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1. Introduction

The methods of Korobov [11] and Vinogradov [28] produce a zero-free region for
the Riemann zeta function ζ(s) of the following strength: for some c > 0, there are
no zeros of ζ(s) for s = σ+ it with |t| ≥ 3 and σ > 1− c(log |t|)−2/3(log log |t|)−1/3.
The principal tool is an upper bound for |ζ(s)| near the line σ = 1. In 1967, Richert
[22] used this method to give the bound

(1.1) |ζ(σ + it)| ≤ A|t|B(1−σ)3/2 log2/3 |t| (|t| ≥ 2, 12 ≤ σ ≤ 1)

with B = 100 and A and unspecified absolute constant. Similar results with smaller
B values have been proven subsequently by several authors, the best being B =
18.4974 and due to Kulas [13]. Recently, Y. Cheng [3] has given a completely
explicit version of this bound, with A = 175 and B = 46.

In this paper, we improve substantially the value of B, while also keeping the
bound entirely explicit. More generally, we bound the Hurwitz zeta function,
defined for ℜs > 1 and 0 < u ≤ 1 by ζ(s, u) =

∑∞
n=0(n + u)−s. The Hur-

witz zeta function may be used to bound Dirichlet L-functions via the identity
L(s, χ) = q−s

∑q
m=1 χ(m)ζ(s,m/q), where χ is a Dirichlet character modulo q.

Notice that ζ(s) = ζ(s, 1). Since ζ(s̄, u) = ζ(s, u), we may restrict our attention to
s lying in the upper half-plane.

Theorem 1. The inequalities

|ζ(σ + it)| ≤ AtB(1−σ)3/2 log2/3 t (t ≥ 3, 12 ≤ σ ≤ 1),

|ζ(σ + it, u)− u−s| ≤ AtB(1−σ)3/2 log2/3 t (0 < u ≤ 1, t ≥ 3, 12 ≤ σ ≤ 1)

hold with B = 4.45 and A = 76.2.
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2 KEVIN FORD

If the Riemann Hypothesis is true, then the conclusion of Theorem 1 holds with
any positive B, with the constant A depending on B. Bounds of the type (1.1)
with explicit values of B have numerous applications, including (i) explicit zero-
free regions for ζ(s); (ii) explicit error bounds for the prime number theorem; (iii)
zero density bounds for ζ(s); (iv) mean value theorems for ζ(s); (v) bounds for
error terms in the Dirichlet divisor problem. We briefly indicate the consequences
of Theorem 1 for each of these five problems.

(i) One can use (1.1) to give explicit values for the constant c in the zero-free
region mentioned in the opening paragraph. In a separate paper [6], the author
shows that ζ(β + it) 6= 0 for t sufficiently large and

1− β ≤ 0.05507B−2/3

(log t)2/3(log log t)1/3
.

Moreover, using the full strength of Theorem 1, in [6] the zero-free region

t ≥ 3, 1− β ≤ c

(log t)2/3(log log t)1/3
, c =

1

57.54

is proved. By comparison, Popov [20] showed that the above holds with holds with
c = 0.00006888, and Cheng [4] proved a zero-free region with c = 1/990.

(ii) A corollary of Theorem 1, the work in [6], and Theorem 8 of Pintz [19], is
the following error bound in the prime number theorem:

π(x)− li(x) = O
(
x exp{−c(log x)3/5(log log x)−1/5}

)
, c = 0.2098.

(iii) Let N(σ, T ) denote the number of zeros of ζ(s) in the rectangle σ ≤ ℜs ≤ 1,
|ℑs| ≤ T . If (1.1) holds, then for 9

10
≤ σ ≤ 1, we have

N(σ, T ) ≪ T 13.043B(1−σ)3/2 log15 T.

This follows from Theorem 12.3 of Montgomery [17], taking 1 − α = 4.93(1− σ);
see also §11.4 of [8]. Incidentally, there is an error in Corollary 12.5 of [17], where
it is stated that B = 100 implies

N(σ, T ) ≪ T 167(1−σ)3/2 log17 T.

As a corollary, Theorem 1 gives

N(σ, T ) ≪ T 58.05(1−σ)3/2 log15 T.

(iv) Let

Mk(σ, T ) =
1

T

∫ T

0

|ζ(σ + it)|2k dt.
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Let σk be the infimum of the numbers σ with Mk(σ, T ) = O(1), and let µk(σ) be
the infimum of the numbers ξ such that Mk(σ, T ) = O(T ξ). If σ > σk, we have an
asymptotic formula for Mk(σ, T ) ([25], §7.8):

Mk(σ, T ) ∼
∞∑

n=1

dk(n)
2

n2σ
,

where dk(n) is the number of k-tuples of positive integers (b1, b2, · · · , bk) with
b1 · · · bk = n. In particular, d2(n) is the number of positive divisors of n. Also,
when ℜs > 1, (ζ(s))k =

∑∞
n=1 dk(n)n

−s. Upper bounds on σk can be deduced
from upper bounds on ζ(s) inside the critical strip by means of a Theorem of
Carlson ([25], Theorem 7.9): for any 0 < α < 1, we have

(1.2) σk ≤ max

(
1

2
, α, 1− 1− α

1 + µk(α)

)
.

By (1.1), we have trivially µk(σ) ≤ 2Bk(1 − σ)3/2. Taking α = 1 − (Bk)−2/3 in
(1.2) gives σk ≤ 1 − 1

3
(Bk)−2/3. For more on mean value theorems, see Chapter

VII of [25] and Chapter 8 of [8].
(v) Denote by ∆k(x) the usual error term in the Dirichlet divisor problem, i.e.

∆k(x) =
∑

n≤x

dk(n)− Res
s=1

xs(ζ(s))ks−1 =
∑

n≤x

dk(n)− xPk(log x),

where Pk is a certain polynomial. Let αk be the infimum of numbers α with
∆k(x) = O(xα). Dirichlet in 1849 proved that α2 ≤ 1

2 and his method can be used

to deduce αk ≤ 1 − 1
k
. Modern treatments make use of Perron’s formula in the

form
∑

n≤x

dk(n) =
1

2πi

∫ c+i∞

c−i∞
ζk(s)

xs

s
ds, c > 1.

Then the contour is moved inside the critical strip, the main term coming from the
pole at s = 1, and the error term coming from upper bounds for ζ(s). In 1960,
Richert [21] proved that αk ≤ 1−ck−2/3 for some positive constant c. Subsequently,
the value of c was made explicit as a function of the constant B in (1.1) by Karatsuba
[10] (c = 1

2
(2B)−2/3 ≈ 0.31498B−2/3). Writing c = dB−2/3, the value of d was

improved by Ivić and Ouellet [9] to d = 1
3
22/3 ≈ 0.52913. There are two claims for

larger d, but both arguments are flawed. Fujii [7] claims d = 2−1/2(
√
8− 1)−1/3 ≈

0.57826, but the details are omitted (the method appears to give d = 1
2
); Panteleeva

[18] claims d = 2−2/3 ≈ 0.62996, but the proof of this result (Theorem 3 of [18])
has a flaw, namely the differentiation of (14) in invalid.

For the mean square of ∆k(x), Ivić and Ouellet [9] proved that

∫ x

1

∆2
k(y) dy ≪ε,k x

1+2bk+ε, bk = 1− 2

3

(
1

Bk

)2/3

.
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More information may be found in Chapter XII of [25] and Chapter 13 of [8].

Theorem 1 depends primarily on upper bounds for the following exponential
sum:

S(N, t) = max
0<u≤1

max
N<R≤2N

∣∣∣∣∣∣

∑

N<n≤R

(n+ u)−it

∣∣∣∣∣∣
,

where N is a positive integer and t ≥ N . We shall prove the following.

Theorem 2. Suppose N is a positive integer, N ≤ t and set λ = log t
logN . Then

S(N, t) ≤ 9.463N1−1/(133.66λ2).

By comparison, Kulas [12] proved that S(N, t) ≪ N1−1/(2309.525λ2) for λ ≥ 1000.

Corollary 2A. Suppose χ is a Dirichlet character modulo q, where q ≤ N and
2 ≤ N ≤ qt. Then

max
N<R≤2N

∣∣∣∣∣∣

∑

N<n≤R

χ(n)n−it

∣∣∣∣∣∣
≤ 10.463

φ(q)

q
Ne

− log3(N/q)

133.66 log2 t .

Proof. Suppose the maximum on the left occurs at R = R0. Then

∑

N<n≤R0

χ(n)n−it =

q∑

ℓ=1
(ℓ,q)=1

χ(ℓ)
∑

N<n≤R0
n≡ℓ (mod q)

n−it.

Writing n = mq + ℓ gives

∣∣∣∣∣∣∣

∑

N<n≤R0
n≡ℓ (mod q)

n−it

∣∣∣∣∣∣∣
≤ 1 +

∣∣∣∣∣∣∣

∑

N−ℓ+q
q <m≤R0−ℓ

q

(m+ ℓ/q)−it

∣∣∣∣∣∣∣

≤ 1 + S

(
N − ℓ+ q

q
, t

)
.

