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A Ramsey variant of the Brown-Erdős-Sós conjecture

Asaf Shapira ∗ Mykhaylo Tyomkyn †

Abstract

An r-uniform hypergraph (r-graph for short) is called linear if every pair of vertices belong to
at most one edge. A linear r-graph is complete if every pair of vertices are in exactly one edge.
The famous Brown-Erdős-Sós conjecture states that for every fixed k and r, every linear r-graph
with Ω(n2) edges contains k edges spanned by at most (r − 2)k + 3 vertices. As an intermediate
step towards this conjecture, Conlon and Nenadov recently suggested to prove its natural Ramsey
relaxation. Namely, that for every fixed k, r and c, in every c-colouring of a complete linear r-
graph, one can find k monochromatic edges spanned by at most (r − 2)k + 3 vertices. We prove
that this Ramsey version of the conjecture holds under the additional assumption that r ≥ r0(c),
and we show that for c = 2 it holds for all r ≥ 4.

1 Introduction

The first result in extremal graph theory is probably Mantel’s theorem stating that an n vertex
graph with more than n2/4 edges contains 3 edges spanned by 3 vertices, that is, a triangle. This is
of course just a special case of Turán’s theorem, one of the fundamental theorems in graph theory.
Turán’s theorem spurred an entire branch within graph theory of what is now called Turán-type
problems in graphs and hypergraphs [11], as well as in other settings such as matrices and ordered
graphs, see [24].

One of the most notorious Turán-type problems is a conjecture raised in the early 70’s by Brown,
Erdős and Sós [2, 3]. To state it we need a few definitions. An r-uniform hypergraph (r-graph for
short) G = (V,E) is composed of a vertex set V and an edge set E where every edge in E contains
precisely r distinct vertices. An r-graph is linear if every pair of vertices belong to at most one edge.
We call a set of k edges spanned by at most v vertices a (v, k)-configuration. Then the Brown–Erdős–
Sós conjecture (BESC for short) states that for every k, r ≥ 3 and δ > 0 if n ≥ n0(k, r, δ) then every
linear r-graph on n vertices with at least δn2 edges contains an ((r − 2)k + 3, k)-configuration.

The simplest case of the BESC is when r = k = 3. This special case was famously solved by
Ruzsa and Szemerédi [16] and became known as the (6, 3)-theorem. To get a perspective on the
importance of this theorem suffice it to say that the famous triangle removal lemma (see [4] for
a survey) was devised in order to prove the (6, 3)-theorem, that one of the first applications of
Szemerédi’s regularity lemma [23] was in [16], and that the (6, 3)-theorem implies Roth’s theorem
[15] on 3-term arithmetic progressions in dense sets of integers. Despite much effort the problem
is wide open already for the next configuration, namely (7, 4). As an indication of the difficulty
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of this case let us mention that it implies the notoriously difficult Szemerédi theorem [21, 22] for
4-term arithmetic progressions (see [9]). Let us conclude this discussion by mentioning that the best
result towards the BESC was obtained 15 years ago by Sárközy and Selkow [17] who proved that
f3(n, k + 2 + ⌊log2 k⌋, k) = o(n2).1 Since then, the only advancement was obtained by Solymosi and
Solymosi [19] who improved the f3(n, 15, 10) = o(n2) bound of [17] to f3(n, 14, 10) = o(n2). Conlon,
Gishboliner, Levanzov and Shapira [5] have recently announced an improvement of the result of [17]
that replaces the log k term with log k/ log log k.

Given the difficulty of the BESC, researchers have recently looked at various relaxations of it.
For example, instead of looking at arbitrary r-graphs, one can look at those arising from a group,
see [13, 14, 18, 20, 26]. We will consider in this paper another relaxation of the BESC which was
recently suggested independently by Conlon and Nenadov (private communications). We say that a
linear r-graph in complete2 if every pair of vertices belong to exactly one edge.

Problem 1.1 (Conlon, Nenadov). Prove that the following holds for every r ≥ 3, k ≥ 3, c ≥ 2 and
large enough n ≥ n0(c, r, k): If G is an n-vertex complete linear r-graph then in every c-colouring of
its edges one can find k edges of the same colour, which are spanned by at most (r− 2)k+3 vertices.

As we mentioned above, the BESC is a Turán-type question, stating that enough edges force
the appearance of certain configurations. With this perspective in mind, Problem 1.1 is its natural
Ramsey weakening. Indeed, BESC implies its statement, as it gives the required monochromatic
configuration in the most popular colour. The relation is analogous to the one between Szemerédi’s
theorem [22] and Van der Waerden’s theorem [25]. In order to get a better feeling of this problem,
we encourage the reader to convince themself of the folklore observation that Problem 1.1 holds for
c = 1. A simple application of Ramsey’s theorem also shows that Problem 1.1 holds when k = 3.

Our main result in this paper gives a positive answer to Problem 1.1 assuming r is large enough.
More precisely, we have the following.

Theorem 1.2. For every integer c there exists r0 = r0(c) such that for every r ≥ r0 and integer
k ≥ 3 there exists n0 = n0(c, r, k) such that every c-colouring of a complete linear r-graph on n > n0

vertices contains a monochromatic ((r − 2)k + 3, k)-configuration.

Note that even under assumptions of large uniformity it is unlikely that ((r− 2)k+3, k) can ever
be improved to ((r − 2)k + 2, k). Indeed, a conjecture by Füredi and Ruszinkó [6] states that for
each r ≥ 3 there exist arbitrarily large r-Steiner Systems without an ((r − 2)k + 2, k)-configuration.
That would preclude an extension of Theorem 1.2 to ((r − 2)k + 2, k) even for c = 1. The case
r = 3 of the Füredi-Ruszinkó conjecture is an old conjecture by Erdős [8], which was recently proved
asymptotically, independently in [1] and [7].

In the important special case of c = 2 we show that r0(2) can be chosen as small as 4.

Theorem 1.3. For any integers r ≥ 4 and k ≥ 3 there exists n0 = n0(r, k) such that every 2-
colouring of a complete linear r-graph on n > n0 vertices contains a monochromatic ((r−2)k+3, k)-
configuration.

While we believe that with some effort it should be possible to show that r0(2) = 3, it appears
that completely removing the assumption that r is large enough as a function of c would require a
different approach. In particular, while the case k = 3 is an easy application of Ramsey’s theorem,
we do not know how to resolve Problem 1.1 already for (c, r, k) = (3, 3, 4).

