 18ab + 3b*> = —9¢ + 18¢d + 3d?,

since the z-coordinate of 2P and 3P is 27a® + 18ab + 3b%, —9a” + 18ab + 3b?, respectively. This system does not
generate a new pair. Therefore Wg is injective.
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Let P := (z1,y1) be a point of order 6 of E;(F,) and let (z2,y2) := 2P, and (z3,0) := 3P. By the duplication
formula, we know that 2z 4 2 is square. Since 2P is a point of order 3, then J = ®3(as, b3) for some a3, bz € F,
and (3a3, £(9a3 + b3)) are 3-torsion point of E;. Especially, we note that z2/3 is square in F,,. Now, we define

_3\/2172/3—1—\/22171—1—332 \/$U2/ — /221 + 29
= , 1 .

b:=
12

Both are in F,, and we have xo = 27a® +18ab + 3b%, 1 = —9a? — 18ab + 3b%. Using the result on 3-torsion case,
one can easily check that (fs(a,b),ge(a,b)) = (A, B).
Let G =7Z/27Z x Z/AZ and assume that J = ®ay4(a,b) for some a,b. The claim is

24 if By(F,)[4] = Z/AZ x Z/4Z,
(Waxa,s| = . N
8 if E5(F,)[4] = Z/2Z x Z/4Z.

Considering 6 systems deduced by ®ayx4(a,b) = Paxa(c,d), we can see that |[Wayy 5| is at least 8 and it should
be exactly 8 if either p = 3 (mod 4) or p =1 (mod 4) and ab is non-square in F,. If p=1 (mod 4) and ab is a
square in I, the 6 systems are all consistent and have 24 solutions and by direct computation, we can conclude

that they are the preimages of ®9,4(a,b). Therefore,

24 if Vab€F,and p=1 (mod 4),
|Waxa,g| = .
8 otherwise.

We recall that E has three non-trivial 2-torsion points whose z-coordinates are —(3a? — 18ab+ 3b%), —(3a +
18ab + 3b%), (6a® + 6b2) respectively. The points P with 2P = (6a% + 6b,0) are already included in the E;(F)),
and one can check that the two points

(3a2 + 18ab + 3b> + 18Vab(a + b), vV—1 - 2 - 33Vab(v/a £ Vb)?(a + b))

and their inverses defined in F,[v/ab,v/—1] are the 4 points Q with 2Q = (—(3a® + 18ab + 3b?),0). Therefore,
p =1 (mod 4) and ab is square if and only if E; includes Z/4Z x Z/47Z which is equivalent to |Waya j| = 24.

At last, we need to show that when E; has Z /27 x Z/4Z as a subgroup, then there exists a,b € [F,, such that
J = ®3y4(a,b). Since we already showed the analogue for G = Z/27Z x Z /27 and Z/4Z, there are u,v,s,t € F),
such that

(A, B) = (—(u® + 3v%) /4, (v® — u?v)/4) = (—3s% + 65t> — 2t (25 — t?)(s* + 2st> — t1)).
One can check that 5t — 12s should be square, say r2. Then, (A, B) = ®o,4(6717,6711). O

Hence for example,

24 if E;(F,)[6] = Z/67Z x 7./6Z,

8 if E;(F,)[6] = Z/6Z x Z/3Z,
Wesl=1 6 if E;(F,)[6]=2Z/6Z x Z/2Z,

2 if Ey(F,)[6] = Z/6Z,

0 if E;(F,)[6] # Z/6Z.

Comparing to Lemma 2.5, we should remark that the analogues result does not hold for all torsion groups.

Example 2. Let By : y?> = 23 +2x 4+ 1 and Es : y? = 23 4+ 22 + 4 be elliptic curves over F5. Then, F; and Es are
isomorphic, and E(F5) = Fy(F5) = Z/7Z. However, one can compute that [W7 o1)| = 0 and [Wy (9 4)| = 12.
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2.3. Moments of traces of the Frobenious. Now, we define a class number weighted by |W¢ s|.
Definition. We define

(6) Hg(a,p) = > (We, 1,
J=(A,B)€(L/pL)?
ap(Ej)=a
4A3427B%2£0 (mod p)

where a,(E) is a trace of the Frobenius of an elliptic curve E at p.