Theorem 2 then gives

∣∣∣∣∣∣

∑

N<n≤R0

χ(n)n−it

∣∣∣∣∣∣
≤ φ(q)



1 + 9.463

(
N

q

)1− log2(N/q)

133.66 log2 t



 .

Lastly, N/q ≥ 1, and the result follows. �
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As with prior treatments, Theorem 2 in turn depends on explicit bounds for
Vinogradov’s integral, defined as

(1.3) Js,k(P ) =

∫

[0,1]k

∣∣∣∣∣∣

∑

1≤x≤P

e(α1x+ · · ·+ αkx
k)

∣∣∣∣∣∣

2s

dα,

where α = (α1, . . . , αk) and e(z) = e2πiz. Equivalently, Js,k(P ) is the number of
solutions of the simultaneous equations

(1.4)
s∑

i=1

(xji − yji ) = 0 (1 ≤ j ≤ k); 1 ≤ xi, yi ≤ P.

For h = (h1, . . . , hk), let Js,k(P ;h) be the number of solutions of

s∑

i=1

(xji − yji ) = hj (1 ≤ j ≤ k); 1 ≤ xi, yi ≤ P.

In particular,

Js,k(P ;h) =

∫

[0,1]k

∣∣∣∣∣∣

∑

1≤x≤P

e(α1x+ · · ·+ αkx
k)

∣∣∣∣∣∣

2s

e(−α1h1 − · · · − αkhk)dα

≤ Js,k(P ; (0, . . . , 0)) = Js,k(P ).

Hence, writing Q = ⌊P ⌋, we obtain

Q2s =
∑

h

Js,k(P ;h) ≤
∑

h
|hj|≤s(Qj−1)

Js,k(P ) ≤ (2s)kQk(k+1)/2Js,k(P ).

Also, counting only the solutions of (1.4) with xi = yi for each i gives Js,k(P ) ≥ Qs.
Therefore

(1.5) Js,k(P ) ≥ max
(
(2s)−k⌊P ⌋2s− 1

2k(k+1), ⌊P ⌋s
)
.

Upper bounds take the form of

(1.6) Js,k(P ) ≤ D(s, k)P 2s−1
2k(k+1)+η(s,k),

where η(s, k) ≥ 0 and D(s, k) is independent of P . Stechkin in 1975 [24] proved
(1.6) with

η(rk, k) =
1

2
k2(1− 1/k)r, D(rk, k) = exp{Cmin(r, k)k2 log k}
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for an absolute constant C. The constant factor was improved by Wooley [31].
Small improvements to the exponents of P were subsequently made by Arkhipov
and Karatsuba [1] and Tyrina [26] (significant for s ≪ k2). Also significant is
Wooley’s [32] result when s ≪ k3/2−ε, which is very close to the “ideal” bounds
C(k, s)P s in that range of s. For our purposes, the most important improvement
comes from Wooley [30], who improved the exponents substantially in a wide range

of s, showing that (1.6) holds with η(k, s) ≈ 1
2k

2e1/2−2s/k2

valid for s ≪ k2 log k
(see [5], Lemma 5.2). In Theorem 3 below, we combine Wooley’s method with the

main idea from [1] to improve this to η(k, s) ≈ 3
8
k2e1/2−2s/k2

. In the application to

bounding the Riemann zeta function, we will take s to be of order k2, so this small
improvement is significant.

Theorem 3. Let k and s be integers with k ≥ 1000 and 2k2 ≤ s ≤ k2

2
( 1
2
+ log 3k

8
).

Then

Js,k(P ) ≤ k2.055k
3−5.91k2+3s1.06sk+2s2/k−9.7278k3

P 2s− 1
2k(k+1)+∆s (P ≥ 1),

where
∆s =

3
8
k2e1/2−2s/k2+1.7/k.

Further, if k ≥ 129, there is an integer s ≤ ρk2 such that for P ≥ 1,

Js,k(P ) ≤ kθk
3

P 2s− 1
2k(k+1)+0.001k2

,

with

(1.7) (ρ, θ) =






(3.21432, 2.3291) (k ≥ 200)

(3.21734, 2.3849) (150 ≤ k ≤ 199)

(3.22313, 2.4183) (129 ≤ k ≤ 149)

By itself, Theorem 3 implies the inequalities in Theorem 1 with B a bit more
than 10.4.

The most significant new idea is to bound S(N, t) in terms of both Js,k(P ) and
another quantity which counts the number of solutions of incomplete Diophantine
systems (where we regard (1.4) to be complete because the powers of the variables
range from 1 to k). Define Js,k,h(B) to be the number of solutions of the system

(1.8)
s∑

i=1

(xji − yji ) = 0 (h ≤ j ≤ k); xi, yi ∈ B.

Incomplete systems were first studied my Mardzhanishvili ([15], [16]), who gave
sufficient conditions for the existence of solutions of the system

s∑

i=1

xji = Nj (j ∈ J ),
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where J is an arbitrary finite subset of positive integers. More general systems of
Diophantine equations and associated trigonometric sums are treated in [2].

The Vinogradov method [28], when applied to bounding a more general sum

∑

N<n≤2N

e(p(n)), p(n) = α1n+ · · ·+ αkn
k,

ultimately depends on having good rational approximations for a subset of the
coefficients of p(n), say for αi, αi+1, . . . , αj. By applying trivial estimates to sums
involving the other coefficients, we may restrict attention to associated mean-values
over αi, αi+1, . . . , αj which are equivalent to Js,j,i(B). The core of the argument
is given in Lemma 5.1.

When B ⊆ [1, P ], we have a trivial bound

(1.9) Js,k,h(B) ≤ sh−1P h(h−1)/2Js,k(P ).

In the application to bounding S(N, t), however, (1.9) gives nothing better than
if Js,k,h(B) were replaced by Js,k(P ) from the outset. By a more sophisticated
method, which is a generalization of the author’s work ([5]) on mean values of com-
plete Weyl sums, one can bound Js,k,h([1, P ]) in terms of Js′,k(P ) (with s

′ < s), and
attain superior bounds for S(N, t). When B = A (P,R), the set of numbers ≤ P
with no prime factors exceeding R (R-“smooth” numbers), R is a sufficiently small
power of P (depending on k, h, s), and h close to k, Wooley’s “efficient differencing”
method ([29], [30], [34]) produces even better exponents of P . However, the implied
constants coming from the bounds in [34] grow too fast as functions of k, h, s, and
thus are inadequate for bounding S(N, t) for the entire range 1 ≤ λ ≪

√
logN .

The principal problem is that elements of A (P,R) may contain a very large num-
ber of divisors. We overcome this by taking B = C (P,R), the set of integers ≤ P

composed only of prime factors in (
√
R,R]. We thus retain all of the advantages

gained by using R-smooth numbers, but now the number of prime factors of each
such number is bounded above by 2 logP

logR
. The next theorem, which will be used for

the proof of Theorem 2, is an example of what can be proved.

Theorem 4. Suppose k ≥ 60, 0.9k ≤ h ≤ k − 2, 2t ≤ s ≤ ⌊h/2⌋t, and P ≥ eDk2

where D ≥ 10. Further assume that

(1.10)
2

k3
< η ≤ 1

2k
,

18

k
≤ 4 log k

Dk2η
≤ 0.4.

Then

Js,k,h(C (P, P η)) ≤ eCP 2s− t
2 (h+k)+

t(t−1)
2 +ηs2/(2t)+ht exp{−s/(ht)},

where

C =
s2

t
+

10.5t log2 k

Dkη2
− s

((
1

η
+ h

)(
1− 1

h

)s/t

− h

)
log

(
1

10η

)
.
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Sections 2, 3 and 4 are dedicated to proving explicit bounds for Js,k(P ) (Theo-
rem 3) and Js,k,h(C (P,R)) (Theorem 4). In §5, we use Vinogradov’s method and
Theorems 3 and 4 to prove Theorem 2 for large λ. For smaller λ we use older meth-
ods (§6), which give better results. This is then applied to the problem of bounding
|ζ(s)| and |ζ(s, u)| in §7, where Theorem 1 is proved. Lastly, in §8 we discuss the
limit of our method, and briefly indicate some ways in which the constant B may
be improved a little.

Acknowledgements The author wishes to thank the following people: Y.
Cheng for several reprints and preprints of his work, and for helpful discussions
concerning the proof of Theorem 2 for small λ; A. Ivić for helpful discussions con-
cering the applications (iv) and (v) above; D. Meade for help with Maple code; K.
Oskolkov for help with the Fourier analysis connected with the functions ℓ(x;w) in
§5.