1Here, f3(n, v, k) is the corresponding extremal number, i.e. the smallest m such that every 3-graph with n vertices
and m edges contains a (v, k)-configuration.

2Such an object is sometimes called an r-Steiner System (when r = 3 this is a Steiner Triple System). Note that
there are many non-isomorphic complete linear r-graphs on n vertices.
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1.1 Proof and paper overview

The proof of Theorems 1.2 and 1.3 has two key ideas. The first is to work with an auxiliary graph
B of “bowties”. Every vertex v in this graph corresponds to a pair of intersecting3 edges of the
r-graph G. The graph B contains edges only between a vertex b1, representing two intersecting edges
{S1, T} of G and another vertex b2, representing two intersecting edges {S2, T} and only if the edges
S1, S2, T form a (3r−3, r)-configuration. In Section 2 we will collect several preliminary observations
regarding the graph B and about edge-colourings of complete graphs. In Section 3 we will prove our
main results assuming B has certain nice properties. This will reduce the proof to proving Lemma
3.7 which is the main technical part of the paper and is proved in Section 4. The second main idea of
this paper is to define a somewhat subtle induction which will be used in order to gradually “grow”
((r − 2)k + 3, k)-configurations, for k = 3, 4, . . ., and thus prove Lemma 3.7. See Section 4 for an
overview of this proof.

Perhaps one take-home message of this paper is that even when considering the Ramsey relaxation
of the BESC (stated in Problem 1.1), and even after adding the assumption that r ≥ r0(c), one still
has to work quite hard in order to find the ((r − 2)k + 3, k)-configurations of the BESC.

Note added In the period when this paper was under review, Keevash and Long [12] proved a
density version of Theorem 1.2 by applying (among other things) the notion of bow tie graphs which
we introduce in this paper.

2 Preliminaries

2.1 Notation

We use graph in the standard meaning, i.e. referring to simple and undirected 2-uniform graphs
G = (V,E), where V is the set of vertices, and E ⊆

(

V
2

)

are the edges of G. We write e(G) for
|E(G)|. We use the shorthand components for connected components of a graph. For a vertex set
A ⊆ V we write G[A] to denote the subgraph of G induced on A, and similarly for disjoint vertex
sets A1, . . . , Am ⊆ V we use notation G[A1, . . . , Am] for the induced multipartite subgraph between
these sets.

We use r-graph for r-uniform hypergraphs, denoted by script letters, i.e. G = (V,E), where
E ⊆

(

V
r

)

. We refer to E as the set of hyperedges. A hypergraph is linear if no two hyperedges
intersect in more than one vertex. A complete linear r-graph (also known as r-Steiner System) is
a linear hypergraph corresponding to an edge-decomposition of a complete graph Kn into copies of
Kr. For a linear hypergraph G = (V,E(G)) the underlying graph is the graph G = (V,E(G)), where
E(G) = {e ∈

(V
2

)

: ∃e+ ∈ E(G) : e ⊂ e+}. For instance, the underlying graph of a complete linear
r-graph is always the complete graph.

For integers v and k we define a (v, k)-configuration to be a hypergraph on k hyperedges spanned
by at most v vertices.

We write dG(v), dG(v) for degree of the vertex v in the graph G or hypergraph G, respectively.
Similarly davg(G), davg(G) denote the average degree in a graph G or hypergraph G. For a graph G
denote by T (G) the 3-graph of triangles in G, and by T (G) the number of triangles in G, that is
T (G) = |E(T (G))|.

3Since we only consider linear r-graphs, if two edges intersect, they intersect at a single vertex. We will frequently
use this fact throughout the paper.
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S1

S2

T

Figure 1: An illustration of C4
3 , the unique (9, 3)-configuration in a linear 4-graph. In B, such a

configuration is represented by a triangle on the vertices b1 = {S1, T}, b2 = {S2, T} and b3 = {S1, S2}.

We conclude by observing that for every r ≥ 2 there is a unique (up to isomorphism) linear r-
graph consisting of 3 edges on at most 3r−3 vertices. For example, when r = 2 this is a triangle, and
the case r = 4 is depicted in Figure 1. For every r, we will use Cr

3 to denote this unique configuration.

2.2 The auxiliary graph B

For r ≥ 3, given a linear r-graph G, define B = B(G), the bowtie graph of G, to be the following
auxiliary graph. The vertices of B will be bowties of G; that is, each vertex b ∈ V (B) is a set of the
form b = {S, T} where S, T ∈ E(G) with S ∩ T = {u} for some vertex u ∈ V (G). We say that u is
the centre of the bowtie b. The edge set of B is defined by

E(B) = {b1, b2 ∈ B : b1 = {S1, T}, b2 = {S2, T}, |S1 ∩ S2| = 1, |S1 ∩ S2 ∩ T | = 0} , (2.1)

see Figure 1 for an illustration.

We shall now state some basic properties of the graph B.

Proposition 2.1. Suppose that G = (V,E(G)) is a linear r-graph, G is the underlying graph, and
B = B(G). Then the following statements hold.

(1) For any pair of bowties b1 = {S1, T} and b2 = {S2, T} with {b1, b2} ∈ E(B) we have that
{S1, S2, T} is a copy of Cr

3, and their centres, given by S1 ∩ T =: {u2}, S2 ∩ T =: {u2}, and
S1 ∩ S2 =: {u3} form a triangle in G.

(2) Every triangle {u, v, w} ⊂ V (G) which is not contained in a hyperedge of G uniquely defines a
copy of Cr

3 composed of the three edges {Q,S, T} ⊂ E(G), where {u, v} ⊂ Q, {u,w} ⊂ S, and
{v,w} ⊂ T . The bowties {Q,S}, {Q,T} and {S, T} form a triangle in B.

(3) All degrees in B are even, and ∆(B) ≤ 2(r − 1)2.

(4) For every vertex u ∈ V (G) the set Bu = {b ∈ B : u is a centre of b} is independent in B.

(5) With the above notation, for every u ∈ V (G),

∑

b∈Bu

dB(b) = 2(dT (G)(u)−

(

r − 1

2

)

dG(u)) .
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Proof. If b1 and b2 are as in (1), then, by inclusion-exclusion,

|S1 ∪ S2 ∪ T | = r + r + r − 1− 1− 1 + 0 = 3r − 3 ,

implying that S1, S2, T form a copy of Cr
3 . Moreover, {u1, u2, u3} form a triangle in G, as {u1, u2} ⊂

T ∈ E(G), {u1, u3} ⊂ S1 ∈ E(G), and {u2, u3} ⊂ S2 ∈ E(G). This shows (1).

