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AVERAGE ANALYTIC RANK OF ELLIPTIC CURVES WITH PRESCRIBED TORSION

PETER J. CHO AND KEUNYOUNG JEONG

Abstract. We show that average analytic rank of elliptic curves with prescribed torsion G is bounded for every

torsion group G under GRH for elliptic curve L-functions.

1. Introduction

The distribution of (algebraic or analytic) ranks of elliptic curves defined over Q is one of the most interesting

problems in number theory. One of important features of the distribution is the average rank of elliptic curves.

Let us start with our model for elliptic curves. Our elliptic curves defined over Q are represented by for a pair

(A,B) of integers with 4A3 + 27B2 6= 0

EA,B : y2 = x2 +Ax+B

such that there is no prime p with p4 | A and p6 | B. Let E be the set of all such pairs and E has a bijection

with the set of Q-isomorphism classes of elliptic curves over Q. Then, we can order elliptic curves by the naive

height:

E(X) =
{
EA,B ∈ E : |A| ≤ X

1
3 , |B| ≤ X

1
2

}
.

We can define the average rank of elliptic curves as the limit of the average rank over E(X) as X goes to infinity

if it exists. It is widely believed that the following conjecture initially proposed by Goldfeld [Gol79] would be

true.

Conjecture 1 (Minimalist conjecture). The proportion of elliptic curves with rank 0 and the proportion of

elliptic curves with rank 1 are both 1
2 .

Recently, Park, Poonen, Voight, and Wood [PPVW19] has brought out a more refined conjecture1 which not

only claims Conjecture 1 but also proposes the number of elliptic curves with algebraic rank ≥ r for 1 ≤ r ≤ 20.

Conjecture 2. [PPVW19, Corollary 7.2.6, Theorem 7.3.3]

(1) The proportion of elliptic curves with algebraic rank 0 and the proportion of elliptic curves with algebraic

rank 1 are both 1
2 .

(2) There are only finitely many elliptic curves with algebraic rank > 21.

(3) For 1 ≤ r ≤ 20, the proportion of elliptic curves over Q with algebraic rank ≥ r and height ≤ X is

X
21−r
24

+o(1).

A major breakthrough for Conjecture 1 was made by Bhargava and Shankar [BS15, BS]. They showed that

the proportion of elliptic curves with algebraic rank ≤ 1 is at least 0.8375 and with algebraic rank 0 is at least
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1We note that Conjecture 2 is also suggested by [Wat+14, Wat] with a different heuristic method.
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Table 1.

G d(G) G d(G) G d(G)

0 6/5 Z/6Z 6 Z/12Z 24

Z/2Z 2 Z/7Z 12 Z/2Z× Z/2Z 3

Z/3Z 3 Z/8Z 12 Z/2Z× Z/4Z 6

Z/4Z 4 Z/9Z 18 Z/2Z× Z/6Z 12

Z/5Z 6 Z/10Z 18 Z/2Z× Z/8Z 24

0.2062. For the average analytic rank, Brumer [Bru92] showed that it is bounded by 2.3 under GRH for elliptic

curve L-functions. This bound was lowered to 2 and 25
14 by Heath-Brown [Hea04] and Young [You06] respectively.

On the other hand, Harron and Snowden [HS14] counted elliptic curves with prescribed torsion G. From now

on, we say that an elliptic curve E over Q has torsion G if E(Q) contains a subgroup isomorphic to G.

By a work of Mazur, G is one of the groups

Z/nZ, Z/2Z× Z/2mZ

for n ∈ {1, 2, · · · 10, 12} and m ∈ {1, 2, 3, 4}. Let

G≤4 := {Z/2Z,Z/3Z,Z/4Z,Z/2Z × Z/2Z}

and G≥5 be the set of torsion groups of order ≥ 5. We remark that elliptic curves with torsion G ∈ G≥5 can

be parametrized by the Tate’s normal form (See §2). We often use n and 2 × 2m in place of G = Z/nZ and

Z/2Z × Z/2mZ to ease the notation.

Let

EG(X) = {EA,B ∈ E(X) : E(Q) ≥ G} .

Harron and Snowden showed that

lim
X→∞

log |EG(X)|
logX

=
1

d(G)
,

where d(G) is given in Table 1. Furthermore, for G = Z/2Z and Z/3Z, they obtained the cardinality of EG(X)

with a power-saving error term.

Not much is known about the distribution of (algebraic or analytic) ranks of elliptic curves with prescribed

torsion group G. In [PPVW19, §8.3], they give an upper bound of algebraic ranks of elliptic curves in EG but

do not give a statement on the distribution of ranks in EG other than this. In their preprint, Bhargava and Ho

[BH, Theorem 1.1] obtained bounds for the average algebraic rank of the families of elliptic curves with marked

torsion point (0, 0) of order 2 and 3 respectively, which are 7/6 and 3/2. We show that for any torsion group G

average analytic rank over the family EG is bounded.

Theorem 1. Let G be a torsion group. For G = Z/nZ, n = 7, 9, 8, 9, 10, and 12 and G = Z/2Z × Z/2mZ,

m = 3, 4, we assume the moment conditions (8), (9). Under GRH for elliptic curve L-functions, the average

analytic rank over EG is bounded. In particular when |G| ≥ 5, we have a bound 1
2 + 5d(G).

For G = Z/2Z and Z/2Z×Z/2Z, we have additional information on the distribution of analytic ranks. First,

we can show that there are not many elliptic curves with torsion G with a high rank. Let PG(rE ≥ a) denote

the probability of elliptic curves with torsion G such that analytic rank rE ≥ a.
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Theorem 2 (Theorem 4.7). Assume GRH for elliptic curve L-functions. Let C be a positive constant, let n a

positive integer. We have, for G = Z/2Z and G = Z/2Z× Z/2Z,

PG

(
rE ≥ (1 + C)

σ2n

)
≤
∑n

k=0

(2n
2k

) (
1
2

)2n−2k
(2k)!

(
1
6

)k
(

C
σ2n

)2n .

where σ2n = 1
18n and 1

20n for G = Z/2Z and G = Z/2Z × Z/2Z respectively. In particular, the probabilities

PZ/2Z(rE ≥ 23) and PZ/2Z×Z/2Z(rE ≥ 25) are both at most 0.0234.

We note that there is an analogue [Hea04, Theorem 2] of Theorem 2 without torsion restriction, which says

P (rE ≥ a) ≪
(
5a

2

)− a
20

.

We can also give an explicit bound on the n-th moment of analytic ranks of elliptic curves with torsion G.

Theorem 3 (Theorem 4.6). Assume GRH for elliptic curve L-functions. Let σn = 1
9n and 1

10n for G = Z/2Z

and G = Z/2Z× Z/2Z respectively. For every positive integer n, we have

lim sup
X→∞

1

|EG(X)|
∑

E∈EG(X)

rnE ≤
∑

S

(9n)|S
c| ∑

S2⊂S
|S2|even

(
1

2

)|Sc
2|
|S2|!

(
1

6

)|S2|/2
,

where S runs over subsets of {1, 2, 3, . . . , n}, and S2 runs over subsets of even cardinality of the set S. In

particular, the average analytic rank of EZ/2Z and that of EZ/2Z×Z/2Z are at most 9.5 and 10.5 respectively.

Our rank results are obtained from computation of one-level (or n-level) density for the family of elliptic

L-functions arising from EG. Katz and Sarnak’s philosophy claims that the one-level density holds for a test

function with any compact support and this philosophy combined with our results implies that average analytic

rank over EG for any G is bounded by 1
2 . Since it is widely believed that the root numbers are evenly distributed

in EG, our one-level density results give small evidence toward the following folklore conjecture.

Conjecture 3. Let G be a torsion group. The proportion of elliptic curves with rank 0 in EG and the proportion

of elliptic curves with rank 1 in EG are both 1
2 .

For some numerical data for G = Z/2Z×Z/8Z, we refer a result of Chan, Hanselman and Li [CHL19]. Young

[You06, §8] also computed bounds for average analytic rank for families of elliptic curves with some prescribed

torsion G under not only GRH for elliptic curve L-functions but also GRH for Dirichlet L-functions and some

other assumptions.

Our approach gives a systematic frame to compute the one-level density for any G using a version of Eichler–

Selberg trace formula by Kaplan and Petrow [KP17]. This version of Eichler–Selberg trace formula is indis-

pensable to deal with every torsion group G. However, to bound up the average rank, we need to count elliptic

curves satisfying a local condition. A local condition at prime p is a property of an elliptic curve E when

reduced modulo p. For example, we say that an elliptic curve E satisfies a local condition good, mult, addi

or a at a prime p if its reduction modulo p has good reduction, multiplicative reduction, additive reduction or

aE(p) = p+ 1− |E(Fp)| = a respectively. For torsion groups G ∈ G≤4, we have

Theorem 4 (Theorem 3.7). For a prime p ≥ 5, a local condition LC, and a group G in G≤4,

|ELC
G,p(X)| = c(G) · cG,LC(p) ·

p
12

d(G)

p
12

d(G) − 1
X

1
d(G) +O(hG,LC(p,X))
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where cG,LC(p) is a constant depending on G, p,LC and hG,LC(p,X) is a function whose order of magnitude is

less than pX
1

e(G) + p2X
1
12 .

For torsion groups G ∈ G≥5, we obtain Theorem 3.9, an analogue of Theorem 4, based on the work of

[CKV] which computes the cardinality of EG(X). As a result of Theorems 4 and 3.9, there are many interesting

phenomena. One of our motivations in this article was comparing the probability for a local condition under no

prescribed torsion with that for the local condition under prescribed torsion.

Corollary 5. For p ≥ 5, LC ∈ {good, mult, a} and a torsion group G, we have

lim
X→∞

|ELC
p (X)|
|E(X)| 6= lim

X→∞

|ELC
G,p(X)|
|EG(X)| .

In other words, the three local conditions above and torsion G are not independent.

The constant cG,LC(p) is essentially the probability for an elliptic curve with torsion G to satisfy LC at p.

When LC = mult, we can give an interesting interpretation of cG,LC(p).

Corollary 6 (Corollary 3.11). Let p be a prime ≥ 5 and G ∈ G≤4. Then, cG,mult(p) is proportional to the

ratio of the number of the cusps of corresponding modular curve X1(N) and X(2). For G ∈ G≥5, there is a

set of primes p of positive density such that cG,mult(p) is proportional to the number of cusps of corresponding

modular curves.

We note that cG,mult(p) can be interpreted as the probability that an elliptic curve with prescribed torsion G

has multiplicative reduction at p. For details and other examples, we recommend to see Corollaries 3.11 to 3.13.

2. Local density and the moments of class numbers

2.1. Model. When we count the elliptic curves containing a torsion group G, we divide G into the two cases.

Let

G≤4 := {Z/2Z,Z/3Z,Z/4Z,Z/2Z × Z/2Z}
and G≥5 be the set of torsion groups of order ≥ 5. We often use n and 2 × 2m in place of G = Z/nZ and

Z/2Z × Z/2mZ to ease the notation.

For each torsion subgroup, we should clarify the model we use. When G in G≤4, we recall the result of [GT12,

Theorem 1.1] shows that EA,B : y2 = x3 +Ax+B for A,B ∈ Z has a G as a torsion subgroup if and only if

(A,B) = ΦG(a, b)

for some a, b ∈ Z, where ΦG = (fG, gG) for

(1)

f2(a, b) = a, g2(a, b) = b3 + ab,

f3(a, b) = 6ab+ 27a4, g3(a, b) = b2 − 27a6,

f4(a, b) = −3a2 + 6ab2 − 2b4, g4(a, b) = (2a− b2)(a2 + 2ab2 − b4),

f2×2(a, b) = −(a2 + 3b2)/4, g2×2(a, b) = (b3 − a2b)/4.

We recall that the set

E(X) =

{
(A,B) ∈ Z2 :

|A| ≤ X
1
3 , |B| ≤ X

1
2 , 4A3 + 27B2 6= 0,

if p4 divides A, then p6 does not divide B.

}

which parametrizes all elliptic curves EA,B whose height is less than X and each isomorphism class appears only

at once, by the minimality condition. When G is in G≤4, the set

EG(X) = {(A,B) ∈ E(X) : (A,B) = ΦG(a, b) for some a, b ∈ Z}
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parametrizes all elliptic curves with prescribed torsion subgroup G.

For G in G≥5, we use Tate’s normal form

(2) E(u, v) : y2 + (1− v)xy − uy = x3 − ux2,

which parametrizes all elliptic curves with prescribed torsion subgroup G of order ≥ 4. For each G, parameters

u and v can be expressed as a rational function of one variable t. It can be summarized as follow: (for example,

[Kub76, Table 3])

G u(t) v(t)

4 t 0

5 t t

6 t+ t2 t

7 t3 − t2 t2 − t

8 (2t− 1)(t− 1) (2t− 1)(t− 1)/t

9 t2(t− 1)(t2 − t+ 1) t2(t− 1)

10 t3(2t− 1)(t− 1)/(−t2 + 3t− 1)2 t(2t− 1)(t− 1)/(−t2 + 3t− 1)

12 (3t2 − 3t+ 1)(t − 2t2)(2t− 2t2 − 1)/(t − 1)4 (3t2 − 3t+ 1)(t− 2t2)/(t − 1)3

2× 4 t2 − 1/16 0

2× 6 v(t) + v(t)2 (10− 2t)/(t2 − 9)

2× 8 (2t+ 1)(8t2 + 4t+ 1)/(8t2 − 1)2 (2t+ 1)(8t2 + 4t+ 1)/2t(4t + 1)(8t2 − 1)

For each torsion subgroup G, we first obtain an equation over Z[t] by clearing the denominator of each

coefficient. After that we take the usual coordinate change and obtain an equation of the form y2 = x3 +

fG(t)x + gG(t). For t = a
b , the homogenization fG(a, b) = bdeg ffG(a/b) and gG(a, b) = bdeg ggG(a/b) of fG and

gG and change of coordinate give

(3) y2 = x3 + fG(a, b)x+ gG(a, b).

