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1. INTRODUCTION

The methods of Korobov [11] and Vinogradov [28] produce a zero-free region for
the Riemann zeta function ((s) of the following strength: for some ¢ > 0, there are
no zeros of ((s) for s = o +it with |[t| > 3 and o > 1 — ¢(log|t|)~2/?(loglog [t])~1/3.
The principal tool is an upper bound for |((s)| near the line o = 1. In 1967, Richert
[22] used this method to give the bound

(1.1) Clo+it) < AP 10g? 2t ([t > 2,4 <o <1)

with B = 100 and A and unspecified absolute constant. Similar results with smaller
B values have been proven subsequently by several authors, the best being B =
18.4974 and due to Kulas [13]. Recently, Y. Cheng [3] has given a completely
explicit version of this bound, with A = 175 and B = 46.

In this paper, we improve substantially the value of B, while also keeping the
bound entirely explicit. More generally, we bound the Hurwitz zeta function,
defined for ®s > 1 and 0 < w < 1 by ((s,u) = > >~ (n + u)~*. The Hur-
witz zeta function may be used to bound Dirichlet L-functions via the identity
L(s,x) = ¢ *>.% _, x(m){(s,m/q), where x is a Dirichlet character modulo gq.

Notice that ((s) = ((s,1). Since ((5,u) = ((s,u), we may restrict our attention to
s lying in the upper half-plane.

Theorem 1. The inequalities

o+it)| < At _320g t >3,
¢ 1) < AB(1=0)%?,52/3 >3

)3/2

1
2
C(o +it, u) — u™®| < AP 10g2/3 ¢ O<u<1,t>3,3<0<1)

hold with B = 4.45 and A = 76.2.
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If the Riemann Hypothesis is true, then the conclusion of Theorem 1 holds with
any positive B, with the constant A depending on B. Bounds of the type (1.1)
with explicit values of B have numerous applications, including (i) explicit zero-
free regions for ((s); (ii) explicit error bounds for the prime number theorem; (iii)
zero density bounds for ((s); (iv) mean value theorems for ((s); (v) bounds for
error terms in the Dirichlet divisor problem. We briefly indicate the consequences
of Theorem 1 for each of these five problems.

(i) One can use (1.1) to give explicit values for the constant ¢ in the zero-free
region mentioned in the opening paragraph. In a separate paper [6], the author
shows that (8 + it) # 0 for t sufficiently large and

0.05507B~2/3

1-8< .
= (logt)2/3(loglogt)1/3

Moreover, using the full strength of Theorem 1, in [6] the zero-free region

c 1

t>3, 1-08< -
- ps (logt)2/3(loglogt)1/3’ “T 5754

is proved. By comparison, Popov [20] showed that the above holds with holds with
¢ = 0.00006888, and Cheng [4] proved a zero-free region with ¢ = 1,/990.

(ii) A corollary of Theorem 1, the work in [6], and Theorem 8 of Pintz [19], is
the following error bound in the prime number theorem:

m(z) —li(z) =0 (az exp{ —c(log z)*/°(log log x)_1/5}> , ¢=0.2098.

(iii) Let N(o,T) denote the number of zeros of ((s) in the rectangle o < s < 1,

|Ss| < T. If (1.1) holds, then for i < o <1, we have

N(o,T) < T13.043B(1-0)%/? log15 T

This follows from Theorem 12.3 of Montgomery [17], taking 1 — o = 4.93(1 — 0);
see also §11.4 of [8]. Incidentally, there is an error in Corollary 12.5 of [17], where
it is stated that B = 100 implies

N(o,T) < T670=2)* 15617 T

As a corollary, Theorem 1 gives

)3/2

N(O’, T) < T58.O5(1—cr log15 T.

(iv) Let

T
My(0,T) = %/0 IC(o + it)|2* dt.



VINOGRADOV’S INTEGRAL AND RIEMANN ZETA FUNCTION 3

Let o be the infimum of the numbers o with My (o, T) = O(1), and let px(o) be
the infimum of the numbers ¢ such that My (o, T) = O(T¢). If 0 > 0y, we have an
asymptotic formula for My (o, T) ([25], §7.8):

T)Nidan
n=1

where di(n) is the number of k-tuples of positive integers (bq,bs,---,bg) with
by ---br = n. In particular, dy(n) is the number of positive divisors of n. Also,
when Rs > 1, (¢(s))* = .77, dx(n)n~°. Upper bounds on o) can be deduced
from upper bounds on ((s) inside the critical strip by means of a Theorem of
Carlson ([25], Theorem 7.9): for any 0 < o < 1, we have

(1.2) < (1 o _Ltze )
: o <max | -, a, 1 — —— | .
= 2 1+ pg ()

By (1.1), we have trivially u(0) < 2Bk(1 — ¢)3/2. Taking o = 1 — (Bk)™2/3 in
(1.2) gives o, < 1 — %(Bk)_z/?’. For more on mean value theorems, see Chapter
VII of [25] and Chapter 8 of [8].

(v) Denote by Ag(x) the usual error term in the Dirichlet divisor problem, i.e.

Z di(n Resx k st Z di(n) — xPy(logz),

n<x n<x

where Py is a certain polynomial. Let «j be the infimum of numbers a with
Aj(z) = O(z®). Dirichlet in 1849 proved that cs < 4 and his method can be used
to deduce a < 1 — 1. Modern treatments make use of Perron’s formula in the

k
form ,
c+100 {138
de / CF(s)—ds, c>1.
T 2mi oo s
n<x

Then the contour is moved inside the critical strip, the main term coming from the
pole at s = 1, and the error term coming from upper bounds for {(s). In 1960,
Richert [21] proved that oy, < 1—ck—2/3 for some positive constant c. Subsequently,
the value of ¢ was made explicit as a function of the constant B in (1.1) by Karatsuba
[10] (¢ = 1(2B)72/3 ~ 0.31498B~2/3). Writing ¢ = dB~%/3, the value of d was
improved by Ivi¢ and Ouellet [9] to d = %22/ 3 2 0.52913. There are two claims for
larger d, but both arguments are flawed. Fujii [7] claims d = 271/2(/8 —1)71/3 ~
0.57826, but the details are omitted (the method appears to give d = %), Panteleeva
[18] claims d = 272/3 ~ 0.62996, but the proof of this result (Theorem 3 of [18])
has a flaw, namely the differentiation of (14) in invalid.
For the mean square of Ag(z), Ivi¢ and Ouellet [9] proved that

' 2 (1\*?
/ AL(y)dy <cpa' P2 b =1- 3 (—) :
1
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More information may be found in Chapter XII of [25] and Chapter 13 of [8].

Theorem 1 depends primarily on upper bounds for the following exponential
sum:

S(N,t) = max max g (n 4 )",
0<u<1 N<R<2N
N<n<R

where N is a positive integer and t > N. We shall prove the following.

Theorem 2. Suppose N is a positive integer, N <t and set A = lloogg]f,. Then

S(N,t) < 9.463]\[1_1/(133.66)\2)‘

By comparison, Kulas [12] proved that S(N, ) < N171/(2309-5253%) for \ > 1000.

Corollary 2A. Suppose x is a Dirichlet character modulo q, where ¢ < N and
2< N <qt. Then

i _ log3(N/q)
max | Y x(n)n”" §10~463@Ne 33061087 1
N<RsaN N<n<R q

Proof. Suppose the maximum on the left occurs at R = Ry. Then

S o= 3w Y

N<n<Ry =1 N<n<Rg
- (£,q)=1 n=¢ (mod q)

Writing n = mq + £ gives

Z n—it < 1+ Z (m+£/q)—it

N<n<Rq N—ttq o Ro—¢
q - q

n=¢ (mod gq)
N -/
s(Yttn )
q

Theorem 2 then gives

_ _log?(N/q)

. N 1 . o t
Y x| < () [ 1+9.463 (?)

N<7LSR()

Lastly, N/q > 1, and the result follows. O
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As with prior treatments, Theorem 2 in turn depends on explicit bounds for
Vinogradov’s integral, defined as

2s

(1.3) Js 1 (P) = / Z e(arr +---+apz®)| de,
0% 1 << p
where a = (a1,...,ax) and e(z) = e*™*. Equivalently, J, x(P) is the number of
solutions of the simultaneous equations
(1.4) S@l-y)=0 (1<j<k); 1<z,y <P

i=1
For h = (hq,...,hg), let J x(P;h) be the number of solutions of

Sl -yl)y=h; (1<j<k); 1<z,y <P
=1

In particular,

Hence, writing ) = | P], we obtain

Q* =" Js(Pih) < 30 J(P) < (25 QU2 4 (P).
h h
|hj|<s(Q’—1)

Also, counting only the solutions of (1.4) with x; = y; for each i gives J; 1 (P) > Q°.
Therefore

(1.5) Jok(P) > max ((2s) 7| PJ2e-$R05D, | pJe)
Upper bounds take the form of
(1.6) Jo i (P) < D(s, k) P2~ skt +n(s.k)

where 7(s, k) > 0 and D(s, k) is independent of P. Stechkin in 1975 [24] proved
(1.6) with

n(rk, k) = %kQ(l —1/k)", D(rk, k) = exp{C min(r, k)k*log k}
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for an absolute constant C'. The constant factor was improved by Wooley [31].
Small improvements to the exponents of P were subsequently made by Arkhipov
and Karatsuba [1] and Tyrina [26] (significant for s < k?). Also significant is
Wooley’s [32] result when s < k3/27¢ which is very close to the “ideal” bounds
C(k, s)P?® in that range of s. For our purposes, the most important improvement
comes from Wooley [30], who improved the exponents substantially in a wide range
of s, showing that (1.6) holds with n(k,s) ~ %erl/z_zs/k2 valid for s < k?logk
(see [5], Lemma 5.2). In Theorem 3 below, we combine Wooley’s method with the
main idea from [1] to improve this to n(k, s) ~ %k261/2_25/k2. In the application to
bounding the Riemann zeta function, we will take s to be of order k2, so this small
improvement is significant.

Theorem 3. Let k and s be integers with k > 1000 and 2k? < s < %2(% + log %)
Then

Js,k:(P) < k2.055k3—5.91k2+351'065k+252/k—9.7278k3PQS—%k(kz—l—l)—l—AS (P> 1),

where
A, — §k261/2—25/k2+1.7/k
s 8 M

Further, if k > 129, there is an integer s < pk® such that for P > 1,

Jox(P) < kOF° p2s—3k(k+1)+0.001K%

with

(3.21432,2.3291)  (k > 200)
(1.7) (p,0) = { (3.21734,2.3849) (150 < k < 199)
(3.22313,2.4183) (129 < k < 149)

By itself, Theorem 3 implies the inequalities in Theorem 1 with B a bit more
than 10.4.

The most significant new idea is to bound S(NN,t) in terms of both Js ;(P) and
another quantity which counts the number of solutions of incomplete Diophantine
systems (where we regard (1.4) to be complete because the powers of the variables
range from 1 to k). Define J; 1 (%) to be the number of solutions of the system

S

(1.8) S@l-y)=0 (h<j<k); wy€R

=1

Incomplete systems were first studied my Mardzhanishvili ([15], [16]), who gave
sufficient conditions for the existence of solutions of the system

Yal=N;, (je 2),
=1
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where ¢ is an arbitrary finite subset of positive integers. More general systems of
Diophantine equations and associated trigonometric sums are treated in [2].
The Vinogradov method [28], when applied to bounding a more general sum

Z G(p(TL)), p(”) :a1n+"'+aknkv
N<n<2N

ultimately depends on having good rational approximations for a subset of the
coefficients of p(n), say for a;, ait1,...,a;. By applying trivial estimates to sums
involving the other coefficients, we may restrict attention to associated mean-values
over &, 41, ... ,q; which are equivalent to J, ;;(#). The core of the argument
is given in Lemma 5.1.

When # C [1, P], we have a trivial bound

(1.9) Jon(B) < shEpMA=D2 g (P,

In the application to bounding S(N,t), however, (1.9) gives nothing better than
if Js 1,n(#) were replaced by Js i (P) from the outset. By a more sophisticated
method, which is a generalization of the author’s work ([5]) on mean values of com-
plete Weyl sums, one can bound Js . »([1, P]) in terms of Jy 1 (P) (with s’ < s), and
attain superior bounds for S(N,t). When % = &7 (P, R), the set of numbers < P
with no prime factors exceeding R (R-“smooth” numbers), R is a sufficiently small
power of P (depending on k, h, s), and h close to k, Wooley’s “efficient differencing”
method ([29], [30], [34]) produces even better exponents of P. However, the implied
constants coming from the bounds in [34] grow too fast as functions of k, h, s, and
thus are inadequate for bounding S(N,t) for the entire range 1 < A < +/log N.
The principal problem is that elements of </ (P, R) may contain a very large num-
ber of divisors. We overcome this by taking # = € (P, R), the set of integers < P
composed only of prime factors in (vR, R]. We thus retain all of the advantages
gained by using R-smooth numbers, but now the number of prime factors of each
such number is bounded above by Q}zg g. The next theorem, which will be used for
the proof of Theorem 2, is an example of what can be proved.

Theorem 4. Suppose k > 60, 0.9k < h <k —2,2t <s < |h/2]t, and P > e Dk
where D > 10. Further assume that

D 1 18 _ 4logk
1.10 — <n< — —< <0.4
(1.10) B9 & = Dy o
Then
Jo wn(€(P,P7) < eCp2s—%(h+k)+@+nsz/(2t)+htexp{—S/(ht)},
where

52 10.5tlog2k 1 1\ ! 1
=2 e o (=an) (1) —h)log(—).
C=T T D <n+ )( h) Og<10n)
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Sections 2, 3 and 4 are dedicated to proving explicit bounds for J; 1 (P) (Theo-
rem 3) and Js 5 5 (€ (P, R)) (Theorem 4). In §5, we use Vinogradov’s method and
Theorems 3 and 4 to prove Theorem 2 for large A\. For smaller A we use older meth-
ods (§6), which give better results. This is then applied to the problem of bounding
|C(s)|] and |¢(s,u)| in §7, where Theorem 1 is proved. Lastly, in §8 we discuss the
limit of our method, and briefly indicate some ways in which the constant B may
be improved a little.

Acknowledgements The author wishes to thank the following people: Y.
Cheng for several reprints and preprints of his work, and for helpful discussions
concerning the proof of Theorem 2 for small \; A. Ivi¢ for helpful discussions con-
cering the applications (iv) and (v) above; D. Meade for help with Maple code; K.
Oskolkov for help with the Fourier analysis connected with the functions ¢(x; w) in

5.
2. PRELIMINARY LEMMATA.

First, we detail some notational conventions. Let U = [0, 1], let |z| be the
greatest integer < z, let [2] be the smallest integer > x, write e(z) for e2™* and
let ||z|| be the distance from x to the nearest integer. Let € (P, R) be the set of
positive integers n < P, all of whose prime factors are in (v/R, R]. The functions
w(n) is the number of distinct prime factors of n, Q(n) is the number of prime
power divisors of n, 7(n) is the number of positive divisors of n, and sg(n) is the
product of the distinct primes dividing n (the “square-free kernel” of n). Variables
in boldface type always indicate vector quantities with the components using the
same letter (e.g. z = (z1,22,...)).

Lemma 2.1. If N > 20 and x > 2N log N, there are at least N primes in the

interval (z,2z]. If 0 < § < %, lofng > g, x > eltLS/0 gnd o > %NlogN, then

there are at least N primes in the interval (z,x + dz|.

Proof. This comes directly from the following inequality due to Rosser and Schoen-
feld ([23], Theorems 1 and 2). Let m(x) be the number of primes < x. Then for
x > 67 we have

T T 3
2.1 _ — |1 .
(2.1) logx —1/2 <m(z) < log ( * 2loga:>

Thus for z > 1200, we have 7(2z) —m(x) > 0.735 2. Taking z = 2N log N proves
the first part of the lemma for N > 130. For smaller N we use a short computation.

For the second part, from (2.1) we obtain

z(1+9) 1_i_1/2—10g(1-|-5) Tz 3
log log x logz  2log®x’

m(r+dz) —w(z) >

Since (14 6)log(1+ &) < & + £62, we have

ey > T [ 3/2= (14 0)(1/2 ~log(1 + 1))
m(z + 6x) — w(z) > gz {5 o }

Sz [5_1—1—5}
~ logx
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Using the lower bounds for x gives

ox 2N log N
> > >
~ 3logz ~ log N +log(Slog N) —

m(x + dz) — w(z)

Lemma 2.2. I[f0<§ < %, u>2-—35 and R > 61/5, then

o R* U
u > o — .
(8" Bl 2 (w+1)!log R’ v {1—6J

Proof. Let Ng(z,R) = |{n € €(z,R) : Q(n) < d}|. We show by induction on d
that

d—1 u
(22) NyuruR) > B

R 235 < 1 — > 6l/9)y.
> i oeR (@ ¥Su<di-0),R26)

The proof uses another inequality due to Rosser and Schoenfeld (][23], Theorem 5),
which states that for some constant B and x > 286,

1 1
(2.3) ;p loglogx — B| < Sog s
In our applications, z > 61/(20) > 65 > 286. First we establish (2.2) when d = 2
and d = 3. Suppose d =2 and 2 — 3§ < u < 2— 2. Then No(R", R) is at least %
of the number of pairs of primes (py, p2) with R*~' < p; < R, VR < po < R*/ps.
Using R > 6'/% > 6, R*/p; > R%7, and (2.1), we have

No(R", R) > % > <7r (E) - w(\/ﬁ))

Rv—1<p<R p
1 R"/p _0.2 3
> = 1-2R 1
-2 Z log R ( * log R
Rv—1<p<R
0.46 R“ Z 1
log R Ru_1<p§Rp

By (2.3), the last sum is

1 1 1 1 52
>1 - 1 >log ([ ——— | — — >26
_Og<u—1) 210g2R< +(u—1)2)_0g<1—25) g =%

and (2.2) follows when d = 2. Next, let d = 3. When 2 — 36 < u < 2 — 2§, (2.2)
follows from the d = 2 case. If 2 — 20 < u < 3 — 39, define

u—11 ) 1u—1/2—5
= max — = Imin | .
ai a 2 72 ) a2 ’ 2




10 KEVIN FORD

> GR) om).

p1,p2€(R1,R2

Then

N3(R", R) >

@l’—‘

For every p1, p2,
R > R"/pipz > R*7% > RY/2¥°.