The goal of this section is to show

(7) > Hala,p) =p* + Oc(p),
la|<2\/P
(8) 3" aHg(a.p) = Oc(p?),
la|<2\/p
(9) S @?Hg(a.p) = p* + Oc(p?).
la|<2y/p

The main tool is the Eichler-Selberg trace formula [KP17]. We recall some notations first. The Chebyshev

polynomials of the second kind are defined as
Up(t) =1, Ui(t)=2t, Ujti(t) =2tU;(t) — Uj_1(1).

We define normalized Chebyshev polynomials to be

" o1 _ k-1
_a(t,q) == ¢"*7'U,- = Zlg,t
Uk—2(t,q) :==¢q U2 NG a_g ¢ g, ],
where o, @ are the two roots in C of X? —tX 4+ ¢ = 0. Let
R ; if R is even 2 9
Cr,j = 2+ for agr; = < R> — < i >
GRr-1 ; +QR-1 ;4 if R1is odd J Jg—1
5] 5]
be the Chebyshev coefficients. We have
LR/2] ‘
th= 3" Cr;¢Ur-9;(t,q)
=0
which is [KP17, (1.3)]. In particular we have
(10) to = Uo(t,Q), = Ul(t7q)7 t2 = U2(t7q) + QU(](t,Q)

Let E be an elliptic curve defined over a finite field F, with ¢ elements, € be the set of all the isomorphism

classes of elliptic curves over F, . Let A denote a finite abelian group and let ® 4 to be

1 if there exists an injective homomorphism A — E(F,)
Dy(F) =

0 otherwise.

We define

1 aq(E)E
E,(a®®4) = - S
()= 0 D e (B

A—E([Fq)
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From now on, we assume that ¢ = p. For a finite abelian group A, let ny = n1(A) and ny = ny(A) be its first
and second invariant factors, respectively. Also, we denote ¢ (n) =n][,,(1+1/p), p(n) =n]],,(1—1/p) and

p(n) = n]],(—e(p))
For A | (p—1,nq), let

P(n?/X?)p(ng /A
Tnl,)\(pa 1) = ( 1/1/}(21%5 1/ )(_ﬂraco - Thyp + Tdual)7
with
1
ﬂrace = @(nl) Tr(TP’Sk(F(nla)‘)))a
w(g g
Th}’p = Z Z ) )/ ) <6n1()\,g)/g(yi7 1) + (_1)k5n1()\,g)/g(yia _1)) 5
1=0 7|ni A
g\pll
p+1
Tqual := —0(k, 2
aual 1= C0 (k,2),

where g = (7,m1\/7), ¥; is the unique element of (Z/(n1\/g)Z)* such that y; = p* (mod 7) and y; = p'~* (mod
n1A/7), 6(a,b) is the indicator function of a = b, and d.(a,b) is the indicator function of the congruence a = b

(mod c).

Theorem 2.7. [KP17, Theorem 3, when ¢ = p| Let A be a finite abelian group of rank at most 2. Suppose
(p,|A]) =1 and k> 2. If p=1 (mod na(A)) we have

(11) EP(Uk—2(t7p)q>A) nl/n2 Z qb n1,n21/(p7 )

I(P 1,n7q)
n2
and if p# 1 (mod na(A)), then Ep(Ug—a(t,p)®4) = 0.

Proposition 2.8. Let G be one of the groups Z/nZ for 2 < n < 6 or Z/2Z x Z/27Z. Then, (7), (8) and (9)
hold.