For simplicity, we use f2×4(a, 4b)/8
4, g2×4(a, 4b)/8

6 and f2×6(a + 3b, b), g2×6(a + 3b, b) for f2×4, g2×4, f2×6 and

g2×6. One can check that f2×4, g2×4 and f2×6, g2×6 represent all isomorphism classes of elliptic curves with the

corresponding torsion. In Appendix 5, the table for fG and gG is provided. For any torsion subgroup G in G≥5

we have 3 deg fG = 2deg gG, and we define d(G) as

3 deg fG = 2deg gG = 2d(G).

On the other hand, it is very crucial to recognize that the set

{(A,B) ∈ E(X) : (A,B) = (fG, gG)(a, b) for some a, b ∈ Z}

might not parametrize all isomorphism classes of elliptic curves with torsion subgroup G in G≥5. The reason is

as follows: The Tate normal form parametrizes all isomorphism classes of elliptic curves with prescribed torsion,

but to parametrize all the curves we need to consider all t ∈ Q, in other words all relatively prime integer pairs

(a, b). But if there is an integer e > 1 such that e4 | fG(a, b) and e6 | gG(a, b), then the minimal elliptic curve

isomorphic to EfG(a,b),gG(a,b) may not appear in the above set since it is removed by the minimality condition.

Here the problem is that the map (fG, gG) does not care the minimality condition. Following [CKV, Theorem

3.3.1], we define a defect of (a, b) to be

e(a, b) = e = max
e′4|fG(a,b)
e′6|gG(a,b)

e′.
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We slightly modify the definition of ΦG as follows:

ΦG(a, b) =

(
fG(a, b)

e4
,
gG(a, b)

e6

)

where e is a defect of (a, b). We remark that the image of ΦG satisfies the minimality condition, so

EG(X) = {(A,B) ∈ E(X) : (A,B) = ΦG(a, b) for relatively prime integers a, b}(4)

parametrizes all isomorphism classes of elliptic curves with torsion subgroup G. We define a height of an integer

pair (A,B) by max(|A|3, |B|2) and

MG(X) =
{
(a, b) ∈ Z2 : (a, b) = 1, h(ΦG(a, b)) ≤ X

}
.

Hence ΦG is a map from Z2 to Z2 when G is in G≤4 and from MG(X) to Z2 when G is in G≥5. Also, we define

M e
G(X) as a set of elements of MG(X) with defect e. Now we compute all defects for the torsion groups G,

except G = Z/2Z× Z/6Z and Z/2Z× Z/8Z.

Lemma 2.1. Let G be a group in G≥5 \ {Z/2Z × Z/6Z,Z/2Z × Z/8Z}, and let e be the defect of a relatively

prime integer pair (a, b). Then, the defect e(a, b) is 1,2,3, or 6. Explicitly, we have

(i) e has a prime divisor 2 if and only if

• G = Z/6Z and (a, b) ≡ (1, 1) (mod 2) or,

• G = Z/8Z and (a, b) ≡ (1, 0) (mod 2) or,

• G = Z/10Z and (a, b) ≡ (1, 0) (mod 2) or,

• G = Z/12Z and (a, b) ≡ (1, 0) (mod 2) or,

• G = Z/2Z× Z/4Z and (a, b) ≡ (1, 1) (mod 2).

(ii) e has a prime divisor 3 if and only if

• G = Z/7Z and (a, b) ≡ (1, 2) or (2, 1) (mod 3) or,

• G = Z/9Z and (a, b) ≡ (1, 2) or (2, 1) (mod 3) or,

• G = Z/12Z, a 6≡ 0, and b ≡ 0 (mod 3).

Proof. By the argument [CKV, p.17], the defect e is a divisor of the least common multiplier of the two resultants

Res(fG(a, 1), gG(a, 1)) and Res(fG(1, b), gG(1, b)). Sagemath [Sag] gives

G l.c.m of resultants G l.c.m of resultants

Z/5Z 2163365 Z/10Z 272310853

Z/6Z −224339 Z/12Z 2963156

Z/7Z −2323727 Z/2Z× Z/4Z 224336

Z/8Z 248372 Z/2Z× Z/6Z 2192378

Z/9Z −2483117 Z/2Z× Z/8Z 25763144

Hence any prime divisor of e should divide 6|G|.
First, we find all the pairs pairs (a, b) ∈ (Z/p6Z)2 such that a, b are relatively prime to p and p4 | fG(a, b) and

p6 | gG(a, b) for each prime divisor p of 6|G|. Then, there is no such pair (a, b) except for the following 4 cases:

• when G = Z/6Z and (a, b) ≡ (1, 1) (mod 2), 2 exactly divides e

• when G = Z/7Z and (a, b) ≡ (1, 2) or (2, 1) (mod 3), 3 exactly divides e.

• when G = Z/9Z and (a, b) ≡ (1, 2) or (2, 1) (mod 3), 3 exactly divides e.

• when G = Z/2Z× Z/4Z and (a, b) ≡ (1, 1) (mod 2), 2 exactly divides e.
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Now, we consider the pairs (a, b) for which only one of a and b is a multiple of p. When G = Z/5Z and p = 2,

if only one of the a or b is divided by 2 then 24 does not divide f5(a, b) because the coefficients of a4 and b4 are

not divided by 24. Hence we can conclude that 2 does not divide the defect e for arbitrary (a, b). Considering

the coefficients of fG and gG (see Appendix 5), the same argument shows that the possible prime divisors of

defect are (with the previous four cases)

• when G = Z/8Z and (a, b) ≡ (1, 0) (mod 2), 2 divides e.

• when G = Z/10Z and (a, b) ≡ (1, 0) (mod 2), 2 divides e.

• when G = Z/12Z and (a, b) ≡ (1, 0) (mod 2), 2 divides e.

• when G = Z/12Z, a 6≡ 0, and b ≡ 0 (mod 3), 3 divides e.

For the first three cases we can check that there is no (a, b) ∈ (Z/26Z)2 such that 25 | fG(a, b) and 26 | gG(a, b),
which implies that 22 ∤ e. Similarly for the fourth case, we can check that there is no (a, b) ∈ (Z/36Z)2 such

that 36 | fG(a, b) and 36 | gG(a, b). For cross-check, we refer Appendix 5 for our fG and gG. �

Remark 1. We note that one may calculate the defects for the remaining two groups by following the proof of

Lemma 2.1. For example for G = Z/2Z × Z/6Z when a ≡ 0 (mod 4) and b 6≡ 0 (mod 2), 22 exactly divides

e(a, b) and when a ≡ 2 (mod 4) and b ≡ 1 (mod 2), 23 divides e(a, b). It seems that the defect is 24 but to

check it we need more computing power. Instead, we omit G = Z/2Z × Z/6Z and Z/2Z× Z/8Z cases.

2.2. Weights for local conditions. We define a weight for a local condition as the number of preimages of

(fG, gG) modulo p.

Definition. For a prime p ≥ 5, and a pair J ∈ (Z/pZ)2, let WG,J be the set of pairs I ∈ (Z/pZ)2 with

(fG, gG)(I) ≡ J modulo p.

For a given J , |WG,J | is morally a weight to determine the number of elliptic curves E with mod p reduction

EJ and E(Q)tor ≥ G. By the definition of WG,J , the identity

∑

J∈(Z/pZ)2
|WG,J | = p2

follows directly.
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Proposition 2.2. For a prime p ≥ 5, the sums of |WG,J | over J = (A,B) ∈ F2
p satisfying 4A3 + 27B2 ≡ 0

(mod p) are summarized as follows:

G p
∑

|WG,J |
Z/2Z · 2p− 1

Z/3Z · 2p− 1

Z/4Z · 3p− 2

Z/2Z× Z/2Z · 3p− 2

Z/5Z ±1 (mod 5) 4p− 3

Z/5Z ±2 (mod 5) 2p− 1

Z/6Z · 4p− 3

Z/7Z γ7 ∈ (Fp[
√
−3]×)3 6p− 5

Z/7Z γ7 6∈ (Fp[
√
−3]×)3 3p− 2

Z/8Z ±1 (mod 8) 6p− 5

Z/8Z ±3 (mod 8) 4p− 3

G p
∑

|WG,J |
Z/9Z 1 (mod 3), γ9 ∈ (F×

p )
3 8p− 7

Z/9Z 1 (mod 3), γ9 6∈ (F×
p )

3 5p− 4

Z/9Z 2 (mod 3), γ9 ∈ (Fp[
√
−3]×)3 6p− 5

Z/9Z 2 (mod 3), γ9 6∈ (Fp[
√
−3]×)3 3p− 2

Z/10Z ±1 (mod 5) 8p− 7

Z/10Z ±2 (mod 5) 4p− 3

Z/12Z 1 (mod 12) 10p − 9

Z/12Z 5, 7, 11 (mod 12) 6p− 5

Z/2Z× Z/4Z · 4p− 3

Z/2Z× Z/6Z · 6p− 5

Z/2Z× Z/8Z 1 (mod 8),≥ 11 10p − 9

Z/2Z× Z/8Z 7 (mod 8),≥ 11 8p− 7

Z/2Z× Z/8Z 5 (mod 8),≥ 11 6p− 5

Z/2Z× Z/8Z 3 (mod 8),≥ 11 4p− 3

where γ7 = 4(637+147
√
−3) and γ9 = 4(−9±3

√
−3). Here · means that there is no condition on p. Furthermore,

we have

∑

α=a2∈(Z/pZ)×
|W3,(−3α2,2α3)| =





2(p − 1) for p ≡ 1 mod 12,

(p− 1) for p ≡ 5 or 11 mod 12,

0 for p ≡ 7 mod 12.

(5)

Proof. We note that for p ≥ 5, the pair I = (0, 0) in (Z/pZ)2 is the only pair such that (fG, gG)(I) ≡ (0, 0)

(mod p). For the groups G with order ≤ 4, one can directly check it. We show the case of G = Z/3Z. We

parametrize (A,B) satisfying 4A3 + 27B2 ≡ 0 by (−3α2, 2α3) for α ∈ Z/pZ. Directly solving the equations

ΦG(a, b) = (A,B), we know that |W3,(A,B)| is equal to the number of distinct zeros of the polynomial

h(x) = hA,B(x) = 35 · x8 + 2 · 33 ·A · x4 + 22 · 32 · B · x2 −A2,

when A 6≡ 0. Since h−3α2,2α3(x) is factored into

35
(
x2 − α

3

)3 (
x2 + α

)
,

the number of distinct zeros of h−3α2,2α3(x) is 4 if −α and α/3 are both quadratic residues modulo p, 2 if either

−α or α/3 is a quadratic residue, and 0 if neither −α nor α/3 is a quadratic residue. From this observation, it

is easy to see that the sum of distinct zeros of h−3α2,2α3(x) over α ∈ Z/pZ is 2(p−1)+1 = 2p−1. Furthermore,

if −1 and 3 are quadratic residue which is equivalent to p ≡ 1 (mod 12), then the sum of |W3,(−3α2,2α3)| over

quadratic residues α in Z/pZ is equal to the sum of |W3,(−3α2,2α3)| over all non-zero residues α in Z/pZ. Hence,

we obtain the G = Z/3Z row and the equation (5).

Let (a, b) be a pair such that 4fG(a, b)
3 + 27gG(a, b)

2 ≡ 0 (mod p). Then, this (a, b) determines α in Z/pZ

satisfying (fG, gG)(a, b) ≡ (−3α2, 2α3). Hence, if we find such all pairs (a, b) (including the (0, 0) pair), then the

number of the pairs is the sum we want to know. We will consider the discriminant of E(fG(a,b),gG(a,b)), instead

of (fG, gG)(a, b).
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Let ∆G(a, b) be the discriminant of E(fG,gG)(a,b). Then, we have

G ∆G(a, b)

Z/5Z 212312a5b5(a2 − 11ab− b2)

Z/6Z −28312a6b2(9a+ b)(a+ b)3

Z/7Z 212312a7b7(a− b)7(a3 − 8a2b+ 5ab2 + b3)

Z/8Z 212312a8b2(−2a+ b)4(−a+ b)8(8a2 − 8ab+ b2)

Z/9Z 212312a9b9(a− b)9(a2 − ab+ b2)3(a3 − 6a2b+ 3ab2 + b3)

Z/10Z 212312b5(−2a+ b)5(−a+ b)10a10(−4a2 + 2ab+ b2)(a2 − 3ab+ b2)2

Z/12Z 212312b2(−2a+ b)6(−a+ b)12a12(6a2 − 6ab+ b2)(2a2 − 2ab+ b2)3(3a2 − 3ab+ b2)4

Z/2Z× Z/4Z 28312b2a2(a− b)4(a+ b)4

Z/2Z× Z/6Z 218312a2(a− 6b)2(a+ 6b)2b6(a− 2b)6(a+ 2b)6

Z/2Z× Z/8Z 220312b8a8(2a+ b)8(4a+ b)8(8a2 − b2)2(8a2 + 8ab+ b2)2(8a2 + 4ab+ b2)4

First, let’s treat the cases where ∆G(a, b) is a product of linear polynomials and quadratic polynomials. For

example, consider

∆8(a, b) = 212312a8b2(−2a+ b)4(−a+ b)8(8a2 − 8ab+ b2).