By (2.1),
R" R"/(p1p2) -5 3
— > -2 (1-2 1
" (plpz) T(VR) 2 log R ( i ( " logR>>
0.61R"
~ pip2log R’
whence )
RY 1
N3 (R" > i
(B R) 2 1010gR< Z p)
R1 <p<Ro2
By (2.3),
1 1
Z —Zlog<%) ——5 log( )—12552
p ay log R ay

R4 <p< Re2

We claim that log(as/a;) > 1.54, from which (2.2) follows in the case d = 3. Let
I =[2-26,2), I, =[2,25+96), I = [2.5+ 6,3 — 35). Then

log(u —1/2 —9§) > log(1.5 — 35) > log(1 +26) > 1.56 (u € I1)

g <a2) _ L log (51570 2 log (125) = log(1.25) > 1.5 (ue )
ax

log ( ) > log (2_—235> > 1.50 (u € I3).

Next, let d > 3 and suppose (2.2) holds. When 2 — 36 < u < d(1 — ), (2.2) follows
for all larger d as well. Suppose d(1 —0) <u < (d+1)(1—-6). If p € (R*, R],
then R*/p € (R*739, R41=9)] and thus

5d—1 Ru/p
Ny(R"/p, R) > :
B B) = =010 R
Summing over primes p, each number pn with n counted by Ny4(R"/p, R) is counted
at most d 4+ 1 times. Hence

1 5d—1 RY
N, RY R)> —— E Ny(R" E
d-‘rl( ’ >_d+]_ d( /p7 ) (d+1)'lOgR
R1-3<p<R R1-3<p<R

1
o
Again using (2.3), the last sum is

2

1 1 )
> 1 — > 64+ — —0.46% > 6,
= Og(l—é) (1—oplog®R =" 2

and (2.2) follows with d replaced by d + 1. O
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Lemma 2.3. Suppose R > (2u)® > 90000. Then |€(R%, R)| < R“(2/u)".
Proof. Suppose % < B < 1and put P = R". Then

e@P,R)<P? > <P’ [ (Q4pP+p P+
n€%(P,R) VR<p<R

1 1
s k3
=P eXp{ Z pP +p5(pﬁ—1)}

VR<p<R
1
< p? exp{Rl—ﬁ ~+1.03 —4/3}.
> ety
vVR<p<R p>vVR

Since VR > 300, by (2.3)

1 2.5
d - <log2+ 75 < 0.713.

VR<p<R log

Also,
> pE g/oo t~4/3 dt < 0.45,
p>VR VR-1

so that

1€(P,R)| < P’ exp{0.713R*~" 4 0.47}.

Takeﬁzl—%iogng. Then

71 v
G(P, R)| < Pexp{—ulog(u/0.713) + u+ 047} = P (0 7u3e) (047,

Lastly, u > 22 and thus (2032¢)ue047 < 1. O

The next lemma is due to Wooley ([33]), and gives a bound for the number of
non-singular solutions of a system of congruences. This greatly generalizes a lemma
due to Linnik [14].

Lemma 2.4. Let fi1,..., fq be polynomials in Z[x1, . .. ,x4) with respective degrees
ki,...,kq, and write

3fj(«’13))
J(f;x)=d — )
(F;) “ ( Ox; 1<i,j<d

Also, let p be a prime number and s be a natural number. Then the number, N, of
solutions of the simultaneous congruences

fiwe, ... 2q) =0 (mod p®) (1<j<d)
with 1 < x; <p* (1 <i<d) and (J(f;x),p) =1, satisfies N < ky---kq.

Lastly, we present a general inequality on the number of solutions of “symmetric”
systems of equations.
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Proposition ZRD (Zero Representation Dominates). Suppose f1,..., f, are
functions from Z™ to Z and A is a finite subset of Z". Let I(f;w; ) be the
number of solutions of the simultaneaous Diophantine equations

fite) = fi(y)=w;  (1<j<n)
with x,y € B. Then I[(f;w; B) < I(f;0;AB), where 0= (0,0,...,0).

Proof. For a = (g, ..., ), let

gl@) = elarfi(@) + -+ anfu()).

reRB
Then
Ifiws#) = [ lg(e)Pe(-arwn -+ — aun) da < 1(£:0:2).
Alternatively, for v = (vy,---,v,), let n(v) be the number of solutions of f;(x) =

v; (1 <j <n)with x € #. By the Cauchy-Schwarz inequality,

I(f;w;B)= Y n(v)n()

’
v,V

/— .
Vj V=W

1/2

(X n(v)2)1/2< S onwr) =rges). o

’
v,V v,V

7 __ . JEPY .
’Uj—’Uj—’LU‘7 Vj ’Uj—’LU‘7
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3. VINOGRADOV’S INTEGRAL: COMPLETE SYSTEMS

In this section, we derive bounds for Js;(P) using the iterative methods of
Wooley [30], modified using an idea of Arkhipov and Karatsuba [1] (the introduction
of the parameter 7). It should be noted that using the method of Tyrina [26] when
3k? < A(k,s) < $k? gives slightly better values for A(k, s), but only enough to
improve the constant B in Theorem 1 by 0.01 or less.

The next definition is slightly different from that given in [30].

Definition. Suppose 0 < d < k—1 and T is a positive integer. We say the k-tuple
of poynomials ¥ = (Vq,...,Vy) € Z[z]* is of type (d,T) if U; is identically zero
for j < d, and for some integer m > 0, when j > d, ¥; has degree j —d with leading

1 J! m
coefficient (j_d)!2 T.

Lemma 3.1. Suppose W is of type (d,T), and z1, ... ,zx—q are integers. Then
Jk_d(z; ‘I’) = det (\I/;(ZZ)) 1<i<k—d

dFT1<5<k
B S G=d=1t 2 L
j=d+1 1<i<yj<k—d

Proof. This follows by elementary row operations. [J

The argument will begin with ¥,(z) = 27 (1 < j < k), which is of type (0,1).
At the dth iterative stage (d > 0), the system will be transformed from one of type
(d,T) to one of type (d+1,T") in two steps. First, for some constant ¢ we will take

0, =3 (D) wetar

=0
which is also a system of type (d,T"). Then, for a constant y we take
Ti(z) =®i(z+y) —2(2) (1<j<k),

which is of type (d + 1,yT).
Fix k and suppose 1 <r < k. If ¥ = (Uy,...¥y) is a system of polynomials, let
K¢ (P,Q;¥;q) be the number of solutions of the simultaneous equations

k S
D (W) = Wi(w) + ¢ Y (2] —yl)=0  (1<j<k),
i=1 i=1

(3.1)

Here the inequalities on the variables z;, w;, z;, y; hold for every i. For prime p, let
Ls(P,Q;¥;p,q,r) be the number of solutions of

k s
> (Wjz) = Ui (w)) + (pg) Y (ul —v]) =0 (1<) <k),
=1 =1
1 <zj,w < P; zi=w; (modp"); 1< wy,v; <Q.

(3.2)
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Define the exponential sums

fle) = fla;Qiq) = > elargr + - + arg’a®),

z<Q
F(a) =F(o; P;®) = Y e(anWy(2) + - - + ap Vi (x)).
Then
K(P.Q:%iq) = [ F(@) ()| da

Uk
The next result relates Ky and L,, and is a generalization of the “fundamental
lemma” of Wooley ([30], Lemma 3.1).

Lemma 3.2. Suppose k, r, d and s are integers with
k>4, 2<r<k; 0<d<r-—1;,s>d+1.
Let M, P and QQ be real numbers with
P < M < Pr: 3282M <Q<P;, M >k

Suppose q is a positive integer and ¥ is a system of polynomials of type (d,T)
with T < P%. Denote by & the set of the k> smallest primes > M, and suppose
P C (M,2M]. Then there is a system of polynomials ® of type (d,T) and a prime
p € & such that

K (P,Q;W;q) < Ak3kIp>st3(C—rtd=dp (p Q. &.p g ).

7p7

Proof. Let W be the set of systems of polynomials of type (d,T) with T < P¢.
Since K,(P,Q; ¥;q) < P?*Q?* trivially, there is a system ¥y € W so that

K (P,Q;¥y;q) = ‘gneangs(P,Q; ¥ q).

We therefore assume without loss of generality that ¥ = ¥,. For brevity, write
K for K4(P,Q;¥;q). We divide the solutions of (3.1) into two classes: Sy is the
number of solutions with z; = z; or w; = w; for some ¢ # j; S; is the number of
remaining solutions. Clearly K < 2max(S7,52). Suppose first that S; > S;. By
Holder’s inequality,

K <28, < 4<k) / |F(a)**72F(2a) f(a)*| d

2) Ju
-4 & &
<o ([ reptsarda) ([ i@ ia)” ([ e e )
= 2k2K1_1/k(Js,k(Q)>1/2RKS(P7 Q; 2‘1’; Q)
< 2]{72K1_1/2k(J5’k(Q))1/2k.
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Here 2¥ = (2W;(2),...,2Wk(2)) is also of type (d,T), which justifies the last
inequality above. This is the reason for the introduction of the parameter m in the
definition of a system of polynomials of type (d,T). Therefore K < (2k2)%*J, 1(Q).
On the other hand, counting the solutions of (3.1) with z; = w; for each i produces
the lower bound K > (P — 1)¥J, 1.(Q). The hypothesis & C (M,2M] gives M >
k3 —1and so P—1> (k3 —1)2 —1 > 4k*. We have a contradiction, therefore
K < 25;. To bound S, we follow the procedure from Wooley [30]. Consider a
solution of (3.1) counted by S;. By Lemma 3.1, for some integer m > 0 we have

k
. 2
Jeaz ®) ima(wi @) = T2 ] (Giby) TT G ) - wy)
j=d+1 1<i<j<k—d

£ 0.

By hypothesis, if p € & then p > M > k. Also,

T H (zi — zj)(w; — wy)| < PAHE=dkE=d=1) < PF R < H .
1<i<j<k—d peP

Thus, for each solution counted by S7, there is some p € & which does not divide
Ji—a(z; W) Jg_q(w; ¥). Hence

. K < 2k3
(3.3) <2k ]roréa;;Ss(p),

where S3(p) is the number of solutions of (3.1) with (p, Jx—q(2; ¥)Jx—gq(w; ¥)) = 1.
With p fixed, let

glasb) = Y elargz + - + apgab),

z<Q
z=b (mod p)

k

F(a) = S e D ai(Tz) e+ ()

Z1yeen 2 =1
(kadl(z;‘l’)lfp)zl ’

Since W is of type (d,T), for any solution of (3.1) we have

S

Y @l-y)=0 (1<j<a).

i=1

Let Bs(w) denote the set of solutions (with 0 < ¢; < p—1 for each i) of the system
of congruences

Y d=w; (modp) (1<j<d).
=1
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Consequently,
Si0) < [ (Pl X Ulesw)da
1<w; <p
where
Ulesw)= Y gloger)--glascs).
ceEBs(w)
By first fixing 441, ... ,cs, we have | %, (w)| < p*~?max, |%,4(v)|. Suppose ¢ and

¢’ are two solutions counted in By(v). Let q(t) = (t —c1) - (t — cq). By Newton’s
formulas connecting the sums of the powers of the roots of a polynomial with its
coefficients, ¢(t) = (t —¢})---(t — ¢};) (mod p). Thus, ¢ is a permutation of c,
whence |%4(v)| < d! and

|Bs(w)| < dlp*~?.

By the Cauchy-Schwarz inequality , followed by an application of the arithmetic
mean-geometric mean inequality, we have

U(e;w)]? < |Bo(w)] > glaser) - gle co)|?

cERBs(w)
>0 lglase)*.
cERBs(w) i=1
We then have
1 s—d 2s
S3(p) < dp erg?é/ ) ?|g(a; c)|* da
(3.4) c =
< | 2s—d
<dlp™™ max Si(c,p),
where

Si(e,p) = /Uk |F(a)?g(a; )*| da

is the number of solutions of
2

Z(\Ijj(zi>_\1/ (wi)) +QJZ (pui — ) = (pvi —¢)) =0 (1 <j<k),
i=1 i=1

1<zj,w; <Py (P Jk—a(z¥) Jp—a(w; ¥)) = 1; 1< w0 < (Q+c)/p.
Let S5(c, p) denote the number of solutions of (3.5) with u; > @Q/p or v; > Q/p for
some i, and let Sg(c, p) denote the number remaining solutions. Suppose first that
Ss(c,p) > Sg(c, p). By Holder’s inequality,

(3.5)

54(67 p) < 255(07 p) < 4s |ﬁ(a)2g(a7 C)28—1| do
[Uk:

—as(siten) ™ ([ P da) &
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Therefore,

Sa(e,p) < (48)25/ |F(a)]? dev.

Uk

Note that |(Q + ¢)/p] > Q/p in this case. Thus, counting only the solutions of
(3.5) with u; = v; for every i gives

Su(e.n) > @) [ 1Fe)f de

By our assumed lower bound on @, this is impossible. Therefore, Sy(c,p) <
2S¢(c,p). By the binomial theorem,

(py)’ = i (‘2) (py — )"

=0
Thus, Sg(c, p) is the number of solutions of

S

k
> (@5(z) — @j(w)) + (pg)? Y (ul —v])=0 (1<) <k),
(3.6) : :

1

IN

zi,vwi <Py (p, Jp—a(2;¥) Jp—g(w; ¥)) =1; 1 <wy,v <Q/p,

where, for 1 < j <k,

B, (z) = i @ ()

(=0
The leading coefficients of ®; and ¥ are equal, hence ® is also of type (d,T') (with
the same value of m). By Lemma 3.1, Ji_4(2; ¥) = Ji_q(2z; @), so (p, Jx—d(z; ®) Jr—q(w; ®)) =}
1in (3.6).
Lastly, we introduce the congruence condition on z;, w;. By (3.6),

We shall only work with the congruences corresponding to d +1 < j < k, since the
left side of the above congruence is identically zero when j < d. Let #*(m) be the
set of z with 1 < z; <p" for each i, (Jyx_q(2; ®),p) = 1 and

k
Z(I)j(zi) =m; (mod pmin(“)) (d+1<j<k).
i=1

By hypothesis, d+1 < r. To bound |%*(m)|, first fix z;_q41,... , 2z, (there are p™
such choices). For each j, there are pmax(0.7=7) pogsibilities for m; modulo p", and
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with the m; fixed modulo p”, Lemma 2.4 implies that there are at most (k — d)!
solutions z1, ..., 2zr_q modulo p". Therefore,

|B* (m)| < (k — d)lpz(r—d=D(r—d)+rd,

Define

k
H(oz) = > € Zaj(q’j(w1)+"'+q)j(wk))

w
1<w; <P
w;=z; (mod p")

Then, by the Cauchy-Schwarz inequality ,

sen< [ Y Y Hess)

m 'zeB*(m)

2
|f(c; Q/p; pg)|** dex

<Yl [ e e Q/rpo)l* do

zePB*(m)
< (k—d)lpz == DO=dDHrd L (P Q/p; ®;p, q, 7).

By (3.4) and the inequality d!(k — d)! < k!,
(3.7) Ss(p) < 2klp? T2 =A=VI=DrdL (P Q/p; ®ip, q,7).

The lemma now follows from (3.3). O

Lemma 3.3. Suppose that s > d, k>r>2, d<k—2,q>1, pisa prime and
® is a system of polynomials of type (d, T). Then there is a system of polynomials
Y of type (d+ 1,T") with T <T' < PT such that

Ls(P; Q; ®;p,q,7) < (2P)F max [k*J, 1(Q), 20" {J, 1(Q) K(P,Q; X5 pg)}'/?].

Proof. For short, write L for Ls(P;Q;®;p,q,r). Then L < 2max(Uy, U;), where

Uy is the number of solutions of (3.2) with w; = z; for some ¢, and U; is the number

of solutions of (3.2) with w; # z; for every i. First write f(a) for f(a; Q;pq) and
2

I{a) = Z Z e(a1 Py (w) + -+ + ar®Pr(w))]| ,

I<es<P' 1<w<P
w=c (mod p")

so that
L:/ I(a)k|f(a)|2sda.
Uk
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Suppose first that Uy > U;. By Holder’s inequality,

L<2U0<2I<:P/ I(a)* 7 f(a)]* da

1-1/k 1/k
< 2kP </ | (c 2S|dc«) </Uk|f(a)|2sda)

— 2kPL'™ 1/’“Js,k(cg)l/k,

and the lemma follows in this case. If U; > Uy, for each i we may write w; =
zi + hip”, where 1 < |h;| < P/p". We may assume that P/p” > 1, else Uy = 0. Let

glashy= Y e Z a;(®;(z+hp") — ®;(2))

1<z<P j=1

There are 2* choices for the signs of w; — z; (1 <i < k), so

p<2 Y[ atmash)-glmeh)l (@) do

1yeee

melsTHY  1<h 2P/

Since |g(a; h)| = |g(—a; h)|,

R - : < Tk IE.
2. lglmashy)---glmas hi)| < (P/p)* | max g(aih)

h
1<h; <P/p"

Then, by the Cauchy-Schwarz inequality ,

L2 P i lgfes) () da

k+1 k 2k 2 2 2 2
< s / latasmf(@)Pda) ([ Ifi@) i)

:2’“*1(P/pr)klgﬁnga§/pr( (P, QY5 p0) 1o k(@) 7,

where Y;(z) = ®;(z + hp") — ®,(2) for j > d+2and Y,(z) =0 for j <d+ 1. For
some integer m > 0 and j > d + 2, T; has degree j —d — 1 and leading coefficient

mhpT2mT thus the system Y is of type (d + 1,Thp"). O

Next, we iterate Lemmas 3.2 and 3.3 to produce a bound for Js4 x(P) in terms
of the bounds for J; 1(Q).
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Lemma 3.4. Suppose k> 26,4 <r <k, k<s<k3 and
Js,k:(Q) < CQQS—%k(k—Fl)—l—A (Q > 1)

Let 7 be an integer satisfying

(3-8) 2<j<% (G-1DG—-2<2A—(k—r)(k—r+1).
Define
1 1 2+ k+r2—r+J2—J—2A .
R - < <17 —
(ZS] T’, (ZSJ 20 + Akr ¢J+1 (1 = ']—j 1)7

and suppose r and j are chosen so that ¢; > k%rl for every i. Suppose

1 < <1
3logk =vY=9

18
n=14w, V =max (el'5+1'5/‘”, —k3log k) .
w

If P> Vktl then
Joinn(P) < k3kEpisth® o p2(sth)—gh(k+D)+A"

where A" = A(1 —¢1) — k+ %(k:2 +k+r2—r7).
Proof. Let Qo = P and for 1 < ¢ < j define

M= P, Q= pl=(orteon),

Let ; be the set of k? smallest primes > M;. By hypothesis, M; > V, and by the
definition of  and V', Lemma 2.1 implies that &; C (M;,nM;]. By (3.8), ¢; < %
for each i, and for i < j —1

(39) > VHI0poin > PP > 3252 Pt

Let A = 2s — 3k(k+1) + A. We shall show by induction on J that for every system
® of type (J,T) with 1 <T < P’ every prime p € £, and every positive integer
q,

(310) LS(P7QJ+1; @;p,q,’l‘) S EJCPng—I—l’
where
Ej—l =1, E; = kkns+%(k2—k+J2—J)E}/2 (1 <J< ] _ 1).