Proof. For each group G, we denote n; be its first invariant factor. We define Ag; be abelian groups satisfying
G <Ag; <Z/mZ X Z/mZ, and j < i if and only if Ag; < Ag,i. We define wg ; to be |Wq 1| if Er[ng](F,) =
Ag,;. This is well defined by Lemma 2.6. Let

WaG,i = WG, — E eNE
j<i

Then, one can obtain that

Z aRHGap )=pp-—1 Zw(;, a (IDAGJ.)
la|<2\/P

For arbitrary G, we can show that
> Hg(a,p) =p* +O(p),
la|<2\/p
by Proposition 2.2. Hence,

(12) chz (®ag,) —1+O<1>

p
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Since 2 = Us(t,p) + pUo(t, p), we have the identity

Ep(t*®4) = Ep(Ua(t, p)®a) + pE,(Uo(t, p)®4)
and this together with (12) implies
> a’Hg(a,p) = plp — 1)(p+ O(1)) + O(p*®) = p* + O(p*?)
la|<2,/p

because E,(Ua(t,p)Pa) <a % < p*® by Theorem 2.7 and Deligne bound.
Using the identity ¢ = Uy (t,p) and E,(Uy(t,p)®a) < p~ %, it is easy to see that

Z CLHG(CL,p) = OG(pl'5)7
la[<2/p
by Theorem 2.7 and Deligne bound. O

When G = Z /27 or Z/27 x 727, we can obtain the 2R + 1-th moments.

Proposition 2.9. When G = Z /27 or Z/2Z x 7)2Z, we have
Z " Heg(a,p) =0
la|<2\/p
for R> 0.

Proof. Let Ny(a) (resp. Npxn(a)) be the number of isomorphism classes of elliptic curves over F,, such that
E(Fp)[n] > Z/nZ (resp. E(Fp)n] = Z/nZ x Z/nZ) with weights 2/| Autg,(E)|. Then, [Sch87, Theorem 4.6,
4.9] shows that for a prime p > 5, an a in the Weil bound, and a positive integer n > 2,

2 _ e
N, (a) = H(a* —4p) ifa=p+1 '(mod n),
0 otherwise,
and ,
H(“n_;lp) ifp=1 (modn)anda=p+1 (mod n?),
Nnxn(a) = .
0 otherwise.
By Lemma 2.6,
p—1 p—1
Ha(a,p) = =—5—(N2(a) + 2N2x2(a)),  Haxa(a,p) = 6- —5—Naxa(a).
Since Na(a) = Na(—a) and Nayxa(a) = Naxa(—a), the result follows. O

This will be used for the Frobenius trace formula for elliptic curves.

3. COUNTING ELLIPTIC CURVES WITH TORSION POINTS AND LOCAL CONDITIONS
We introduce some notations first. Let
Ro(X) = {(a,b) € B? : [fa(a,b)| < X7, |ga(a,b) < XP .
For G in G<4 we define
Da(X) = {(A,B) € Z* : (A, B) = ®¢(a,b) for some (a,b) € Re(X) NZ*},
Ma(X) = {(A,B) € Dg(X) : if p* | A, then p°{ B},
and

Ec(X) ={(A,B) € Mg(X) :44° +27B* £ 0},  Sg(X) = {(A,B) € Mq(X) :4A* + 271B* = 0},
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where E¢(X) represents elliptic curves with G torsion and Sg(X) takes up singular curves. We note that Eq(X)
coincide with the previous definition.
For G € G>5, we recall that Mg (X) is the set of relatively prime pairs (a,b) with h(®g(a,b)) < X. We define

MEX) = {(a,0) € 221 (a,0) = 1,0 = e(a,b), fo(a,b)| < X5, lgg(a,b)] < X3},
and Mq(X) as the union of ME(X) for all e > 1. We define £¢(X) as (4) and
Sa(X) ={(A,B) € S(X) : ®¢(a,b) for relatively prime (a,b)}

where

S(X)—{(AB)€Z2' |A| < X3,|B| < X3,44% 4 27B2 = 0, }

if p* divides A, then p® does not divide B.