So in this case we have four types of (a, b) satisfies the condition which are a = 0, b = 0, 2a/b = 1, a/b = 1, and

a/b is a zero of the quadratic polynomial 8t2 − 8t+ 1. The first four cases give (p− 1)-pairs, and the quadratic

polynomial has a zero in Fp when p ≡ 1, 7 (mod 8). Since the value of 8t2 − 8t + 1 at t = 1, 1/2 is ±1, there

is no overlap among those solutions. Hence we verified the case of G = Z/8Z. The other cases can be handled

similarly.

Now, let’s verify the cases where ∆G(a, b) contains a cubic polynomial. For this purpose, we need the following

lemma.

Lemma 2.3. Let f(t) = t3 + at + b be a polynomial over Fp with the discriminant ∆ = (−4a3 − 27b2). The

number of zeros (without multiplicity) of f(t) is

(1) zero if and only if ∆ = 81µ2 is square and (−b+ µ
√
−3)/2 is not cube in the field Fp[

√
−3].

(2) one if and only if ∆ is non-square.

(3) two if and only if ∆ is zero.

(4) three for other cases.

Proof. The first, second and fourth statements are shown in [Dic06] and the third one follows from the fact that

a monic cubic which has two zeros and has no degree two term is parametrized by (t− 2a)(t+ a)2. �

When G = Z/7Z, there is a polynomial (a3 − 8a2b + 5ab2 + b3) in ∆G(a, b). We obtain (t3 − 49
3 t − 637

27 ) by

change of coordinate. In this case the discriminant of this polynomial is 2401 = 74, so when p > 7 then the

number of zeros is one of 0 or 3. Also, µ = 49/9 and the number of zeros is determined by 1
2 (−637

27 + 49
9

√
−3)

which is equal to 4(−637 + 147
√
−3) up to a cube. We note that the 0 or 1 is not a solution of the given

polynomial which means that there is no overlap, so we obtain the row for G = Z/7Z. When G = Z/9Z, we can

prove it similarly. �

We need to prove some elementary but not simple properties of ΦG. We put

G {0} Z/2Z Z/3Z Z/4Z Z/2Z × Z/2Z G in G≥5

e(G) 2 3 4 6 6 2d(G)
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Lemma 2.4. For G ∈ G≤4, there is a positive integer r(G) such that the number of the preimages of ΦG is r(G)

except O(X
1

e(G) )-points.

Proof. The cases G = Z/2Z,Z/3Z are essentially in [HS14, Lemma 5.5] with r(Z/2Z) = 1 and r(Z/3Z) = 2.

For G = Z/4Z, assume that there are (a′, b′) 6= (a,±b) such that

(−3a2 + 6ab2 − 2b4, (2a − b2)(a2 + 2ab2 − b4)) = (−3a′2 + 6a′b′2 − 2b′4, (2a′ − b′2)(a′2 + 2a′b′2 − b′4)).

The elliptic curve EΦ4(a,b) has a 4-torsion point (a, b(−b2 + 3a)). Since an elliptic curve over rational numbers

does not have Z/4Z × Z/4Z as a subgroup, (a, b) and (a′, b′) also satisfy

(a, b(−b2 + 3a)) = (a′,±b′(−b′2 + 3a′)).

If b2 6= b′2, we obtain bb′ = 0. Without loss of generality we may assume that b′ = 0, then we have 3a = b2.

Then, a 4-torsion point (a, b(−b2+3a)) is a 2-torsion point, which is a contradiction. We note that r(Z/4Z) = 2.

Let G = Z/2Z× Z/2Z. By a similar argument, we need to count (A,B) such that

(A,B) =

(
−a

2 + 3b2

4
,
b3 − ba2

4

)
=

(
−a

′2 + 3b′2

4
,
b′3 − b′a′2

4

)
,

and {
a+ b

2
,
b− a

2
,−b

}
=

{
a′ + b′

2
,
b′ − a′

2
,−b′

}
.

We note that since A and B are integers, a and b should have the same parity. The set equality allows the

identity of y-coordinates on the first equation, and it holds if and only if one of the following six linear systems
(
a′

b′

)
= Ai

(
a

b

)
,

for A0 = I, and

A1 =

(
−1 0

0 1

)
, A2 =

(
1
2 −3

2

−1
2 −1

2

)
, A3 =

(
−1

2
3
2

−1
2 −1

2

)
, A4 =

(
1
2

3
2

1
2 −1

2

)
, A5 =

(
−1

2 −3
2

1
2 −1

2

)
.

Consequently, for (a, b) satisfying a ≡ b (mod 2), the (not necessarily distinct) six points

(a, b), (−a, b),
(
a− 3b

2
,
−a− b

2

)
,

(−a+ 3b

2
,
−a− b

2

)
,

(
a+ 3b

2
,
a− b

2

)
, and

(−a− 3b

2
,
a− b

2

)

corresponds to the same (A,B). We find a domain where the representatives for the above (not necessarily

distinct) six points. We claim that the following set

X =
{
(a, b) ∈ Z× Z : a ≥ 0, b ≥ a

3
, a ≡ b mod 2

}

is the collection of all the representatives of the above (not necessarily distinct) six points. On the other hand,

the number of points such that the number of their preimages is strictly less than six is O(X
1
6 ). Hence, we

obtain the result with r(Z/2Z× Z/2Z) = 6. �

For G ∈ G≥5, we can prove analogous statement by using the argument of [CKV].

Lemma 2.5. For G ∈ G≥5, there is an integer r(G) such that the preimages of ΦG is r(G) except O(X
1

e(G) )-

points.
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Proof. Essentially it is proved in the proof of [CKV, Theorem 3.3.1], so here we give a sketch. For a G ∈ G≥5 and

corresponding congruence subgroup Γ, there is a bijection between the set of Q-isomorphism classes of elliptic

curve with Γ-structure and rational points of the modular curve YΓ (see [CKV, Proposition 3.1.1]). By choosing

a coordinate that defines an embedding YΓ → A1
Q, the proof of [CKV, Theorem 3.3.1] gives a bijection from

YΓ(Q) to the set
{
(a, b) ∈ Z2 : |fG(a, b)| ≤ X

1
3 , |gG(a, b)| ≤ X

1
2 , (a, b) = 1

}
.

Now, the natural map from the elliptic curve with Γ-structure to the set of elliptic curves which has Γ-structure

is r(G)-to-one map by [CKV, Lemma 3.1.8] except negligible set comes from the curves with Γ′-structure for

Γ′ ⊂ Γ and curves whose j-invariants is 0 or 1728. �

Let J be an element in (Z/pZ)2 such that EJ is an elliptic curve and WG,J is non-empty. Then for each (a, b) ∈
WG,J we have a change of coordinate from E(u, v) whose equation is (2) to EJ : y2 = x3 + fG(a, b)x + gG(a, b)

which is defined earlier. Since the change of coordinate gives an isomorphism between the groups of Fp-points,

the image of (0, 0) of E(u, v) also goes to a torsion point of maximal order. When G is cyclic, it defines a map

ΨG,J :WG,J → EJ(Fp) whose image is in the set of points of maximal order in G.

Lemma 2.6. Let G ∈ G≤4, G = Z/5Z, Z/6Z, or Z/2Z× Z/4Z, and J ∈ (Z/pZ)2 for p ≥ 5 such that EJ is an

elliptic curve. Then,

EJ(Fp) ≥ G if and only if J = ΦG(a, b)

for some (a, b). Furthermore, |WG,J | is the number of embedding of G into EJ(Fp).

Proof. When G ∈ G≤4, for the if and only if part we will use the computation of [GT12]. For example when

G = Z/4Z, assume that (x1, w1) is a point of order 4 of an elliptic curve EA,B/Fp. From the computation of the

first coordinate of [3](x1, w1) = (x1,−w1) for w1 6= 0, we have

B =
1

4

(
5x31 −Ax1 ±

√
(3x21 − 2A)(A + 3x21)

2

)
.

Hence, B is in Fp if and only if there exists x2 ∈ Fp such that 3x21 − 2A = x22. The computation of the second

coordinate gives that w2
1 = (3x1 − x2)(x2 + 3x1)

2/8, so we have x2 6= 3x1 and there exists x3 ∈ F×
p such that

x23 = (3x1 − x2)/2. By the change of variables a = x1 and b = x3, we have (A,B) = Φ4(a, b) with points of

order 4, (x1, w1) = (a,±b(−b2 + 3a)). For the converse, we know that (a,±b(−b2 + 3a)) are points of order 4

of EΦ4(a,b). The other cases with order ≤ 4 can be proved similarly, but we remark that the first equation of

[GT12, p. 92] should be

(−z2, 0),
(
1

2
(z2 ±

√
z22 − 4z1), 0

)
; .

Now we prove the second statement when G ∈ G≤4. When G is cyclic, it suffices to prove that ΨG,J is bijective.

For example G = Z/4Z, we note that for J = Φ4(a, b), the 2-tuple (a,−b) also corresponds to the same J but

they induce the two points of order 4, (a,±b(−b2 +3a)). Therefore, for each points of order 4 in EA,B(Fp) there

is an (a, b) ∈W4,(A,B). For the converse, let Φ4(a
′, b′) = (A,B) and (a′, b′(−b′2+3a′)) = (a, b(−b2+3a)). If b 6= b′

then we have a = a′ and bb′ = 0 which implies that the one of the points (a′, b′(−b′2 +3a′)) and (a, b(−b2 +3a))

is of order 2. The cases G = Z/2Z and Z/3Z can be dealt similarly.

We treat the case G = Z/2Z × Z/2Z separately. We recall that EJ has a Z/2Z × Z/2Z if and only if

J = (f2×2(a, b), g2×2(a, b)). Hence if EJ does not have full 2-torsion, then |W2×2,J | should be zero. It is easily

deduced that if EJ does not have full 2-torsion, then W2×2,J should be empty. If EJ has the full 2-torsions, then

b3 + Ab + B ≡ 0 (mod p) has three zeros and A = f2×2(a, b) = −(a2 + 3b2)/4 for some a. This a is not zero,



12 PETER JAEHYUN CHO AND KEUNYOUNG JEONG

since if so then f2×2(0, b) = −3b2/4 and g2×2(0, b) = b3/4 so 4f2×2(0, b)
3 + 27g2×2(0, b)

2 ≡ 0 (mod p). Hence,

there are exactly six (a, b) such that

b3 +Ab+B ≡ 0, 4A ≡ −(a2 + 3b2) (mod p).

Since this equation is equivalent to a system of equation J = (f2×2(a, b), g2×2(a, b)), we can conclude that if

EJ(Fp) ≥ Z/2Z× Z/2Z then |W2×2,J | = 6.

When G = Z/5Z by taking homogenization and computing the multiples of the points, we know that the

points

(3a2 − 18ab+ 3b2,±108ab2), (3a2 + 18ab+ 3b2,±108a2b)

are points with order 5 of EJ where J = ΦG(a, b). When (a, b) gives one of above four points, then other three

come from (−b, a), (b,−a) and (−a,−b).
We claim that the four pairs are all the pairs (c, d) such that Φ5(c, d) = J and

3a2 − 18ab + 3b2 = 3c2 − 18cd + 3d2, 3a2 + 18ab+ 3b2 = 3c2 + 18cd+ 3d2,

or

3a2 − 18ab + 3b2 = 3c2 + 18cd + 3d2, 3a2 + 18ab+ 3b2 = 3c2 − 18cd+ 3d2.

Both systems do not generate new pairs. Therefore, Ψ5 is injective and |WG,J | is less than or equal to the

number of points of order 5 in EJ .

Let P be a point of order 5 in EJ(Fp) and EJ : y2 = x3 +Ax+B. Let x1 and x2 be the x-coordinates of P

and 2P . Then by the duplication formula, we have

x41 − 2Ax21 − 8Bx1 +A2

4(x31 +Ax1 +B)
= x2,

x42 − 2Ax22 − 8Bx2 +A2

4(x32 +Ax2 +B)
= x1.

From the identity above, we can see that 2x1+x2 and x1+2x2 are squares in Fp. Let
√
2x1 + x2 and

√
x1 + 2x2

be one of the square roots of 2x1 + x2 and x1 + 2x2 respectively. Then, by putting

a =

√
2x1 + x2 +

√
x1 + 2x2

6
, b =

√
2x1 + x2 −

√
x1 + 2x2

6
,

we have

x1 = 3a2 + 18ab+ 3b2, x2 = 3a2 − 18ab + 3b2,

and one can check easily that A = fG(a, b) and B = gG(a, b). Hence for the point P of order 5, we found

(a, b) ∈WJ such that P = (3a2 − 18ab+ 3b2, 108ab2) which shows the surjectivity of Ψ5.