Property (2) is similar. If u, v, w is a triangle, then, by definition of G, every pair of these vertices
belong to an edge of G. The assumption that the triple {u, v, w} does not belong to an edge of
G implies that there are three distinct edges Q,S, T each containing two of these vertices. The
assumption that G is linear and the fact that each two of these edges intersect in exactly one of the
vertices {u, v, w}, implies that they have no vertex in common. As in the previous paragraph this
means that |Q ∪ S ∪ T | = 3r− 3 so Q,S, T form a copy of Cr

3 . These observations and the definition
of B in (2.1) also guarantee that the bowties {Q,S}, {Q,T} and {S, T} form a triangle in B.

For a bowtie b = {S, T} ∈ B there are (r − 1)2 vertex pairs in S ∪ T not contained in S or in
T . Hence, b is contained in at most (r − 1)2 possible copies of Cr

3 on edges {Q,S, T}, each of which
would give rise to two neighbours of b in B: the bowties {Q,S} and {Q,T}. Hence, dB(b) is even
and at most 2(r − 1)2, establishing (3).

Property (4) is follows from (1) and the fact that every three bowties from Bu have u as the
unique common vertex, thus cannot form a Cr

3 .

As for property (5), by (1) and (2), the sum
∑

b∈Bu
dB(b) equals twice the number of triangles

in G that contain u and are not contained in a hyperedge of G. Observing that the remaining
triangles containing u are partitioned into sets of size

(r−1
2

)

by the hyperedges of G yields the desired
statement.

Remark 2.2. Note that item (1) above implies that the edges of B have a “natural” triangle decom-
position in which the edge connecting the vertices b1 = {S1, T} and b2 = {S1, T} is put in the triangle
spanned by the vertices b1, b2 and b3 = {S1, S2}. This means that an equivalent way to define B is
to put, for every Cr

3 consisting of edges S1, S2, T , a triangle on the vertices b1, b2, b3. It is also worth
noting that these triangles are not the only triangles in B, that is, not all triangles in B correspond
to a copy of Cr

3 in B. For example, when r = 3 one can take a C3
3 consisting of edges A,B,C, and

then add another edge D on the vertices of degree 1 (this is known as the Pasch-configuration). Then
every three of these four edges forms a Cr

3 hence the three bowties {A,D}, {B,D}, {C,D} form a
triangle in B although they do not form a Cr

3.

The following lemma establishes a connection between large connected components in B and
((r− 2)k+3, k)-configurations in G. The below constant of r10k

2
is rather generous (it can be easily

made polynomial in k), but chosen so to streamline the proof. This has no overall impact on the
strength of Theorems 1.2 and 1.3.

Lemma 2.3. If B = B(G) has a component of size at least r10k
2
, then G contains an ((r−2)k+3, k)-

configuration.

Proof. Suppose that B has a component of size at least r10k
2
. Since by Proposition 2.1(3), ∆(B) ≤

2(r − 1)2, it follows that B contains a path of length k2 (as ∆(B)k
2
< r10k

2
). Let b1b2 . . . bp be the

longest path in B, where the vertices are numbered along the path; by the above we can assume that
p ≥ k2.

For each 1 ≤ i ≤ p, consider the hypergraph Fi of all hyperedges belonging to one of the bowties
b1, . . . , bi. Since F1 = b1, we have that F1 is a (2(r − 2) + 3, 2)-configuration. Suppose now that

5



for some i < p, the hypergraph Fi is an ((r − 2)mi + 3,mi)-configuration, where mi = e(Fi), and
consider Fi+1. Since bi+1 and bi are adjacent in B, by Proposition 2.1(1), we can write bi = {Q,S}
and bi+1 = {S, T}, where {Q,S, T} is a Cr

3 in G, and note that Q,S ∈ E(Fi). Regarding T we have
the following two options:

Case 1: T ∈ E(Fi). Then Fi+1 = Fi, mi+1 = mi, and Fi+1 is an ((r − 2)mi+1 + 3,mi+1)-
configuration.

Case 2: T /∈ E(Fi). Then mi+1 = mi+1, and, since |T \V (Fi)| ≤ |T \ (Q∪S)| = r− 2, we have

|V (Fi+1)| ≤ (r − 2)mi + 3 + (r − 2) = (r − 2)(mi + 1) + 3,

so Fi+1 is an ((r − 2)mi+1 + 3,mi+1)-configuration.

Furthermore, since {b1, . . . bp} ⊆ V (B(Fp)), we have

k2 ≤ p ≤ |B(Fp)| ≤ |E(Fp)|
2,

implying |E(Fp)| ≥ k. Since in each step mi increased by at most 1, by the discrete intermediate
value theorem, for some i ≤ p the hypergraph Fi ⊆ G is an ((r − 2)k + 3, k)-configuration.

2.3 Ramsey multiplicity

We shall need a Ramsey multiplicity bound for c-edge colourings of the complete graph. Recall that
T (G) denotes the number of triangles in G.

Lemma 2.4. For every c ≥ 3 there exist n0 = n0(c) and αc > 0, such that for all n > n0 in every
c-colouring of the complete graph: E(Kn) =

⋃

· ci=1 Gi there will be a colour class Gi satisfying

T (Gi) ≥ αc

∑

u∈Kn

(

dGi
(u)

2

)

and
∑

u∈Kn

(

dGi
(u)

2

)

≥ αcn
3 .

Proof. Suppose that for some integer n > 0 we have an edge colouring E(Kn) =
⋃

· ci=1Gi. By a
standard fact from Ramsey theory, there exists a constant 1 ≥ ρc > 0 such that for large enough n
and some 1 ≤ i ≤ c we will have

T (Gi) ≥ ρc

(

n

3

)

. (2.2)

Write

Si :=
∑

u∈Kn

(

dGi
(u)

2

)

,

and note that Si counts the ‘cherries’ (copies of K1,2) in Gi. Observe that, evaluating Si via cherries
of colour i in all possible vertex triples, we count 3 for each triangle and at most 1 for each of the
remaining triples, resulting in

3T (Gi) ≤ Si ≤

(

n

3

)

+ 2T (Gi) .

Therefore,
T (Gi)

Si
≥

T (Gi)
(n
3

)

+ 2T (Gi)
≥

ρc
1 + 2ρc

=: 3αc > αc .
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Here we used (2.2) and the fact that for all a, x > 0 the function x
a+2x is monotone increasing in x.