2. Preliminary Lemmata.

First, we detail some notational conventions. Let U = [0, 1], let ⌊x⌋ be the
greatest integer ≤ x, let ⌈x⌉ be the smallest integer ≥ x, write e(z) for e2πiz and
let ‖x‖ be the distance from x to the nearest integer. Let C (P,R) be the set of

positive integers n ≤ P , all of whose prime factors are in (
√
R,R]. The functions

ω(n) is the number of distinct prime factors of n, Ω(n) is the number of prime
power divisors of n, τ(n) is the number of positive divisors of n, and s0(n) is the
product of the distinct primes dividing n (the “square-free kernel” of n). Variables
in boldface type always indicate vector quantities with the components using the
same letter (e.g. z = (z1, z2, . . . )).

Lemma 2.1. If N > 20 and x ≥ 2N logN , there are at least N primes in the
interval (x, 2x]. If 0 < δ ≤ 1

2 ,
N

logN ≥ 6
δ , x ≥ e1.5+1.5/δ and x ≥ 6

δN logN , then

there are at least N primes in the interval (x, x+ δx].

Proof. This comes directly from the following inequality due to Rosser and Schoen-
feld ([23], Theorems 1 and 2). Let π(x) be the number of primes ≤ x. Then for
x > 67 we have

(2.1)
x

log x− 1/2
< π(x) <

x

log x

(
1 +

3

2 log x

)
.

Thus for x ≥ 1200, we have π(2x)−π(x) ≥ 0.735 x
log x . Taking x = 2N logN proves

the first part of the lemma for N > 130. For smaller N we use a short computation.
For the second part, from (2.1) we obtain

π(x+ δx)− π(x) ≥ x(1 + δ)

log x

(
1 +

1/2− log(1 + δ)

log x

)
− x

log x
− 3x

2 log2 x
.

Since (1 + δ) log(1 + δ) ≤ δ + 1
2
δ2, we have

π(x+ δx)− π(x) ≥ x

log x

[
δ − 3/2− (1 + δ)(1/2− log(1 + δ))

log x

]

≥ x

log x

[
δ − 1 + δ

log x

]
.
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Using the lower bounds for x gives

π(x+ δx)− π(x) ≥ δx

3 log x
≥ 2N logN

logN + log( 6δ logN)
≥ N. �

Lemma 2.2. If 0 ≤ δ ≤ 1
10
, u ≥ 2− 3δ and R ≥ 61/δ, then

|C (Ru, R)| ≥ δw

(w + 1)!

Ru

logR
, w =

⌊
u

1− δ

⌋
.

Proof. Let Nd(x,R) = |{n ∈ C (x,R) : Ω(n) ≤ d}|. We show by induction on d
that

(2.2) Nd(R
u, R) ≥ δd−1

d!

Ru

logR
(2− 3δ ≤ u < d(1− δ), R ≥ 61/δ).

The proof uses another inequality due to Rosser and Schoenfeld ([23], Theorem 5),
which states that for some constant B and x ≥ 286,

(2.3)

∣∣∣∣∣∣

∑

p≤x

1

p
− log log x−B

∣∣∣∣∣∣
≤ 1

2 log2 x
.

In our applications, x ≥ 61/(2δ) ≥ 65 > 286. First we establish (2.2) when d = 2
and d = 3. Suppose d = 2 and 2− 3δ ≤ u < 2− 2δ. Then N2(R

u, R) is at least 1
2

of the number of pairs of primes (p1, p2) with R
u−1 < p1 ≤ R,

√
R < p2 ≤ Ru/p1.

Using R ≥ 61/δ ≥ 610, Ru/p1 ≥ R0.7, and (2.1), we have

N2(R
u, R) ≥ 1

2

∑

Ru−1<p≤R

(
π

(
Ru

p

)
− π(

√
R)

)

≥ 1

2

∑

Ru−1<p≤R

Ru/p

logR

(
1− 2R−0.2

(
1 +

3

logR

))

≥ 0.46Ru

logR

∑

Ru−1<p≤R

1

p
.

By (2.3), the last sum is

≥ log

(
1

u− 1

)
− 1

2 log2R

(
1 +

1

(u− 1)2

)
≥ log

(
1

1− 2δ

)
− δ2

2
≥ 2δ,

and (2.2) follows when d = 2. Next, let d = 3. When 2 − 3δ ≤ u < 2 − 2δ, (2.2)
follows from the d = 2 case. If 2− 2δ ≤ u < 3− 3δ, define

a1 = max

(
u− 1

2
,
1

2

)
, a2 = min

(
1,
u− 1/2− δ

2

)
.
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Then

N3(R
u, R) ≥ 1

6

∑

p1,p2∈(Ra1 ,Ra2 ]

(
π

(
Ru

p1p2

)
− π(

√
R)

)
.

For every p1, p2,
R ≥ Ru/p1p2 ≥ Ru−2a2 ≥ R1/2+δ.

By (2.1),

π

(
Ru

p1p2

)
− π(

√
R) ≥ Ru/(p1p2)

logR

(
1− 2R−δ

(
1 + 3

logR

))

≥ 0.61Ru

p1p2 logR
,

whence

N3(R
u, R) ≥ Ru

10 logR

( ∑

Ra1<p≤Ra2

1

p

)2

.

By (2.3),

∑

Ra1<p≤Ra2

1

p
≥ log

(
a2
a1

)
− 1

a21 log
2R

≥ log

(
a2
a1

)
− 1.25δ2.

We claim that log(a2/a1) ≥ 1.5δ, from which (2.2) follows in the case d = 3. Let
I1 = [2− 2δ, 2), I2 = [2, 2.5 + δ), I3 = [2.5 + δ, 3− 3δ). Then

log

(
a2
a1

)
=






log(u− 1/2− δ) ≥ log(1.5− 3δ) ≥ log(1 + 2δ) ≥ 1.5δ (u ∈ I1)

log
(

u−1/2−δ
u−1

)
≥ log

(
2

1.5+δ

)
≥ log(1.25) ≥ 1.5δ (u ∈ I2)

log
(

2
u−1

)
≥ log

(
2

2−3δ

)
≥ 1.5δ (u ∈ I3).

Next, let d ≥ 3 and suppose (2.2) holds. When 2− 3δ ≤ u < d(1− δ), (2.2) follows
for all larger d as well. Suppose d(1 − δ) ≤ u ≤ (d + 1)(1 − δ). If p ∈ (R1−δ, R],
then Ru/p ∈ (R2−3δ, Rd(1−δ)], and thus

Nd(R
u/p, R) ≥ δd−1

d!

Ru/p

logR
.

Summing over primes p, each number pn with n counted by Nd(R
u/p, R) is counted

at most d+ 1 times. Hence

Nd+1(R
u, R) ≥ 1

d+ 1

∑

R1−δ<p≤R

Nd(R
u/p, R) ≥ δd−1

(d+ 1)!

Ru

logR

∑

R1−δ<p≤R

1

p
.

Again using (2.3), the last sum is

≥ log

(
1

1− δ

)
− 1

(1− δ)2 log2R
≥ δ +

δ2

2
− 0.4δ2 > δ,

and (2.2) follows with d replaced by d+ 1. �
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Lemma 2.3. Suppose R ≥ (2u)3 ≥ 90000. Then |C (Ru, R)| ≤ Ru(2/u)u.

Proof. Suppose 2
3
≤ β < 1 and put P = Ru. Then

|C (P,R)| ≤ P β
∑

n∈C (P,R)

n−β ≤ P β
∏

√
R<p≤R

(
1 + p−β + p−2β + · · ·

)

≤ P β exp

{ ∑
√
R<p≤R

1

pβ
+

1

pβ(pβ − 1)

}

≤ P β exp

{
R1−β

∑
√
R<p≤R

1

p
+ 1.03

∑

p>
√
R

p−4/3

}
.

Since
√
R ≥ 300, by (2.3)

∑
√
R<p≤R

1

p
≤ log 2 +

2.5

log2R
≤ 0.713.

Also,
∑

p>
√
R

p−4/3 ≤
∫ ∞

√
R−1

t−4/3 dt ≤ 0.45,

so that
|C (P,R)| ≤ P β exp{0.713R1−β + 0.47}.

Take β = 1− log(u/0.713)
logR ≥ 2

3 . Then

|C (P,R)| ≤ P exp{−u log(u/0.713) + u+ 0.47} = P

(
0.713e

u

)u

e0.47.

Lastly, u ≥ 22 and thus ( 0.713e
2

)ue0.47 < 1. �

The next lemma is due to Wooley ([33]), and gives a bound for the number of
non-singular solutions of a system of congruences. This greatly generalizes a lemma
due to Linnik [14].

Lemma 2.4. Let f1, . . . , fd be polynomials in Z[x1, . . . , xd] with respective degrees
k1, . . . , kd, and write

J(f ;x) = det

(
∂fj(x)

∂xi

)

1≤i,j≤d

.