As we did in the Z/5Z-case, we can show that

(−9a2 − 18ab+ 3b2,±(108a2b+ 108ab2))

are points of order 6 of elliptic curve EJ where J = Φ6(a, b) for some a, b ∈ Fp. Since (−a,−b) also gives a same

points, we have a map Ψ6 from W6,J to the points of order 6 of EJ(Fp).

We claim that (c, d) = ±(a, b) are all the pair such that Φ6(a, b) = Φ6(c, d) and Ψ6(a, b) = Ψ6(c, d). Consid-

ering the x-coordinates of multiplies of the point Ψ6(a, b) we have

−9a2 − 18ab+ 3b2 = −9c2 − 18cd + 3d2,

27a2 + 18ab+ 3b2 = 27c2 + 18cd + 3d2,

−9a2 + 18ab+ 3b2 = −9c2 + 18cd + 3d2,

since the x-coordinate of 2P and 3P is 27a2 +18ab+3b2,−9a2 +18ab+3b2, respectively. This system does not

generate a new pair. Therefore Ψ6 is injective.



AVERAGE ANALYTIC RANK OF ELLIPTIC CURVES WITH PRESCRIBED TORSION 13

Let P := (x1, y1) be a point of order 6 of EJ(Fp) and let (x2, y2) := 2P , and (x3, 0) := 3P . By the duplication

formula, we know that 2x1+x2 is square. Since 2P is a point of order 3, then J = Φ3(a3, b3) for some a3, b3 ∈ Fp

and (3a23,±(9a33 + b3)) are 3-torsion point of EJ . Especially, we note that x2/3 is square in Fp. Now, we define

a :=
3
√
x2/3 +

√
2x1 + x2

12
, b :=

√
x2/3−

√
2x1 + x2

4
.

Both are in Fp and we have x2 = 27a2 +18ab+3b2, x1 = −9a2 − 18ab+3b2. Using the result on 3-torsion case,

one can easily check that (f6(a, b), g6(a, b)) = (A,B).

Let G = Z/2Z× Z/4Z and assume that J = Φ2×4(a, b) for some a, b. The claim is

|W2×4,J | =
{

24 if EJ(Fp)[4] ∼= Z/4Z× Z/4Z,

8 if EJ(Fp)[4] ∼= Z/2Z× Z/4Z.

Considering 6 systems deduced by Φ2×4(a, b) = Φ2×4(c, d), we can see that |W2×4,J | is at least 8 and it should

be exactly 8 if either p ≡ 3 (mod 4) or p ≡ 1 (mod 4) and ab is non-square in Fp. If p ≡ 1 (mod 4) and ab is a

square in Fp, the 6 systems are all consistent and have 24 solutions and by direct computation, we can conclude

that they are the preimages of Φ2×4(a, b). Therefore,

|W2×4,J | =
{

24 if
√
ab ∈ Fp and p ≡ 1 (mod 4),

8 otherwise.

We recall that EJ has three non-trivial 2-torsion points whose x-coordinates are −(3a2−18ab+3b2),−(3a2+

18ab+3b2), (6a2 +6b2) respectively. The points P with 2P = (6a2 +6b2, 0) are already included in the EJ(Fp),

and one can check that the two points

(3a2 + 18ab+ 3b2 ± 18
√
ab(a+ b),

√
−1 · 2 · 33

√
ab(

√
a±

√
b)2(a+ b))

and their inverses defined in Fp[
√
ab,

√
−1] are the 4 points Q with 2Q = (−(3a2 + 18ab + 3b2), 0). Therefore,

p ≡ 1 (mod 4) and ab is square if and only if EJ includes Z/4Z × Z/4Z which is equivalent to |W2×4,J | = 24.

At last, we need to show that when EJ has Z/2Z×Z/4Z as a subgroup, then there exists a, b ∈ Fp such that

J = Φ2×4(a, b). Since we already showed the analogue for G = Z/2Z× Z/2Z and Z/4Z, there are u, v, s, t ∈ Fp

such that

(A,B) = (−(u2 + 3v2)/4, (v3 − u2v)/4) = (−3s2 + 6st2 − 2t4, (2s − t2)(s2 + 2st2 − t4)).

One can check that 5t2 − 12s should be square, say r2. Then, (A,B) = Φ2×4(6
−1r, 6−1t). �

Hence for example,

|W6,J | =





24 if EJ(Fp)[6] ∼= Z/6Z× Z/6Z,

8 if EJ(Fp)[6] ∼= Z/6Z× Z/3Z,

6 if EJ(Fp)[6] ∼= Z/6Z× Z/2Z,

2 if EJ(Fp)[6] ∼= Z/6Z,

0 if EJ(Fp)[6] 6≥ Z/6Z.

Comparing to Lemma 2.5, we should remark that the analogues result does not hold for all torsion groups.

Example 2. Let E1 : y
2 = x3 +2x+1 and E2 : y

2 = x3 +2x+4 be elliptic curves over F5. Then, E1 and E2 are

isomorphic, and E1(F5) ∼= E2(F5) ∼= Z/7Z. However, one can compute that |W7,(2,1)| = 0 and |W7,(2,4)| = 12.



14 PETER JAEHYUN CHO AND KEUNYOUNG JEONG

2.3. Moments of traces of the Frobenious. Now, we define a class number weighted by |WG,J |.

Definition. We define

(6) HG(a, p) :=
∑

J=(A,B)∈(Z/pZ)2
ap(EJ )=a

4A3+27B2 6≡0 (mod p)

|WG,J |,

where ap(E) is a trace of the Frobenius of an elliptic curve E at p.

The goal of this section is to show
∑

|a|<2
√
p

HG(a, p) = p2 +OG(p),(7)

∑

|a|<2
√
p

aHG(a, p) = OG(p
3
2 ),(8)

∑

|a|<2
√
p

a2HG(a, p) = p3 +OG(p
5
2 ).(9)

The main tool is the Eichler–Selberg trace formula [KP17]. We recall some notations first. The Chebyshev

polynomials of the second kind are defined as

U0(t) = 1, U1(t) = 2t, Uj+1(t) = 2tUj(t)− Uj−1(t).

We define normalized Chebyshev polynomials to be

Uk−2(t, q) := qk/2−1Uk−2

(
t

2
√
q

)
=
αk−1 − αk−1

α− α
∈ Z[q, t],

where α,α are the two roots in C of X2 − tX + q = 0. Let

CR,j :=




aR

2
,j if R is even

aR−1
2

,j + aR−1
2

,j−1 if R is odd
for aR,j :=

(
2R

j

)
−
(

2R

j − 1

)

be the Chebyshev coefficients. We have

tR =

⌊R/2⌋∑

j=0

CR,jq
jUR−2j(t, q)

which is [KP17, (1.3)]. In particular we have

t0 = U0(t, q), t = U1(t, q), t2 = U2(t, q) + qU0(t, q).(10)

Let E be an elliptic curve defined over a finite field Fq with q elements, C be the set of all the isomorphism

classes of elliptic curves over Fq . Let A denote a finite abelian group and let ΦA to be

ΦA(E) =




1 if there exists an injective homomorphism A →֒ E(Fp)

0 otherwise.

We define

Eq(a
RΦA) :=

1

q

∑

E∈C
A→֒E(Fq)

aq(E)R

|AutFq(E)| .
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From now on, we assume that q = p. For a finite abelian group A, let n1 = n1(A) and n2 = n2(A) be its first

and second invariant factors, respectively. Also, we denote ψ(n) = n
∏

p|n(1+ 1/p), ϕ(n) = n
∏

p|n(1− 1/p) and

φ(n) = n
∏

p|n(−ϕ(p)).
For λ | (p− 1, n1), let

Tn1,λ(p, 1) :=
ψ(n21/λ

2)ϕ(n1/λ)

ψ(n21)
(−Ttrace − Thyp + Tdual),

with

Ttrace :=
1

ϕ(n1)
Tr(Tp|Sk(Γ(n1, λ))),

Thyp :=
1

4

1∑

i=0

∑

τ |n1λ
g|p−1

ϕ(g)ϕ(n1(n1(λ, g)/g)

ϕ(n1)

(
δn1(λ,g)/g(yi, 1) + (−1)kδn1(λ,g)/g(yi,−1)

)
,

Tdual :=
p+ 1

ϕ(n1)
δ(k, 2),

where g = (τ, n1λ/τ), yi is the unique element of (Z/(n1λ/g)Z)
× such that yi ≡ pi (mod τ) and yi ≡ p1−i (mod

n1λ/τ), δ(a, b) is the indicator function of a = b, and δc(a, b) is the indicator function of the congruence a ≡ b

(mod c).

Theorem 2.7. [KP17, Theorem 3, when q = p] Let A be a finite abelian group of rank at most 2. Suppose

(p, |A|) = 1 and k ≥ 2. If p ≡ 1 (mod n2(A)) we have

Ep(Uk−2(t, p)ΦA) =
1

ϕ(n1/n2)

∑

ν| (p−1,n1)
n2

φ(ν)Tn1,n2ν(p, 1)(11)

and if p 6≡ 1 (mod n2(A)), then Ep(Uk−2(t, p)ΦA) = 0.

Proposition 2.8. Let G be one of the groups Z/nZ for 2 ≤ n ≤ 6 or Z/2Z × Z/2Z. Then, (7), (8) and (9)

hold.

Proof. For each group G, we denote n1 be its first invariant factor. We define AG,i be abelian groups satisfying

G ≤ AG,i ≤ Z/n1Z× Z/n1Z, and j < i if and only if AG,j < AG,i. We define ω̃G,i to be |WG,I | if EI [n1](Fp) ∼=
AG,i. This is well defined by Lemma 2.6. Let

ωG,i := ω̃G,i −
∑

j<i

ωG,j.

Then, one can obtain that
∑

|a|<2
√
p

aRHG(a, p) = p(p− 1)
∑

i

ωG,iEp(a
RΦAG,i

)

For arbitrary G, we can show that ∑

|a|<2
√
p

HG(a, p) = p2 +O(p),

by Proposition 2.2. Hence,

(12)
∑

i

ωG,iEp(ΦAG,i
) = 1 +O

(
1

p

)
.



16 PETER JAEHYUN CHO AND KEUNYOUNG JEONG

Since t2 = U2(t, p) + pU0(t, p), we have the identity

Ep(t
2ΦA) = Ep(U2(t, p)ΦA) + pEp(U0(t, p)ΦA)

and this together with (12) implies
∑

|a|<2
√
p

a2HG(a, p) = p(p− 1)(p +O(1)) +O(p2.5) = p3 +O(p2.5)

because Ep(U2(t, p)ΦA) ≪G
p1.5

p ≪G p0.5 by Theorem 2.7 and Deligne bound.

Using the identity t = U1(t, p) and Ep(U1(t, p)ΦA) ≪G p−0.5, it is easy to see that
∑

|a|<2
√
p

aHG(a, p) = OG(p
1.5),

by Theorem 2.7 and Deligne bound. �

When G = Z/2Z or Z/2Z× Z/2Z, we can obtain the 2R + 1-th moments.

Proposition 2.9. When G = Z/2Z or Z/2Z× Z/2Z, we have
∑

|a|<2
√
p

a2R+1HG(a, p) = 0

for R ≥ 0.

Proof. Let Nn(a) (resp. Nn×n(a)) be the number of isomorphism classes of elliptic curves over Fp such that

E(Fp)[n] ≥ Z/nZ (resp. E(Fp)[n] = Z/nZ × Z/nZ) with weights 2/|AutFp(E)|. Then, [Sch87, Theorem 4.6,

4.9] shows that for a prime p ≥ 5, an a in the Weil bound, and a positive integer n ≥ 2,

Nn(a) =

{
H(a2 − 4p) if a ≡ p+ 1 (mod n),

0 otherwise,

and

Nn×n(a) =

{
H
(
a2−4p
n2

)
if p ≡ 1 (mod n) and a ≡ p+ 1 (mod n2),

0 otherwise.

By Lemma 2.6,

H2(a, p) =
p− 1

2
(N2(a) + 2N2×2(a)), H2×2(a, p) = 6 · p− 1

2
N2×2(a).

Since N2(a) = N2(−a) and N2×2(a) = N2×2(−a), the result follows. �

This will be used for the Frobenius trace formula for elliptic curves.

3. Counting elliptic curves with torsion points and local conditions

We introduce some notations first. Let

RG(X) =
{
(a, b) ∈ R2 : |fG(a, b)| ≤ X

1
3 , |gG(a, b)| ≤ X

1
2

}
.

For G in G≤4 we define

DG(X) =
{
(A,B) ∈ Z2 : (A,B) = ΦG(a, b) for some (a, b) ∈ RG(X) ∩ Z2

}
,

MG(X) =
{
(A,B) ∈ DG(X) : if p4 | A, then p6 ∤ B

}
,

and

EG(X) =
{
(A,B) ∈ MG(X) : 4A3 + 27B2 6= 0

}
, SG(X) =

{
(A,B) ∈ MG(X) : 4A3 + 27B2 = 0

}
,
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where EG(X) represents elliptic curves with G torsion and SG(X) takes up singular curves. We note that EG(X)

coincide with the previous definition.