Furthermore,

Si ≥ 3T (Gi)
(2.2)

≥ 3ρc

(

n

3

)

>
ρc
3
n3 > αcn

3 .

For c = 2, we can apply Goodman’s theorem [10] to prove a stronger version of the above statement.
This will be needed in the proof of Theorem 1.3.

Lemma 2.5. For every ε > 0 there exists n0 = n0(ε) such that for all n > n0 in every 2-colouring
of the complete graph Kn there will be a colour class G satisfying

T (G) ≥ (
1

6
− ε)

∑

u∈Kn

(

dG(u)

2

)

and
∑

u∈Kn

(

dG(u)

2

)

≥
n3

106
.

Proof. We can assume that 1/100 > ε > 0, and suppose that for some integer n > 0 we have an
edge colouring E(Kn) = G ∪· H.

As in the standard proof of Goodman’s theorem, and similarly to the proof of Lemma 2.4, we
count the copies of K1,2 in G and in H around each vertex, and take the sums, obtaining the quantity

S :=
∑

u∈Kn

(

dG(u)

2

)

+

(

dH(u)

2

)

. (2.3)

By convexity in (2.3), we have

S ≥ 2n

(n−1
2

2

)

. (2.4)

On the other hand, evaluating S via monochromatic cherries in all possible vertex triples, we count
3 for each monochromatic triangle and 1 for each of the remaining triples, resulting in

S =

(

n

3

)

+ 2T (G) + 2T (H). (2.5)

Combining (2.4) and (2.5), for sufficiently large n we obtain T (G) + T (H) ≥ (14 − ε)
(n
3

)

– this is
Goodman’s theorem in its approximate form.

In particular, for large n we will have

T (G) + T (H)

S

(2.5)
=

T (G) + T (H)
(

n
3

)

+ 2(T (G) + T (H))
≥

1/4 − ε

1 + 2/4− 2ε
≥

1

6
− ε ,

where in the first inequality we used the fact that, for a, x > 0, the function x
a+2x is monotone

increasing in x. It follows by (2.3) that for large n we have

T (G) + T (H) ≥ (
1

6
− ε)

(

∑

u∈Kn

(

dG(u)

2

)

+
∑

u∈Kn

(

dH(u)

2

)

)

.

Using the fact that any a, b, c, d > 0 satisfy a+b
c+d ≤ max{a

c ,
b
d}, we deduce that one of the colour

classes, say G, will satisfy

T (G) ≥ (
1

6
− ε)

∑

u∈Kn

(

dG(u)

2

)

. (2.6)

7



Suppose now that G fails to satisfy the second requirement, i.e.
∑

u∈Kn

(

dG(u)
2

)

< 10−6n3. In that
case, by convexity,

n

(

davg(G)

2

)

≤
∑

u∈Kn

(

dG(u)

2

)

< 10−6n3 .

So, davg(G) < n/100, which implies davg(H) > 98n/100, and, applying convexity again, we obtain

S ≥
∑

u∈Kn

(

dH(u)

2

)

≥ n

(

davg(H)

2

)

≥ n

(

98n/100

2

)

. (2.7)

By (2.5), (2.7), and the fact that T (G) ≤
∑

u∈Kn

(dG(u)
2

)

< 10−6n3, we have

T (H)
(2.5),(2.7)

≥
1

2
(n

(

98n/100

2

)

−

(

n

3

)

− 2T (G))

>
n

2

(

98n/100

2

)

−
1

2

(

n

3

)

− 10−6n3

>
1

6
n ·

(

n

2

)

≥
1

6

∑

u∈Kn

(

dH(u)

2

)

,

so in this case H satisfies the requirements of the lemma, with room to spare.

3 Structure of the auxiliary graph

3.1 Main proof of Theorems 1.2 and 1.3

In order to streamline the statements of the upcoming lemmas, we shall formulate two setups that
correspond to the settings of Theorems 1.2 and 1.3, respectively.

Setup Ac(r) [c, r ≥ 3 integers]. Suppose that n > max{r/α2
c , n0(c)}, where n0 and αc are as defined

in Lemma 2.4. Suppose we have a set U of n vertices, and a c-coloured complete linear r-graph
on U , with colour classes G1, . . . ,Gc. Denote by G1, . . . , Gc the underlying graphs of G1, . . . ,Gc,
respectively. So,

⋃

· 1≤i≤cE(Gi) =
(U
2

)

, and the conditions of Lemma 2.4 hold. Suppose that Gi is
the graph satisfying the assertion of Lemma 2.4. Write G = Gi and G = Gi, and let B = B(G).

Setup A2(ε, r) [ε > 0; r ≥ 3 integer]. Suppose that n > max{106r/ε, n0(ε)}, where n0 is as defined
in Lemma 2.5. Suppose we have a set U of n vertices, and a 2-coloured complete linear r-graph
on U , with colour classes G and H. Denote by G and H the underlying graphs of G and H. So,
E(G) ∪· E(H) =

(U
2

)

, and the conditions of Lemma 2.5 hold. Suppose that G satisfies the assertion
of Lemma 2.5, and let B = B(G).

The next two lemmas give in the above setups lower bounds on the order and density of B. The
proof of Lemma 3.2 will be given in the next subsection.

Lemma 3.1. For any c ≥ 3 and r ≥ 3 in Setup Ac(r) we have

|B| =
∑

u∈U

(dG(u)
r−1

2

)

≥
αc

2r2
n3. (3.1)

8



For any ε > 0 and r ≥ 4 in Setup A2(ε, r) we have

|B| =
∑

u∈U

(dG(u)
r−1

2

)

≥
n3

2 · 106r2
. (3.2)

Proof. A vertex u ∈ U with dG(u) = m satisfies dG(u) = (r − 1)m, and is centre to
(m
2

)

bowties.
Therefore, in Setup Ac(r) we have (3.1) as an immediate consequence of Lemma 2.4, and in Setup
A2(ε, r) we have (3.2) as a consequence of Lemma 2.5.

Lemma 3.2. For every c ≥ 3 and r ≥ 3 in Setup Ac(r) we have

davg(B) ≥ αcr
2 .

For every ε > 0, in Setup A2(ε, r) we have

davg(B) ≥ (r − 1)2 − 7r2ε .

Next, we study the connected components of B. To this end, the following definition will be of
central importance.

Definition 3.3. For any linear r-graph G and the associated bowtie graph B = B(G) call a component
of B dense if its average degree is at least 3(r − 1).

The next two lemmas claim that in the appropriate setups B will have either a big component,
or a large number of dense components. Their proofs will be given in the next subsection.