Also, let p be a prime number and s be a natural number. Then the number, N , of
solutions of the simultaneous congruences

fj(x1, . . . , xd) ≡ 0 (mod ps) (1 ≤ j ≤ d)

with 1 ≤ xi ≤ ps (1 ≤ i ≤ d) and (J(f ;x), p) = 1, satisfies N ≤ k1 · · ·kd.
Lastly, we present a general inequality on the number of solutions of “symmetric”

systems of equations.
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Proposition ZRD (Zero Representation Dominates). Suppose f1, . . . , fn are
functions from Z

m to Z and B is a finite subset of Z
m. Let I(f ;w;B) be the

number of solutions of the simultaneaous Diophantine equations

fj(x)− fj(y) = wj (1 ≤ j ≤ n)

with x,y ∈ B. Then I(f ;w;B) ≤ I(f ; 0;B), where 0 = (0, 0, . . . , 0).

Proof. For α = (α1, . . . , αn), let

g(α) =
∑

x∈B

e(α1f1(x) + · · ·+ αnfn(x)).

Then

I(f ;w;B) =

∫

Un

|g(α)|2e(−α1w1 − · · · − αkwk) dα ≤ I(f ; 0;B).

Alternatively, for v = (v1, · · · , vn), let n(v) be the number of solutions of fj(x) =
vj (1 ≤ j ≤ n) with x ∈ B. By the Cauchy-Schwarz inequality,

I(f ;w;B) =
∑

v,v′

vj−v′
j=wj

n(v)n(v′)

≤
( ∑

v,v′

vj−v′
j=wj

n(v)2
)1/2( ∑

v,v′

vj−v′
j=wj

n(v′)2
)1/2

= I(f ; 0;B). �



VINOGRADOV’S INTEGRAL AND RIEMANN ZETA FUNCTION 13

3. Vinogradov’s Integral: Complete systems

In this section, we derive bounds for Js,k(P ) using the iterative methods of
Wooley [30], modified using an idea of Arkhipov and Karatsuba [1] (the introduction
of the parameter r). It should be noted that using the method of Tyrina [26] when
4
9k

2 ≤ ∆(k, s) ≤ 1
2k

2 gives slightly better values for ∆(k, s), but only enough to
improve the constant B in Theorem 1 by 0.01 or less.

The next definition is slightly different from that given in [30].

Definition. Suppose 0 ≤ d ≤ k−1 and T is a positive integer. We say the k-tuple
of poynomials Ψ = (Ψ1, . . . ,Ψk) ∈ Z[x]k is of type (d, T ) if Ψj is identically zero
for j ≤ d, and for some integer m ≥ 0, when j > d, Ψj has degree j−d with leading

coefficient j!
(j−d)!2

mT .

Lemma 3.1. Suppose Ψ is of type (d, T ), and z1, . . . , zk−d are integers. Then

Jk−d(z;Ψ) := det
(
Ψ′

j(zi)
)

1≤i≤k−d
d+1≤j≤k

= (2mT )k−d
k∏

j=d+1

j!

(j − d− 1)!

∏

1≤i<j≤k−d

(zi − zj),

Proof. This follows by elementary row operations. �

The argument will begin with Ψj(z) = zj (1 ≤ j ≤ k), which is of type (0, 1).
At the dth iterative stage (d ≥ 0), the system will be transformed from one of type
(d, T ) to one of type (d+1, T ′) in two steps. First, for some constant c we will take

Φj(z) =

j∑

ℓ=0

(
j

ℓ

)
Ψℓ(z)c

j−ℓ,

which is also a system of type (d, T ). Then, for a constant y we take

Υj(z) = Φj(z + y)− Φj(z) (1 ≤ j ≤ k),

which is of type (d+ 1, yT ).
Fix k and suppose 1 ≤ r ≤ k. If Ψ = (Ψ1, . . .Ψk) is a system of polynomials, let

Ks(P,Q;Ψ; q) be the number of solutions of the simultaneous equations

(3.1)

k∑

i=1

(Ψj(zi)−Ψj(wi)) + qj
s∑

i=1

(xji − yji ) = 0 (1 ≤ j ≤ k),

1 ≤ zi, wi ≤ P ; 1 ≤ xi, yi ≤ Q.

Here the inequalities on the variables zi, wi, xi, yi hold for every i. For prime p, let
Ls(P,Q;Ψ; p, q, r) be the number of solutions of

(3.2)

k∑

i=1

(Ψj(zi)−Ψj(wi)) + (pq)j
s∑

i=1

(uji − vji ) = 0 (1 ≤ j ≤ k),

1 ≤ zi, wi ≤ P ; zi ≡ wi (mod pr); 1 ≤ ui, vi ≤ Q.
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Define the exponential sums

f(α) = f(α;Q; q) =
∑

x≤Q

e(α1qx+ · · ·+ αkq
kxk),

F (α) = F (α;P ;Ψ) =
∑

x≤P

e(α1Ψ1(x) + · · ·+ αkΨk(x)).

Then

Ks(P,Q;Ψ; q) =

∫

Uk

|F (α)2kf(α)2s| dα.

The next result relates Ks and Ls, and is a generalization of the “fundamental
lemma” of Wooley ([30], Lemma 3.1).

Lemma 3.2. Suppose k, r, d and s are integers with

k ≥ 4, 2 ≤ r ≤ k; 0 ≤ d ≤ r − 1; s ≥ d+ 1.

Let M , P and Q be real numbers with

P
1

k+1 ≤M ≤ P
1
r ; 32s2M < Q ≤ P ; M ≥ k.

Suppose q is a positive integer and Ψ is a system of polynomials of type (d, T )
with T ≤ P d. Denote by P the set of the k3 smallest primes > M , and suppose
P ⊂ (M, 2M ]. Then there is a system of polynomials Φ of type (d, T ) and a prime
p ∈ P such that

Ks(P,Q;Ψ; q) ≤ 4k3k!p2s+
1
2 (r

2−r+d2−d)Ls(P,
Q
p ;Φ; p, q, r).

Proof. Let W be the set of systems of polynomials of type (d, T ) with T ≤ P d.
Since Ks(P,Q;Ψ; q) ≤ P 2kQ2s trivially, there is a system Ψ0 ∈W so that

Ks(P,Q;Ψ0; q) = max
Ψ∈W

Ks(P,Q;Ψ; q).

We therefore assume without loss of generality that Ψ = Ψ0. For brevity, write
K for Ks(P,Q;Ψ; q). We divide the solutions of (3.1) into two classes: S2 is the
number of solutions with zi = zj or wi = wj for some i 6= j; S1 is the number of
remaining solutions. Clearly K ≤ 2max(S1, S2). Suppose first that S2 ≥ S1. By
Hölder’s inequality,

K ≤ 2S2 ≤ 4

(
k

2

)∫

Uk

|F (α)2k−2F (2α)f(α)2s| dα

< 2k2
(∫

Uk

|F (α)2kf(α)2s| dα
)1− 1

k
(∫

Uk

|f(α)|2s dα
) 1

2k
(∫

Uk

|F (2α)2kf(α)2s| dα
) 1

2k

= 2k2K1−1/k(Js,k(Q))1/2kKs(P,Q; 2Ψ; q)

≤ 2k2K1−1/2k(Js,k(Q))1/2k.
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Here 2Ψ = (2Ψ1(z), . . . , 2Ψk(z)) is also of type (d, T ), which justifies the last
inequality above. This is the reason for the introduction of the parameter m in the
definition of a system of polynomials of type (d, T ). Therefore K ≤ (2k2)2kJs,k(Q).
On the other hand, counting the solutions of (3.1) with zi = wi for each i produces
the lower bound K ≥ (P − 1)kJs,k(Q). The hypothesis P ⊂ (M, 2M ] gives M ≥
k3 − 1 and so P − 1 ≥ (k3 − 1)2 − 1 > 4k4. We have a contradiction, therefore
K ≤ 2S1. To bound S1, we follow the procedure from Wooley [30]. Consider a
solution of (3.1) counted by S1. By Lemma 3.1, for some integer m ≥ 0 we have

Jk−d(z;Ψ)Jk−d(w;Ψ) = (2mT )2k−2d
k∏

j=d+1

(
j!

(j−d−1)!

)2 ∏

1≤i<j≤k−d

(zi − zj)(wi − wj)

6= 0.

By hypothesis, if p ∈ P then p > M ≥ k. Also,

∣∣∣∣∣∣
T

∏

1≤i<j≤k−d

(zi − zj)(wi − wj)

∣∣∣∣∣∣
< P d+(k−d)(k−d−1) ≤ P k2−k <

∏

p∈P

p.

Thus, for each solution counted by S1, there is some p ∈ P which does not divide
Jk−d(z;Ψ)Jk−d(w;Ψ). Hence

(3.3) K ≤ 2k3 max
p∈P

S3(p),

where S3(p) is the number of solutions of (3.1) with (p, Jk−d(z;Ψ)Jk−d(w;Ψ)) = 1.
With p fixed, let

g(α; b) =
∑

x≤Q
x≡b (mod p)

e(α1qx+ · · ·+ αkq
kxk),

F̃ (α) =
∑

z1,... ,zk
(Jk−d(z;Ψ),p)=1

e




k∑

j=1

αj(Ψj(z1) + · · ·+Ψj(zk))



 .

Since Ψ is of type (d, T ), for any solution of (3.1) we have

s∑

i=1

(xji − yji ) = 0 (1 ≤ j ≤ d).