For G ∈ G≥5, we recall that MG(X) is the set of relatively prime pairs (a, b) with h(ΦG(a, b)) ≤ X. We define

M̃ e
G(X) =

{
(a, b) ∈ Z2 : (a, b) = 1, e = e(a, b), |fG(a, b)| ≤ X

1
3 , |gG(a, b)| ≤ X

1
2

}
,

and M̃G(X) as the union of M̃ e
G(X) for all e ≥ 1. We define EG(X) as (4) and

SG(X) = {(A,B) ∈ S(X) : ΦG(a, b) for relatively prime (a, b)}

where

S(X) =

{
(A,B) ∈ Z2 :

|A| ≤ X
1
3 , |B| ≤ X

1
2 , 4A3 + 27B2 = 0,

if p4 divides A, then p6 does not divide B.

}
.

For the reader’s convenience we remark that (a, b) denotes an element in the domain of ΦG and RG (resp.

MG for G in G≥5) and (A,B) does in the range of ΦG. Also, DG,MG, EG, and SG are sets on the range side.

For pairs I, J ∈ (Z/pZ)2, the subscripts −G,I(X) or −G,J(X) means that this is the subset of the original set

consisting of elements (a, b) ≡ I (mod p) or (A,B) ≡ J (mod p) respectively. We often drop the subscript G

to ease the notation.

Lemma 3.1. For a torsion subgroup G, the number of integer points in RG(X) is

Area(RG(1))X
1

d(G) +O(X
1

e(G) ).

Proof. We note that [HS14, Lemma 5.2] proves this lemma for G = Z/2Z,Z/3Z. Since f4(a, b) = X
1
3 , g4(a, b) =

X
1
2 are equivalent to f4(a/X

1
6 , b/X

1
12 ) = 1, g4(a/X

1
6 , b/X

1
12 ) = 1, by change of variables we have

Area(R4(X)) = X
1
4 Area(R4(1)).

Then, the claim follows from the Principle of Lipschitz, [HS14, (5.3)]. We can do the same thing for G =

Z/2Z×Z/2Z. Also, we obtain the result for the groups G in G≥5 since 3 deg fG(a, b) = 2deg gG(a, b) = 2d(G). �

By the Principle of Lipschitz, we have

Corollary 3.2. For a prime p ≥ 5, I an element in (Z/pZ)2, and a torsion subgroup G, we have

|RG,I(X)| = Area(RG(1))p
−2X

1
d(G) +O(1 + p−1X

1
e(G) ).

For G = Z/2Z × Z/2Z, we consider only the pairs (a, b) with a ≡ b (mod 2). By Lemma 3.1 and Möbious

inversion argument gives the following corollary, which is a complement of [HS14, Theorem 5.6]. For details, we

refer to the proof of Proposition 3.6.

Corollary 3.3. For G in G≤4, let

c(G) :=
Area(RG(1))

2δG=2×2r(G)ζ( 12
d(G))

.

Then,

|EG(X)| = c(G)X
1

d(G) +O(X
1

e(G) ).

Lemma 3.4. For a prime p ≥ 5, a non-zero J in (Z/pZ)2 and a group G in G≤4,

|DG,J(X)| = |WG,J |
2δG=2×2r(G)

|RG,I(X)| +O(1 + p−1X
1

e(G) )
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where I ∈WG,J . For G ∈ G≥5, we have

|EG,J(X)| = |WG,J |
r(G)

∑

I∈WG,J

∑

e

|M e
I (X)| +O(1 + p−1X

1
e(G) ).

Proof. We fix a group G and omit it from subscription. For G ∈ G≤4, Φ induces a surjective map
⊔

I∈WJ

RI(X) → DJ(X), (a, b) → (A,B) = Φ(a, b).

Let hJ(X) be the number of the 2-tuples (A,B) for which its pre-image is not equal to r(G). Then, hJ (X)

is bounded by O(p−1X
1

e(G) ) by the proof of Lemma 2.4. We note that the number of solutions of a system of

equations

f(a, b) = A and g(a, b) = B

is less than or equal to deg f · deg g by Bezout’s theorem and |RI(X)| does not depend on I by Corollary 3.2.

Therefore, we have

|DJ(X)| = |WJ |
2δG=2×2r(G)

|RI(X)|+O (hJ(X)) .

For G ∈ G≥5, Φ induces a surjective map
⋃

I∈WJ

⋃

e

M e
I (X) → EJ(X)

⋃
SJ(X).

Hence, the above argument and an estimate of SJ(X) give a similar result. �

For a pair (A,B) of integers or elements of Z/pZ and an integer d, we define an operation ∗ by d ∗ (A,B) =

(d4A, d6B).

Proposition 3.5. For a prime p ≥ 5, non-zero J ∈ (Z/pZ)2, and a group G in G≤4,

|MG,J(X)| =
∑

d≤X
1
12

p∤d

µ(d)|DG,d−1∗J (d
−12X)|,

and |SG,J(X)| = O(X
1
6/p).

Proof. Let (A,B) ∈ DG,J(X) and let d be the maximum of d′ satisfying d′4 | A and d′6 | B. Since J is non-zero,

p ∤ d. By (1), the definition of fG and gG, one can easily check that there are positive integers m and n depending

G such that
1

d4
fG(a, b) = fG

(
a

dm
,
b

dn

)
,

1

d6
gG(a, b) = gG

(
a

dm
,
b

dn

)
,

for given G. Also, we can check that a/dm and b/dn are integers. Hence if (A,B) = (fG(a, b), gG(a, b)) for some

a, b ∈ Z, then

d−1 ∗ (A,B) =

(
fG

(
a

dm
,
b

dn

)
, gG

(
a

dm
,
b

dn

))

is an element of MG,d−1∗J (d
−12X) and there is a bijection

(A,B) → d−1 ∗ (A,B), DG,J(X) →
⊔

d≤X
1
12

p∤d

MG,d−1∗J(d
−12X).

By Möbius inversion argument, the first equality follows. The error term is easy to establish. �
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Proposition 3.6. For a non-zero 2-tuple J ∈ (Z/pZ)2 where p ≥ 5, G in G≤4 we have

|EG,J(X)| = c(G)
|WG,J |
p2

p
12

d(G)

p
12

d(G) − 1
X

1
d(G) +O(p−1X

1
e(G) +X

1
12 ).

For J = (0, 0), we have

|EG,J(X)| = c(G)

(
1

p2
− 1

p
12

d(G)

)
p

12
d(G)

p
12

d(G) − 1
X

1
d(G) +O(pX

1
e(G) + p2X

1
12 ).

Proof. For d not divisible by p, we note that |WG,d−1∗J | = |WG,J | for all p ∤ d. Then,

|EG,J(X)| = |MG,J(X)| +O(SG,J(X)) =
∑

d≤X
1
12

p∤d

µ(d)|DG,d−1∗J(
X

d12
)|+O

(
X

1
6

p

)

=
∑

d≤X
1
12

p∤d

µ(d)

(
|WG,d−1∗J |
2δG=2×2r(G)

|RG,I(
X

d12
)|+O

(
1 + p−1X

1
e(G)

d
12

e(G)

))
+O

(
X

1
6

p

)

=
|WG,J |

2δG=2×2r(G)

∑

d≤X
1
12

p∤d

µ(d)|RG,I(
X

d12
)|+O

(
X

1
12 +

X
1

e(G)

p

)
,

by Lemma 3.4. Here we also used that |RG,I(X)| does not depend on I ∈WJ . Using Corollary 3.2, the sum is

=
|WG,J |Area(RG(1))

2δG=2×2r(G)p2

∑

d≤X
1
12

p∤d

µ(d)

(
X

1
d(G)

d
12

d(G)

+O

(
pX

1
e(G)

d
12

e(G)

+ p2

))
+O

(
X

1
12 +

X
1

e(G)

p

)

= c(G)
|WG,J |
p2

p
12

d(G)

p
12

d(G) − 1
X

1
d(G) +O

(
X

1
e(G)

p
+X

1
12

)
.

By [HS14, Theorem 5.6] and Corollary 3.3, the main term of

|EG,(0,0)(X)| = |EG(X)| −
∑

J 6=(0,0)

|EG,J(X)|

is

c(G)X
1

d(G) −
∑

J 6=(0,0)

c(G)
|WG,J |
p2

p
12

d(G)

p
12

d(G) − 1
X

1
d(G) = c(G)X

1
d(G)

(
p

12
d(G) − 1

p
12

d(G)

−
∑

J 6=(0,0) |WG,J |
p2

)
p

12
d(G)

p
12

d(G) − 1

= c(G)X
1

d(G)

(
1

p2
− 1

p
12

d(G)

)
p

12
d(G)

p
12

d(G) − 1
.

This gives the main term, and the error term is easily checked. �

For torsion G, we define

cG,LC(p) =
∑

EI satisfies LC

|WG,I |
p2

.
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Theorem 3.7. For a prime p ≥ 5, a local condition LC, and a group G in G≤4,

|ELC
G,p(X)| = c(G) · cG,LC(p) ·

p
12

d(G)

p
12

d(G) − 1
X

1
d(G) +O(hG,LC(p,X))

where cG,LC(p) is

2 3 4 2× 2

good (p− 1)2/p2 (p − 1)2/p2 (p− 1)(p − 2)/p2 (p − 1)(p − 2)/p2

mult (2p − 2)/p2 (2p − 2)/p2 (3p − 3)/p2 (3p − 3)/p2

addi 1/p2 − 1/p6 1/p2 − 1/p4 1/p2 − 1/p3 1/p2 − 1/p4

a H2(a, p)/p
2 H3(a, p)/p

2 H4(a, p)/p
2 H2×2(a, p)/p

2

and

c3,split(p) =





2(p − 1)/p2 for p ≡ 1 mod 12,

(p− 1)/p2 for p ≡ 5 or 11 mod 12,

0 for p ≡ 7 mod 12.

Finally for ǫ > 0, the function hG,LC(p,X) is

hG,LC(p,X)

good/bad pX
1

e(G) + p2X
1
12

mult X
1

e(G) + pX
1
12

split X
1

e(G) + pX
1
12

addi pX
1

e(G) + p2X
1
12

a HG(a, p)(p
−1X

1
e(G) +X

1
12 )

Proof. By Proposition 3.6,

|Egood
G,p (X)| =

∑

J=(A,B)∈F2
p

4A3+27B2 6≡0

|EG,J(X)|

=
∑

J=(A,B)∈F2
p

4A3+27B2 6≡0

c(G)
|WG,J |
p2

p
12

d(G)

p
12

d(G) − 1
X

1
d(G) +O

(
p(p− 1)

(
X

1
e(G)

p
+X

1
12

))
.

By Propositions 2.2, we have
∑

J=(A,B)∈F2
p

4A3+27B2 6≡0

|W2,J | =
∑

J=(A,B)∈F2
p

4A3+27B2 6≡0

|W3,J | = (p− 1)2,

∑

J=(A,B)∈F2
p

4A3+27B2 6≡0

|W4,J | =
∑

J=(A,B)∈F2
p

4A3+27B2 6≡0

|W2×2,J | = (p− 1)(p − 2).

This proves good reduction cases. The other cases can be shown similarly. �

For G ∈ G≥5, we note that

|M̃G(X)| = Area(R(1))

ζ(2)
X

1
d(G) +O(X

1
2d(G) logX)

by the Möbius inversion and the Principle of Lipschitz. For details, we refer to the proof of the following lemma.
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Lemma 3.8. For arbitrary prime power pm and a pair I ∈ (Z/pmZ)2 whose coordinates are not divided by p

simultaneously,

|M̃G,I(X)| = 1

p2m
p2

p2 − 1

Area(R(1))

ζ(2)
X

1
d(G) +O(X

1
2d(G) + p−mX

1
2d(G) logX).

Proof. For a given I, we have a bijection

RG,I(X) ∼=
⊔

d≤X
1

2d(G)

p∤d

d ∗ M̃G,d−1∗I(d
−2d(G)X), (a, b) → d ∗

(
a

d
,
b

d

)
,

where d is the gcd of a and b. By Möbius inversion argument and Corollary 3.2, we have

|M̃G,I(X)| =
∑

d≤X
1

2d(G)

p∤d

µ(d)|RG,d−1∗I(d
−2d(G)X)|

=
∑

d≤X
1

2d(G)

p∤d

µ(d)

(
1

p2m
Area(R(1))

X
1

d(G)

d2
+O(p−md−1X

1
2d(G) )

)

=
1

p2m
p2

p2 − 1

Area(R(1))

ζ(2)
X

1
d(G) +O(X

1
2d(G) + p−mX

1
2d(G) logX).

�

Theorem 3.9. Let G be a torsion subgroup in G≥5, p ≥ 5 be a prime, and J be a non-zero element of (Z/pZ)2.

Then, there is an absolute constant c(G) such that

|EG,J(X)| = |WG,J |
p2 − 1

c(G)X
1

d(G) +O(X
1

2d(G) + p−1X
1

2d(G) logX).