Lemma 3.4. For any c ≥ 3 there exists r0 = r0(c) such that for all r ≥ r0 the following holds in
Setup Ac(r). For every k ≥ 3 there exists β = β(c, r, k) > 0 such that either B has a component of
size at least r10k

2
, or B has at least βn3 dense components.

Lemma 3.5. For any r ≥ 4 and k ≥ 3 there exists ε = ε(r, k) > 0 such that in Setup A2(ε, r) either
B has a component of size at least r10k

2
, or B has at least r−30k2n3 dense components.

When B has many dense components, we can arrange some of them in a particularly helpful way.

Lemma 3.6. For every r ≥ 3, k ≥ 3, β > 0 and n > 2rk · r10k
2
β−1 the following holds. Suppose

that |U | = n and G is a linear r-graph on U such that its bowtie graph B = B(G) has at least βn3

dense components, each of which has at most r10k
2
vertices.

Then there exist a vertex u0 ∈ V (G), a hyperedge T0 ∈ E(G) with u0 ∈ T0, a set of 2rk
further hyperedges T 0 = {T 0

1 , . . . , T
0
2rk} ⊆ E(G), and a set of distinct dense components of B,

C = {C1, . . . , C2rk} such that, for each ℓ, we have u0 ∈ T 0
ℓ and {T0, T

0
ℓ } ∈ Cℓ.

Proof. Suppose that r, k, n and G are as stated above. Denote by B′ the union of all components
of B which are dense and have at most r10k

2
vertices. By assumption, and since each component

has at least one vertex, we have
|B′| ≥ βn3 .

For a vertex u ∈ V (G) denote by B′
u the set off all bowties in B′ whose centre is u. Since each bowtie

has a unique centre, by averaging, there will be a vertex u0 ∈ U such that

|B′
u0
| ≥ βn2 .

9



Since u0 belongs to at most n hyperedges, by further averaging, there will be a hyperedge T0 with
u0 ∈ T0 such that

|{b ∈ B′
u0

: b = {T0, T}}| ≥ βn .

Moreover, since, by assumption, each component in B′ is of size at most r10k
2
, at least r−10k2βn > 2rk

of the above bowties will belong to distinct components.

Lastly, the following lemma, which will be proved in the next section, will in conjunction with the
lemmas established in this section, readily prove Theorems 1.2 and 1.3.

Lemma 3.7. Suppose that r ≥ 3, G is a linear r-graph, and let B = B(G) be its bowtie graph.
Suppose that k ≥ 3, and that there exist a vertex u0 ∈ V (G), a hyperedge T0 ∈ E(G) with u0 ∈ T0, a
set of 2rk further hyperedges T 0 = {T 0

1 , . . . , T
0
2rk} ⊆ E(G), and a set of distinct dense components of

B, C = {C1, . . . , C2rk} such that, for each ℓ, we have u0 ∈ T 0
ℓ and {T0, T

0
ℓ } ∈ Cℓ. Then G contains

an ((r − 2)k + 3, k)-configuration.

Proof of Theorem 1.2 and Theorem 1.3. For c ≥ 3, let r0(c) be as in Lemma 3.4. For r ≥ r0
and k ≥ 3 let β := β(c, r, k) be as Lemma 3.4, and

n0(c, r, k) := max{r/α2
c , n0(c), 2rk · r10k

2
β−1} ,

where αc and n0(c) are as in Lemma 2.4. In particular, for all n > n0, given a c-colouring of a
complete linear r-graph on a set U of n vertices, we can assume Setup Ac(r) and the conditions of
Lemma 3.4.

For c = 2, r ≥ 4 and k ≥ 3, let ε := ε(r, k) be as in Lemma 3.5, let β := r−30k2 , and let

n0(r, k) := max{106r/ε, n0(ε), 2rk · r10k
2
β−1} ,

where n0(ε) is as in Lemma 2.5. In particular, we can assume Setup A2(ε, r) for all n > n0 and any
2-colouring of a complete linear r-graph on a set U of n vertices.

Then, by Lemma 3.4 or Lemma 3.5 respectively, either B has a component of size at least r10k
2
,

in which case G contains an ((r−2)k+3, k)-configuration by Lemma 2.3, or B has at least βn3 dense
components, and we can assume that each of them is of size at most r10k

2
.

In that case, by Lemma 3.6, G will satisfy the conditions of Lemma 3.7. Invoking it, we conclude
that G contains an ((r − 2)k + 3, k)-configuration.

3.2 Proofs of the technical lemmas

Proof of Lemma 3.2. By Proposition 2.1(5), and using that dG(u) = (r − 1)dG(u), we have

∑

b∈B

dB(b) =
∑

u∈U

∑

b∈Bu

dB(b) =
∑

u∈U

2(dT (G)(u)−

(

r − 1

2

)

dG(u))

= 6T (G) −
∑

u∈U

(r − 2)dG(u) = 6T (G) − 2(r − 2)e(G)

≥ 6T (G) − rn2. (3.3)

By assumptions of Setup Ac(r) and by Lemma 2.4 we get

6T (G) ≥ 6αc

∑

u∈U

(

dG(u)

2

)

, and rn2 < α2
cn

3 ≤ αc

∑

u∈U

(

dG(u)

2

)

,

10



implying that

6T (G) − rn2 ≥ 5αc

∑

u∈U

(

dG(u)

2

)

. (3.4)

Hence,

davg(B) =

∑

b∈B dB(b)

|B|

(3.3),(3.4)

≥
5αc

∑

u∈U

(dG(u)
2

)

|B|

≥
5αc · (r − 1)2

∑

u∈U

(

dG(u)

r−1
2

)

|B|

(3.1)
=

5αc · (r − 1)2|B|

|B|
> αcr

2 .

Similarly, by assumptions of Setup A2(ε, r) and by Lemma 2.5 we get

6T (G) ≥ (1− 6ε)
∑

u∈U

(

dG(u)

2

)

, and rn2 <
εn3

106
≤ ε

∑

u∈U

(

dG(u)

2

)

,

implying

6T (G)− rn2 ≥ (1− 7ε)
∑

u∈U

(

dG(u)

2

)

. (3.5)

Therefore,

davg(B) =

∑

b∈B dB(b)

|B|

(3.3),(3.5)

≥
(1− 7ε)

∑

u∈U

(dG(u)
2

)

|B|

(3.2)

≥
(1− 7ε) · (r − 1)2|B|

|B|
> (r − 1)2 − 7r2ε .