Let Bs(w) denote the set of solutions (with 0 ≤ ci ≤ p−1 for each i) of the system
of congruences

s∑

i=1

cji ≡ wj (mod p) (1 ≤ j ≤ d).
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Consequently,

S3(p) ≤
∫

Uk

|F̃ (α)|2
∑

w

1≤wj≤p

|U(α;w)|2 dα,

where
U(α;w) =

∑

c∈Bs(w)

g(α; c1) · · · g(α; cs).

By first fixing cd+1, . . . , cs, we have |Bs(w)| ≤ ps−d maxv |Bd(v)|. Suppose c and
c′ are two solutions counted in Bd(v). Let q(t) = (t− c1) · · · (t− cd). By Newton’s
formulas connecting the sums of the powers of the roots of a polynomial with its
coefficients, q(t) ≡ (t − c′1) · · · (t − c′d) (mod p). Thus, c′ is a permutation of c,
whence |Bd(v)| ≤ d! and

|Bs(w)| ≤ d!ps−d.

By the Cauchy-Schwarz inequality , followed by an application of the arithmetic
mean-geometric mean inequality, we have

|U(α;w)|2 ≤ |Bs(w)|
∑

c∈Bs(w)

|g(α; c1) · · · g(α; cs)|2

≤ d!

s
ps−d

∑

c∈Bs(w)

s∑

i=1

|g(α; ci)|2s.

We then have

(3.4)

S3(p) ≤ d!ps−d
∑

c

max
1≤i≤s

∫

Uk

|F̃ (α)|2|g(α; ci)|2s dα

≤ d!p2s−d max
0≤c≤p−1

S4(c, p),

where

S4(c, p) =

∫

Uk

|F̃ (α)2g(α; c)2s| dα

is the number of solutions of

(3.5)

k∑

i=1

(Ψj(zi)−Ψj(wi)) + qj
s∑

i=1

((pui − c)j − (pvi − c)j) = 0 (1 ≤ j ≤ k),

1 ≤ zi, wi ≤ P ; (p, Jk−d(z;Ψ)Jk−d(w;Ψ)) = 1; 1 ≤ ui, vi ≤ (Q+ c)/p.

Let S5(c, p) denote the number of solutions of (3.5) with ui > Q/p or vi > Q/p for
some i, and let S6(c, p) denote the number remaining solutions. Suppose first that
S5(c, p) ≥ S6(c, p). By Hölder’s inequality,

S4(c, p) ≤ 2S5(c, p) ≤ 4s

∫

Uk

|F̃ (α)2g(α; c)2s−1| dα

≤ 4s

(∫

Uk

|F̃ (α)2g(α; c)2s| dα
)1− 1

2s
(∫

Uk

|F̃ (α)|2 dα
) 1

2s

= 4s (S4(c, p))
1− 1

2s

(∫

Uk

|F̃ (α)|2 dα
) 1

2s

.
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Therefore,

S4(c, p) ≤ (4s)2s
∫

Uk

|F̃ (α)|2 dα.

Note that ⌊(Q + c)/p⌋ > Q/p in this case. Thus, counting only the solutions of
(3.5) with ui = vi for every i gives

S4(c, p) ≥ (Q/p)s
∫

Uk

|F̃ (α)|2 dα.

By our assumed lower bound on Q, this is impossible. Therefore, S4(c, p) ≤
2S6(c, p). By the binomial theorem,

(py)j =

j∑

ℓ=0

(
j

ℓ

)
(py − c)ℓcj−ℓ.

Thus, S6(c, p) is the number of solutions of

(3.6)

k∑

i=1

(Φj(zi)− Φj(wi)) + (pq)j
s∑

i=1

(uji − vji ) = 0 (1 ≤ j ≤ k),

1 ≤ zi, wi ≤ P ; (p, Jk−d(z;Ψ)Jk−d(w;Ψ)) = 1; 1 ≤ ui, vi ≤ Q/p,

where, for 1 ≤ j ≤ k,

Φj(z) =

j∑

ℓ=0

(
j

ℓ

)
Ψℓ(z)c

j−ℓ.

The leading coefficients of Φj and Ψj are equal, hence Φ is also of type (d, T ) (with
the same value ofm). By Lemma 3.1, Jk−d(z;Ψ) = Jk−d(z;Φ), so (p, Jk−d(z;Φ)Jk−d(w;Φ)) =
1 in (3.6).

Lastly, we introduce the congruence condition on zi, wi. By (3.6),

k∑

i=1

(Φj(zi)− Φj(wi)) ≡ 0 (mod pj) (1 ≤ j ≤ k).

We shall only work with the congruences corresponding to d+1 ≤ j ≤ k, since the
left side of the above congruence is identically zero when j ≤ d. Let B∗(m) be the
set of z with 1 ≤ zi ≤ pr for each i, (Jk−d(z;Φ), p) = 1 and

k∑

i=1

Φj(zi) ≡ mj (mod pmin(j,r)) (d+ 1 ≤ j ≤ k).

By hypothesis, d+1 ≤ r. To bound |B∗(m)|, first fix zk−d+1, . . . , zk (there are prd

such choices). For each j, there are pmax(0,r−j) possibilities for mj modulo pr, and
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with the mj fixed modulo pr, Lemma 2.4 implies that there are at most (k − d)!
solutions z1, . . . , zk−d modulo pr. Therefore,

|B∗(m)| ≤ (k − d)!p
1
2 (r−d−1)(r−d)+rd.

Define

H(α; z) =
∑

w
1≤wi≤P

wi≡zi (mod pr)

e




k∑

j=1

αj(Φj(w1) + · · ·+Φj(wk))


 .

Then, by the Cauchy-Schwarz inequality ,

S6(c, p) ≤
∫

Uk

∑

m

∣∣∣∣
∑

z∈B∗(m)

H(α; z)

∣∣∣∣
2

|f(α;Q/p; pq)|2s dα

≤
∑

m

|B∗(m)|
∫

Uk

∑

z∈B∗(m)

|H(α; z)|2|f(α;Q/p; pq)|2s dα

≤ (k − d)!p
1
2 (r−d−1)(r−d)+rdLs(P,Q/p;Φ; p, q, r).

By (3.4) and the inequality d!(k − d)! ≤ k!,

(3.7) S3(p) ≤ 2k!p2s−d+ 1
2 (r−d−1)(r−d)+rdLs(P,Q/p;Φ; p, q, r).

The lemma now follows from (3.3). �

Lemma 3.3. Suppose that s ≥ d, k ≥ r ≥ 2, d ≤ k − 2, q ≥ 1, p is a prime and
Φ is a system of polynomials of type (d, T ). Then there is a system of polynomials
Υ of type (d+ 1, T ′) with T ≤ T ′ ≤ PT such that

Ls(P ;Q;Φ; p, q, r)≤ (2P )k max
[
kkJs,k(Q), 2p−rk {Js,k(Q)Ks(P,Q;Υ; pq)}1/2

]
.

Proof. For short, write L for Ls(P ;Q;Φ; p, q, r). Then L ≤ 2max(U0, U1), where
U0 is the number of solutions of (3.2) with wi = zi for some i, and U1 is the number
of solutions of (3.2) with wi 6= zi for every i. First write f(α) for f(α;Q; pq) and

I(α) =
∑

1≤c≤P

∣∣∣∣
∑

1≤w≤P
w≡c (mod pr)

e(α1Φ1(w) + · · ·+ αkΦk(w))

∣∣∣∣
2

,

so that

L =

∫

Uk

I(α)k|f(α)|2s dα.
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Suppose first that U0 ≥ U1. By Hölder’s inequality,

L ≤ 2U0 ≤ 2kP

∫

Uk

I(α)k−1|f(α)|2s dα

≤ 2kP

(∫

Uk

|I(α)kf(α)2s| dα
)1−1/k (∫

Uk

|f(α)|2s dα
)1/k

= 2kPL1−1/kJs,k(Q)1/k,

and the lemma follows in this case. If U1 ≥ U0, for each i we may write wi =
zi + hip

r, where 1 ≤ |hi| ≤ P/pr. We may assume that P/pr ≥ 1, else U1 = 0. Let

g(α; h) =
∑

1≤z≤P

e




k∑

j=1

αj(Φj(z + hpr)− Φj(z))



 .

There are 2k choices for the signs of wi − zi (1 ≤ i ≤ k), so

L ≤ 2
∑

η1,... ,ηk

ηi∈{−1,+1}

∫

Uk

∑

h
1≤hi≤P/pr

g(η1α; h1) · · · g(ηkα; hk)|f(α)|2s dα.

Since |g(α; h)| = |g(−α; h)|,

∑

h
1≤hi≤P/pr

|g(η1α; h1) · · · g(ηkα; hk)| ≤ (P/pr)k max
1≤h≤P/pr

|g(α; h)|k.