Proof. We use the strategy of [CKV, §3]. Let ǫ = ǫ(G) be a positive integer which is the least common multiplier

of the possible defects of (fG, gG) which is well-defined by Lemma 2.1. Since M e
G(X) = M̃ e

G(e
12X),

|EG,J(X)| = 1

r(G)

∑

I∈WJ

∑

e|ǫ
|M e

G,I(X)|+O(1 + p−1X
1

e(G) ) =
1

r(G)

∑

I∈WG,J

∑

e|ǫ
|M̃ e

G,I(e
12X)| +O(1 + p−1X

1
2d(G) ),

by Lemma 2.4, Lemma 2.5 and Lemma 3.4. We note that the defect of the given pair (a, b) is determined by

its reduction modulo ǫ by Lemma 2.1 for G ∈ G≥5 except Z/2Z × Z/6Z and Z/2Z × Z/8Z, and modulo ǫ6 for

G = Z/2Z× Z/6Z and Z/2Z × Z/8Z.

We consider the case of ǫ > 1, and for simplicity we assume that ǫ is prime. Let Ie be the set of pairs (Z/ǫZ)2

which has a defect e. Then,

M̃ e
G,I(X) =

⊔

I′∈Ie
M̃G,I,I′(X),

where M̃G,I,I′(X) is a subset of M̃G,I(X) where the additional condition (a, b) ≡ I ′ (mod ǫ) is imposed. Since

ǫ is a prime, e = 1 or ǫ. By Lemma 3.8 and CRT,

|M̃ ǫ
G,I(X)| = |Iǫ|

(ǫ2 − 1)

1

(p2 − 1)

Area(R(1))

ζ(2)
X

1
d(G) +O(X

1
2d(G) + p−1X

1
2d(G) logX),

and

|M̃1
G,I(X)| = (ǫ2 − 1− |Iǫ|)

(ǫ2 − 1)

1

(p2 − 1)

Area(R(1))

ζ(2)
X

1
d(G) +O(X

1
2d(G) + p−1X

1
2d(G) logX).
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Therefore,

|EG,J(X)| = |WG,J |
p2 − 1

((ǫ
12

d(G) − 1)|Iǫ|+ ǫ2 − 1)

(ǫ2 − 1)

1

r(G)

Area(R(1))

ζ(2)
X

1
d(G) +O(X

1
2d(G) + p−1X

1
2d(G) logX).

Similarly, for the groups with no defect, we have

|EG,J(X)| = |WG,J |
p2 − 1

1

r(G)

Area(R(1))

ζ(2)
X

1
d(G) +O(X

1
2d(G) + p−1X

1
2d(G) logX).

By taking c(G) = ((ǫ
12

d(G)−1)|Iǫ|+ǫ2−1)
(ǫ2−1)

1
r(G)

Area(R(1))
ζ(2) where the first term exists only if ǫ 6= 1, the claim follows.

When ǫ is not prime (only appear when G = Z/12Z, Z/2Z × Z/6Z, Z/2Z × Z/8Z by Lemma 2.1), we can

compute c(G) similarly. �

Our proof gives c(G) concretely except when G = Z/2Z × Z/6Z and Z/2Z × Z/8Z. Even for such G, if one

know the defects (see Remark 1) then can calculate c(G) precisely.

Proposition 2.2 and Theorem 3.9 analogously give results like Theorem 3.7. Instead of listing them all, we

record the results which will be used in the applications.

Corollary 3.10. For G ∈ G≥5 and a prime p ≥ 5,

|EG(X)| = c(G)X
1

d(G) +O(X
1

e(G) ),

|Ea
G,p(X)| = c(G)

HG(a, p)

p2 − 1
X

1
d(G) +O

(
HG(a, p)X

1
e(G) +

HG(a, p)

p
X

1
e(G) logX

)
,(13)

|Emult
G,p (X)| = O

(
1

p
X

1
d(G) + pX

1
e(G) +X

1
e(G) logX

)
.

Theorems 3.7 and 3.9 gives some results on the probability for elliptic curves with local condition. In particular,

for LC = mult, we observe an interesting phenomenon.

Corollary 3.11. The ratios of cG,mult(p)’s for G ∈ G≤4 and p ≥ 5 are proportional to the number of cusps of

the corresponding modular curves. Also, there is a set of primes S with positive density such that the ratios

of cG,mult(p)’s for G ∈ G≥5 are proportional to the number of cusps of the corresponding modular curves when

p ∈ S.

Proof. One can easily compute that the numbers of cusps of modular curve X1(N) for N = 1, 2, 3, 4 and X(2) are

1, 2, 2, 3, 3, respectively (For example, see [DS05, §3.9]). So we have the result for G in G≤4 by Proposition 2.2 and

Theorem 3.7. Also, the number of cusps of X1(N) for N = 5, 6, 7, 8, 9, 10, 12 and XΓ1(M)∩Γ(2) for M = 4, 6, 8 are

4, 4, 6, 6, 8, 8, 10 and 4, 6, 10. For primes p which satisfy the conditions that make
∑

4A3+27B2≡0WG,(A,B) largest

among the possible values in Proposition 2.2, the proportion of cG,mult(p) for G in G≥5 is coincide with above

values. Now Theorem 3.9 and Chebotarev density theorem give G in G≥5 part. �

It is well-known that every elliptic curve with torsion G ∈ G≥5 has semistable reduction at p ∤ |G|. We can

confirm this phenomenon with probability 1. Also, we have the analogous result for G in G≤4.

Corollary 3.12. For G in G≥5 and a prime p ∤ 6|G|, we have

lim
X→∞

|Ess
G,p(X)|

|EG(X)| = 1.

For a torsion subgroup G in G≤4 and a prime p ≥ 5,

cG,ss(p) = 1− 1

p2
.
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As we can see in the [CJ, Theorem 1.1], the number of elliptic curves with split and non-split reduction at p

are the same for all primes p. When we consider elliptic curves with torsion G, this property no more holds.

Corollary 3.13. For G = Z/3Z and a prime p ≥ 5, we have

lim
X→∞

|Esplit
Z/3Z,p(X)|

|Emult
Z/3Z,p(X)| =





1
2 when p ≡ 5, 11 (mod 12),

1 when p ≡ 1 (mod 12),

0 when p ≡ 7 (mod 12).

We note that Corollaries 3.12 and 3.13 follow from Proposition 2.2, Theorem 3.7 and 3.9.

In Section 4, we establish the Frobenius Trace formula for elliptic curves when G = Z/2Z and Z/2Z× Z/2Z.

For this purpose, we need to count elliptic curves with finitely many local conditions. Since its proof is similar

with that of [CJ, Theorem 8], we just introduce the notations and state the results.

Let P = {pk}k be a finite set of primes such that pk ≥ 5, and J = JP be a finite set of 2-tuples {(Ak, Bk)} for

Ak, Bk ∈ Z/pkZ such that (Ak, Bk) 6≡ (0, 0) (mod pk). We define analogously MG,J (X), EG,J (X), SG,J (X),

and so on. Let

WG,J =
∏

k

WG,Jk for Jk ≡ (Ak, Bk) (mod pk).

Then,

Proposition 3.14. For P = {pk} and J = {(Ak, Bk)}, 2-tuples of Z/pkZ such that (Ak, Bk) 6≡ (0, 0) for all k,

and G in G≤4, we have

|EG,J (X)| = c(G)|WG,J |
∏

k


 1

p2k

p
12

d(G)

k

p
12

d(G)

k − 1


X

1
d(G) +O(

∏
p−1
k X

1
e(G) +X

1
12 ).

We will denote S = (LCpi) as a finite set of local conditions LCpi . When an elliptic curve has the local

property corresponding to LCpi at pi for all local conditions in S, we say that E satisfies S. Let

ES
G(X) = {(A,B) ∈ EG(X) : EA,B satisfies S} ,

and

|LCp|G := lim
X→∞

|ELCp

G,p (X)|
|EG(X)| , |S|G =

∏

i

|LCpi |G.

Now we address that the local conditions under the torsion restriction are also independent.

Theorem 3.15. Let P = {pk} and S be a set of local conditions at pk. Then, we have

|ES
G(X)| = c(G)|S|GX

1
d(G) +O



(∏

k

pk

)
X

1
e(G) +

(∏

k

pk

)2

X
1
12




We replace the exponents 1 and 2 of pk in the error term by 0 and 1 respectively when LC is multi, split, or

non-split. When LC is a in the Weil bound, pk and p2k are replaced by HG(a, pk)/pk and HG(a, pk) respectively.
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4. Proofs of the Main Theorems

4.1. Boundedness of average analytic rank of elliptic curves with prescribed torsion group. In

this section, we show that average analytic rank of elliptic curves with prescribed torsion G is bounded under

the GRH for elliptic curve L-functions. Let φ be an even non-negative function with its Fourier transform φ̂

compactly supported. Let γE denote the imaginary part of a non-trivial zero ρE = 1
2 + iγE of an elliptic curve

L-function L(s,E). By the explicit formula, we have

1

|EG(X)|
∑

E∈EG(X)

∑

γE

φ

(
γE

logX

2π

)
=

φ̂(0)

|EG(X)|
∑

E∈EG(X)

logNE

logX
+

2

π

∫ ∞

−∞
φ

(
logX · r

2π

)
Re

Γ′
E

ΓE
(
1

2
+ ir)dr

− 2

logX |EG(X)|

∞∑

n=1

Λ(n)√
n
φ̂

(
log n

logX

) ∑

E∈EG(X)

âE(n)

≤ φ̂(0)− 2

logX |EG(X)|

∞∑

n=1

Λ(n)√
n
φ̂

(
log n

logX

) ∑

E∈EG(X)

âE(n) +O

(
1

logX

)

≤ φ̂(0)− S1 − S2 +O

(
1

logX

)
,

where

S1 =
2

logX |EG(X)|
∑

p

log p√
p
φ̂

(
log p

logX

) ∑

E∈EG(X)

âE(p),

and

S2 =
2

logX |EG(X)|
∑

p

log p

p
φ̂

(
2 log p

logX

) ∑

E∈EG(X)

âE(p
2).

From now on, for a positive constant σ we specify the test function φ and φ̂:

φ̂(u) =
1

2

(
1

2
σ − 1

2
|u|
)

for |u| ≤ σ, and φ(x) =
sin2(2π 1

2σx)

(2πx)2
.

Note that φ(0) = σ2

4 and φ̂n(0) =
σ
4 .

If we show

−S1 − S2 =
1

2
φ(0) + o(1),(14)

by the positivity of φ, we have

1

|EG(X)|
∑

E∈EG(X)

rE ≤ 1

2
+
φ̂(0)

φ(0)
+ o(1) ≤ 1

2
+

1

σ
+ o(1).(15)

Hence, it is left to show (14) holds for each torsion group G with some explicit σ. For this purpose, we need

the following lemmas.

Lemma 4.1. For a torsion group G in G≥5,

∑

E∈EG(X)

âE(p) ≪
(
X

1
d(G)

p
+ p2X

1
e(G) + pX

1
e(G) logX

)
.

For G = Z/3Z or Z/4Z,

∑

E∈EG(X)

âE(p) ≪
X

1
d(G)

p
+ pX

1
e(G) + p2X

1
12 .



AVERAGE ANALYTIC RANK OF ELLIPTIC CURVES WITH PRESCRIBED TORSION 25

Proof. We know that

∑

E∈EG(X)

âE(p) =
∑

|a|<2
√
p

∑

E∈EG(X)
aE(p)=a

âE(p) +
∑

E∈EG(X)
E mult at p

âE(p).

When G ∈ G≥5 by Corollary 3.10,
∣∣∣∣∣∣∣∣

∑

E∈EG(X)
E mult red at p

âE(p)

∣∣∣∣∣∣∣∣
≪ 1

p
3
2

X
1

d(G) + p
1
2X

1
e(G) +

1

p
1
2

X
1

e(G) logX.

By Corollary 3.10, (7) and (8),

∑

|a|<2
√
p

∑

E∈EG(X)
aE(p)=a

âE(p) =
∑

|a|<2
√
p

a√
p

(
c(G)

HG(a, p)

p2 − 1
X

1
d(G) +O

(
HG(a, p)X

1
e(G) +

HG(a, p)

p
X

1
e(G) logX

))

≪ X
1

d(G)

p
+ p2X

1
e(G) + pX

1
e(G) logX.

For G = Z/3Z or Z/4Z, by Theorem 3.7,
∣∣∣∣∣∣∣∣

∑

E∈EG(X)
E mult red at p

âE(p)

∣∣∣∣∣∣∣∣
≪ 1√

p

(
1

p
X

1
d(G) +X

1
e(G) + pX

1
12

)
≪ 1

p
3
2

X
1

d(G) +
1

p
1
2

X
1

e(G) + p
1
2X

1
12 .

By Theorem 3.7, (7) and (8),

∑

|a|<2
√
p

∑

E∈EG(X)
aE(p)=a

âE(p) =
∑

|a|<2
√
p

a√
p

(
c(G)

HG(a, p)

p2
p

12
d(G)

p
12

d(G) − 1
X

1
d(G) +O

(
HG(a, p)(p

−1X
1

e(G) +X
1
12 )
))

≪ X
1

d(G)

p
+ pX

1
e(G) + p2X

1
12 .

�

Lemma 4.2. For a torsion group G in G≥5,

∑

E∈EG(X)

âE(p
2) = −c(G)X

1
d(G) +O

(
1

p
1
2

X
1

d(G) + p2X
1

e(G) + pX
1

e(G) logX

)

For G = Z/3Z or Z/4Z,

∑

E∈EG(X)

âE(p
2) = −c(G)X

1
d(G) +O

(
1

p
1
2

X
1

d(G) + pX
1

e(G) + p2X
1
12

)
.