For the reader’s convenience we remark that (a,b) denotes an element in the domain of ®¢ and Rg (resp.
Mg for G in G>5) and (A, B) does in the range of ®g. Also, Dg, M¢,Eq, and S are sets on the range side.
For pairs I,J € (Z/pZ)?, the subscripts —¢ 1(X) or —¢,7(X) means that this is the subset of the original set
consisting of elements (a,b) =1 (mod p) or (4,B) =J (mod p) respectively. We often drop the subscript G

to ease the notation.
Lemma 3.1. For a torsion subgroup G, the number of integer points in Rg(X) is
1 1
Area(Rg(1)) X 49 4+ O(X «@).

Proof. We note that [HS14, Lemma 5.2| proves this lemma for G = Z/27,7./3Z. Since f4(a,b) = X%,g4(a, b) =
X7 are equivalent to f4(a/X%,b/X%) = 1,g4(a/X%, b/Xl_lz) = 1, by change of variables we have

Area(R4(X)) = X%Area(Rzl(l)).

Then, the claim follows from the Principle of Lipschitz, [HS14, (5.3)]. We can do the same thing for G =
ZL]2ZxX7/2Z. Also, we obtain the result for the groups G in G>5 since 3deg fg(a,b) = 2deg gg(a,b) = 2d(G). O

By the Principle of Lipschitz, we have

Corollary 3.2. For a prime p > 5, I an element in (Z/pZ)?, and a torsion subgroup G, we have

|Re.1(X)| = Area(Rg(1))p2X @ + O(1 + p~1X 7)),

For G = Z /27 x Z/2Z, we consider only the pairs (a,b) with a = b (mod 2). By Lemma 3.1 and Mdbious
inversion argument gives the following corollary, which is a complement of [HS14, Theorem 5.6]. For details, we
refer to the proof of Proposition 3.6.

Corollary 3.3. For G in G4, let

Area(R¢(1)) ‘
o-2ar (G (%)

c(GQ) :=

Then,
E6(X)| = (Q)X T + O(X 7).

Lemma 3.4. For a prime p > 5, a non-zero J in (Z/pZ)? and a group G in G<u,

We,J|
26G:2x2r(G)

D, (X)| = |Ra./(X)| + O(1 + p ' X @)
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where I € Wq 7. For G € G>5, we have

W,
1€c.7(X) ‘ G‘]‘ Z Z]MI )|+ O( 1+p‘1Xe<G))

IEWGJ e

Proof. We fix a group G and omit it from subscription. For G' € G<4, ® induces a surjective map
| | Ri(X)=Ds(X),  (a,b) = (4,B) = ®(a,b).
IewWy
Let hj(X) be the number of the 2-tuples (A, B) for which its pre-image is not equal to r(G). Then, h;(X)
1
is bounded by O(p~'X«@ ) by the proof of Lemma 2.4. We note that the number of solutions of a system of

equations
f(a,0) = A and g(a,b) = B

is less than or equal to deg f - deg g by Bezout’s theorem and |R;(X)| does not depend on I by Corollary 3.2.

Therefore, we have

Wyl
D;(X)| = ———""——
| J( )| 25G:2X27‘(G)

For G € G>5, ® induces a surjective map

U UMs(x) = &0 Ss(x

IeW; e

[R1(X)| + O (hs(X)) .

Hence, the above argument and an estimate of S;(X) give a similar result. u

For a pair (A, B) of integers or elements of Z/pZ and an integer d, we define an operation * by d x (A, B) =

(d*A,d°B).

Proposition 3.5. For a prime p > 5, non-zero J € (Z/pZ)?, and a group G in G<u,

M (X) = D p(d)|Dga-1.5(d X)),
d<X 12
ptd
1
and |S¢,;(X)| = O(Xs /p).