Proof of lemma 3.4. Set r0 := ⌈6/αc⌉+1, where αc is as in Lemma 2.4. Then for r ≥ r0, in Setup
Ac(r), by Lemma 3.2, we obtain

6r < αcr
2 ≤ davg(B) =

∑

b∈B dB(b)

|B|
=

1

|B|

∑

C

|C|

∑

b∈C dC(b)

|C|
=
∑

C

|C|

|B|
davg(C)

=
∑

C:davg(C)≥3r

|C|

|B|
davg(C) +

∑

C:davg(C)<3r

|C|

|B|
davg(C).

Let B1 be the union of components of average degree at least 3r, and note that all of these components
are dense; let B2 = B \B1. Then, since by Proposition 2.1(3), ∆(B) ≤ 2(r − 1)2,

6r <
∑

C⊆B1

2(r − 1)2
|C|

|B|
+
∑

C⊆B2

3r
|C|

|B|
=

2(r − 1)2|B1|+ 3r(|B| − |B1|)

|B|
≤

3r2|B1|+ 3r|B|

|B|
,

which, by Lemma 3.1, gives

|B1| >
|B|

r
≥
αcn

3

2r3
.

If no component in B has more than r10k
2
vertices, then the number of dense components in B must

be at least
|B1|

r10k2
≥

αc

2r3 · r10k2
n3 =: βn3 .
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Proof of Lemma 3.5. Let f(r, k) = r10k
2
and ε = 1/(14r4f(r, k)). In Setup A2(ε, r), applying

Lemma 3.2, and averaging over the components C ⊆ B, we get

(r − 1)2 −
1

2r2f(r, k)
≤ davg(B) =

∑

b∈B dB(b)

|B|
=

1

|B|

∑

C

|C|

∑

b∈C dC(b)

|C|

=
∑

C

|C|

|B|
davg(C).

Suppose now that all components of B are of size at most f(r, k). Then, each davg(C) is a rational
number with denominator bounded above by f(r, k). Hence, we can write

∑

C

|C|

|B|
davg(C) =

∑

C:davg(C)≥(r−1)2

|C|

|B|
davg(C) +

∑

C:davg(C)≤(r−1)2−1/f(r,k)

|C|

|B|
davg(C).

Let B1 be the union of components of average degree at least (r − 1)2, and note that since r ≥ 4 all
of these components are dense; let B2 = B \B1. Since by Proposition 2.1(3), ∆(B) ≤ 2(r − 1)2, we
obtain

(r − 1)2 −
1

2r2f(r, k)
≤
∑

C⊆B1

2(r − 1)2
|C|

|B|
+
∑

C⊆B2

((r − 1)2 −
1

f(r, k)
)
|C|

|B|

=
2(r − 1)2|B1|+ ((r − 1)2 − 1/f(r, k))(|B| − |B1|)

|B|
.

A straightforward rearrangement yields

|B1| ≥
|B|

2r2f(r, k)

(3.2)

≥
n3

4 · 106r4f(r, k)
.

Since, by assumption, no component in B1 has more than f(r, k) vertices, the number of dense
components in B must be at least

|B1|

f(r, k)
≥

n3

4 · 106r4f(r, k)2
> r−30k2n3 ,

and the statement of the lemma follows.

4 Dense component exploration

Our goal in this section is to formulate a strengthening of Lemma 3.7 that can be conveniently proved
by induction. For this, we need first to define a special class of ((r− 2)i+3, i)-configurations, which
can be viewed as natural analogues of 2-uniform trees. For a hypergraph F and its subhypergraph
E we write F \ E to denote the hypergraph with the edge set E(F) \E(E), and the vertex set being
the union of its edges. When E consists of a single edge T , we write F \ {T} for F \ E .

Definition 4.1. An ((r− 2)i+ 3, i)-configuration F is called inductive if either i = 2, or i > 2 and
there exists a hyperedge T ∈ E(F) such that:

• T is contained in a Cr
3,
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• T has r − 2 vertices of degree 1, and

• F \ {T} is inductive.

The following lemma, which strengthens Lemma 3.7, is the main technical result of the present paper.

Lemma 4.2. Suppose that r ≥ 3, G is a linear r-graph, and let B = B(G) be its bowtie graph.
Suppose that k ≥ 3, and that there exist a vertex u0 ∈ V (G), a hyperedge T0 ∈ E(G) with u0 ∈ T0,
a set of 2rk further hyperedges T 0 = {T 0

1 , . . . , T
0
2rk} ⊆ E(G), and a set of distinct dense components

of B, C = {C1, . . . , C2rk} such that, for each ℓ, we have u0 ∈ T 0
ℓ and {T0, T

0
ℓ } ∈ Cℓ.

Then for each 2 ≤ i ≤ k there exists an ((r−2)i+3, i)-configuration Fi ⊂ G of one of the following
two types:

Type 1. Fi is an ((r − 2)i + 2, i)-configuration with T0 ∈ E(Fi).

Type 2. There exist a subhypergraph Ei ⊆ Fi and a component Ci ∈ C such that the following conditions
hold.

(P1) Ei is an inductive ((r − 2)j + 3, j)-configuration for some j ≥ 2 with T0 ∈ E(Ei),

(P2) V (Ei) ∩ V (Fi \ Ei) ⊆ T0,

(P3) The set Ai = {b ∈ V (Ci) : b = {T, S};T, S ∈ Ei} is not empty, and davg(B[Ai]) < 3(r−1).

Before giving the proof, let us explain the reasoning underpinning Lemma 4.2. Recall that in
Lemma 2.3 we have seen that if a component C of B contains a long path then we can find large
((r−2)i+3, i)-configurations. A first attempt at proving Lemma 4.2 would then be to use the fact that
we have many components, in order to find many (potentially small) ((r − 2)i + 3, i)-configurations
in each of these components, and then somehow merge them into a single large ((r − 2)k + 3, k)-
configuration. Note however that just taking a disjoint union of them would not work, since it
would not produce a ((r − 2)k + 3, k)-configuration. So the idea behind the induction stated above
is to use the fact that these components are dense in order to devise a way in which these small
((r − 2)i + 3, i)-configurations can be merged into a single ((r − 2)k + 3, k)-configuration. This is
done as follows: at a “typical” step i, the process has a configuration of Type 2, meaning that it is
growing an inductive configuration Ei within a component Ci (property (P1)). A crucial feature of
inductive configurations is that they correspond to subgraphs of B of small average degree (property4

(P3)). Hence, there must be a vertex b ∈ Ci \ Ai which has not been explored yet, implying that
another hyperedge can be added to Ei. Now there are two cases. If the new edge creates a new
inductive configuration then we still have a Type 2 configuration so we can continue growing Ei
(Case 2.2 in the proof) . Otherwise (Case 2.1 in the proof) we get a denser configuration (i.e. of
Type 1) so we can pay the cost of moving to a new configuration (with the help of (P2)), and then
restart the process (Case 1 in the proof).