Proof. We know that

∑

E∈EG(X)

âE(p
2) =

∑

|a|<2
√
p

∑

E∈EG(X)
aE(p)=a

âE(p
2) +

∑

E∈EG(X)
E mult at p

1

p
.
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By Corollary 3.10,

∑

E∈EG(X)
E mult at p

1

p
≪ X

1
d(G)

p2
+X

1
e(G) +

X
1

e(G) logX

p

and
∑

|a|<2
√
p

∑

E∈EG(X)
aE(p)=a

âE(p
2) =

∑

|a|<2
√
p

∑

E∈EG(X)
aE(p)=a

(âE(p)
2 − 2)

=
∑

|a|<2
√
p

(
a2

p
− 2

)(
c(G)

HG(a, p)

p2 − 1
X

1
d(G) +O

(
HG(a, p)X

1
e(G) +

HG(a, p)

p
X

1
e(G) logX

))

= c(G)

∑
|a|<2

√
p a

2HG(a, p)

p(p2 − 1)
X

1
d(G) − 2c(G)

∑
|a|<2

√
pHG(a, p)

(p2 − 1)
X

1
d(G) +O(p2X

1
e(G) + pX

1
e(G) logX)

= −c(G)X
1

d(G) +O

(
1

p
1
2

X
1

d(G) + p2X
1

e(G) + pX
1

e(G) logX

)
,

by Corollary 3.10 and (7) and (9).

For G = Z/3Z or Z/4Z, by Theorem 3.7, (7) and (9), similarly we can show that

∑

E∈EG(X)

âE(p
2) = −c(G)X

1
d(G) +O

(
1

p
1
2

X
1

d(G) + pX
1

e(G) + p2X
1
12

)
.

�

By Lemma 4.1, for G in G≥5,

S1 ≪
1

logX

∑

p

log p√
p
φ̂

(
log p

logX

)(
1

p
+ p2X

− 1
e(G) + pX

− 1
e(G) logX

)
(16)

≪ X
− 1

e(G)

∑

p≤Xσ

p
3
2 log p≪ X

− 1
e(G)

+ 5σ
2

and for G = Z/3Z or Z/4Z,

S1 ≪
1

logX

∑

p

log p√
p
φ̂

(
log p

logX

)(
1

p
+ pX

1
e(G)

− 1
d(G) + p2X

1
12

− 1
d(G)

)
(17)

≪ X
− 1

d(G)

∑

p≤Xσ

(
p

1
2 log pX

1
e(G) + p

3
2 log pX

1
12

)
≪ X

− 1
d(G)

(
X

1
e(G)

+ 3σ
2 +X

1
12

+ 5σ
2

)
.

By Lemma 4.2, for G in G≥5,

S2 =
2

logX

∑

p

log p

p
φ̂

(
2 log p

logX

)(
−1 +O

(
1

p
1
2

+ p2X
− 1

e(G) + pX
− 1

e(G) logX

))

= − 2

logX

∑

p

log p

p
φ̂

(
2 log p

logX

)
+O


 1

logX
+
∑

p≤X
σ
2

p log pX
− 1

e(G)




= −1

2
φ(0) +O

(
1

logX
+X

− 1
e(G)

+σ
)
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and for G = Z/3Z or Z/4Z,

S2 =
2

logX

∑

p

log p

p
φ̂

(
2 log p

logX

)(
−1 +O

(
1

p
1
2

+ pX
1

e(G)
− 1

d(G) + p2X
1
12

− 1
d(G)

))

= − 2

logX

∑

p

log p

p
φ̂

(
2 log p

logX

)
+O


 ∑

p≤X
σ
2

log pX
1

e(G)
− 1

d(G) + p log pX
1
12

− 1
d(G)




= −1

2
φ(0) +O

(
X

1
e(G)

− 1
d(G)

+σ
2 +X

1
12

− 1
d(G)

+σ
)
.

From our computation, if we take σ = 1
18 ,

1
18 , and 1

5d(G) for G = Z/3Z, Z/4Z and G in G≥5 respectively then

(14) and (15) hold. Therefore, the average of ranks is bounded by

18 +
1

2
, 18 +

1

2
, and 5d(G) +

1

2

for G = Z/3Z, Z/4Z and G in G≥5 respectively and we obtain Theorem 1 except for the cases of G = Z/2Z and

Z/2Z × Z/2Z, which will be treated in the next section.

4.2. Trace formula for elliptic curves with torsion points. In this section we assume that G = Z/2Z or

Z/2Z × Z/2Z.

Theorem 4.3. [Frobenius Trace Formula for Elliptic Curves] Let G = Z/2Z or Z/2Z × Z/2Z, k be a fixed

positive integer. Assume ei = 1 or 2, and ri is odd or 2 if ei = 1, ri = 1 if ei = 2 for i = 1, . . . , k. Then,

∑

E∈EG(X)

âE(p
e1
1 )r1 âE(p

e2
2 )r2 · · · âE(pekk )rk = c

c(G)

ζ(12/d(G))
X

1
d(G) +Ok

((
k∑

i=1

1

pi

)
X

1
d(G)

)

+Ok



(

k∏

i=1

pi

)
X

1
e(G) +

(
k∏

i=1

pi

)2

X
1
12




where

c =





0 if ej = 1 and rj is odd for some j,

−1 if rj = 2 for all j with ej = 1, and the number of j’s with ej = 2 is odd,

1 otherwise.

and the first error term exists only if ei = 1 and ri = 2 or ei = 2 for all i.

Proof. First, we consider the case ej = 1 and rj is odd for some j. WLOG, we can assume that e1 = 1 and

r1 is odd. We fix local conditions at primes pj, j = 2, 3, . . . , k and the local condition at p1 is aE(p1) = a. By

Theorem 3.15, there are

c(G)
HG(a, p1)

p21
|S′|GX

1
d(G) +O

(
HG(a, p1)

p1
(

k∏

i=2

c1(pi))X
1

e(G) +HG(a, p1)(

k∏

i=2

c2(pi))X
1
12

)

such elliptic curves in EG(X), and S′ is the set of the fixed local conditions at pi, i = 2, 3, . . . , k. For the values of

c1(pi) and c2(pi), we refer to Theorem 3.15. Since âE(p
e2
2 )r2 · · · âE(pekk )rk is a constant and

∑
a a

r1HG(a, p1) = 0

for odd r1, only the error term above generates a contribution to the sum. Due to
∑

aHG(a, p) = p2 + OG(p),

we can see that the total contribution from the error term is at most O

((∏k
i=1 pi

)
X

1
e(G) +

(∏k
i=1 pi

)2
X

1
12

)
.

Next, we need to deal with the case of bad prime p1. Since aE(p) = 0 when E has additive reduction at p,

it is enough to consider the left two local conditions, which is split and non-split. Since the number of elliptic
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curves with split reduction at p1 and that of elliptic curves with non-split reduction at p1 is the same up to an

error term, by the similar argument above, the contribution comes from the error term and is at most

Ok


 1

p
r1
2
1

(

k∏

i=2

pi)X
1

e(G) +
p1

p
r1
2
1

(

k∏

i=2

pi)
2X

1
12




and the case ej = 1 and rj is odd for some j is done.

The next case we treat is ei = 1 and ri = 2 for all i. First, we compute the contribution from good primes by

imposing the local conditions LCpi = ai for all i = 1, . . . , k and varying the ai within the Weil bound |ai| < 2
√
pi.

The corresponding contribution is by Theorem 3.15



k∏

i=1

p
12

d(G)

i

p3i (p
12

d(G)

i − 1)


 c(G)

ζ(12/d(G))
X

1
d(G) ·

∑

|ai|<2
√
pi

a21HG(a1, p1)a
2
2HG(a2, p2) · · · a2kHG(ak, pk)

+O


 ∑

|ai|<2
√
pi

[
k∏

i=1

a2iHG(ai, pi)

p2i
X

1
e(G) +

k∏

i=1

a2iHG(ai, pi)

pi
X

1
12

]
 ,

which is, by the identity
∑

|a|<2
√
p a

2HG(a, p) = p3 +OG(p
2),

c(G)

ζ(12/d(G))
X

1
d(G) +Ok



(

k∑

i=1

1

pi

)
X

1
d(G) +

(
k∏

i=1

pi

)
X

1
e(G) +

(
k∏

i=1

pi

)2

X
1
12


 .

When LCpi is multi, âE(pi)
2 = 1

pi
. Then using the trivial bound âE(pi)

2 ≤ 4 for the other primes pj, the

contribution for this case is

≪k

(
k∑

i=1

1

p2i

)
X

1
d(G) +

(
k∑

i=1

1

pi

)
X

1
e(G) +X

1
12 .

The last case is when e1 = e2 = · · · = el = 2 and ej = 1 and rj = 2 for j > l for some i ≤ l ≤ k. Note that

âE(p
2) = âE(p)

2− 2 for E with good reduction at p and âE(p
2) = âE(p)

2 for E with bad reduction at p. Hence,

it is enough to consider elliptic curves with good reduction at all the primes pi’s. This amounts to
∑

E has good reduction at pi’s

(âE(p1)
2 − 2) · · · (âE(pl)2 − 2)âE(pl+1)

2 · · · âE(pk)2,

which is equal to

(−1)l
c(G)

ζ(12/d(G))
X

1
d(G) +Ok



(

k∑

i=1

1

pi

)
X

1
d(G) +

(
k∏

i=1

pi

)
X

1
e(G) +

(
k∏

i=1

pi

)2

X
1
12




by the result of the previous case and the identity (1− 2)l = (−1)l. �

4.3. The distribution of analytic ranks of elliptic curves. From now on, assume that every elliptic curve

L-function satisfies Generalized Riemann Hypothesis. Let γE denote the imaginary part of a non-trivial zero of

L(s,E). We index them using the natural order in real numbers:

· · · γE,−3 ≤ γE,−2 ≤ γE,−1 ≤ γE,0 ≤ γE,1 ≤ γE,2 ≤ γE,3 · · ·

if analytic rank rE is odd,

· · · γE,−3 ≤ γE,−2 ≤ γE,−1 ≤ 0 ≤ γE,1 ≤ γE,2 ≤ γE,3 · · ·

otherwise.
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In this section, we also assume that G = Z/2Z or Z/2Z×Z/2Z. For elliptic curves in EG, we obtain an upper

bound on every n-th moment of analytic ranks and as a corollary, we show that there are not so many elliptic

curves with a high rank. For this purpose, we compute an n-level density with multiplicity. The main reference

is [Mil, Part VI].

For the n-level denisty, we choose the same test function for some σn in the previous section:

φ̂n(u) =
1

2

(
1

2
σn − 1

2
|u|
)

for |u| ≤ σn, and φn(x) =
sin2(2π 1

2σnx)

(2πx)2
.

Note that φn(0) =
σ2
n

4 , φ̂n(0) =
σn

4 and
∫

R
|u|φ̂n(u)2du =

1

6
φn(0)

2.(18)

We show that the n-level density holds by taking σn = 1
9n and 1

10n for G = Z/2Z and Z/2Z×Z/2Z respectively.

The n-level density with multiplicity is

D∗
n(EG,Φ) =

1

|EG(X)|
∑

E∈EG(X)

∑

j1,j2,...,jn

φn

(
γE,j1

logX

2π

)
φn

(
γE,j2

logX

2π

)
· · ·φn

(
γE,jn

logX

2π

)
,

where γE,jk is an imaginary part of jk-th zero of L(s,E). Then, trivially we have

1

|EG(X)|
∑

E∈EG(X)

rnE ≤ 1

φn(0)n
D∗

n(EG,Φ).(19)

By the same argument in [CJ, §4], we have

D∗
n(EG,Φ) ≤

1

|EG(X)|
∑

S

φ̂n(0)
|Sc|
(
− 2

logX

)|S|

×
∑

mi1
,mi2

,...,mik

Λ(mi1)Λ(mi2) · · ·Λ(mik)√
mi1mi2 · · ·mik

φ̂n

(
logmi1

logX

)
· · · φ̂n

(
logmik

logX

)

×
∑

E∈EG(X)

âE(mi1)âE(mi2) · · · âE(mik) +O

(
1

logX

)
,

where mi’s are primes or squares of a prime with mi ≤ Xσn and S = {ii, i2, . . . , ik} runs over every subset of

{1, 2, 3, · · · , n}. Using the Frobenius trace formula (Theorem 4.3), we can prove the following propositions as

we did in [CJ, Proposition 4.1, 4.2].

Proposition 4.4. Let φ̂ be as above with σn = 1
9n and 1

10n for G = Z/2Z and Z/2Z×Z/2Z respectively. Then,

we have
∑

E∈EG(X)

∑

mi1
mi2

...mik
6=�

Λ(mi1) · · ·Λ(mik)âE(mi1) · · · âE(mik)√
mi1mi2 · · ·mik

φ̂n

(
logmi1

logX

)
· · · φ̂n

(
logmik

logX

)

≪ |EG(X)|.