Proof. Let (A, B) € Dg,;(X) and let d be the maximum of d’ satisfying d"* | A and d’° | B. Since J is non-zero,
p1d. By (1), the definition of fg and g, one can easily check that there are positive integers m and n depending

G such that
1 b 1 a b
ﬁfG(a, b) = fa <dm d”> ) EQG(G, b) = gc <d_m7 d_”> )

for given G. Also, we can check that a/d™ and b/d™ are integers. Hence if (A, B) = (fc(a,b), gc(a,b)) for some

a,b € Z, then
b a b
_1 v

is an element of Mg 4-1,7(d"'2X) and there is a bijection

(AB) = d'«(AB), DgsX)> || Mgar.(d2X).

d<X T2
pld

By Mobius inversion argument, the first equality follows. The error term is easy to establish. O
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Proposition 3.6. For a non-zero 2-tuple J € (Z/pZ)?* where p > 5, G in G<4 we have

12

W @ e 1
€60 (X)) = C(G)| C;’J| L XT@ £ O(p X 4 X 1),
p pA@ — 1
For J = (0,0), we have
1 1 pd% _1 1 9oL
1€c.1(X)|=¢c(G) | 5 — —= 5 XT@ 4+ O(pX =@ + p?X12).
p pe G) pd(G -1

Proof. For d not divisible by p, we note that [W¢ 4-1,5| = |Wg, ;| for all p{d. Then,

1
X X5
€6.1(X) = [Ma,s(X)| + O(Se.s(X) = 3 u(d)\padl*ﬂm)\w(?)
d<X 12
pid
’WGdfl*J’ X —lXﬁ X%
- A) | Ssocprarron 1 —)|+O0 |1+ +0 2=
dg%z . )<25G‘2“7‘(G)‘ 01! = p
<x
’WG,J\ X N Xﬁ
= S 2 MRG0 XE 4 ),
d<X T2
ptd

by Lemma 3.4. Here we also used that |R¢g 1(X)| does not depend on I € W;. Using Corollary 3.2, the sum is

1 1 1
_ |Wa,s| Area(Rg(1)) X @) pX7@ L xa
— 20e=22p(G)p? Zl w(d) B +0 TP +0 | X1z 4+ p

d @) de(@
d<X12
ptd
W atey X e
1 e
— (@) f;"" D X@® 40 +XT .
pT pae —1 p

By [HS14, Theorem 5.6] and Corollary 3.3, the main term of

€6, 0.0) () = 1E(X)] = > |€6.5(X))]

J#(0,0)
is
12 12 12
1 W, aa) 1 1 (pae —1 > (Wa. il FICe)
¢(G)X 4G — c(G)‘ C;’J‘ b X T = ¢(G)X @& <p S J#Ovoé b
J#(0,0) PrpT@ 1 pTD P pTeT — 1
11 ey
1
7D p
= C(G)Xd &) <_2 - 12) 2
p pd@ | pi@ —1
This gives the main term, and the error term is easily checked. O
For torsion GG, we define
War
caee() = ) We.rl

2
FE; satisfies LC p
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Theorem 3.7. For a prime p > 5, a local condition LC, and a group G in G4,

E65(X)| = c(G) - caeelp) - ]1)_;) © 1Xd+"> + O(hg,cc(p, X))
p
where cg cc(p) is
2 3 4 2x2

good | (p=1%/p* | p=1)*/p* | (p—=D(p—2)/p* | (p —D(p —2)/p*

mult | (2p —2)/p* | (2p—2)/p* | (3p—3)/p° (3p —3)/p*

addi | 1/p* —1/p° | 1/p* =1/p* |  1/p* = 1/p® 1/p* —1/p*

a | Hy(a,p)/p® | Hs(a,p)/p* |  Hila,p)/p” Hyxo(a, p)/p?
and
2(p —1)/p*  forp=1 mod 12,
casplit(P) = (p—1)/p®>  forp=5 or 11 mod 12,

0 forp =7 mod 12.
Finally for e > 0, the function hg cc(p, X) i