First, when J = j — 1, we have p” > M]_; > P, so that in (3.2), w; = 2; for every
1. This gives
LS(P7 Q]7 @7p7 q, 7’) < PkJS,k(Qj)7
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which gives (3.10) for J = j — 1. Now suppose 1 < J < j —1 and (3.10) holds.
Let ¥ be a system of polynomials of type (J,T) with 1 < T < P’, and let ¢

<
be any positive integer. By (3.9), (3.10) and the fact that Ls(P,Q;®;p,q,7) is a
non-decreasing function of ), we find from Lemma 3.2 that

KS(Pv QJ; ‘II; q/) < 4k3k!(77MJ+1)25+%(r2_r+J2_J)EJCPkQ§+1.

By Lemma 3.3, for every system of polynomials ® of type (J —1,T) with 1 <T <
P7=1 prime p € #; and integer ¢, there is a system W of polynomials of type
(J,T") with T" < P” such that

1
Ly(P,Qr; ®;p,q,7) < (2P)* max[k*CQ), 2P~*%7 (CQ K, (P, Q15 ¥;pq))? ]
< CQ}(2P)* max [kk,4(k3k!)%E§Pg_kr‘f’JM;fl(nMJH)S*%(’"L’"“Z_J)} .
By the definition of ¢;,

k 1 (k(k+1 1
E—kr(bj—i—i(%—A+§(T2—T+J2—J))¢J+1:O,

ie.,
2 2
k/2—krey n 5= 2+5(r?—r+J?=J)
P M5 = 1.

Since r < k and 4(k*k!)!/2 < 27Fk* for k > 8, this implies
Ly(P,Qs; ®;p,q,7) < CQ}(kP)* max <2k,E}/2n5+%(k2—k+J2—J>> .

Next, £y > 1 and

LovE
T —<< T 3logk 22" (k=26).

Therefore, by the definition of F;_1,

Ls(P,Qy; ®;p,q,7) < CE;_1P*Q),

i.e., (3.10) follows with J replaced by J — 1. Finally, taking (3.10) with J = 0 and
applying Lemma 3.2 with ¥;(z) = 27 for each j gives

K, (P, P;®;1) < A3k (nM;)25 2 =" B,0PRQ)

< CP>\+k4k3k!n25+%(kQ—k)EOMI%(kz-i-k-l—rz—r)—A.
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From the definition of E;, we have

i—1
B = J EJ_1 E21—j
0= II VE; j—1

J=1

o

II (kkns+%(k2—k+J?ﬂn>
J=1

::k2kn2s+%k2—%k+2.

21—J

IN

Lastly, 4k3k! < k¥ for k > 11. Therefore

Jorip(P) = Ky (P, P;®; 1) < JHyteth o p2eth s ks’

For a given k,r, A, we let do(k,r, A) be the value of A’ coming from Lemma
3.4, where we take j maximal satisfying (3.8). The optimal value of r is about
Vk% + k — 2/, but leads to very messy analysis. Making the choice r ~ k(1—A/k?)
simplifies matters and ultimately increases the value of B in Theorem 1 by only
about 0.0074.

Lemma 3.5. Let k > 26 and let w, n and V' be as in Lemma 3.4. Let A1 =
$k?(1 —1/k) and for n > 1, let , be an integer in [4,k] satisfying

2k 1
A1 - nyAn = = ’
(3.11) Ok Bn) = R, — (k=) (k= 4 1) = k41

then set Apy1 = 6o(k, 70, An). If n < k2, then
Jnk,k(P) < CnPan—%k(k—l—l)—l—An (P > 1),
where C1 = k! and for n > 2

C = oy e [ =D+ (D@00

Proof. Defining ¢; as in Lemma 3.4, we must ensure that ¢; > k:+r1 for each . To

this end, let r = r,,, A = A,,, ¢* = ¢*(k,r,A) and y = 2A — (k—r)(k—r+1). For
i>1let;=¢, —¢*. By (3.8),y—(j—1)(j—2) >0,s00; =1/r —¢* > 0. Also,

J? —J

0741 9
0; = 2rk —J -
J (T’ +J J y)—i— Afer

4kr

o (1<J<j—1).

Since 2A < k? —k, 0 < 2rk + J? — J —y < 2rk. It follows that for J < j — 1,

Oy J2—J
. < < .
(3.12) 0<by < 5=+ —p—0¢
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Thus, (3.11) and (3.12) imply that ¢, > ¢* > k%_l for every i. We now proceed

by induction, noting that the lemma holds with n =1 by the inequality Jj x(P) <
k!P*. Assume now that m > 2 and the lemma holds for n < m — 1. By Lemma
3.4,

Jmk k(P) S Cm_1k3k7’]4k(m_1)+k2PQmR_%k(k'i'l)‘FAm (P Z Vk+1).
For P < V**1 we have trivially

Tntogo(P) < P J 1y (P) < Cpyy PP 5k DT80

This completes the proof. [

For a particular choice of 1,75, -+, the next lemma gives clean upper bounds
on A, and C, for large k.

Lemma 3.6. Suppose that k > 1000. For
E /1 3k
2k<n< - | =+1 — 1
k_n_2<2+og<8))+ ;

Jnk,k(P) S C«np2nk—%k(k—|—l)—|—An (P Z 1),

we have

where

3
A, < §k261/2—2n/k+1.69/k’
O < k2.055k3—5.91k2+3nk1 06nk2+2k(n2—n)—9.7278k3
n < . .

Proof. We shall take r, = |k — A, /k + 1] in Lemma 3.5. For each n write §,, =
A,/k?. Fixn >2and write § = 6,,_1, &' = 6,,, A=A, A=A, r=r,_1. If
A, _1 < k, the upper bound for A,, in the lemma follows from the upper bound on
n, so from now on assume that

(313) An—l > k.

We first show that

2-6 (2 32 16
14 PN (i [ l—— )
(319 v<o(1-375 (7 st )

Let
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By the definition of r,,
kE6(2k —ké — 1) <y < kd(2k —kd + 1).

Hence

o > 2k B 2 _ 1
= 2k(k— k0O +1)+20k2 —kd(ké —1) (2—-02)k+2+6  k+1’

so (3.11) holds. Iterating (3.12) gives

Jj—1 * * 1—5 *

s _ . 20 2+77 2¢

6, <2799, E:21hh2—h—¢ < 21-7g; < .
= ]+h:1 ( )4kr_ J+kr_ T +k:r

Next, (3.13) implies y > 2k — 2. Since v/2k — 2 < k/3, we always have j > /2k — 2
(since j is maximal satisfying (3.8)) and so for &£ > 1000

1—j 1-V2k—2
2 < 2 < 0.071

ro r — kir
Also, 6 < %(1 — 1/k) implies
pe 2 _ 8 8 0l
T (2-02)k—-0 " Tk+1/k Tk k3’
and thus
0. < 0.071 n 16 _ 0.32 < 16
V="k4y Tk2r k4 T Tk
Since A > k,

24 k=20 = (k—A/K)? +k— (A/k)? < (k—0k)(k — 6k +1).

Therefore, from k — 0k <r < k — dk + 1 and the upper bound on 6,

NeA—kt? ggl(m—y)
" 8 K2+ k—2A
< A — r — - — L ——
(3.16) <A-—k+ 2(2k:r y)—|—7k2 r—1+ "
<A 2%+ 4k — 16(1 - 9)

2rk +y i Tk
Next we establish

1-5_ v _ 186 0§
% ~ 2rk+y — (2-02)k | (2— 0%)2k2"

(3.17)
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As a function of the real variable r, m has positive second derivative and a

minimum at r = ro := Vk? + k — 2A. Therefore, on the interval [k —kd, k—kd+1],
the maximum occurs at one of the endpoints. When ¢ > 1/\/%, ro < k—kd, so the
minimum occurs at r = k — kd. When % <§< 1/\/%, k—kéd<rg<k—kd+1,so
the minimum occurs at r =rg. At r =k —kd + 1,

r B 1—5—|—% _1-6 14 )
2rk+y  (2—-8)k+2+85  (2—-02)k k(1—6)(2—02)+2—-0—142)"

so (3.17) holds for this r. When r = k — k0,

P16 1-8 (0 5
2rk+y (2-09)k—0 (2- 0%k 2-0k-06)"

Since (2—0%)k -6 > (2—62)k — 0k(2—6%) = (2—0%)(1 — &)k, (3.17) holds for this
r as well. Lastly, when % <5< 1/\/% and r = rg,

r 1

k+y dk+1-—2VE2 + k- 27

Also,
(k+1/2 = (64 62)k)° = k2 + k + L — k(2k 4+ 1)(0 + 0%) + k(6 + 62)°
<K+ k+ 5 —2k%(6 4+ 0%) + K20+ 6%)?
=k* +k—26k* + 1 — k*(0° — 26° — &%)
< k% 4k — 20k
Therefore,
r 1 1 1—46

> = .
Srkty - A+l 20kt 1/2— (61 02)k)  2k(1+0+%) 2k

This proves (3.17).
2
By (3.16) and (3.17), plus the inequality % <1, we have
2 446 45 16(1 — 6)

les_ 2
S T o T T

s A 4 L 16(1-9)
- 2— 00k | (2— 02)2k? 7k

<5 1_2—5 2 32 +16 2—-90
- 2—-02\k 21k? k3 2 — 62

_; 1_2—5 2 32 16
N 262 \k 21k2 T6k3) )
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This concludes the proof of (3.14). We now use (3.14) to bound A,, and C,,. Let

g = % — %, c = % and 8/ = B — ¢/d. The differential equation analogous
to (3.14) is approximately dy/dz = —By;__—yyz, which has the implicit solution y +

log y+log(2—y) = —Bx+C (this serves only as a motivation for the next inequality).
Let 5
9 _
8 =6(1- ".

Since y + logy + log(2 — y) is increasing on (0, 1/2], (3.14) gives

8 +logd’ +log(2 — &) < 6" +1logd” + log(2 — 6")

25 — 62 2-0 )\ (2-0"
—6+10g5+10g(2—5>—2_525‘*104‘%{(1_2_525)(2_5)}

Write ) )
. 20—0° , 2—-9 , 2—4"
T——2_62B+1og<1—2_626>+log<2_5).
Using
2—0" Yol 1 1
=14+ —= log(1 <z-—-a?+ g3
55 -1-2_52 and log(l+z) <z 5% -I-Sx,
we obtain
T<—5’—ﬂ((2—5)2+52)+ﬂ(—(2—5)3+53)
- 2(2 —42)2 3(2 —42)3
2
< B _ 252
<-F - 28
2 c(1+0.88)
< _pB_ 232
<-8-28 -
The minimum of % is actually 0.401.... Therefore

§' +logd' +1log(2 — ') < & +logd +log(2 — 8) — B — 0.45% + C(HC;M

Iteration of the above inequality yields
6n +log 6, +1og(2 — §,) < 81 +logdy +log(2 —61) — (n —1)(B + 0.458%)

1 1
+c(1+1.6/k)<5—+-~-+6 )
n—1

By (3.13) and (3.14),

(3.18) Sii1 < 0i(l—a), a= g(ﬁ—kc).
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By (3.13) again, this gives

c(1+ 1.6/k) (% oyt ) < c(l+16/k) 134

On—1 ady_1 - k
Therefore,
(3.19) 5, < Me—(n—l)(ﬁ+0.4ﬁ2)+l.34/k'
(2 —d,)edn
Next,

2 32 04 32/21\% _ 2
482 > 2 — — S — >
Fr045" = = o T i <2 1000) ~k

From (3.13) and the inequality 1 + x < e”, we have

5 €/? 1\ (3, 1\ .—1/(2k) — S _1/2-7/(6k)
51(2_51)61:7( _E)(i-i_ﬁ)e Sze N
—
€ 1 60 /(2=60) =6y o L 00
35, Spe TS ge

Putting these together with (3.19) gives

5 < §61/2—2n/k—|—1.69/k.

To bound the constants C,,, take w = 0.06 > 1/(3logk), so that
VI = (300k% log k)M < k4R =W

We next prove that

(3.20) WA =B 5 g3k pptkn =D () < 1,97k + 1).
By (3.14),
261@—1 2 — 6n—1
21 el — O > ~0.002) .
(3.21) Sp1— & : (2—53_1 000)

By the top line of (3.16) and (3.17),
2 n 4r
k  2kr+y
2

1—0pm— 2
ztsm—l_%'i‘llTl:(sm—l (1_E)7

5m 2 6m—1 -
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which implies
G > (1= 2/k)"726, > (1 — 2/k)" "' > Lem 721 > 0.0096476 := 5.

The right side of (3.21) is increasing in d,,—1, so

20 /2—6 0.01916
=0, > = =—— —0.002) > .
Sp_1 5_k(2—62 000)_ -

Therefore, WA»—1=8n > %k0-9787k% - On the other hand,

k3k1'064k(n—1)—|—k2 < kk2(0.003—|—8.8810g(1.06)/10g(1000)) < k0.078k2‘

This proves (3.20). Let ng = [1.97k| + 1. By (3.20) and Lemma 3.5,
Cry < WA An0 il < T 3F = An

and for n > ng
C, < k3k1'064k(n—1)+k2WAn_1—An

n—1-

Iterating this last inequality gives, for n > ng,

On S W%ka;gk(n_nO)1'06(n—n0)k2—|—4k(n0+...+n_1)
3k? |.3k(n—=1.97k) 1 ()(n—1.9Tk)k*+2k(n® —n—(1.97k)*+1.97k)
<W="k 1.06

3_ 2 2 2 _ 3
< k2'055k 5.91k +3nk1'06nkz +2(n“—n)k—9.7278k )

This finishes the proof of Lemma 3.6. [

Proof of Theorem 3. Suppose first that £ > 1000. Every permissible s can be
written as s = nk +wu where 0 < u < k and n < g(% + log %) By Lemma 3.6 and
Holder’s inequality,

3 2 2 3 1
Jox(P) < §;2-055K° —5.91k 351 (gsk+2s”/k—0.7278k P25—§k(k+1)+A’

where

3

A — §k261/2—2n/k+1.69/k [1 —g %e—Z/k] '

Lastly,

_ _ 2 3
1—%+%6 2/k§1_i_12/,+i_’l;§e 2u/k+2u/k’

thus A < %k261/2—25/k2+1.7/k.
Next, suppose 129 < k < 1001. Start with Ay = k(1 — 1/k), successively

choose r, near vk? + k — 2A,, satisfying (3.11), and set A,11 = 0o(k,rn, Ap).
Also take C,, as in Lemma 3.5, where we define w by

1
< <
3logk — = 2logk + (4/3)loglogk’

el.5+1.5/w _ gk’?) 1ng
w
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and take n=1+w. To see that w is well-defined, let h(w) = el5+1-5/w — 183160k,
wo = 310gk and wy; = 1/(2logk+(4/3) loglog k). It is easy to verify that h(wg) > 0,
h(wy) < 0 and h’( ) < 0 for w € [wp,wr].

IfA,+1 < < A, take

o [y An—F?/1000\
N An _An—l—l '

T w(P) < Chst P25——k(k+1)—|—0 0011«2

1000

By Holder’s inequality,

A straightforward computer computation verifies the claimed bounds on s and C,,.
The program is listed in the Appendix. [

Remarks. One can obtain slightly better values for A,, using a variant of the
iterative scheme embodied in Lemmas 3.2 and 3.3. For example, this alternate
method would produce bounds valid with p = 3.20354 for 129 < k < 199. The
improvement, however, becomes negligible for large k. Instead of working with
Ks(P,Q;¥;q), we work on bounding K, 4(P, Q; ¥; q), the number of solutions of

W)~ W)+’ Yo~ =0 (i< h)

1<z,w; <P; 1<ux;,y; <Q.

Define Lg 4(P, Q; ¥;p, q,r) similarly. In Lemma 3.2, the variables zj_g41,..., 2k
and Wk—g41,. .. ,wy are not utilized in the argument because ¥;(z) = 0 for j < d.
Following the proof of Lemma 3.2 with the new quantities gives

Lemma 3.2°. With the same hypotheses as Lemma 3.2,

Ky (P, Q; W; q) < AKKIp>st3(r=D=d+1 [ (P Q; ®;p, q, 7).