Then, by the Cauchy-Schwarz inequality ,

L ≤ 2k+1(P/pr)k max
1≤h≤P/pr

∫

Uk

|g(α; h)|k|f(α)|2s dα

≤ 2k+1(P/pr)k max
1≤h≤P/pr

(∫

Uk

|g(α; h)|2k|f(α)|2s dα
)1/2(∫

Uk

|f(α)|2s dα
)1/2

= 2k+1(P/pr)k max
1≤h≤P/pr

(
Ks(P,Q;Υ; pq)Js,k(Q)

)1/2
,

where Υj(z) = Φj(z + hpr)− Φj(z) for j ≥ d+ 2 and Υj(z) ≡ 0 for j ≤ d+ 1. For
some integer m ≥ 0 and j ≥ d+ 2, Υj has degree j − d− 1 and leading coefficient

j!
(j−d−1)!hp

r2mT , thus the system Υ is of type (d+ 1, Thpr). �

Next, we iterate Lemmas 3.2 and 3.3 to produce a bound for Js+k,k(P ) in terms
of the bounds for Js,k(Q).
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Lemma 3.4. Suppose k ≥ 26, 4 ≤ r ≤ k, k ≤ s ≤ k3 and

Js,k(Q) ≤ CQ2s− 1
2k(k+1)+∆ (Q ≥ 1).

Let j be an integer satisfying

(3.8) 2 ≤ j ≤ 9r
10 , (j − 1)(j − 2) ≤ 2∆− (k − r)(k − r + 1).

Define

φj =
1

r
, φJ =

1

2r
+
k2 + k + r2 − r + J2 − J − 2∆

4kr
φJ+1 (1 ≤ J ≤ j − 1),

and suppose r and j are chosen so that φi ≥ 1
k+1

for every i. Suppose

1

3 log k
≤ ω ≤ 1

2
, η = 1 + ω, V = max

(
e1.5+1.5/ω,

18

ω
k3 log k

)
.

If P ≥ V k+1, then

Js+k,k(P ) ≤ k3kη4s+k2

CP 2(s+k)− 1
2k(k+1)+∆′

,

where ∆′ = ∆(1− φ1)− k + φ1

2
(k2 + k + r2 − r).

Proof. Let Q0 = P and for 1 ≤ i ≤ j define

Mi = Pφi , Qi = P 1−(φ1+···+φi).

Let Pi be the set of k3 smallest primes > Mi. By hypothesis, Mi ≥ V , and by the
definition of η and V , Lemma 2.1 implies that Pi ⊂ (Mi, ηMi]. By (3.8), φi ≤ 1

r
for each i, and for i ≤ j − 1

(3.9)
Qi ≥ Qj−1 ≥ P 1−(j−1)/r ≥ P 1/10+1/r

≥ V k/10Pφi+1 > k8Pφi+1 > 32s2Pφi+1 .

Let λ = 2s− 1
2k(k+1)+∆. We shall show by induction on J that for every system

Φ of type (J, T ) with 1 ≤ T ≤ P J , every prime p ∈ PJ+1 and every positive integer
q,

(3.10) Ls(P,QJ+1;Φ; p, q, r) ≤ EJCP
kQλ

J+1,

where

Ej−1 = 1, EJ−1 = kkηs+
1
4 (k

2−k+J2−J)E
1/2
J (1 ≤ J ≤ j − 1).

First, when J = j − 1, we have pr > M r
j−1 ≥ P , so that in (3.2), wi = zi for every

i. This gives
Ls(P,Qj;Φ; p, q, r) ≤ P kJs,k(Qj),
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which gives (3.10) for J = j − 1. Now suppose 1 ≤ J ≤ j − 1 and (3.10) holds.
Let Ψ be a system of polynomials of type (J, T ) with 1 ≤ T ≤ P J , and let q′

be any positive integer. By (3.9), (3.10) and the fact that Ls(P,Q;Φ; p, q, r) is a
non-decreasing function of Q, we find from Lemma 3.2 that

Ks(P,QJ ;Ψ; q′) ≤ 4k3k!(ηMJ+1)
2s+ 1

2 (r
2−r+J2−J)EJCP

kQλ
J+1.

By Lemma 3.3, for every system of polynomials Φ of type (J − 1, T ) with 1 ≤ T ≤
P J−1, prime p ∈ PJ and integer q, there is a system Ψ of polynomials of type
(J, T ′) with T ′ ≤ P J such that

Ls(P,QJ ;Φ; p, q, r) ≤ (2P )k max
[
kkCQλ

J , 2P
−krφJ

(
CQλ

JKs(P,QJ ;Ψ; pq)
) 1

2
]

≤ CQλ
J (2P )

k max
[
kk, 4(k3k!)

1
2E

1
2

J P
k
2 −krφJM

−λ
2

J+1(ηMJ+1)
s+ 1

4 (r
2−r+J2−J)

]
.

By the definition of φi,

k

2
− krφJ +

1

2

(
k(k + 1)

2
−∆+

1

2
(r2 − r + J2 − J)

)
φJ+1 = 0,

i.e.,

P k/2−krφJM
s−λ/2+ 1

4 (r
2−r+J2−J)

J+1 = 1.

Since r ≤ k and 4(k3k!)1/2 ≤ 2−kkk for k ≥ 8, this implies

Ls(P,QJ ;Φ; p, q, r) ≤ CQλ
J(kP )

k max
(
2k, E

1/2
J ηs+

1
4 (k

2−k+J2−J)
)
.

Next, EJ ≥ 1 and

ηs+
1
4 (k

2−k) ≥
((

1 +
1

3 log k

) k+3
4

)k

≥ 2k (k ≥ 26).

Therefore, by the definition of EJ−1,

Ls(P,QJ ;Φ; p, q, r) ≤ CEJ−1P
kQλ

J ,

i.e., (3.10) follows with J replaced by J − 1. Finally, taking (3.10) with J = 0 and
applying Lemma 3.2 with Ψj(x) = xj for each j gives

Ks(P, P ;Ψ; 1) ≤ 4k3k!(ηM1)
2s+ 1

2 (r
2−r)E0CP

kQλ
1

≤ CPλ+k4k3k!η2s+
1
2 (k

2−k)E0M
1
2 (k

2+k+r2−r)−∆
1 .
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From the definition of EJ , we have

E0 =

j−1∏

J=1

(
EJ−1√
EJ

)21−J

E21−j

j−1

≤
∞∏

J=1

(
kkηs+

1
4 (k

2−k+J2−J)
)21−J

= k2kη2s+
1
2k

2− 1
2k+2.

Lastly, 4k3k! ≤ kk for k ≥ 11. Therefore

Js+k,k(P ) = Ks(P, P ;Ψ; 1) ≤ k3kη4s+k2

CP 2(s+k)− 1
2k(k+1)+∆′

. �

For a given k, r,∆, we let δ0(k, r,∆) be the value of ∆′ coming from Lemma
3.4, where we take j maximal satisfying (3.8). The optimal value of r is about√
k2 + k − 2∆, but leads to very messy analysis. Making the choice r ≈ k(1−∆/k2)

simplifies matters and ultimately increases the value of B in Theorem 1 by only
about 0.0074.

Lemma 3.5. Let k ≥ 26 and let ω, η and V be as in Lemma 3.4. Let ∆1 =
1
2
k2(1− 1/k) and for n ≥ 1, let rn be an integer in [4, k] satisfying

(3.11) φ∗(k, rn,∆n) :=
2k

2rnk + 2∆n − (k − rn)(k − rn + 1)
≥ 1

k + 1
,

then set ∆n+1 = δ0(k, rn,∆n). If n ≤ k2, then

Jnk,k(P ) ≤ CnP
2nk− 1

2k(k+1)+∆n (P ≥ 1),

where C1 = k! and for n ≥ 2

Cn = Cn−1 max
[
k3kη4k(n−1)+k2

, V (k+1)(∆n−1−∆n)
]
.

Proof. Defining φi as in Lemma 3.4, we must ensure that φi ≥ 1
k+1 for each i. To

this end, let r = rn, ∆ = ∆n, φ
∗ = φ∗(k, r,∆) and y = 2∆− (k− r)(k− r+1). For

i ≥ 1 let θi = φi − φ∗. By (3.8), y− (j − 1)(j − 2) ≥ 0, so θj = 1/r− φ∗ ≥ 0. Also,

θJ =
θJ+1

4kr
(2rk + J2 − J − y) +

J2 − J

4kr
φ∗ (1 ≤ J ≤ j − 1).

Since 2∆ ≤ k2 − k, 0 ≤ 2rk + J2 − J − y ≤ 2rk. It follows that for J ≤ j − 1,

(3.12) 0 ≤ θJ ≤ θJ+1

2
+
J2 − J

4kr
φ∗.
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Thus, (3.11) and (3.12) imply that φi ≥ φ∗ ≥ 1
k+1 for every i. We now proceed

by induction, noting that the lemma holds with n = 1 by the inequality Jk,k(P ) ≤
k!P k. Assume now that m ≥ 2 and the lemma holds for n ≤ m − 1. By Lemma
3.4,

Jmk,k(P ) ≤ Cm−1k
3kη4k(m−1)+k2

P 2mk− 1
2k(k+1)+∆m (P ≥ V k+1).