Proof. We proceed by induction on i.

Base case i = 2:

Set F2 := {T0, T
0
1 }. Then F2 is of Type 2 with E2 := F2 and C2 := C1, as E2 is an inductive

(2r−1, 2)-configuration with T0 ∈ E(E2) (so (P1) holds), V (F2\E2) = ∅ (so (P2) holds) and A2 = {b},
where b = {T0, T

0
1 } (so (P3) holds).

4Although the only feature of (P3) we use in the proof is that it implies that Ai is a proper subset of Ci, we maintain
the stronger (P3) since it is easier to track in the induction process.
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Induction step i → i+ 1:

Case 1: Fi is of Type 1.

Since |V (Fi)| ≤ (r − 2)i + 2 ≤ rk yet |T 0| = 2rk, there exists a T 0
ℓ ∈ T 0 satisfying T 0

ℓ ∩ V (Fi) =
{u0}. Define Fi+1 := Fi ∪ {T 0

ℓ }. Then

|V (Fi+1)| = |V (Fi) ∪ T 0
ℓ | ≤ ((r − 2)i+ 2) + r − 1 = (r − 2)(i + 1) + 3 ,

so Fi+1 is an ((r−2)(i+1)+3, i+1)-configuration. We claim Fi+1 is of Type 2, with Ei+1 := {T0, T
0
ℓ }

and Ci+1 := Cℓ. First, T0 ∈ E(Ei+1) by definition, and Ei+1 is an inductive (2r− 1, 2)-configuration,
so (P1) holds. Second, by assumption on T 0

ℓ , we have

V (Ei+1) ∩ V (Fi+1 \ Ei+1) = (T0 ∪ T 0
ℓ ) ∩ V (Fi \ {T0})

= (T0 ∩ V (Fi \ {T0})) ∪ (T 0
ℓ ∩ V (Fi \ {T0}))

⊆ T0 ∪ {u0} = T0,

so (P2) holds. Third, Ai+1 = {b}, where b = {T0, T
0
ℓ }, so (P3) holds.

Case 2: Fi is of Type 2. By the induction hypothesis Fi satisfies (P1)–(P3) with some Ei, j, Ci,
and Ai as stated therein.

By (P3) we have Ai 6= ∅, and davg(B[Ai]) < 3(r − 1). Since Ci is a dense component, Ai must be
a proper subset of V (Ci), which means there is a vertex b ∈ V (Ci) \Ai adjacent to a vertex b′ ∈ Ai.
By Proposition 2.1(1), we can write b = {T,Q1} and b′ = {Q1, Q2}, for some Q1, Q2, T ∈ E(G),
forming a Cr

3 . Note that, since b′ ∈ Ai, the definition of Ai implies Q1, Q2 ∈ E(Ei). Consequently,
since b ∈ V (Ci) \ Ai and Q1 ∈ E(Ei), we must have T /∈ E(Ei). Denote by w1 and w2 the vertices
given by T ∩Q1 = {w1} and T ∩Q2 = {w2}.

Suppose that T ∈ E(Fi \ Ei). Since w1 ∈ Q1 ⊆ V (Ei), and similarly for w2, we would have

{w1, w2} ⊆ V (Ei) ∩ V (Fi \ Ei)
(P2)

⊆ T0 .

Since, by linearity of G, w1 and w2 can be contained in at most one edge of G, this would imply
T = T0, contradicting that T /∈ E(Ei). Hence, T /∈ E(Fi \ Ei) ∪ E(Ei) = E(Fi).

Set Fi+1 := Fi ∪ {T}, that is, E(Fi+1) = E(Fi) ∪ {T}, and V (Fi+1) = V (Fi) ∪ T . By the above,
|E(Fi+1)| = i+ 1. We now have two subcases.

Case 2.1: (T \ {w1, w2}) ∩ V (Fi) 6= ∅; equivalently, |T ∩ V (Fi)| ≥ 3. We claim that in this case
Fi+1 is of Type 1. By (P1), T0 ∈ Ei ⊆ Fi ⊆ Fi+1. To see that Fi+1 is an ((r − 2)(i + 1) + 2, i + 1)-
configuration, observe that

|V (Fi+1)| = |V (Fi) ∪ T | = |V (Fi)|+ |T | − |V (Fi) ∩ T | ≤ (r − 2)i+ 3 + r − 3 = (r − 2)(i + 1) + 2 .

This completes the induction step in this subcase.

Case 2.2: T ∩ V (Fi) = {w1, w2}. In this case

|V (Fi+1)| = |V (Fi)|+ |T | − |T ∩ V (Fi)| ≤ (r − 2)i+ 3 + r − 2 = (r − 2)(i + 1) + 3 ,

So, Fi+1 is an ((r − 2)(i + 1) + 3, i + 1)-configuration. We claim that Fi+1 is of Type 2 via Ei+1 :=
Ei ∪ {T} and Ci+1 := Ci (we henceforth omit the subscript, and write C).

To verify (P1), note that

• T is contained in {Q1, Q2, T} ⊆ E(Ei+1), which is a Cr
3 ,
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• Each w ∈ T \ {w1, w2} has degree 1 in Ei+1, as by assumption (T \ {w1, w2}) ∩ V (Fi) = ∅, so

dEi+1(w) ≤ dFi+1(w) = 1 + dFi
(w) = 1 ,

and

• Ei is an inductive ((r − 2)j + 3, j)-configuration by (P1) in the induction hypothesis.

Therefore, Ei+1 is an inductive ((r−2)(j+1)+3, j+1)-configuration. Also, by (P1) in the induction
hypothesis, T0 ∈ E(Ei) ⊆ E(Ei+1). Thus (P1) holds.

To verify (P2) note that

V (Ei+1) ∩ V (Fi+1 \ Ei+1) = V (Ei ∪ {T}) ∩ V ((Fi ∪ {T}) \ (Ei ∪ {T}))

= (V (Ei) ∪ (T \ {w1, w2})) ∩ V (Fi \ Ei)

⊆ (V (Ei) ∩ V (Fi \ Ei)) ∪ ((T \ {w1, w2}) ∩ V (Fi))

= V (Ei) ∩ V (Fi \ Ei) ⊆ T0 ,

where the last inclusion is by (P2) in the inductive hypothesis.