Likewise, following the proof of Lemma 3.3 and using Holder’s inequality at the
end gives

Lemma 3.3°. Under the hypotheses of Lemma 3.3,
Lsa(P;Q; ®;p,q,7) < (2P)F  max[kF 4 J, £ (Q),
2p~ k=) Js,k(Q)ﬁKs,d—H(P, Q; T;PQ)ﬁ} :

In Lemma 3.4, the definition of ¢; changes to

1 E24+k+r2—r—2A—2rJ

or=g. Ar(k — J)

drp1 (1<JT<j—1),

and this produces slightly smaller values for ¢;. The only downside is that the
analysis of the numbers §,, (see Lemma 3.6) becomes more complicated.
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4. INCOMPLETE SYSTEMS AND SMOOTH WEYL SUMS

The object of this section is to obtain explicit upper bounds on Js j ;(%), the
number of solutions of

S

(4.1) S@l—yl)=0 (h<j<k)aiyi€B

=1

where Z = ¢(P,R) ={1 <n<P:pn = \/§<p§R}. Suppose k > h > 2
and set t = k — h+ 1. For a t-tuple © = (x1, -+, x¢), let

(42) J(.’B) = det(j:c‘g_l) 1<i<t — i (371 . -;Ct)h_l H (.CCZ — .’Ej)

h<j<k (h - 1)! 1<i<j<t

be the Jacobian of the functions Zle 27 (h < j < k). The notation 22(Q)y means
that there is some d|x with d < @ and so(x/d)|so(y). For a = (ap, - -+ , ), define
the exponential sum

fla) = f(ay; P,R) = Z elanz™ + -+ apa®)
€€ (P,R)

so that
T @(P.R) = [ (@ da.

Our main lemma is very similar to the the “fundamental lemma” (Lemma 3.1
of [34]). However, we do not perform “repeat efficient differencing” as in [29], [30],
[34], and Lemma 3.4 of this paper.

Lemma 4.1. Suppose
kE>h>8, t=k—h+1, s>t+1, h<r<k;

4.3
(4:3) P> (85, R=P">k* |€(P,R)| > P'/2.

Then

2 s—1 1
Josn(€ (P, R)) < max{(<8s>2<22t2>wl/’“) K (P, )|, 4k 5+

2s5—2t
X |€(P, R)['(PTR)2U =MD e YT Js_t,kw(P/q,R»”} }

1 1
Pr<q<PTR

Proof. For short, let Sy = J5 1.1(€¢ (P, R)), € = (x1,...,2¢), Yy = (y1,...,y:) and
a = (ap,...,qr). We divide the solutions of (4.1) into four classes: S; counts the
solutions with min(z;,y;) < P/5 for some i; So counts the solutions with x; = Z;
or y; = y; for some 1 <14 < 5 <t; S3 counts solutions not counted by S; or Sy, and
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with 2; 2(PY/")J(x) or y; 2(PY/")J(y) for some i > t; S; (which will be the main
term) counts the solutions not counted by Sy, S2 or Ss.

Evidently Sy < 4max(Sy,S2,53,954). If Sy is the largest, then by a trivial
estimate and Holder’s inequality,

Sy <481 <8s | |f(a)* f(a; PY? R)| dex
[Ut

1-3;
< 8sP1/® ( | f ()| da)
[Ut
— 8sS5y /2P,

Therefore, Sy < (8sP/%)2%. However, counting only the trivial solutions of (4.1)
(those with z; = y; for every i) and using (4.3) gives

(4.4) So > |€(P,R)|* > P*/? > (8sP'/%)2,

giving a contradiction.
If S5 is the largest, then by Holder’s inequality,

S0< 48 <8(y) [ 1f@) 21 (20)] do
Ut

- !
<4 ([ Is@pia) ([ e da)
Ut Ut

_ L
— 4425, %,

By (4.3), Sp < (4t%)% < (8s)* < P*/2, contradicting (4.4). Tt follows that Sy <
4 max(Ss3, Sy).

Suppose next that S3 = max(Ss, S4). From (4.2), we have J(x) # 0 and J(y) #
0 for each solution (z1,¥1,...,s,ys) of (4.1) counted in Ss3. Let

S(x) = {w e €(P,R) : wZ(P'")J(x)}
and define

k
H@) = > Y el> ajw +af+--+a)

x:J (x)#0 wey(m) ]:h
©; €6 (P,R)

By the Cauchy-Schwarz inequality |,

Sp <483 <8(s—1t) | |H(a)f(a)* ' da

v 1/2 1/2
<85 ( ) da) ( |H (@) f ()22t da)
U U o
= 8s5,/? ( |H? () f ()22 da) .
Ut
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Therefore,

So < (85)* | [H(e)*f(e)** 77| de,

[Ut

and the integral on the right is the number of solutions of

s—1

S (@l —yl) + [y —(e2)) =0 (h<j<k)

v €GP R); die € €V ); J(x) £0.0(y) £0
w e C(P/d,R),z € €(P/e, R); so(w)|J(x),so(2)|J(y).

Writing

Gola)= D el ajlai+ - +a])],

x:J(x)F#0 j=h

glJ(x)

G(a)= > Gyla) > S e(an(dw) + -+ ag(dw)r),
gE€E(P,R) de€(PY",R) we€(P/d,R)
p?(g)=1 so(w)=g

it follows that

(4.5) Sy < (8s)2 9 () f(a)** 7272 da.

[Ut
2)

By the Cauchy-Schwarz inequality ,

2 < (%:IGg(a)F) (29:

do1

d,w
Next,
2
Y3t §Z<P1/r\{w§P:so(w):g}|) 3 !
9 'dw g weﬁf(P R) de€(P/w,R)
<PUS Hw<Pisgw) =g}l S doln
g ne€(P,R)

gln

1/r . _ 2
<PY" max {w< Prso(w) =g}l Y di(n)
n2(g)=1 n€%(P,R)

For any m € €(P,R), 7(m) < 2%(™) < 22/7 Any g € €(P, R) with ;%(g) = 1 can
be written as g = py - - - pn, where pq,...,p, are distinct primes each larger than
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VR, and 0 < n < 2/n. Then

Hw < P:so(w) =g} = {u:uplogps + -+ uylogp, <log P:u; > 1Vi}|
<Hu:ui+-+u, <2/n:u; > 1Vi}

(Y oo

n

Therefore,

G () < 2°/7PY"%(P, R)| |Gy(@)?,
g

9EC(P,R)
n2(g)=1
whence by (4.5),
(4.6) Sy < (8s)228/MpY/T|€ (P, R)|V,
where
/ S ()22 da.
ge€(P,R)
n2(g)=1
Here V counts the solutions (z1,y1,...,%s—1,Ys—1,9) of
s—1 ) )
dal-y)=0 (h<j<k)
i=1

Tiyi,g € €(P,R); J(m) #£0,J(y) #0;  p?(9) = 1,9|J(x), 9] (y).

Clearly

V < Jrn(6(P.R) max [{g € € (P.R).i(g) = Lgl (@)}

Using (4.2), VR > k and p%(g) = 1, g|J () implies g|.J*(z), where

JN(x) =214 H (x; — ;).

1<i<j<t

Since |J*(x)| < Pt+1/2 J*(2) has at most t(t+1) /5 distinct prime factors > v/R.
If g|J* (), then g is a product of n of these primes, where 0 < n < 2/5. The number
of such g is at most

L(t* +1)/n] (2t /77 4/ 2\2/
< < ¢ n.
I R E t Z (et?)
0<n<2/n 0<n<2/n
From (4.6) we conclude that

So < (85)%(8et?)2/"€ (P, R)| P Jo_1 1.1 (€ (P, R)).
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Lastly, applying Holder’s inequality, we have

Js—11,0(C(P,R)) < Js 1.0 (€ (P, R))l_ﬁjt,k,h(g(Pa R))Sit
1-L 1
=Sy " ekn(C(PR))T

We have J; (€ (P, R)) < k*|€ (P, R)|*, which follows for instance from Lemma 2.4
(let p be a prime > tP, fix y1, ... ,y; and for each w the number of & with > a:‘Z = u;
(mod p)(h < j < k) is < k). This proves the lemma in the case S5 > Sy.

For the last case, suppose S4 = max(Sy, Se, S3,S54). For every solution of (4.1)
counted by Sy, each z; > PY" and y; > PY" and neither z;2(P'/").J(x) nor
1, 2(PY")J(y) for i > t. Fix i > t and let ¢ be the greatest divisor of z; with the
property that (¢, J(x)) = 1. If ¢ < PY", then x;2(PY")J(x), a contradiction.
Hence ¢ > P'/", and since every prime divisor of ¢ is < R, there is a divisor ¢; of
x; with ¢; > PY7, ¢; € €(PY"R,R) and (¢;, J(x)) = 1. Likewise, each y; has a
divisor p; with p; > P'/", p; € €(PY"R, R) and (p;, J(y)) = 1. Therefore Sy < 4T,
where T is the number of solutions of

Zx ~y] +Z qiu;) — (pv;)’) =0 (h<j<k)
=1

xzﬁyiecg(P?R)a Uy ECK(P/QM )7”26%(P/p17R)7
Pi, @i € Cg(Pl/TR7 R),pzqu Pl/r (QH J( )) = (pl7 J(y>) =1

k
F(a)= Z e Zaj(x{-l-----l-x{)

z:(q,J(x))=1 j=h
Given q1,P1,---4s—t; Ps—t; let
P=Dp1Ps—ts q=q1 " Qs—t

and set

Xi(a) = }Fﬁ(a)zf((qzhah, .. ,Qfozk);P/qi,R)zs_zt
Yi(a) = |Fs(e)* f(p}an, -+, pon); P/pi, R)** 7.

)

Then, by Holder’s inequality, we have

SO<4Z/H 2sztda

p.q

() (™

P.q i=1
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We have [, X;(a)da < W(g;) and [, Yi(a) doo < W(p;), where W(q) is the
number of Solutlons of

t
(4'7) Ex_yz +QJZU—U =0 (h<j<k)
Thus
1 L 2s—2t
(4.8) SO<4ZH pi)) T2 —4< Z W(q)m) )
P.q =1 q€€(PY"R,R)

q>P1/'r

Next, by Proposition ZRD, for each possible 2¢-tuple «,y in (4.7), the number of
w,v is at most Js_; .1 (€ (P/q, R)). By fixing y, the number of possible x,y is <
| (P, R)|' max,,, (m), where Z(m) is the number of solutions of the simultaneous
congruences

m; (mod¢’) (h<j<k)

8
N
Il

with 1 < z; < P and (g, J(x)) = 1. For each j, the number of possibilities for m;
modulo ¢" is max(1,¢" 7). Thus

Z(m) < ¢TI max B (n;q"),

where %'(n;q") is the number of solutions of
sz =n,; (mod ¢") (h<j<k)

with 1 < z; < ¢" (recall ¢" > P) and (¢, J(x)) = 1. By the Chinese Remainder
Theorem,

%/(n; qr) < H %/<n;pr£)’

p*ll¢,p prime

and Lemma 2.4 gives %' (n;p™") < k!/(h — 1)! < k*. Since w(q) < 2/(rn) + 2, we
have &' (n;q") < k?*0+1/0m)  This gives

W(g) < kAT M) gr=mr=htD/212(P, R)|" T,y 1.1 (€(P/q, R)).

Together with (4.8), this proves the lemma in the fourth case. O

The optimal choice for 7 in the above lemma is close to h for the range of s that
we are interested in. The next lemma gives some bounds achievable with Lemma
4.1.
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Lemma 4.2. Suppose that k,h and L are integers satisfying
(4.9) k>60, h<k, t=k—h+1<%£ 1<L<h/2

Let o =1—1/h. Suppose P, R and n are real numbers with

(4.10) 0<n< 2, R:Pnz<3)3,
3h n

and

(4.11) €(Q,R)|>Q* (PP<Q<P).

Then

Teokn(€ (P, R)) < (10q) (/40" 0 0y (2 R) 1D pRLi— sk s,

where

=D oy G2,

Ci =k, C,= max e (£ >2),
2<5<¢

(-1 - <j—g—h+hoﬂ) logP}.

_. |4logk
L—j
“ h

Proof. For 1 < j < L, define P; = paL_j’ M; = POAL_jR—h(l—aL_j)’ = log R

log M
and n; = lfgggj = o/~ Iy, By (4.9) and (4.10),

(4.12) M; > P R~M1-0") > pOSp=04h > ps > (/)7 > (31)™ > (8Lt).

Consequently, n < 7} < n; < m < 3n for every j. For M > 1 let H;j(M) =
Jtjen(€ (M, R)). We prove by induction on j that

(4.13)  H;(M) < (10)49/mC;(e2R)2I0—1 p2it=3s(h+R)+85 (M, < M < P;).

By (4.10), R > (3h)3 > k3 > 90000. By (4.11) and (4.12), when M; < M < P
we have | (M, R)| > M/, so all of the hypotheses (4.3) of Lemma 4.1 hold (with
M in place of P). Also, if M; < R* < P then R > (2/n)% > (2u)3, hence the
hypotheses of Lemma 2.3 hold. For M > Mj, as in the proof of Lemma 4.1 we

have Hy(M) < k'|¢ (M, R)|'. Writing v = llc(’)gg]\]g, by Lemma 2.3

(4.14) [€'(M, R)| < M(20)"" < M(6n)"/™,
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so (4.13) holds for j = 1. Next assume j > 2, (4.13) holds with j replaced by j —1,

and assume M; < M < P;. We will apply Lemma 4.1 with r = h and P = M. By
the definition of M; and P,

M1 < M/q< Pj_, (Pl/h <q< Pl/hR) .
By (4.9) and (4.10),
k(8j1)2(2262)2/7 < (lc?’/h22t2)2/u < (2T2)Y < kv < g
By Lemma 2.3 and v < 3n < 2/h,
4k2t(%+1)|<g(M’ R)|t < AM et (08(2v)+(2/h+2v) log k) < AMter los(3.13v)
Since ev 108(3-33/3.13) > 4, it follows that
42D g (M, R)[ < MY(10m)4/™.

By (4.14), Lemma 4.1 and the induction hypothesis,

4t(j—1) (-1

Hj(M) < max |:(677>tj/771k. ”3 Mtj+ 7 ),(1017)t/771Mt

X { Z Hj—l(M/q)m}Qt(j_l)]

1 1
M%7 <qg<MT R

2D tG—1)

< (10m)"/™ max {k MUY O
" (623)%u—l)(j—z)Mztu—n—%<h+k>+Aj-1+t52t<j—1>} ,

where

(t/2)(h+ k) — A;_q h(1—a’~1)
S = ¢, E=-1+ : I =l
12 ) 2t(j — 1) 2j —2
M%<q<M%R
Making use of the inequalities
l 02

(4.15) 1-— Sl—rt o,

S RS
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We then obtain

Ll t(G=1)

Hj(M)S(lon)tj/m max |k " MUtT® ,Cj_l(eQR)%(jZ_j)MQtj_%(h+k)+Aj:|'

Write f; :j—%—h(l—oﬂ'),so that fi = fo =0 and f; > 0 for 7 > 2. Then

at(j—1)

H](M) < <1On)tj/n1M2tj—%(h+k)+Aj max {k % M_tfi, Cj—1(62R)%(j2_j)} .

By (4.15),

. J—1 i J -2 +2 _j* -5 .
<L T _pl L= = < > 2).
i h (h 2h2) 2h - 2h 22)

Since M > M; > R=hPo""" we have
Mt < Rthfs p=tfie"™ < R —j) p=tfiat ™
Recalling the definition of E; and 77;., we conclude that
H;(M) < (109)4/m (2 R)3U" =) M2 =5 (0485 max [otFi ;4]

Since e!®2 > (0, (4.13) follows at once. The Lemma then follows from (4.13) by
taking j = L. [

Lemma 4.3. Suppose (4.9), (4.10) and (4.11) hold, and define E; as in Lemma
4.2. Suppose that log P > A and

_ dlogk

(4.16) T = <1.

Ana

Then

max F; < Alogk [1 +h (1 + (1 = ) log(1 - x))] .
j>2 n x
Proof. We have E; < max,>s F'(z), where

F(z)=A(h—-1/h —az + az(x — 1) — ha®).

By (4.16), F'(z) — —oo as z — oo and F'(z) has a unique maximum point in
(—o0,00). Solving F'(y) = 0, we see that

a(l —x)
4.1 Y¥= —— -,
(4.17) “ —hlog«
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If y < 2, then
4log k
max F(z) = F(2) = ——2
z2>2 n
and the lemma follows in this case, because of the inequality (1—x)log(1—z) > —=.
Now assume y > 2. Since —hloga =1+ % + 3% + ---, we have
h—1

1
— < —hloga <1+

o <1
— L 6h(h —1) 2h — 2

Consequently, by (4.17)

1

. > .
(4.18) T2 o
Also,
log(—hloga) > —log (1 — —= ) > 4 +
oglmhiogq) = =08 oh ) = 2n T RR2
This gives
Fy) = A(h—1)(z + (L —z)V),
where

V=1- hlogo (1 +log(—hloga) —log(1 — x))
§1_6§2h(—h3_hl—)1 < +%+822) +;Z:ilog(1_‘”>
- 4h(6h52h—+3?;z— N~ gziilog“ - )
< # + %log(l —x).

Using (1 — z)log(1 — x) > —x again, we obtain

F(y) < (h = 121(}32_ DA (h—1)Az + (1 ~ g 1) A(h—1)(1 — z)log(1 — z)
< % + (h—1)Az (ﬁ — #) +(h—1DA(z+ (1 —x)log(1 — x))l

By (4.18), we apply 1 < (2h — 1)z in the first summand to obtain

< — —
F(y) < (h 1)Aw< e +2h—1 4h2+1+ .