For P < V k+1, we have trivially

Jmk,k(P ) ≤ P 2kJ(m−1)k,k(P ) ≤ Cm−1P
2mk− 1

2k(k+1)+∆m−1

≤ Cm−1V
(k+1)(∆m−1−∆m)P 2mk− 1

2k(k+1)+∆m .

This completes the proof. �

For a particular choice of r1, r2, · · · , the next lemma gives clean upper bounds
on ∆n and Cn for large k.

Lemma 3.6. Suppose that k ≥ 1000. For

2k ≤ n ≤ k

2

(
1

2
+ log

(
3k

8

))
+ 1,

we have
Jnk,k(P ) ≤ CnP

2nk− 1
2k(k+1)+∆n (P ≥ 1),

where

∆n ≤ 3

8
k2e1/2−2n/k+1.69/k,

Cn ≤ k2.055k
3−5.91k2+3nk1.06nk

2+2k(n2−n)−9.7278k3

.

Proof. We shall take rn = ⌊k − ∆n/k + 1⌋ in Lemma 3.5. For each n write δn =
∆n/k

2. Fix n ≥ 2 and write δ = δn−1, δ
′ = δn, ∆ = ∆n−1, ∆

′ = ∆n, r = rn−1. If
∆n−1 ≤ k, the upper bound for ∆n in the lemma follows from the upper bound on
n, so from now on assume that

(3.13) ∆n−1 > k.

We first show that

(3.14) δ′ ≤ δ

(
1− 2− δ

2− δ2

(
2

k
− 32

21k2
− 16

7δk3

))
.

Let

y = 2∆− (k − r)(k − r + 1), φ∗ = φ∗(k, r,∆) =
2k

2rk + y
.
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By the definition of rn,

kδ(2k − kδ − 1) ≤ y ≤ kδ(2k − kδ + 1).

Hence

φ∗ ≥ 2k

2k(k − kδ + 1) + 2δk2 − kδ(kδ − 1)
=

2

(2− δ2)k + 2 + δ
≥ 1

k + 1
,

so (3.11) holds. Iterating (3.12) gives

θ1 ≤ 21−jθj +

j−1∑

h=1

21−h(h2 − h)
φ∗

4kr
≤ 21−jθj +

2φ∗

kr
≤ 21−j

r
+

2φ∗

kr
.

Next, (3.13) implies y ≥ 2k−2. Since
√
2k − 2 ≤ k/3, we always have j ≥

√
2k − 2

(since j is maximal satisfying (3.8)) and so for k ≥ 1000

21−j

r
≤ 21−

√
2k−2

r
≤ 0.071

k4r
.

Also, δ ≤ 1
2
(1− 1/k) implies

φ∗ ≤ 2

(2− δ2)k − δ
≤ 8

7k + 1/k
<

8

7k
− 0.16

k3
,

and thus

θ1 ≤ 0.071

k4r
+

16

7k2r
− 0.32

k4r
≤ 16

7k2r
.

Since ∆ ≥ k,

k2 + k − 2∆ = (k −∆/k)2 + k − (∆/k)2 ≤ (k − δk)(k − δk + 1).

Therefore, from k − δk ≤ r ≤ k − δk + 1 and the upper bound on θ1,

(3.16)

∆′ = ∆− k +
φ∗ + θ1

2
(2kr − y)

≤ ∆− k +
φ∗

2
(2kr − y) +

8

7k2

(
r − 1 +

k2 + k − 2∆

r

)

≤ ∆− 2k + 4k2
r

2rk + y
+

16(1− δ)

7k
.

Next we establish

(3.17)
1− δ

2k
≤ r

2rk + y
≤ 1− δ

(2− δ2)k
+

δ

(2− δ2)2k2
.
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As a function of the real variable r, r
2rk+y has positive second derivative and a

minimum at r = r0 :=
√
k2 + k − 2∆. Therefore, on the interval [k−kδ, k−kδ+1],

the maximum occurs at one of the endpoints. When δ > 1/
√
k, r0 ≤ k− kδ, so the

minimum occurs at r = k− kδ. When 1
k
≤ δ ≤ 1/

√
k, k− kδ ≤ r0 ≤ k− kδ + 1, so

the minimum occurs at r = r0. At r = k − kδ + 1,

r

2rk + y
=

1− δ + 1
k

(2− δ2)k + 2 + δ
=

1− δ

(2− δ2)k

(
1 +

δ

k(1− δ)(2− δ2) + 2− δ − δ2

)
,

so (3.17) holds for this r. When r = k − kδ,

r

2rk + y
=

1− δ

(2− δ2)k − δ
=

1− δ

(2− δ2)k

(
1 +

δ

(2− δ2)k − δ

)
.

Since (2− δ2)k− δ > (2− δ2)k− δk(2− δ2) = (2− δ2)(1− δ)k, (3.17) holds for this

r as well. Lastly, when 1
k
≤ δ ≤ 1/

√
k and r = r0,

r

2rk + y
=

1

4k + 1− 2
√
k2 + k − 2∆

.

Also,

(
k + 1/2− (δ + δ2)k

)2
= k2 + k + 1

4 − k(2k + 1)(δ + δ2) + k2(δ + δ2)2

≤ k2 + k + 1
4 − 2k2(δ + δ2) + k2(δ + δ2)2

= k2 + k − 2δk2 + 1
4
− k2(δ2 − 2δ3 − δ4)

< k2 + k − 2δk2.

Therefore,

r

2rk + y
≥ 1

4k + 1− 2(k + 1/2− (δ + δ2)k)
=

1

2k(1 + δ + δ2)
>

1− δ

2k
.

This proves (3.17).

By (3.16) and (3.17), plus the inequality (1−δ)(2−δ2)
2−δ ≤ 1, we have

δ′ ≤ δ − 2

k
+

4− 4δ

(2− δ2)k
+

4δ

(2− δ2)2k2
+

16(1− δ)

7k3

= δ

(
1− 4− 2δ

(2− δ2)k
+

4

(2− δ2)2k2

)
+

16(1− δ)

7k3

≤ δ

(
1− 2− δ

2− δ2

(
2

k
− 32

21k2

))
+

16

7k3
2− δ

2− δ2

= δ

(
1− 2− δ

2− δ2

(
2

k
− 32

21k2
− 16

7δk3

))
.
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This concludes the proof of (3.14). We now use (3.14) to bound ∆n and Cn. Let
β = 2

k
− 32

21k2 , c = 16
7k3 and β′ = β − c/δ. The differential equation analogous

to (3.14) is approximately dy/dx = −βy 2−y
2−y2 , which has the implicit solution y +

log y+log(2−y) = −βx+C (this serves only as a motivation for the next inequality).
Let

δ′′ = δ

(
1− 2− δ

2− δ2
β′
)
.

Since y + log y + log(2− y) is increasing on (0, 1/2], (3.14) gives

δ′ + log δ′ + log(2− δ′) ≤ δ′′ + log δ′′ + log(2− δ′′)

= δ + log δ + log(2− δ)− 2δ − δ2

2− δ2
β′ + log

[(
1− 2− δ

2− δ2
β′
)(

2− δ′′

2− δ

)]
.

Write

T = −2δ − δ2

2− δ2
β′ + log

(
1− 2− δ

2− δ2
β′
)
+ log

(
2− δ′′

2− δ

)
.

Using
2− δ′′

2− δ
= 1 +

δβ′

2− δ2
and log(1 + x) ≤ x− 1

2
x2 +

1

3
x3,

we obtain

T ≤ −β′ − (β′)2

2(2− δ2)2
(
(2− δ)2 + δ2

)
+

(β′)3

3(2− δ2)3
(
−(2− δ)3 + δ3

)

≤ −β′ − 2

5
(β′)2

≤ −β − 2

5
β2 +

c(1 + 0.8β)

δ
.

The minimum of (2−δ)2+δ2

2(2−δ2)2
is actually 0.401 . . . . Therefore

δ′ + log δ′ + log(2− δ′) ≤ δ + log δ + log(2− δ)− β − 0.4β2 +
c(1 + 0.8β)

δ
.

Iteration of the above inequality yields

δn + log δn + log(2− δn) ≤ δ1 + log δ1 + log(2− δ1)− (n− 1)(β + 0.4β2)

+ c(1 + 1.6/k)

(
1

δ1
+ · · ·+ 1

δn−1

)
.

By (3.13) and (3.14),

(3.18) δi+1 ≤ δi(1− α), α =
6

7
(β − kc).
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By (3.13) again, this gives

c(1 + 1.6/k)

(
1

δ1
+ · · ·+ 1

δn−1

)
≤ c(1 + 1.6/k)

αδn−1
≤ 1.34

k
.

Therefore,

(3.19) δn ≤ δ1(2− δ1)e
δ1

(2− δn)eδn
e−(n−1)(β+0.4β2)+1.34/k.