Proof. Note that âE(mi1)âE(mi2) · · · âE(mik) is of the form

âE(p1)
e1 âE(p2)

e2 · · · âE(pt)et âE(q21)l1 âE(q22)l2 · · · âE(q2s)ls ,

with with e1 + · · · + et + l1 + · · · + ls = k. Here p1, p2, . . . , pt are distinct primes and q1, q2, . . . , qs are distinct

primes, but some qj might be equal to some pi. For a while we assume that the primes p1, . . . , pt, q1, . . . , qs are

all distinct.
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By our assumption, one of ei’s is odd. In this case, the proof of Theorem 4.3 also works and we have,

∑

E∈E(X)

âE(p1)
e1 âE(p2)

e2 · · · âE(pt)et âE(q21)l1 âE(q22)l2 · · · âE(q2s)ls

= O(p1p2 · · · ptq1q2 · · · qsX
1

e(G) + (p1p2 · · · ptq1q2 · · · qs)2X
1
12 ).

The contribution of this case in the worst situation is at most

≪ X
1

e(G)


 ∑

p<Xσn

p
1
2 log p




k

+X
1
12


 ∑

p<Xσn

p
3
2 log p




k

≪ X
1

e(G) (X
3
2
σn)n +X

1
12 (X

5
2
σn)n ≪ X

1
d(G) .

where the last inequlity holds by taking σn = min
(

2
3n

(
1

d(G) − 1
e(G)

)
, 2
5n

(
1

d(G) − 1
12

))
, which are 1

9n and 1
10n

respectively.

Now, we assume that some pi is equal to some qj. Since âE(q
2)l = (âE(q)

2 − 2)l if E has good reduction at q

and âE(q
2)l = âE(q)

2l otherwise, still we can use the Frobenius trace formula. �

Proposition 4.5. Let φ̂ be as above with σn = 1
9n and 1

10n for G = Z/2Z and Z/2Z× Z/2Z respectively. For a

subset S = {i1, i2, . . . , ik} of {1, 2, . . . , n},

1

|EG(X)|

( −2

logX

)|S| ∑

E∈EG(X)

∑

mi1
mi2

...mik
=�




|S|∏

j=1

Λ(mij )âE(mij )√
mij

φ̂n

(
logmij

logX

)


=
∑

S2⊂S
|S2|even

(
1

2
φn(0)

)|Sc
2|
|S2|!

(∫

R
|u|φ̂n(u)2du

) |S2|
2

+O

(
1

logX

)
.

Proof. In this proof, we compute the double sum not considering the term 1
|E(X)|

(
−2

logX

)k
. We show that every

contribution except one is ≪ X
1

d(G) (logX)k−1, hence they become the error term O(1/ logX) in the end.

Note that âE(mi1)âE(mi2) · · · âE(mik) is of the form

âE(p1)
e1 âE(p2)

e2 · · · âE(pt)et âE(q21)l1 âE(q22)l2 · · · âE(q2s)ls ,

with with e1 + · · ·+ et + l1 + · · ·+ ls = k and ei’s are all even. If ei ≥ 4 for some i or lj ≥ 2 for some j, then by

the trivial bound, this term is majorized by X
1

d(G) (logX)k−1. Let S2 be a subset of S with even cardinality 2t:

S2 = {ia1 , ia2 , · · · , ia2t−1 , ia2t}, Sc
2 = {ib1 , ib2 , · · · , ibs}.

There are (2t)!/2t ways to pair up two elements in S2. For example, we consider the following pairings.

(ia1 , ia2), (ia3 , ia4), (ia5 , ia6), · · · , (ia2t−1 , ia2t).

This set of pairings corresponds the following sum

∑

E∈EG(X)

âE(pia1 )
2âE(pia3 )

2 · · · âE(pia2t−1
)2âE(q

2
ib1

)âE(q
2
ib2

) · · · âE(q2ibs )
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where 2t+ s = k. By the Frobenius trace formula, the above sum is

|EG(X)| ·
{

1 if s is even,

−1 if s is odd
+O

((
1

p1
+ · · ·+ 1

pt
+

1

q1
+ · · · 1

qs

)
X

1
d(G)

)

+O
(
p1 · · · ptq1 · · · qsX

1
e(G) + (p1 · · · ptq1 · · · qs)2X

1
12

)

The contribution from the 2nd big O-term is dominated by

(Xσn logX)t(X
σn
2 )sX

1
e(G) + (X2σn logX)t(Xσn)sX

1
12 ≪ X

1
d(G) (logX)t.

The contribution from the error term O
((

1
p1

+ · · ·+ 1
pt

+ 1
q1

+ · · · 1
qs

)
X

1
d(G)

)
is dominated byX

1
d(G) (logX)k−1.

The main term of the sum, after being divided by |EG(X)|
(
logX
−2

)k
, gives rise to

t∏

i=1

(( −2

logX

)2∑

p

log2 p

p
φ̂n

(
log p

logX

)2
)

×
s∏

j=1

(
2

logX

∑

q

log q

q
φ̂n

(
2 log q

logX

))
,

which equals, by the prime number theorem,
(
2t

t∏

i=1

∫

R
|u|φ̂n(u)2du

)

(
1

2

)s s∏

j=1

∫

R
φ̂n(u)du


 .

Since there are (2t)!/2t ways to pair up two elements in S2, the claim follows. �

By Propositions 4.4 and 4.5, and (18) we have the following inequality

D∗
n(EG,Φ) ≤ φn(0)

n
∑

S

(
1

σn

)|Sc| ∑

S2⊂S
|S2|even

(
1

2

)|Sc
2|
|S2|!

(
1

6

) |S2|
2

+O

(
1

logX

)
,

and, by (19), we have

Theorem 4.6. Assume GRH for elliptic curve L-functions. Let rE be the analytic rank of an elliptic curve E.

For every positive integer n, we have

lim sup
X→∞

1

|EG(X)|
∑

E∈EG(X)

rnE ≤
∑

S

(
1

σn

)|Sc| ∑

S2⊂S
|S2|even

(
1

2

)|Sc
2|
|S2|!

(
1

6

) |S2|
2

,

where S runs over subsets of {1, 2, 3, . . . , n}, and S2 runs over subsets of even cardinality of the set S. In

particular, the average analytic ranks of EZ/2Z is bounded by 9.5 and the average analytic ranks of EZ/2Z×Z/2Z is

bounded by 10.5.

Now, we show the sparsity of elliptic curves in EG with high analytic ranks. We choose the test function

φ2n(x). Then φ̂2n(0) =
1
4σ2n, and φ2n(0) =

1
4σ

2
2n.

By Weil’s explicit formula, we have

rEφ2n(0) ≤ φ̂2n(0)−
2

logX

∑

mi

âE(mi)Λ(mi)√
mi

φ̂2n

(
logmi

logX

)
+O

(
1

logX

)
,

hence

rE ≤ 1

σ2n
+

4

σ22n

(
− 2

logX

∑

mi

âE(mi)Λ(mi)√
mi

φ̂2n

(
logmi

logX

))
+O

(
1

σ22n logX

)
.
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Now assume that rE ≥ 1+C
σ2n

with some positive constant C. Then, for sufficiently large X,

− 2

logX

∑

mi

âE(mi)Λ(mi)√
mi

φ̂2n

(
logmi

logX

)
≥ Cσ2n

4
.

Therefore,

∣∣∣∣{E ∈ EG(X)|rE ≥ 1 + C

σ2n
}
∣∣∣∣
(
Cσ2n
4

)2n

≤
∑

E∈EG(X)

(
− 2

logX

∑

mi

âE(mi)Λ(mi)√
mi

φ̂2n

(
logmi

logX

))2n

≤
(
σ22n
4

)2n ∑

S2⊂{1,2,3,...,2n}

(
1

2

)|Sc
2|
|S2|!

(
1

6

) |S2|
2

|EG(X)| +O

(
X

1
d(G)

logX

)
,

where the second inequality is justified by Propositions 4.4, 4.5, and finally we obtain

Theorem 4.7. Assume GRH for elliptic curve L-functions. Let C be a positive constant, let n a positive integer.

We have

P

(
rE ≥ (1 + C)

σ2n

)
≤
∑n

k=0

(2n
2k

) (
1
2

)2n−2k
(2k)!

(
1
6

)k
(

C
σ2n

)2n ,

where σ2n = 1
18n and 1

20n for G = Z/2Z and G = Z/2Z× Z/2Z respectively.
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5. Appendix

Here we summarize fG(a, b) and gG(a, b) for all torsion subgroup.

f5 = −27a4 + 324a3b− 378a2b2 − 324ab3 − 27b4,

g5 = 54a6 − 972a5b+ 4050a4b2 + 4050a2b4 + 972ab5 + 54b6,

f6 = −243a4 − 324a3b− 810a2b2 − 324ab3 − 27b4,

g6 = −1458a6 − 2916a5b+ 7290a4b2 + 9720a3b3 + 5346a2b4 + 972ab5 + 54b6,

f7 = −27a8 + 324a7b− 1134a6b2 + 1512a5b3 − 945a4b4 + 378a2b6 − 108ab7 − 27b8

g7 = 54a12 − 972a11b+ 6318a10b2 − 19116a9b3 + 30780a8b4 − 26244a7b5 + 14742a6b6

−11988a5b7 + 9396a4b8 − 2484a3b9 − 810a2b10 + 324ab11 + 54b12

f8 = −432a8 + 1728a7b− 6048a6b2 + 12096a5b3 − 12960a4b4 + 7776a3b5 − 2592a2b6 + 432ab7 − 27b8

g8 = −3456a12 + 20736a11b− 190080a9b3 + 555984a8b4 − 855360a7b5 + 840672a6b6

−554688a5b7 + 246240a4b8 − 71712a3b9 + 12960a2b10 − 1296ab11 + 54b12

f9 = −27a12 + 324a11b− 1458a10b2 + 3456a9b3 − 5103a8b4 + 4860a7b5 − 3078a6b6

+972a5b7 + 486a4b8 − 756a3b9 + 324a2b10 − 27b12

g9 = 54a18 − 972a17b+ 7290a16b2 − 30780a15b3 + 84078a14b4 − 160380a13b5 + 222912a12b6

−228420a11b7 + 174960a10b8 − 109728a9b9 + 73386a8b10 − 58320a7b11 + 39690a6b12

−16524a5b13 + 1458a4b14 + 2268a3b15 − 972a2b16 + 54b18
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f10 = −432a12 + 3456a11b− 11232a10b2 + 19440a9b3 − 19440a8b4 + 7776a7b5 + 6912a6b6

−11664a5b7 + 6480a4b8 − 1080a3b9 − 432a2b10 + 216ab11 − 27b12

g10 = 3456a18 − 41472a17b+ 217728a16b2 − 661824a15b3 + 1296000a14b4 − 1767744a13b5 + 1926288a12b6

−2037312a11b7 + 2133216a10b8 − 1803600a9b9 + 981072a8b10 − 199584a7b11 − 128304a6b12

+112752a5b13 − 32400a4b14− 216a3b15 + 2592a2b16 − 648ab17 + 54b18

f12 = −3888a16 + 31104a15b− 194400a14b2 + 816480a13b3 − 2269296a12b4 + 4416768a11b5 − 6318000a10b6

+6855840a9b7 − 5747760a8b8 + 3753216a7b9 − 1907712a6b10 + 747792a5b11 − 221616a4b12

+47952a3b13 − 7128a2b14 + 648ab15 − 27b16

g12 = −93312a24 + 1119744a23b− 2519424a22b2 − 19502208a21b3 + 175146624a20b4 − 738377856a19b5

+2114216640a18b6 − 4566176064a17b7 + 7806726864a16b8 − 10854518400a15b9 + 12478123872a14b10

−11984223456a13b11 + 9676823760a12b12 − 6590020032a11b13 + 3786612624a10b14

−1831706784a9b15 + 742184208a8b16 − 249811776a7b17 + 68988672a6b18 − 15353712a5b19

+2682720a4b20 − 353808a3b21 + 33048a2b22 − 1944ab23 + 54b24

f2×4 = −27a4 − 378a2b2 − 27b4

g2×4 = −54a6 + 1782a4b2 + 1782a2b4 − 54b6

f2×6 = −27a8 + 1296a6b2 − 12960a4b4 − 393984a2b6 − 62208b8

g2×6 = 54a12 − 3888a10b2 + 85536a8b4 − 2363904a6b6 + 43670016a4b8 + 86593536a2b10 − 5971968b12

f2×8 = −452984832a16 − 1811939328a15b− 3170893824a14b2 − 3170893824a13b3 − 1953497088a12b4

−707788800a11b5 − 88473600a10b6 + 51314688a9b7 + 31961088a8b8 + 6414336a7b9 − 1382400a6b10

−1382400a5b11 − 476928a4b12 − 96768a3b13 − 12096a2b14 − 864ab15 − 27b16

g2×8 = 3710851743744a24 + 22265110462464a23b+ 61229053771776a22b2 + 102048422952960a21b3

+114456583471104a20b4 + 90104118902784a19b5 + 49618146557952a18b6 + 17546820452352a17b7

+2194711511040a16b8 − 1694163271680a15b9 − 1411953721344a14b10

−656375021568a13b11 − 246536994816a12b12 − 82046877696a11b13

−22061776896a10b14 − 3308912640a9b15 + 535818240a8b16 + 535486464a7b17

+189278208a6b18 + 42964992a5b19 + 6822144a4b20 + 760320a3b21 + 57024a2b22 + 2592ab23 + 54b24
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