< (h—1)Az (%+1+ ““U)lzg“—x))_

2h — 1 1 1 (1—az)log(1—x))
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The lemma now follows from the definition of = (4.16). O

Proof of Theorem 4. Let L be an integer, 2 < L < h/2, and put R = P" and
A = Dk?. The hypotheses imply (4.9) and n < 2. Next, by (1.10),

3
R> enDk2 > E10 (2) 7
n

so (4.10) holds. Since R > 6!, we may apply Lemma 2.2 with § = ﬁ Suppose
Q = P¥ with 3 <w <1 and put w = [1.1w/n]. Since m! < m™ and (w + 1)y <

Llw+7<1.2,

n @ _1 /1 \" @ 8
> Z 75\ 1707 B
6(Q, R)| = (w+ Dw!logR =~ 1.2 (11w) log P @

where, by (1.10),

log(1.21og P) 4+ wlog(11w)
B=1-
log @
_ | _ 3log(1.2Dk?)  1.1log(12.1/n)
- Dk? nDk?
>1-0.001 —0.03 >0.9.

Thus, (4.11) holds and we may apply Lemmas 4.2 and 4.3. By (1.10), (4.16) and
the bound h > 54,

4hlogk 18
= —.,0.4
x Dk%(h—l)e{k’o 08},
so that ( ) log( ) ) .
1—x)log(l —x r T T
1 =—+—+—+4+---<0. .
+ - 2+6+12+ < 0.5866x
By Lemma 4.3,
4logk
max B < ——2 (1 + 0.5866hx)
Jj=2
zklog k log? k
< 2.57 <10.5 .
- n —  Dkp?

Therefore, by Lemma 4.2,
Jrten(€(P,R)) < Cp(e*R) 3L~ p2Li=5(htk)+AL

where Aj, = @ + hta* and

10.5tlog® k 1 L1 1
logCp = ————~ —tL((=+h —h)log | — ).
T Dkn? <<77+ )a %\ 1oy
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By hypothesis, the number s satisfies s = Lt + u, where 0 < u < tand 2 < L <
L+ 1 < h/2. By Holder’s inequality,

(4.19)

Jokn(€ (P, R)) < (Joe s n( (P, R (Jrpen(€(P, R)))!

< Oi—u/tczitl (eQR)%L2+L(u—t/2)P25—%(h—l—k)—l—(l—u/t)AL—l—(u/t)AL_H.

Next,

tHt — 1) tHt— 1)

2

(1 —u/t)Ap + (u/t)Ap41 = +htal (1- 1) < 1 hte—s/(ht)

and
(62R>§L2+L(u—t/2) < (62R>s2/(2t) — 87/t pns®/(2t),

For the constants, we use a“~! > of > a*/t. Together with (4.19), this proves the
theorem. [
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5. EXPONENTIAL SUMS : THEOREM 2 FOR LARGE .

In this section, we apply Theorems 3 and 4 to prove Theorem 2 for large A
(A > 87), using a variant of Vinogradov’s method to relate S(N,t) to both J, (P)
and Js 4 ,(%). Korobov’s method [11] produces qualitatively similar bounds, but
does not have the seperation of variables property (the ¢;, d; below in Lemma 5.1),
and therefore one cannot easily modify it to incorporate incomplete systems (1.8).
Rough calculations indicate that Korobov’s method, when combined with Theorem
3, gives S(N,t) < N1~ 1/(8662%)

Lemma 5.1. Suppose k, r and s are integers > 2, and h and g are integers
satisfying 1 < h < g < k. Let N be a positive integer, and My, My be real
numbers with 1 < M; < N. Let % be a nonempty subset of the positive integers
< M,. Then

t(My M)+ +1

<
S(N,t) < 2Mi My + ==

My\ 7 1 .
N () (60 0z Lo 7230 () g ()W T,)

where

- 2sMI stMI  Amj(2N)?
. = min [ 2sM3 2 2 _ 2 > 1).
W; m1n<s 2’rLM1jJ+7TjN=7+ AL + (J=1)

Proof. For brevity write M = |[M;|. For N < R < 2N and 0 < u < 1, we have

‘Z (n+u)"% = Z > (n+abtu)t

N<n<R a<M; N<n+ab<R
beB
<o L X mrasw T g 3 a1
<M, N<n<R-1 M|%|
a<M; n a<M;
bERB be#
<L max Z e—itlog(l—l—ab/z) —|—2MM
~ M|#| N<z<2N B
a<M;
be %
For 0 <z <1 we have
k41
(5.1) [log(1 +2) — (2 = a?/2+ -+ (-t )| <

Also e — 1| < y for real y and ab/z < M;My/N. Thus, for some z € [N, 2N],

N £( M My)k+1

(5.2) SN0 = 1z VI e

+ 2M1M27
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where U = >, e(vi(ab) + -+ Yk (ab)®) and ; = (—1)7t/(2mjz7). By Hélder’s
inequality,

UI"< 2"y | Y elnlab) + -+ yi(ab)®)
be% CL<M1

T

=B e | D e(nlab) + - +(ab)®)

be% a<M1

=B e Y nle)e(nber + -+ pbler),

be#B  ci1,...,Ck

where ¢, are complex numbers with |ep[ = 1, and for ¢ = (c1,... ,¢x), n(c) is the
number of solutions of the simultaneous equations ¢; = aj + -+ +al (1 < j < k)
with each a; € [1, M;]. A second application of Holder’s inequality gives

25—2
(53) |U|2rs < |<@|2rs—2s <Z n(c)) (Z n(c)2> T

C C

— |%|2TS_QSMQTS_2TJT7]€(M)T,

where
2s

-y

C

> eve(pber + -+ ber)
be A

For 0 < w < 3, let £(z;w) = max(0,1 — @) This function has an absolutely and
uniformly convergent Fourier series

Z(m;w):% _i (sz”w)ze(m).

For 1 < j < k define

fi(x) =

M sin(rz/(2r M)\ >
( )

xT

and we note that f;(z) > 0 for all x and f;(z) > 1 for 1 < x < rM?J. Since
1<¢ < rM for each j, we have

T< )

[}
—oo<c ;<00

= Z > eve(radicr + -+ yrdick) fi(er) - filer),

by, ,bas
—oo<e; <o b

2s

> eve(miber + -+ wb )| filer) - frler)

be %
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where |ep| = 1 and d; = b + - +b‘—bs‘1—~ — b, for 1 < j < k. For
d = (dy,...,dg), write anm(% d) for the number of b with b; € £ for each i
and dj = b] + -+ bl — b, — - —b) (m < j < n). By Proposition ZRD,
Js,n,m(e%’ d) < Js,n’m(%). Then
T< Z Js,k,1(%; d) Z e(vidicr + -+ + yedier) fr(er) -+ fr(ck)
di,...,dg c
k 0o
:stkl (%;d) H Z e(ed;v;) fi(c)
d j=1|c=—0o0

k 2
ZJSkl (%;d) H(TMJ 5 Mﬂ(dﬂj;ﬁ))
k
= (WQT/Q)kM%kUHl) Z Jsk1(%;d) H Vi 5eap5)
d J=1

Recalling the definition of ¢(x;w), we obtain
(5.4) T < (5r)fMERED N g (2 d),
d;€D;Vj
where .
.@j = {|dj| < SMg —1: ||dj")/j|| < W}

The sum in (5.4) may be interpreted as the number of solutions of the system of
equations

(5.5) Z(a:‘g—yg):dj (1<j<k); iy, € B;dj € 9.

=1

There are now several ways to proceed. A simple method is to ignore the equations
in (5.5) corresponding to j > g or j < h. Then, by Proposition ZRD, for each
choice of dj, ... ,dy, the number of @,y is < J, 4.4(#). Thus, by (5.4),

g
T < (5r)FMFOFD g (B) 11121

An alternate and slightly better method for bounding the number of solutions of

(5.5) will be given in §8. Lastly, for positive §, v and K, we claim that

(5.6) {ld| < K :||dy|| < 0} < 4K+ 2K~y + 46/ + 2.

Suppose that § < 1/2, else (5.6) is trivial. The number of intervals of the form
[m—d, m+d] with integral m which intersect [— K=, Kv]is < 2yK+142§ < 27K +2.
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Each such interval can contain at most 24 /7 + 1 points of the form d~y, and this
proves (5.6). Putting K = sM3 —1, v = |v;| and § = 51 gives |%;| < Wj, hence

T < Jygn(B)(5r)F MEEED/217,

Together with (5.2) and (5.3), this proves the lemma. [
Proof of Theorem 2 for A > 87. Assume that

(5.7) | M| > My >100g, s<29 r>13g, r>s, g>h2>3.

It turns out that the optimal parameters satisfy (5.7). By (5.7) and the definition
of Wj,

stMJ  13¢g29NJ tMI NI
W, <4 2 — < 9911 1,2 .
I=TEN T g =0 M\ N o ag
Suppose that
(58) MlzNul, MQZNMZ, M1 > 2.

Then, the above bound for W; is better than the trivial bound 28M§ only when
A< < /\/(1—[L1 —[LQ). Let

1 1 1
5.9 =g/, =h/A, 1<~y < < <p < o
(5.9) o=g/N, v=h/ L i . ¢ —
We then have
(510> Wh . 'Wg S 292M2}7«+(h+1)+"'+9N—H’
where
g
(5.11) H=> min(ju,j— A\A—j(1— 1 — pa)).
j=h
A

For i =1, 2, write = =M+ B;, where m; is an integer and 0 < 3; < 1. Then

i

mo mi g
H=Y (G-N+ Y juet Y, (A=jll—m —p))
j=h j=mz+1 j=mi+1
_ (mi+m) (1 — ) + (mF +ma)(1— pa) —h® +h— (1 — p1 — p2)(9° + 9)
2

+Ah+g—m3 —mo—1)

2

1— 1 —p2 2 —p1 — 2
:)\2< + R S e
R 2 i 2(1 = pn)(1 = p2)

(3 L) - LI ) £ 02 )0
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Since 8i(1 - 8i) < 1,

21— 2 — 1 —
HZA2(¢+7—7——M¢2— H1— H2 )

2 2 2(1 — p1)(1 — p2)
(5.12) +)\<%_§(1_M1_M2>)_2—Mé—ﬂz

= 1{2)\2 + Hl)\ - H().
We shall take the near-optimal choice for the parameters

= 0.1905, s = 0.1603, k — Lﬁ + o.ooooosJ > 129,

(5.13)
r=|pk*+1], p taken from (1.7),

and approximate values (to be specified precisely later)

g~ 1.2453), h ~ 1.1818)\, s~ 0.3299h(t — 1).
With these choices we quickly deduce that S(N,t) < N1/ (132.31%%) for sufficiently
large \. By a standard argument (see §7), this implies (1.1) with B = 4.42736, but
only for 1 — ¢ sufficiently small. For completely explicit bounds, we pay more
attention to the constants, sacrificing a little bit in B in order to get a fairly small

value for A in Theorem 1.
By (5.13) and Theorem 3, we have

(5‘14> |_M1J_2T+%k(k+1)Jr,k(|_M1J> < ClM{).oomz,
where C; = k%%° and 6 is taken from (1.7). Let ¥ = 300 and assume that
(5.15) N>V,
for otheriwse trivially
S(N,t) <N < eY/133.66N1—1/(133.66,\2) < 9‘44N1—1/(133.66>\2).
We shall always choose g so that
(5.16) 106 < g < 1.254.
Thus by (5.13) and (5.15), My > et2¥ A > ¢0-1019Y9°  Tet D = 0.1019Y = 30.57
and n = £g+/2’ where 3 < ¢ < 6. By (5.16), (1.10) holds and hence the hypotheses

of Theorem 4 hold (with P = Mj and k = g). By Theorem 4,

(5.17) Jo.gh (€ (My, MJ)) < Cy P2~ 3(h+9)+E2
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where
(5.18)
By = lt(t—l)-l-n—SZ-l—ht (-2
273 of PV
s> 10.5¢%tg? log?
log Gz = = + : g 89 _ ((§g3/2 FR)(1 = 1/R)%t - h) log(£g%/2/10).

By (1.10) and (5.16),
R = M;? > eDg2n > glO > 626.

By Lemma 2.2 (with § = 5) plus the inequality w! < (w/2.5)" (w > 50), we have

1.04£43/2
W]\ji;}%)l < (log R)(1.04£g%/2 + 1) <%§593/2> ¢

< (log N)C5 < CsNE?,

where
O3 = (10.82€¢%/2)10469"”
(5.19) " o
’ Y A2

By (5.13),
(5.20) (5r)F < (40A2)1-6% < A5A
and
2 r > 7.509\2.
Consequently

E3 log(Y)\Q)
r — 7.5Y )\
By Lemma 5.1, (5.10), (5.13), (5.14), (5.17) and (5.20), it follows that

1
r

S(N,t) < (03 ()\5/\0102)ﬁ> NIHE 4 oN0:36 1N1—0.0000019476,

k
log(YA?) 1 )
F=—"——++—(—H+0.001pu1k E5).
7.5 \4 + 2rs ( + Hak” + i)

(5.22)

We also need bounds on k/\, which by (5.13) can be written as

1 0.999997 - k 1 0.000003 __.
(5'23> ko = 0.6492 by < Y < 06493 T A\ =: ky.
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Lemma 5.2. When X > 220, we have

S(N,t) < 7.5N1—1/(133.58>\2) (N > 6300>\2>'

Proof. We take

(5.24) h = |1.1818\+3], ¢ =[1.2453A+3]|, s=|oh(t—1)+1], o =0.3299.
By (5.9) and (5.24), (5.16) holds and also

(5.25) |y — 1.1818] < 5k, | — 1.2453| < .

Further, by (5.13) and (5.24),

(5.26) g>274, h>260, t>13, k>338, s> 0.02294)\2

By (1.7), (5.13) and (5.14),

(5.27) C, = E2-3291K% ~ [9.2A% log A

Taking
£ =0,
we have by (5.19) and (5.24),

(5.28) Cy < £20-310%/ % log X
To bound Cy, we first note that by (5.24),
(1—1/h)%t > (1 —1/h)"=D > 77 > 0.71899.
This implies
(€g%/* + h)(1 —1/h)*/* — h > 5.9785X%/2 — 0.28101h > 5.9561%/2.
By (5.18), (5.24) and (5.26),

log Cs < 0.3907s\ + 20.86tA% log® A — 8.7351%/2 log A

5.29
(5.29) < 1.52X%log? X — 8.7250%/2 log .

By (5.21) and (5.26), 2rs > 0.3445\*. Combining (5.21), (5.27), (5.28) and (5.29),
we obtain

(5.30)

1 1 log A (20.31 —8.72/2 logA (5 9.2+ 1.52logA
r AE))\ 2rs < —
G5 (Wi Gr) ™ < eXp{ N2 ( 7.509 ) 03445 <A3 i A

< 20 < 7.48.
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By (5.22), it remains to bound E. Note that —H + 0.001u1k? + puoE> < 0. By
(5.9), (5.13), (5.18) and (5.22),

E < log(Y)\z) —-H + 0001,&1]{2 [LQEQ
— 75V )\ 2.002p0v(p — v)A2k2  2pk?s
o 152 x 107 N ~\2Hy, — \H, + H, 0.001x;
- A2 2.002p0v(p — v)A2k2  2.002p0y(¢p — v) N2
Lo [9=ats, we T ohg™
2pk? 207y o 12
By (5.26),
1.33413 1.33413
_t o/t <1 =14 "
e R
Therefore

f(7,¢) + G1 /A2 + Go /A
p Y

MNE<152x1077 +

where, by (5.24) and (5.25),
1 0.001 1 [ —H. —
f(v,¢) = { H ( Z +1.001p (% +ve“’)>} ,

C 200207 | o—y k2 \¢p—~
pi2oyp~3/2
= —— < .
Gy 2T < 0.0008,
Go = 1 —Hy + Ho/\+ 1.33547poye™? n 1.001 o
72,0020 (k/))2 (¢ =) 2y |

Let U be the bracketed expression in the definition of G5. By (5.12) (the definition
of Hy and Hy), (5.25) and (5.26),

0.3246¢ — 0.34608~ + 0.20615/\ n 1.001po

U<
(¢ =) 2y
_ 1.001pp +0.6492  —0.02148 + 020618
27 ¢—n
0.80967  —0.02148 + 0.20615/h
= 2.3636 — 1/ 0.0635 + 1/
< 0.0392.
Thus 0.0392
Gy < ———22% < 0.021334.
2= 2.0020vk3 —
Then

NE<152x 107 4 109+ 0.0008A~Y/2 +0.021334A\ 7

(5.31) p
< 0.00004711 + 1 (Wp’ ?).
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A short analysis with the aid of Maple shows that in the range |¢ — 1.2453| < 4411—0,
|y — 1.1818| < 155, we have
f(y,¢) < —0.0242145,

the maximum occuring at v = 1.1818 + 415, ¢ = 1.2453 — o15. By (1.7), (5.13) and
(5.31), we conclude that

1
AE < —0.0074862 < ————.
- —  133.58

Together with (5.22) and (5.30), this proves the lemma. [
Lemma 5.3. When 87 < \ < 220, we have

< 1—1/(133.6612) > 3002
S(N,t) < 84N (N >e ).

Proof. Here we take
£=36, s=|[oht]+1, o=0.3299.

We choose g, h satisfying (5.16) and

gzb_)‘mJ—i—l—f—a, h:LﬁJ—b, t=g—h+1, a,be{0,1}.

To bound the exponent of N, consider A € I = [\, A2), a small interval on which
each of the quantities m; = Lﬁj, my = Ll_AmJ and k (defined in (5.13)) is

constant. We choose constant values of a and b in I, so that g, h,t,s,r are also
fixed. By the definition of H, we have for A\ € I

H=Z0+ Z)\,

m3 +my)(1— p1) + (m3 +ma)(1 — pg) —h® +h — (1 — iy — p2)(9> + 9)
2 b

Zi=h4+g—m;—mgs—1=a—-be{-1,0,1}.