It thus remains to verify (P3). To this end, note that since Ei+1 = Ei ∪ {T}, we have

Ai+1 = {{S1, S2} ∈ V (C) : S1, S2 ∈ E(Ei)} ∪ {{S, T} ∈ V (C) : S ∈ E(Ei)}

= Ai ∪ {{S1, T} ∈ V (C) : S1 ∈ E(Ei), w1 ∈ S} ∪ {{S2, T} ∈ V (C) : S2 ∈ E(Ei), w2 ∈ S}

=: Ai ∪A′
1 ∪A′

2 ,

In particular, using (P3) in the induction hypothesis, ∅ 6= Ai ⊆ Ai+1, so Ai+1 is not empty. Note
also that the above union is disjoint, since no bowtie in Ai contains T , and no hyperedge S ∈ E(Ei)
contains both w1 and w2 (as {w1, w2} ⊂ T ). Therefore,

|Ai+1| = |Ai|+ |A′
1|+ |A′

2| ,

and to complete the proof we need to show that

e(B[Ai+1]) <
3(r − 1)

2
(|Ai|+ |A′

1|+ |A′
2|) . (4.1)

Define M1 = {t ∈
(

V (G)
r−1

)

: {t ∪ {w1}, T} ∈ A′
1} and define M2 analogously. Note that

|M1| = |A′
1| and |M2| = |A′

2| . (4.2)

We claim that, crucially,

e(B[Ai, A
′
1]) = e([Ai, A

′
2]) = e(B[A′

1, A
′
2]) = |V (M1) ∩ V (M2)| . (4.3)

To see that (4.3) would indeed imply (4.1), observe that each bowtie b1 = {S, T} ∈ A′
1 has S ∩

T = {w1} as its centre. Therefore, by Proposition 2.1(4), we have e(B[A′
1]) = 0, and, similarly,

e(B[A′
2]) = 0. Hence, (4.3) would imply

e(B[Ai+1])− e(B[Ai]) = e(B[Ai, A
′
1, A

′
2]) = 3|V (M1) ∩ V (M2)| . (4.4)

Since

|V (M1) ∩ V (M2)| ≤ min{|V (M1)|, |V (M2)|} ≤
|V (M1)|+ |V (M2)|

2
=

r − 1

2
(|M1|+ |M2|) , (4.5)
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combining, (4.2), (4.4), (4.5) and (P3) in the induction hypothesis we obtain

e(B[Ai+1])
(4.4)
= e(B[Ai]) + 3|V (M1) ∩ V (M2)|

(4.5)

≤ e(B[Ai]) +
3(r − 1)

2
(|M1|+ |M2|)

(P3),(4.2)
<

3(r − 1)

2
(|Ai|+ |A′

1|+ |A′
2|) .

It remains to prove (4.3). To this end, for two hyperedges S1, S2 ∈ E(Ei) with w1 ∈ S1 and
w2 ∈ S2, call a Cr

3 , comprising three hyperedges T, S1, S2 nice if, with b := {S1, S2}, b1 := {S1, T}
and b2 := {S2, T}, we have {b, b1, b2} ⊆ V (C).

Let N denote the set of all nice configurations. We claim that the tripartite graph B[Ai, A
′
1, A

′
2]

can be partitioned into |N | edge-disjoint triangles. Indeed, given a nice configuration {S1, S2, T} we
claim that

(1) b, b1 and b2 belong to Ai, A
′
1 and A′

2, respectively, and form a triangle in B,

(2) Two nice configurations define two edge-disjoint triangles as above, and

(3) Every edge of B[Ai, A
′
1, A

′
2] belongs to one of the above triangles.

Property (1) is immediate from the definitions. To see (2) and (3), consider an edge in B[Ai, A
′
1, A

′
2],

e.g. between b = {S1, S2} ∈ Ai and b1 = {S1, T} ∈ A′
1 (the other options can be handled similarly).

By definition of Ai we have S1, S2 ∈ E(Ei) and b ∈ V (C). Moreover, since b1 ∈ A′
1 we have

w1 ∈ S1, and since {b, b1} ∈ E(B), Proposition 2.1(1) implies that {S1, S2, T} is a Cr
3 ,. This means

S2 ∩ T = (V (Ei) ∩ T ) \ {w1} = {w2}, thus w2 ∈ S2. Let b2 := {S2, T}, and note that b, b1 and b2
form a triangle in B, which, as b ∈ V (C), implies {b, b1, b2} ⊆ V (C). Hence, {S1, S2, T} is a nice
configuration. Furthermore, the correspondence between {S1, S2, T} and (b, b1) = ({S1, S2}, {S1, T})
is unique.

We now claim that |N | = |V (M1) ∩ V (M2)|. To see this, note that, by linearity of G, each of
M1 and M2 is a collection of disjoint (r − 1)-sets in V (G), and each t1 ∈ M1 and t2 ∈ M2 intersect
in at most one vertex. Thus, each vertex v = t1 ∩ t2, with (t1, t2) ∈ M1 ×M2 belongs to unique t1
and t2, and this defines uniquely a Cr

3 , consisting of the hyperedges T, S1, S2, where S1 = t1 ∪ {w1}
and S2 = t2 ∪ {w2}, as S1 ∩ S2 = {v}, S1 ∩ T = {w1}, S2 ∩ T = {w2}, and v,w1, w2 are distinct.
By definition of M1 we have b1 := {S1, T} ∈ A′

1, so S1 ∈ E(Ei) and b1 ∈ V (C), and, by the
same reasoning, S2 ∈ E(Ei) and b2 := {S2, T} ∈ V (C). Since b1 and b := {S1, S2} are adjacent
in B, we also have b ∈ V (C). Hence, {T, S1, S2} is a nice configuration. Conversely, every nice
configuration {T, S1, S2} defines a vertex v ∈ V (G) by {v} = S1 ∩ S2, and it is easy to check that
v ∈ V (M1) ∩ V (M2), and that the two mappings are inverse bijections.

The statements in the above two paragraphs establish (4.3) and thus complete the proof.
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[13] J. Long, A note on the Brown-Erdős-Sós conjecture in groups. Combinatorics, Probability and
Computing, 29(4) (2020), 633–640. 1

[14] R. Nenadov, B. Sudakov and M. Tyomkyn, Proof of the Brown-Erdős-Sós conjecture in groups,
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