Zo =\

Therefore,
A1 Zi =1
HZH/ZIZO—f— O leo
—X Zp=-1
By (5.22),

2 t(t—1) 52 —s/(h
oo log(vaz) HT = 0.00LmA” = ps (72 + gy + e/ 00) B
- 7.5Y )\ 2rs ' '
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Then, by (5.22), when X\ € I we have
S(N,t) < CN1-1/(@A*) 4 %Nl—l/(133>\2),

where u = 1/(E'A\?) and C = Cé/r()\‘r’)‘C’lC’g)l/(z”). A short computer program
(Program 2 in the Appendix) is used to compute C' and u in each interval, and to
find the best choice for a and b (the choice which gives the smallest C' subject to
u < 133.66). In all cases, C' < 8.38. For most A, we take b = 0 and for A € [136, 220]
we take a = 1. This concludes the proof.

No choice of parameters g, h, s produced C' < 9.5 in the range 86 < A < 87. O

Together, Lemma 5.2 and 5.3 prove Theorem 2 for A > 87.
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6. THEOREM 2 FOR SMALL A

We begin with a general inequality derived from the Weyl shifting method. Sup-
pose N is a positive integer and M is a real number satisfying 1 < M < N. Arguing
as in the proof of Lemma 5.1, for N < R < 2N and 0 < u < 1, we have

‘ > (ntu)t

N<n<R

1 —it
:m Z Z (n+m+u)

m<M+1 N<n+m<R

1 it N 1
gM Z Z (n+m+u) +M+M Z(Qm—l).
m<M N<n<R-1 m<M

Therefore,

1 , N
< —itlog(1+m/(n+u)) -
(6.1) SNy <o-max Y ) e Tar M
N<n<2N—1 |m<M

Lemma 6.1. If | —p/q| < 1/¢%, (p,q) = 1, m is a positive integer, and x > 1
and y > 2 are real numbers, then

1 2max
i — | < ([1+ — | (291 4y) .
Zmln (y, 2||amn||) < < + . ) (2qlog(ey) + 4y)

n<x

Proof. For 0 < j < 2q — 1 let I; be the interval [2%, %) The interval [1, x| can

be partitioned into intervals B;, 1 < i < 1 4 2max/q, each of length < ¢/(2m). If
n,n’ € B; and {amn},{amn'} € I then

m(n —n')

pm /
— (N — N
H " (=) -

, 1
< |lamn — amn'|| + < -,
q
hence n = n'. So, for 0 < j < g — 1, there are at most G = 2 + 4mua/q values of n
giving ||amn|| € I;. We take the summand to be y when j < ¢/y + 1, thus

1
i — | < ) < .
> " min (y, 2||amn||) <Gylq/y+2)+G Y q/j < Glg+2y+qlogy). O

n<x q/y+1<j<q—1

Next, we use the Weyl method to prove Theorem 2 for 1 < A < 2.6. There is
much room for improvement here, but the bounds below more than suffice for our
purposes.
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Lemma 6.2. We have

S(N,t) <5N7V/20 ¢
S(N,t) < 30N1~1/83

IA
A
—
©

—~~ =
—_
©
N >
>
[\
[_\D\_/
o
S—

Consequently, when 1 < X < 2.6, we have

S(N,t) < 1.81N1-1/(1332%)

Proof. Suppose k > 2. By (6.1) and (5.1), for some real number z € [N, 2N],

N N tMFEHL
2 N, t) < — — 4+ M+ —

where

U= Z o it((m/z)=m?/(22%) 4 +(=1)* " Im* /(kz"))
m<M

By the proof of Weyl’s inequality (e.g. Lemma 2.4 of [27]), we have

1 1 1
Ul < (2M)2 Tk min <M, ) ,
ur < (2M) 2 ok K]

hi,....hi_1
[hi|<M—1

where a = t/(27kz*). There are at most (k — 1)(2M)*=2 vectors (hy, - ,hp_1)
with some h; = 0, thus

|U|2k71 < (2M)2k71—k ((k . 1>Mk—12k—2

(6.3)
+21 N dy_y (h) min(M ! )).

" 2||achk!|
1<h<Mk-1

Suppose 1 < A < 1.9. Let ¢ = |1/a] and note that 7(4”_;)]\[2 <q< —167;1\’2'
Assume M > 10000. By (6.3) with £ = 2 and Lemma 6.1,

2

32M
U2 < 9M + + (16 M + 4q) log(eM)

(6.4)

32M %t 647 N2

= r — 1)N?

+ (17M + ) log(eM).

We may assume that N > 520 otherwise the claimed bound is trivial. We shall
take M = N*, where y = 223=2 ¢ [0.35,0.65], so that M > 57 > 10000. By (6.2)
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and (6.4),
32t 17 647 N> V2N tM3
S(N,t) < N| —F—= — 4+ —— |1 M — 4+ M+ —
(V) < ((47r—1)N2+<M+ tM?2 ) og(e )) T M T e
1/2 NO-95
<N (BNY?+ (17TN7°%° 4+ 647N~ %3) log N) '~ 4+ 2N + 5
< N (3N"! 4+ 205N "% log N))/* 4 0.334N0-95
< 41N,
When 1.9 < X\ < 2.6, we apply (6.3) with k£ = 3, obtaining
1
U*<2M | 4M> +4 d(h) min (M, ——
s 2 ) min(gEg)
1<h<M?
We shall use a crude upper bound on 7(h):
dz(h) B e+1 e+ 1
i3 H pel3 < g e
pellh P
1 24
. 3.53,

Take ¢ = L%—ZBJ, so that M <gq< M. By Lemma 6.1 (with m = 6,

x = M?,y= M), we obtain

1

Ul* < 8M? + 28.24M5/3 in(M, ——
UF < 87+ 2 0 g aa)

(6.5) 1<h<M?

< M3 + 28.24M°/3 ((2q + 24M?) log(eM) + AM + %) .

We choose =1 — M’%/E’O € [0.345,0.52] and put M = N*. Then
B3—A=3-4(1—p)+ 55 =—55 +4p € [n+0.055 u2+ 35)],

and consequently

MN0.055 < NT?) < M2+3/26.

We assume that N > 3090, otherwise the claimed bound is trivial. Then M > 30207
and
log(eM)

0.055
N0 > 74000, =

< 0.318.
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Thus,
2 48M° 2+43/26 2
(2q +24M*)log(eM) + 4M + < (967 M + 24M*) log(eM)
q
48 M?
+4M + 61 — 1 N0-055
4 1
2+45/26 —3/26
<M ((967r + 24072 (0.318) + e + 26000M5/26)

< 96M21+5/26
By (6.5), |U]|* < 2712M*~ 7, and (6.2) then gives
S(N, t) S 4N(722M_31%) + 2N0~655 + iNl—g,—lo S 30N1_1/83.

This completes the proof of the first part of the lemma. The last part follows a
general inequality: if A is fixed and 0 < d < ¢ < 1, then

(6.6) S(N,t)<CN'™¢ (N>1) = S(N,t)<C¥°N'=? (N>1).

For the proof, if N < C/¢, then trivially S(N,t) < N = NIN1-4 < Cd/eN1—d,
When N > C'/¢, the hypothesis of (6.6) implies that

S(N, t) < CNl_C _ CNd—ch—d <C- C%(d—C)Nl—d _ Cd/CNl_d.

For A € [1,1.9], take ¢ = 5, d = &= in (6.6) and for A € [1.9,2.6] take ¢ = &,
_ 1
4= 3366007 U

For larger A, we relate S(N,t) to Js ,(P) using an older method (§6.12 of [25]).
Lemma 6.3. Suppose k>2,s>2, N>1,1< M < Nt~ % and t < N*. Then

4N1_Ls Lé N
S(N,t) < = (TR WM (M) 4 5+ M,
where R
28TEN
W= T T
Proof. By (6.1) and Hélder’s inequality,
1
Nl_zi 2s N
: < ’ 2s s

(6.7)  SINt) < max —7 . ITmP) M,

N<n<2N-1

where

i)=Y e (—%log <1+ nfu» .
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With n fixed, let v; = v;(n) = for 1 < j < k. Define

(1) a5y

S@:B) =Y e(mpy+ -+ mBy).

m<x

t
When 0 <w < M,

tM*

()] < 5oy

| /\

+ ZJWJ | MO
(6.8)

1 .
< —— i85 — ;| M~
Y +;j‘ﬁj ¥4 | M
Let Q, be the region {ﬁ |Bj — 5 < W Vj}. By (6.8), for B8 € €, and
0<w< M, |§(w;B)] < 7. For any B € Q,, partial summation gives
M
T(n) = SOM: 9)e(3( (M3 B) — 21 [ Slws B)e(d(wi B)8'(ws B) du
0
and thus
()] < SO B)] + / S(w: B)] duw =: So(8).
Integrating over (2, then gives

/ So(B zsdﬁ—wkk'kkM2’“(k+1)/ Sol
Qn

‘ n ‘25

— 1]

For any 3, the number of n with 3 € Q,, is at most the number of n with |y;(n) —

Brl < 5= By hypothesis, [v,(N) — 7(2N)| < 1 and by the mean value

2
theorem, when N <n < 2N — 2,

[ve(n) — vk(n+1)| > W

Therefore the number of such is n is at most W. Hence

(6.9) > |T(n )25 < PRI M ERED W [ 50(8)%8 dg.
N<n<2N—-1 %

By Holder’s inequality,

sup <2 (1sanspr o+ () (/M S(w: 3) d“’)zs)

94s—1 M
<2 USQEE + S [ ISwiB) du
0
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Thus

4s—1
supap <2t [ |sor B)|25dﬁ+2 [ [ st asa

Uk Uk

245—1
M 0

=221 k(M) + Js, (w) dw
< 2% J, (M),

Combined with (6.7) and (6.9), this gives the lemma. [
Corollary 6.4. Suppose k >4, 1 <n < k? and s = nk. Assume that

Jox(P) < CP2—3k0HD+A (P > ),
Then, for t = N with k —1 < X\ < k, we have

k 1

1
)2nk L NET 4 NE

S(N,1) < AN'7T (C(2mk) RN T

Proof. This follows from Lemma 6.3, taking p = 1 — k—j‘_l € [ﬁ k—] M = N#
and noting that W < 28M. O

Bounds for J, ;(P) with the best exponents of P come from Lemma 3.5, how-
ever the constants are very large. By using older methods without “repeat efficient
differencing”, we obtain bounds with far better constants, while sacrificing some-
thing in the exponents of P. In fact, using Corollary 6.4 with the older bounds for
Js 1 (P) gives

S(N,t) < CANT=Y162 (6 < A < 100),

which is far better than needed for Theorem 2. Since we will then use (6.6) to

greatly reduce the constant (to C}\G/ 133'66), it is better for us to minimize Cy rather
than the exponent of P. Lemma 6.5 below comes from using Lemma 3.2 in a non-
iterative way. For some s, even better constants can be obtained using an older
variation of the method (Lemma 6.6), where solutions modulo a single prime are
considered (as opposed to considering a set of k® primes).

Lemma 6.5. Supposek >4 and1 < n < k2. Suppose 0 < w < % orw =1, and let
n=1+w. Put V(w) =6k3logk if w =1 and V(w) = max(e!->+1-5/« B3 100 k)
otherwise. If

Jnk,k( ) < CPan——k(k—l—l)—l—A (P > 1),

then

Jnk+k k( ) < C/Panz——k(k—l—l)—l—A'

where A" = (1 —1/k)A and

C" = C'max 4k3k!nk2_A,V(w)A] :
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Proof. This comes from Lemma 3.2 with Q = P, M = PY% r =k d=0,T =1,
s = nk, ¢ = 1 and ¢;(z) = 27 for each j. Lemma 2.1 implies that the interval
[Pk nP*] contains at least k* primes. Also, P*~1/* > [3k=3 > 3252 50 the
hypotheses of Lemma 3.2 are satisfied. Together with the inequality

Ls(P, P/p; ®;p,1,k) < P*J, 1.(P/p),

this proves that for P > V(w)* and k < s < k3, there is a prime p € [PY/* nPl/k]
giving

(6.10) Josni(P) < AK3KIp2t3 =R pk g (P/p).
The upper bound on p now gives the lemma. If P < V(w)¥, trivially

T ykk(P) < PPy (P) < QP2 D=z kT4
< CV(w)k(A—A')p%—%k(k+1)+A"

O
Lemma 6.6. Suppose k > 9, k < s < k? —k, P > k¥ and p is a prime in
[Pk 2PYk]. Then

Jorka(P) € max |(ep)?2(k — 122, (£), B (s + k)22t HE D phy (2] |

Proof. Let S; be the number of solutions of (1.4) (with s — s+ k) with at least
k distinct residues modulo p among x1,...,zs4r or at least k distinct residues

modulo p among y1, . .. , Ys+k- Let S be the number of remaining solutions. Clearly
Js—l—k:,k:(P) S 2maX(Sl, SQ) Let

fla; Q) = Z e(arx+ -+ akxk).

z<Q
If So > 51, for 1 <b<plet
g(a;b) = Z ez + -+ apz®)
<P
z=b (mod p)
= > elalpy+b—p) +-+alpy+b—p)h).
1<y< 2=t
Define Z to be the set of (by,...,bsyx) with 1 < b; < p for each ¢, and containing

at most k — 1 distinct values. Then

(6.11) |<@| < (k? Z_? 1) (k‘ — 1)k+s < p (k‘ — 1)k+s < %(ep)k—l(k. . 1)5—1—1‘
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By Holder’s inequality,

2
JalP) <2 [ 13 glashy) - glaibus)| da
U* b
1 1
3512k PEEY
< 2/ > lglas by +2* ol DD lalas bl )Pt dex
U \ ppen b,b/ cB
=2 Z / lg(a; b1)[25T2* da.
Uk
b,b' R
By the binomial theorem, the last integral is Jy »(£E2=2L), hence

P
Jsirk(P) < 2| B Joyrk(P/p+1).
For brevity, write P, = P/p + 1. We have J,1 1 (P1) < 2max(Ss, Sy), where Ss is

the number of solutions of (1.4) with every z;,y; < P/p and S4 is the number of
remaining solutions. If S; > S3, Holder’s inequality implies

Jsir e (Pr) < 2(2s + 2k)/ f(c; PD[Z+2 1 day
Uk

1- 2341r2k
g4w+m(/|ﬂameHWM)
[Uk

= (45 + 4k)Joyppp(Py)' " 7507F

whence Jgix 1 (P1) < (45 + 4k)?72%. On the other hand, since k > 9 and P > k¥,
counting only trivial solutions gives

Jesnn(P1) > (P/p)s+h > (%Pl—l/k)s—i—k > (4K3)2H2R > (4 4 4k)25T2E
a contradiction. Therefore, Jo i 1 (P1) < 2J54 1 (P/p), and by (6.11),
Jorkk(P) < 4B Joyr i (P/p) < (ep)®* 2 (k — 1) ok 1 (P/p).
This proves the lemma in the case Sy > 5.
If S; > S5, then Sy is at most 2(84,;]“) times the number of solutions of (1.4) with

x1,- -, 2 distinct modulo p. Let 2" be the set of k-tuples (z1,- - ,z)) which are
distinct modulo p and

Fla) =) e(o(wr+-+an) + o ara] + 4 ap)).
TEX
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Then, by the Cauchy-Schwarz inequality ,

stk (P) <28 < 4<S —I]; k) |F(a)f(c; P)*7F de
Uk

<o) ([ et petan) ([ 5o pee o)

(1) ([ p@rsaipyia) ).

Thus

s+ k

[ ot pde = 15(T 1) s

Js+k7k(P) < 16< 2

where S3(p) is defined as in the proof of Lemma 3.2 (with ¥;(z) = 27 for j =
1,...,k). All the hypotheses of Lemma 3.2 hold, with d =0, T =1, M = pl/k
r=k, Q=P and ¢ = 1. Recalling the definition (3.2) of Ls(P,Q;¥;p,q,r) and
using (3.7),

(s 4 k)%k
(k1)?

< %(8 + k>2kpzs+%k(k—1)PkJ37k(P/p%

Jotkk(P) <16 2klp?> IRV L (P, P/p; ®;p, 1, k)

and the lemma follows in the case S; > S;. [

The chief advantage of Lemma 6.6 over Lemma 6.5 is the much smaller lower
bound required for P (see (6.10)).

Lemma 6.7. Suppose k> 9, 1 <n <k? and
Tk (P) < CP2E—sk(ktD+A (P> )
Suppose that 1 < n < 2 and that for x > k, there is a prime in [x,nz|. Then
(6.12) Tty (P) < C'P2rk=shlkr)+a"
where A" = (1 —1/k)A and

C’ = C'max [UA, 32 (nk + k)zknkz_ﬂ :

U = max |:k}, {ezk_2<]{; — 1)2kn+2} 2nk—kz(kz+:§)/2+A/+2i| )

Proof. If P < U* then as in the proof of Lemma 6.5, we have the trivial estimate

Jni 1)k k(P) < CUMA=A) pAntlkb=gh(kt1)+a"
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Next suppose P > U* > k*. We prove (6.12) by induction on | P], observing that
(6.12) for integral P = m implies (6.12) for m < P < m + 1. Assume (6.12) is
true for [P] < Q — 1, where @Q is an integer > U*, and apply Lemma 6.6. If the
first term in the maximum in the conclusion on Lemma 6.6 is largest, (6.12) follows
from the bound p > U and the induction hypothesis on m. If the second term in
the maximum is largest, (6.12) follows from the upper bound p < nPY% and the
upper bound on J, x(P). O

Lemma 6.8. Theorem 2 holds for 2.6 < X\ < 87. In particular, for each row of
Table 6.1, when X is in the stated range,

S(N,t) < O N1-1/(133.66)%) (N >1).

Proof. Take k, n and ng from a row of the table. For reasons connected with the
size of U in Lemma 6.7, it is advantageous to use a completely trivial bound

Tk i (P) < P2F=2k J (P) < P2k gkt Dbsn A — %k2(1 —1/k)
for 1 <n < ng. We then proceed iteratively, taking a bound of the form
Tk (P) < C,P2E—skktD+an (P> )
and producing a bound
Tt 1y (P) < Gy P2rE= 2k +An (P >1),
where A, 11 = (1 —1/k)A,, and C,, 11 is the smaller of the constants coming from

Lemmas 6.7 (only for £ > 9) or 6.5 (with optimal choice of w). As for the number
7 in Lemma 6.7, (2.1) implies that

x 1/2 —log1.12 3
1.12z) — > —|112(1+ ——=>—— | —-1-
m(1.12z) - n(z) 2 log [ ( * log = ) 2loga:}

1.067
> " (012 >0 (2> 7300).
log log x

Using a table of primes < 7300, we find that the following are admissible choices
for n:
17/13 9<k <13

n=1{ 29/23 14<k<32
53/47 k> 33.

The optimal value of w in Lemma 6.5 is found by solving

(6.13) APR(1 4 W) 8% = max(el3H10/w 1813 160 k),
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A k o n C A k 1o n C
2.6-4 4 1 13 2.5543 45-46 46 44 365  3.5897
4-5 5 1 17 1.7474 46-47 47 46 375  3.6728
5-6 6 1 22 1.7805 47-48 48 48 386  3.7580
6-7 7 1 28  1.8406 48-49 49 50 397  3.8453
7-8 8 1 34 1.9173 49-50 50 52 408  3.9348
8-9 9 3 40  1.6808 50-51 51 54 419  4.0266
9-10 10 3 46  1.7062 51-52 52 56 430  4.1207
10-11 11 3 52 1.7362 52-53 53 58 441  4.2171
11-12 12 4 59  1.7678 53-54 54 60 452  4.3160
12-13 13 4 66  1.8021 54-55 b5 63 465 4.4174
13-14 14 5 73 1.8295 55-56 56 65 476  4.5214
14-15 15 6 81  1.8669 56-57 57 67 487  4.6280
15-16 16 6 88  1.9057 57-58 58 69 498 4.7373
16-17 17 7 96  1.9464 58-59 59 71 509  4.8494
17-18 18 8 104 1.9883 59-60 60 74 522 4.9643
1819 19 8 111  2.0317 60-61 61 76 533  5.0821
19-20 20 9 119 2.0766 61-62 62 79 546  5.2030
2021 21 10 127 2.1229 62-63 63 81 557  5.3268
21-22 22 11 136 2.1706 63-64 64 84 569  5.4539
22-23 23 11 143 2.2190 64-65 65 86 581  5.5841
23-24 24 12 152  2.2688 65-66 66 89 593  5.7176
24-25 25 13 161  2.3201 66-67 67 91 605 5.8546
25-26 26 14 169 2.3728 67-68 68 94 617  5.9950
26-27 27 15 178  2.4270 6869 69 96 629 6.1390
27-28 28 17 188  2.4826 69-70 70 99 642  6.2867
2829 29 17 196  2.5398 70-71 71 102 654 @ 6.4381
29-30 30 19 206 @ 2.5987 71-72 72 104 666 6.5934
30-31 31 20 215 2.6590 72-73 73 107 679  6.7527
31-32 32 21 224 2.7210 73-74 74 110 691  6.9160
32-33 33 23 233 2.6797 74-75 75 113 704  7.0836
33-34 34 25 243  2.7396 75-76 76 116 717  7.2553
34-35 35 26 252 2.8010 76-77 77 118 729  7.4315
35-36 36 28 263 2.8641 TT-78 78 121 742 7.6122
36-37 37 29 272 2.9287 7879 79 124 754  7.7975
37-38 38 31 283  2.9950 79-80 80 127 767  7.9876
3839 39 32 292 3.0630 80-81 81 130 780  8.1825
39-40 40 34 303 3.1327 81-82 82 133 793  8.3825
40-41 41 36 313  3.2042 82-83 83 136 806  8.5876
41-42 42 37 323 3.2775 83-84 84 139 819 8.7979
42-43 43 39 333  3.3526 84-85 85 143 833 9.0136
43-44 44 41 344  3.4297 85-86 86 146 846  9.2350
44-45 45 43 355  3.5088 86-87 87 149 859  9.4620

TABLE 6.1

obtaining a positive real solution wgy. The solution is unique since the left side of
(6.13) is increasing in w, while the right side is decreasing. If wy > 1, we take w = 1.
If % < wp < 1 we take w to be either % or 1, whichever gives the best constant C”.
Otherwise take w = wy.

Having computed admissible sequences C,, and A,,, we turn to Lemma 6.3 and
Corollary 6.4 to bound S(N,t). When 2.6 <A <4 (k =4, n=12), take p =1— 2,
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M = N* and apply Lemma 6.3. We have W < 2¥ M and thus

1 1
S(N,t) <4 (4(8)*Cy,) * N'7¢+2N%% c= %(1 —0.48(1+ A)) < 0.8.
Hence .
S(N,t) < (4 (41(87)*C,) % + 2) N=¢ (N >1).

Applying (6.6) then gives the claimed inequality. For A > 4, we use Corollary 6.4
directly, obtaining

S(N,t) < (4 (k:!(zwk;)’fcn)ﬁ + 2) Nt=e.

Then (6.6) implies the stated claim. A short computer program (Program 3 in the
appendix) provided the computations of C,, and A,,, and found the best choices of
parameters ng and n. The values of C' listed in the table have been rounded up in
the last displayed decimal place. [J
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7. BOUNDING ((s) AND ((s,u)

We start with a crude bound for {(s) and ((s, u) which takes care of s with either
o or t small.

Lemma 7.1. Suppose % <o<1,0<u<l1,t>3and s = o+ it. If either
o< % ort < 10199 then

()], 1C(5,u) — u®] < 58.1¢41=0)" 16%/3 ¢,

Proof. Applying integration by parts, when o > 0 we have

1 N+12 1=s © 1/2 -
+( 5 +u) +S/ / {w}d,
n+u)? s—1 N+1/2 (W +uw)st!

(7.1)  ((s,u) = Z (

0<n<N

where N is a positive integer. We take N = [t], and note that %(n +u)"7 > 0.
Therefore,

IC(s,u) —u™%| < /N+1/2+u dw  (N+5+uw)= || [ dw
1/24u w? t 2 Jng1y2 (wHu)tte
_ /NH/M do  (N+3+w)'"  |s|(N+54+u)7
1/24u we t 20

N+1/24u g4
g/ — +(1+1)(t+3/2)".
1/2+u w

If o <1,

/N+1/2+“ dw _ (N+1/2+u)'"7 _ (t43/2)'°
1

/24 wo 1-0 1-0

and for all o € (0, 1], we have
N—|—1/2—|—u d N+1/2—|—u d
/ _1:) < (N+1/2+u)1_"/ T < (¢ +3/2) " log(2N + 1).
1/2+u w 1/24u w

Therefore, we obtain the inequality
(7.2) 1C(s, ) — u™®] < (t+3/2)1~° (1 +1 4 min (ﬁ log (2t + 1))) .

Consider first the case when ¢ > 3 and % <o< 1—2. Here (1 —0) < 4(1 —0)%/?, so
by (7.2)
(s, u) —u™®| < V5= (4 4 16) < 21344097,

Next, if 12 <o <1 and 3 <t <100, (7.2) gives

IC(s,u) —u™%| < (t+3/2)177(1 + 1/t +log(2t + 1)).
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If 3 <t <106, the right side is < 36.8. If ¢t > 10, the right side is
< 1.123t' logt = 1.123 <t4(1_")3/2 log?/3 t) (tl_"_4(1_")3/2 log!/3 t) .

3/2 is L thus

The maximum of 1 — o — 4(1 — o) =

IC(s,u) — u™®| < 58.1¢4 1= 1992/3 ¢,

Lastly, taking v — 0% shows that the lemma holds for |((s)| as well. O

Lemma 7.2. If s =0 + it, i2<0<1 t > 101 and 0 < u < 1, then

C(s,u) — Z (n 4 )% <1078,

0<n<t
Proof. Let E(s,u) = ((s,u) = > <, <¢(n+u)~% By (7.1) with N = [¢],

|E(s,u)|gw+|s|'/;“/z+u /2 - {w} ‘

t wlts
- (t+3/2)17 N 3]s| s /t 1/2 — {w} {w} \s|t_2"
= / 4(t —1/2)0+1 st %
-1
<1073 4 (¢ +1) {wj} +1/ (cos(tlogw) — isin(tlogw)) dw| .
t

1 oo sin(2rmax)

We bound the intergal using the Fourier expansion {z} — % === m= —

as in [3]. We also use the trigonometric identities

cos(a — b) — cos(a + b) St cosh — sin(a + b) + sin(a — b) .

sinasinb = ,
2 2

Therefore, writing

dx| + dx

I, = max
h=sin,cos

/t2 h(tlogx + 2mmx)
t

t* h(tlogx — 2mrmax)
xl—i—a '

xl—l—a

and separating real and imaginary parts, we obtain

(7.3) |E(s,u)| < 10781 L >

m=1

m
m
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To bound I,,, let f(z) = 277/(t £ 2rmz)) and g(x) = k(tlogx + 2mma), where
k'(z) = h(x) and k(x) € {£sin(x), 4 cos(x)}). Since f is monotonic on [t,t?], we
obtain

/t2 h(tlogx 4+ 2mmx)
t

Tre dx

-/ " Ho () da

= | F(2)9(2) — F(B)g(t) - / g(2)f'(z) da

< I (Og(t) + 1£(P)g(E)] + mas, lg(z) / )| do
= fO90)]+ 179 + ma, lg(@)]I7(2) — F0)
< 4
~tHe2mm+ 1)’

Therefore,

< 4 + 4 _ 16mm < 167

T e 2em 1) e (2mm — 1) o (4r2m?2 — 1) © (472 — 1)tttom’
Together with (7.3), this proves the lemma. [J

Lemma 7.3. Suppose that S(N,t) < CN1=1/(PX) (1 < N < t) for positive con-
stants C' and D, where A = lloogg]f] Let B = 2\/?)D Then, for <o <1,t>10'0
and 0 < u <1, we have

1+ 10780
[C(s)] < (Ct ;33 +1.5690D1/3) 1B=0)*2 10 02/3 4
og

C+1+10780
log2/3t

C(s,u) —u™| < ( + 1.56901)1/3) #8100 1062/3 ¢
Proof. Let
S1(u) = Z (n+u)~%.

1<n<t

By Lemma 7.2, |((s,u) — u™*| < 10789 + Sy(u). Put r = Hgg;} By partial
summation,

r—1
Swl<1+3 ) Y rw

J=0 |2 <n<min(¢,2511)

r—1
< 143029782, 1)
7=0

r—1
<1403 e,

3=0



VINOGRADOV’S INTEGRAL AND RIEMANN ZETA FUNCTION 67

where G )3
. . 7log?2

= (11— log2) — —=2-".

9(j) =1 —0o)(jlog2) Dlog? ¢

As a function of z, g(z) is increasing on [0, z¢] and decreasing on [z, c0), where

xolog2 = +/D(1 —0)/3logt. Thus

Sl =1 o) / o9(@) o
¢ B 0

- log 2 0 ’

where y = /(1 — ¢)/3D¢1log'/3t. To bound the last integral, we make use of the
inequality

e=2v’ / 3V v’ gy < 1.0875034  (y > 0),
0
where the maximum occurs near y = 0.710. Therefore

|Sl<'U/)‘ -1 < tB(l—a’)3/2 1+ 10875034D1/3 log2/3t ,
C log 2
which proves the lemma. [

Proof of Theorem 1. Apply Lemma 7.3 using C' = 9.463, D = 133.66 (from Theo-
rem 2). [
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8. POSSIBLE IMPROVEMENTS TO THE CONSTANT B

There are a number of ways in which the constant B in Theorem 1 may be
improved, and we sketch three of them below. To provide complete details would
involve a substantial lengthening of this paper, and even more work would be
required to obtain a decent constant A. Taken together, the three ideas have the
potential to reduce the constant B only to about 4.1.

1. As noted in section 3, there are some improvements possible in the method
for bounding J, 4 (P). Tyrina’s method could be used for small s (when A > $k?),
and in Lemma 3.5 we could take r ~ vk? + k — 2A in Lemma 3.5. The end result
is a slight reduction in the constant % appearing in the definition of A4 in Theorem
3. This can lower B by less than 0.02.

2. As mentioned in section 4, the use of repeat efficient differencing (repeat-
edly forming divided differences of the polynomials ¥; as in [34]) produces superior
bounds for Js 4 ,(¢ (P, R)). Preliminary computations indicate a potential reduc-
tion in B of 4 — 5%, or 0.2 at most, making it hardly worth the effort of working
out the details. There is also the problem of obtaining good explicit constants
(e.g. €® in Theorem 4). In particular, when Wooley’s methods are used directly,
the constants C are far too large to be of any use in bounding ((s). Referring to
Lemma 4.1 of [34], relations (4.9) and (4.10) essentially bound Js 45 in terms of
Js—1,9,n- When iterated, the constants grow too rapidly with s. In our Lemma 4.1
above, we avoided this pitfall by an application of Holder’s inequality at the end
of the third case (assuming S3 = max(S1, S2,S3,54)), a tool which is unavailable
when using repeat efficient differencing. Incidentally, this idea was also used in the
proof of Lemma 6.7 above. Presumably some clever argument would overcome this
problem.

3. In the estimation of the quantity 7T in section 5, the number of solutions
of (5 5) may be bounded in a more sophisticated way. First we note that when

sM [v;] < 1 (essentially j > 12— u ), 9; is the set of integers in an interval of the

form [—D, D ], Where D‘7 is a non-negative integer. If in addition |y;| > 51
(essentiall ) in fact 2; = {0} (i.e. D; =0 in this case).

Let ho be the smallest mteger with Dj, = 0 and let g be the largest integer with
73] = 5575 Assuming hg < h < § < g < k, the number of solutions of (5.5) is at
most J | ,(%; D), the number of solutions of

S

(8.1) Z(w?—yf)zdj (h<j<g),

with z;,y;, € # and |d;| < D; for each j. Now set # = € (P, R) and for non-

negative integers D define
2
= Z 2D+ 1|z i e(aur)
D+1 '

|z|<2D

H(: D)= 573
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Define f(a) as in section 5 and let

Toan@ D)= [ i@ Cla)da,  Gla) = HlayiDy) - Hlay:D,).

Then J; , ,(%#; D) < j;%h(e%’; D), because the latter quantity counts the solutions

of (8.1) each with weight

2D; +1— |dj\)

(8.2) w(d) = jl:[hmax (0, D

Since G(a) is real and non-negative, we may follow the proof of Lemma 4.1 to
bound J; 4.1(%; D). We show the proof in some detail, as this method may have
other applications.

Lemma 8.1. Suppose h, g, g,r, s are positive integers with
g>g>h>9, t=g—h+1, h<r<g, s>2t.
Further suppose that
0<D;<sP? (h<j<g), D;j=0 (h<j<g)
and
R=P"> ¢° |€(P,R)| > P2, P> (8529/%)8.
Then

5.0.0 (T (P, R); D) < max (85)25(22t2)28/n29 ps(1+1/7)

4th(1+1/(m))(PI/TR)QS_QH'%(T_h)(r_h‘H)29PtJ:_t7g7h(‘5(P1_1/r, R), E) ,

2Di | forh<j<g.

where Ej = | 55/

Sketch of proof. First, J;g’h(%; D) < i,g,h(%; D), and we follow the proof of

Lemma 4.1 to bound Sy := Js 4. 1(%#; D). Define Sy, ..., Sy analogously, and con-
sider the same four cases. When 57 is the largest, we obtain

Sy < (83)25/

Ug—h+1

£ PYT)*G(ex) dex < (8517 / G(a) da.

Ug—h+1

By (8.2), the last integral is < 29~"+1 < 29, 50 Sy < 29(8sP'/7)?5. However, the
hypotheses imply Sy > (P — 1)5/ 2 giving a contradiction. When S, is the largest,

So<att [ (@) (2| Gile de

< 44283 (/ 1f(20)|*G(e) da) - (/ G(a) da) o
Ug—h+t Ug—h+1
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By considering the underlying Diophantine equations, the first integral on the right
is < Sy, thus Sy < 4t253_%29/(23), whence Sy < (4t?)?29. Again by the lower
bound Sy > (P—1)*/? and the assumed lower bound on P, this gives a contradiction.
Therefore, Sy = 4 max(Ss, Sy).

When S5 is largest, we obtain

Sy < (85)2(8et?)2/n P17 / F(@)P*?C() da
[Ug—h+1

1-1
< (85)%(8et?)2/nplti/r (/ |f(a)|*G () da) (/ G(a) da)
Ug—h+1 Ug—h+1
< (85)%(8et?)X/npiti/rgl=t/sga/s

Therefore Sy < (8s)%5(22t2)2s/129 ps(1+1/7),
If S, is the largest, we add a factor G(a) to each X;(a) and Y;(ax) and obtain

So <4(PYTR)?>*™%®  max  W(q),
P <q<PTR

where W (q) counts solutions of

t s—t
@l -y +d?D> (ul—v))=d; (h<j<y)
i=1 i=1

each with weight w(d). Since d; = 0 for h < j < g, the argument in the proof of
Lemma 4.1 implies that there are at most g2t(1+1/() ¢(r=h)(r=h+1)/2 pt 1 ogeibilities
for &,y (note that here t = g — h + 1). Let . be the set of possible x,y and put

g
Flay= Y e|d aj@—yl+ -+l —y))
(z,y)es j=h

Putting & = (¢"an, ... , ¢%a,), we obtain

Wi < [ IR @ Pl Gle) do

< gzt(1+1/(rn))q(r—h)(r—h+1)/2pt/ |f(a; P/q)|***'G(a) de.

Ug—h+1

The integral on the right counts the solutions of

¢y (wl-vl)=d; (h<j<yg),
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each counted with weight w(d). Since ¢ > P/7, this is at most 29 times the number
of solutions of

Z(u?—vi) —e; (h<j<y),

with u;,v; € €(P*Y/", R) and |e;| < 2D;/P7/". This proves the lemma in the last
case. L[]

In Lemma 8.1 it is common that there are more zeros among the numbers FE;
than among the numbers D;. Thus, as Lemma 8.1 is iterated, ¢ steadily increases
(if t reaches g — h+ 1, then one can apply the bounds from §4). This is the primary
source of the improvement over Lemma 4.1, but the analysis of the exponents of
P and the constants is much more complicated. The analysis becomes even more
complex if repeat efficient differencing is used. By taking optimal parameters, using
Lemma 8.1 in place of Lemma 4.1 has the potential to reduce B by about 0.09, or
~ 2%.

Lastly, we indicate what is the limit of our method, i.e. the limit of what could
be accomplished with Lemma 5.1. Assume now that the lower bound (1.5) for
Js,1(P) is close to the truth, i.e. J,,(P) < C(k,s)P*® for s < 1k(k +1). Assume
also best possible upper bounds Js g 4(#) < C(s,g,h)P* for s < £(g + h), valid
for any % C [1, P]. Adopt the notations from section 5. With these assumptions,
it turns out that the best choices for r, s, u1, o are given by

ket tgrm) 1
- 2 ) - 9 7“1_/112_/1’_6'

Also, one takes ¢ very close to (and larger than) ﬁ and 7 very close to (and

smaller than) ﬁ Plugging these values into (5.22) yields
2
2
E=2_
A o7~ ©

where ¢ — 0% as ¢ — v — 0. An application of Lemma 7.3 (with D = 27/2 + ¢’)
gives Theorem 1 with a constant B = /2 + ¢” (valid for o > }—g), where &', &” can
be taken arbitrarily small.
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APPENDIX: COMPUTER PROGRAM LISTINGS

/* PROGRAM 1. exponents and constants in Vinogradov’s integral for small k.
Used to prove the second part of Theorem 3; written 12/12/2000 K. Ford */
#include <stdio.h>
#define max(x,y) (((x)>(y))7(x):(y))
#define min(x,y) (((x)>(y))7(y):(x))
double newdel (k,r,del) /* returns delta_O(k,r,del) x*/
double k,r,del;
{
double y, sqrt(),p,tkr;
long j,3jj;
if ((r<4.0) (r>k)) return(2.0xdel); /* invalid r */
tkr = 2.0xk*r; y=2.0*del-(k-r)*(k-r+1.0);
if ((y<0.0)(2.0xk/(tkr+y))<=1.0/(k+1.0)) return(del*2.0); /* invalid r */
j = min((long) (0.5%(3.0+sqrt(4.0*y+1.0))), 9%r/10);
p=1.0/r;
for (jj=j-1; jji>=i; jj--)
p = 0.5/r+0.5%(1.0+(jj*jj-jj-y)/tkr)*p;
return(del-k+0.5*p* (tkr-y)) ;
}
main()
{
long j,k,kO0,k1,r,r0,rl1,n,bestr,s;
double kk,logk,del0,dell,sqrt(),log(),exp(),bestdel, goal, maxs, eta, om;
double logH,logW,logC,k3,theta,thetamax;
printf("enter k range : "); scanf(")ld %1d",&k0,&k1);
maxs = 0.0; thetamax=0.0;
for (k=k0; k<= k1; k++) {
kk=(double) k;
logk=log(kk); k3 = kk*kk*kk*logk;
om=0.5; for (j=1;j<=10;j++) om=1.5/(log(18.0*k3/om)-1.5);
eta = 1.0+om;
logW = (kk+1.0)*max(1.5+1.5/om, log(18.0/om*k3));

del0 = 0.5*%kk*kk*(1.0-1.0/kk);

goal = 0.001xkk*kk;

logH = 3.0%kk*logk+(kkxkk-4.0xkk)*log(eta); /* log(k~3k eta”(k"2-4k) x*/
logC = kk*logk; /* upper bound for log(k!) */

for (n=1;;n++) {
r0 = (long) (sqrt(kkxkk+kk-2.0*del0)+0.5)-2; rl = rO+4; /* r range */
bestdel=kk*kk; bestr=-1;
for (r=r0;r<=ri;r++) {
delil=newdel (kk, (double) r,del0);
if (deli<bestdel) { bestdel=dell; bestr=r; }
}
dell=bestdel; r=bestr;
if ((dell >= del0) (r<r0)) exit(-1);
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logC += max(logH + 4.0%kk*n*log(eta),logW*(delO-dell));
if (deli<=goal) { /* reached goal */
s=(long) ((n+(delO-goal)/(delO-dell))*kk+1);
theta = logC/k3;
printf("%4d: s=Y8.6f k"2 eta=)9.7f theta=%10.8f\n",k,
s/kk/kk,eta,theta);
if ((s/kk/kk) > maxs) maxs=s/kk/kk;
if (theta>thetamax) thetamax=theta;
break;
}
delO=dell;
}
}
printf("\n max s = %9.6fk"2 maxtheta=/10.8f\n",maxs,thetamax);
}

/* PROGRAM 2. Find optimal parameters for use in bounding S(N,t) for the
Riemann zeta function : intermediate lambda. For Lemma 5.3,
lambda in [84,220]. By K. Ford 10/22/2001 x/

#include <stdio.h>

#include <math.h>

long k,g,h,s,r,t, g0, hO,gl,hl,flag;

double mul,mu2,xi,lam,laml,lam2,D,sigma, Y, goal;

void calc(ex,c,pr)

double *ex,*c; int pr;

{
double kk,logk, k2, log(),exp(),pow(),floor(), ceil();
double th,rr,ss,tt,gg,hh,rho,H,E1,E2,E3,m1,m2,Z0,Z1,reta,
logC1,l0gC2,1l0gC3,1l0gC,dc;

k=(long) (lam/(1.0-mul-mu2)+0.000003);
/* if (k<129) exit(-1); */
kk=(double) k;
logk=log(kk); k2=kk*kk;
rho=3.21432; th=2.3291;
if (k<=199) { rho=3.21734; th=2.3849; } /* 150 to 199 x/
if (k<=149) { rho=3.22313; th=2.4183; } /* 129 to 149 x/
r = (long) (rhoxk2+1.0);
rr=(double) r; ss=(double) s;
gg=(double) g; hh=(double) h; tt=(double) t;

/* calculate minimum H = Z1 + lam*Z2 */

ml = floor(lam/(1.0-mul));
m2 = floor(lam/(1.0-mu2));
Z0 = 0.5*x((m1*m1+m1)*(1.0-mul)+(m2*m2+m2)*(1.0-mu2)-hh*hh+hh-(1.0-mul-mu2) *

(sg*gg+ee)) ;
Z1 = hh+gg-m1-m2-1.0;
if (Z1<0.0) H = Z0 + lam2+*Z1;
else H=Z0 + laml*Z1; /* H is now the H’ from Lemma 5.3 */
reta = xi*pow(gg,1.5); /* 1/eta *x/

El = 0.001%k2;
E2 = 0.5%tt*(tt-1.0)+hh*tt*exp(-ss/(hh*tt))+ss*ss/(2.0*tt*reta);
E3 = log(Y*laml*laml)/(7.5*Y*laml*laml*lami*laml) ;

*ex = (-E3 + (1.0/(2.0*rr*ss))*(H-mul*E1-mu2*E2))*laml*laml;
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logCl=th*k2*kk*logk;
logC2 = ss*ss/tt+10.5xxixxixtt*xggrgg*log(gg)*log(gg)/D;
logC2 -= (ss*log(0.1*reta)*((reta+hh)*pow(1.0-1.0/hh,ss/tt)-h));
logC3=1.04*reta*log(10.82*reta);
logC = 1logC3/rr+(5.0%lam2*log(lam2)+logCl+logC2)/(2.0*rr*ss);
*c = exp(logC)+1.0/kk; /* constant for exponent ex */
if (pr==1) {
printf ("%8.4f-%8.4f %44",laml,lam2,k);
if (g>0) printf(" %3d %2d %2d %2d %9.4f J%7.4f\n",
s,g-g0,h1-h,t,1.0/ (*xex)+0.00005,*c+0.00005) ;
else printf("\n");

}
main()
{
double E,lam8,lam9,r[9],tmp,maxex,con,maxcon,bestth,bestcon,bp[5000];
/* bp[] are endpoints of intervals */
long i,j,i0,w,n,m,maxm,bestg,besth, bests,s0,sl;
mul = 0.1905; mu2 = 0.1603;

goal=133.66;

while (1) {
printf("enter Y : "); scanf("%41lf",&Y);
D = 0.1019%Y;
printf("enter xi : "); scanf("/lf",&xi);

printf("enter sigma : "); scanf("/1lf",&sigma);

if (sigma<0.0) flag=1; else flag=0;

/* flag=1 means let the program find the best value of s */
printf ("enter lambda range: "); scanf("%1lf %1f",&lam8, &lam9);
if ((lam9<lam8) (1am8<=80.0) (1am9>=300.0)) continue;

printf (" approx.\n");

printf(" lambda range k s a b t exp const\n");
printf("------—--------- = = = ——— \n");
bp[1] = lam8; bp[2] = lam9; j=3; /* make list of endpoints */

i0 = (long) (lam9/(1.0-mul-mu2))+10;
for (i=1; i<=i0;i++) {
w=(double) 1i;
r[1]=w*(1.0-mul);
r[2]=w*(1.0-mu2);
r[3]=(w-0.000003) *(1.0-mul-mu2) ;
for (m=1;m<=3;m++) if ((r[m]<lam9) && (r[m]>lam8)) bp[j++]=r[m];
}
n=j-1; /* number of endpoints */
for (i=1; i<=n-1; i++) for(j=i+l;j<=n;j++) /* Bubble sort */
if (bp[jl<bplil) { tmp=bpl[il; bplil=bp[jl; bp[jl=tmp; }
maxex=0.0; /* maximum exponent of N */
maxcon = 0.0; /* maximum constant */
for (j=1; j<=n-1; j++) {

lam = 0.5*(bp[jl+bp[j+11); /* midpoint of interval */
laml=bp[jl; lam2=bp[j+1]; /* endpoints */

g0 = (long) (lam/(1.0-mul)+1.0); gl=gO+l; /* g range */
h1l = (long) (lam/(1.0-mu2)); hO=h1-1; /* h range */

bestg=-1; besth=-1; bestth=1.0e20; bestcon=1.0e40;



for (g=g0;g<=gl;g++) for (h=hO0;h<=hl;h++) {
t=g-h+1;
if ((g>=100) && ((double) g <= 1.254%laml)) { /* condition (5.16) */
if (flag==0) {
s0=(long) (sigmaxh*t+1.0); s1=s0;
}
else {
sO=h*(t-1)/4;
si=hx*xt/2;
}
for (s=s0; s<=s1; s++) {
calc(&E,&con,0);
if ((E>0.0) && (1.0/E < goal) && (con<bestcon)) {
/* look for best constant such that 1/exponent < goal */
bestth=1.0/E; bestg=g; besth=h; bests=s;
}
}
¥
}
g=bestg; h=besth; t=g-h+1;
s=bests;
calc(&E,&con,1);
if (1.0/E>maxex) maxex=1.0/E;
if (con>maxcon) maxcon=con;
}
printf(" max. ex: %10.6f max. const.: %10.6f\n",maxex,maxcon);
}
}

/* PROGRAM 3. find optimal parameters for use in bounding S(N,t)
for small lambda; Section 6. Written by K. Ford 10/20/2001 */

#include <stdio.h>
#include <math.h>
#define max(x,y) (((x)>(y))7(x):(y))
#define min(x,y) (((x)<(y))7(x):(y))
long k,nO;
double kk, logk, logkl, pi, eta, logeta, L32, lam, lam4, 1kf,k3,logA,B,C;
double Delta[10000], logC[10000]; /* Delta and log of constants */
double log(), exp(), pow(), sqrt();
/* #define DEBUG */
double logV(double w)  /* log(V(w)) =/
{

if (w==1.0) return(k3);

if ((w<=0.5)&&(w>0.0)) return(max(1l.5+1.5/w,k3+1log(3.0/w)));

exit(-1);
}
double F(double w)
{

return((1.0+w)*exp(logA/B)-exp(logV(w)*C/B)) ;
}
double bestomega(int n) /* best omega value for Lemma 6.5 */

{
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double wO,wl,w2;

B = kkxkk-Delta[n]; /* exponent of (1+w) */
C = Deltaln]; /* exponent of V */
if (F(1.0)<=0.0) return(1.0); /* take w=1 */
if (F(0.5)<=0.0) { /* take w=1 or 1/2 */

if (exp(logV(0.5)*C/B)<2.0*exp(logA/B)) return(0.5);
else return(1.0);
} /* solve F(w)=0 */
w0=0.5; wi1=0.2; while (F(w1)>=0.0) wi1*=0.5;
while (((wO-w1)/w1)>=0.0000001) {
w2=0.5*% (wO+wl);
if (F(w2)>0.0) wO=w2; else wl=w2;
}
return(wl);
}
void calcparm()  /* calculate Delta_n and C_n */
{
long nil,n,i;
double f, s, logU, omega, logMi, logM2, AA, BB;
kk=(double) k;
logk=log (kk) ;
logkl=log(kk-1.0);
k3=3.0*logk+log(6.0*1logk); /* log(6k~3 log k) */
1kf=0.0; for (i=2;i<=k;i++) 1kf += log(((double) i)); /* log(k!) */
logh = 3.0xlogk+lkf+log(4.0); /* log(4k~3 k!)  */
logeta=log(eta);
L32=10g(32.0) -1kf;
nl = (long) (2.6%kk*logk+50);
if (n1>=9999) n1=9998; /* calculate constants up to n=nl */
for(i=1;i<=n0;i++) { /* use trivial bound for 1<= n<= n0 */
Deltal[i] = 0.5%kk*(kk-1.0);
logC[i]l = 1kf;
}
f = 1.0-1.0/kk;
for (n=n0+1; n<=nl+1; n++) Deltal[n]=f*Delta[n-1];
for (n=n0; n<=nl; n++) {
s=kk*n;
omega=bestomega(n) ;
logM1 = max(logV(omega)*C,logA+Bxlog(1l.0+omega)) ;
/* Mil=multiplier for constant in Lem. 6.5 */
if (k>= 9) { /* Lemma 6.7 only for k>=9 x*/
AA =(kkxkk-Delta[n])*logeta+2.0*xkk*log(s+kk)+L32;
logU = (2.0%kk-2.0+(2.0%s+2.0)*1logkl)/
(2.0*s+2.0-0.5%kk* (kk+1.0)+Delta[n+1]);
if (logU<logk) logU=logk;
BB=Delta[n]*logU;
logM2 = max(AA,BB); /* M2=multiplier for constant in Lemma 6.7 */
}
else logM2=1.0e40;
logC[n+1] = logC[n] + min(logM1l,logM2);
#ifdef DEBUG
printf(" logMi=f logM2=)if logCl%d]=%f\n",logM1l,logM2,n+1,logC[n+1]);
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#endif
}
¥
int exponent(n,c,pr) /* from Lem. 6.3, 6.4 */
int n,pr; double *c; /* return constant in ’c’ */
{

double s,goal,logd,cl,e,mu,log(),pow(),expQ);

lam=kk-1.0; if (k==4) lam=lam4; /* lower limit of lambda */
mu=1.0-lam/(kk+1.0); /* largest mu */

s=kk*n;

logd = log(4.0) + 0.5/s*(logC[n]+1kf+kk*log(2.0*kk*pi));

logd = log(exp(logd)+2.0); /* add 2 */

goal = 133.66%lam*lam; /* goal for denominator */

e = (1.0-(1.0+Delta[n])*mu)/(2.0%s);

if (e<1.0/goal) return(-1); /* exponent not good enough */

*c = exp(logd/e/goal) ;
if (((*c) <= 10000.0) && (pr==1))
printf("n=/6d 1/(e lam~2)=%8.2f c=V%e\n",n, 1.0/e/(kk-1.0)/(kk-1.0),*c);
return(0);
}
main()
{
double log() ,bestc,c,e,mu, CC[200];
long bestn,bestnO,n, n2, i,k1,k2,j,nn[200], n00[200], nO1, n02;
pi=3.1416; /* good enough upper bound */
printf(" k range : "); scanf("/ld %1d",&k1,&k2);
if (k1<4) exit(0);
if (k1==4) {
printf ("enter lower bound on lam for k=4 : ");
scanf ("%1f",&lam4) ;
}
/* printf(" nO range : "); scanf(")ld %1d",&n01, &n02); */
for (k=k1l; k<=k2; k++) {
if (k<=13) eta=1.308;
else if (k<=32) eta=1.2609;
else eta=1.12766;
bestn0=0; bestn=0; bestc=1.0e40;
for (n0=1; n0<=2xk; nO++) {
calcparm();
n2 = (long) (kk*2.5%logk) + 50;
for (n=k+1;n<=n2;n++) {
if (exponent(n,&c,0)==0) {
if (c<bestc) { bestc=c; bestn=n; bestnO=n0; }
}
¥
if (bestn<l) bestc=-99.99;
} /*x for n0 */
if (bestn0<1) CC[k]=-99.99;
else {
#ifdef DEBUG
for (n=bestn-25; n<=bestn+5 ; n++) exponent(n,&c,1);
#endif
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nn[k]=bestn; CC[k]=bestc+0.00005; n00[k]=bestnO;
printf("k=Yd  lambda: %d - %d n0=%d n=/d c=%8.5f\n",
k,k-1,k,bestn0,bestn,bestc+0.000005) ;
}
} /* for k */
nn[k2+1]=999; CC[k2+1]=99.999; /* print in TeX tabular format */
i = (k1+k2)/2-k1+1;
for (j=ki1; j<=(k1+k2)/2; j++) {
if (j==4) printf("&& %3.1f",lam4);
else printf("&& %3d",j-1);
printf("--%-2d & %2d & %3d & %3d & %7.4f &&",j,j,n00[j]1,nn[3j],CCL1);
printf(" %2d--%-2d & %2d & %3d & %3d & %7.4f &\\cr\n",j+i-1,j+i,j+i,
n00[j+i] ,nn[j+i],CC[j+il);

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, UR-
BANA, IL 61801