Next,

β + 0.4β2 ≥ 2

k
− 32

21k2
+

0.4

k2

(
2− 32/21

1000

)2

≥ 2

k
.

From (3.13) and the inequality 1 + x ≤ ex, we have

δ1(2− δ1)e
δ1 =

e1/2

2

(
1− 1

k

) (
3
2 + 1

2k

)
e−1/(2k) ≤ 3

4
e1/2−7/(6k),

e−δn

2− δn
≤ 1

2e
δn/(2−δn)−δn ≤ 1

2
e

0.49
k .

Putting these together with (3.19) gives

δn ≤ 3

8
e1/2−2n/k+1.69/k.

To bound the constants Cn, take ω = 0.06 > 1/(3 log k), so that

V k+1 = (300k3 log k)k+1 ≤ k4.11k =: W.

We next prove that

(3.20) W∆n−1−∆n > k3k1.064k(n−1)+k2

(n ≤ 1.97k + 1).

By (3.14),

(3.21) δn−1 − δn ≥ 2δn−1

k

(
2− δn−1

2− δ2n−1

− 0.002

)
.

By the top line of (3.16) and (3.17),

δm ≥ δm−1 −
2

k
+

4r

2kr + y

≥ δm−1 −
2

k
+ 4

1− δm−1

2k
= δm−1

(
1− 2

k

)
,
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which implies

δn−1 ≥ (1− 2/k)n−2δ1 ≥ 1
2
(1− 2/k)n−1 ≥ 1

2
e−

2
k−2 (n−1) ≥ 0.0096476 := δ̄.

The right side of (3.21) is increasing in δn−1, so

δn−1 − δn ≥ 2δ̄

k

(
2− δ̄

2− δ̄2
− 0.002

)
≥ 0.01916

k
.

Therefore, W∆n−1−∆n ≥ k0.0787k
2

. On the other hand,

k3k1.064k(n−1)+k2 ≤ kk
2(0.003+8.88 log(1.06)/ log(1000)) ≤ k0.078k

2

.

This proves (3.20). Let n0 = ⌊1.97k⌋+ 1. By (3.20) and Lemma 3.5,

Cn0
≤W∆1−∆n0 k! ≤W

1
2k

2−∆n0

and for n > n0

Cn ≤ k3k1.064k(n−1)+k2

W∆n−1−∆nCn−1.

Iterating this last inequality gives, for n > n0,

Cn ≤W
1
2k

2

k3k(n−n0)1.06(n−n0)k
2+4k(n0+···+n−1)

≤W
1
2k

2

k3k(n−1.97k)1.06(n−1.97k)k2+2k(n2−n−(1.97k)2+1.97k)

≤ k2.055k
3−5.91k2+3nk1.06nk

2+2(n2−n)k−9.7278k3

.

This finishes the proof of Lemma 3.6. �

Proof of Theorem 3. Suppose first that k ≥ 1000. Every permissible s can be
written as s = nk+ u where 0 ≤ u ≤ k and n ≤ k

2
( 1
2
+ log 3k

8
). By Lemma 3.6 and

Hölder’s inequality,

Js,k(P ) ≤ k2.055k
3−5.91k2+3s1.06sk+2s2/k−9.7278k3

P 2s− 1
2k(k+1)+∆,

where

∆ =
3

8
k2e1/2−2n/k+1.69/k

[
1− u

k + u
k e

−2/k
]
.

Lastly,

1− u
k + u

k e
−2/k ≤ 1− 2u

k2 + 2u
k3 ≤ e−2u/k2+2u/k3

,

thus ∆ ≤ 3
8k

2e1/2−2s/k2+1.7/k.

Next, suppose 129 ≤ k ≤ 1001. Start with ∆1 = 1
2
k2(1 − 1/k), successively

choose rn near
√
k2 + k − 2∆n satisfying (3.11), and set ∆n+1 = δ0(k, rn,∆n).

Also take Cn as in Lemma 3.5, where we define ω by

1

3 log k
≤ ω ≤ 1

2 log k + (4/3) log log k
, e1.5+1.5/ω =

18

ω
k3 log k
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and take η = 1+ω. To see that ω is well-defined, let h(ω) = e1.5+1.5/ω− 18
ω k

3 log k,

ω0 = 1
3 log k

and ω1 = 1/(2 log k+(4/3) log log k). It is easy to verify that h(ω0) > 0,

h(ω1) < 0 and h′(ω) < 0 for ω ∈ [ω0, ω1].

If ∆n+1 ≤ k2

1000
≤ ∆n, take

s =

⌈(
n+

∆n − k2/1000

∆n −∆n+1

)
k

⌉
.

By Hölder’s inequality,

Js,k(P ) ≤ Cn+1P
2s− 1

2k(k+1)+0.001k2

.

A straightforward computer computation verifies the claimed bounds on s and Cn.
The program is listed in the Appendix. �

Remarks. One can obtain slightly better values for ∆n using a variant of the
iterative scheme embodied in Lemmas 3.2 and 3.3. For example, this alternate
method would produce bounds valid with ρ = 3.20354 for 129 ≤ k ≤ 199. The
improvement, however, becomes negligible for large k. Instead of working with
Ks(P,Q;Ψ; q), we work on bounding Ks,d(P,Q;Ψ; q), the number of solutions of

k−d∑

i=1

(Ψj(zi)−Ψj(wi)) + qj
s∑

i=1

(xji − yji ) = 0 (1 ≤ j ≤ k),

1 ≤ zi, wi ≤ P ; 1 ≤ xi, yi ≤ Q.

Define Ls,d(P,Q;Ψ; p, q, r) similarly. In Lemma 3.2, the variables zk−d+1, . . . , zk
and wk−d+1, . . . , wk are not utilized in the argument because Ψj(z) = 0 for j ≤ d.
Following the proof of Lemma 3.2 with the new quantities gives

Lemma 3.2’. With the same hypotheses as Lemma 3.2,

Ks,d(P,Q;Ψ; q) ≤ 4k3k!p2s+
1
2 (r−d)(r−d+1)Ls,d(P,Q;Φ; p, q, r).

Likewise, following the proof of Lemma 3.3 and using Hölder’s inequality at the
end gives

Lemma 3.3’. Under the hypotheses of Lemma 3.3,

Ls,d(P ;Q;Φ; p, q, r) ≤ (2P )k−d max
[
kk−dJs,k(Q),

2p−r(k−d)Js,k(Q)
k−d−2

2(k−d−1)Ks,d+1(P,Q;Υ; pq)
k−d

2(k−d−1)
]
.

In Lemma 3.4, the definition of φJ changes to

φJ =
1

2r
+
k2 + k + r2 − r − 2∆− 2rJ

4r(k − J)
φJ+1 (1 ≤ J ≤ j − 1),

and this produces slightly smaller values for φ1. The only downside is that the
analysis of the numbers δn (see Lemma 3.6) becomes more complicated.
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4. Incomplete systems and smooth Weyl sums.

The object of this section is to obtain explicit upper bounds on Js,k,h(B), the
number of solutions of

(4.1)
s∑

i=1

(xji − yji ) = 0 (h ≤ j ≤ k); xi, yi ∈ B,

where B = C (P,R) = {1 ≤ n ≤ P : p|n =⇒
√
R < p ≤ R}. Suppose k ≥ h ≥ 2

and set t = k − h+ 1. For a t-tuple x = (x1, · · · , xt), let

(4.2) J(x) = det
(
jxj−1

i

)
1≤i≤t
h≤j≤k

=
k!

(h− 1)!
(x1 · · ·xt)h−1

∏

1≤i<j≤t

(xi − xj)

be the Jacobian of the functions
∑t

i=1 x
j
i (h ≤ j ≤ k). The notation xD(Q)y means

that there is some d|x with d ≤ Q and s0(x/d)|s0(y). For α = (αh, · · · , αk), define
the exponential sum

f(α) = f(α;P,R) =
∑

x∈C (P,R)

e(αhx
h + · · ·+ αkx

k)

so that

Js,k,h(C (P,R)) =

∫

Ut

|f(α)|2s dα.

Our main lemma is very similar to the the “fundamental lemma” (Lemma 3.1
of [34]). However, we do not perform “repeat efficient differencing” as in [29], [30],
[34], and Lemma 3.4 of this paper.

Lemma 4.1. Suppose

(4.3)
k ≥ h ≥ 8, t = k − h+ 1, s ≥ t+ 1, h ≤ r ≤ k;

P > (8s)20, R = P η > k2, |C (P,R)| ≥ P 1/2.

Then

Js,k,h(C (P,R)) ≤ max

[(
(8s)2(22t2)

2
ηP 1/r

)s−t

kt|C (P,R)|s, 4k2t( 1
rη+1)

× |C (P,R)|t(P 1
rR)

1
2 (r−h)(r−h+1)

{ ∑

P
1
r <q≤P

1
r R

Js−t,k,h(C (P/q, R))
1

2s−2t

}2s−2t]
.

Proof. For short, let S0 = Js,k,h(C (P,R)), x = (x1, . . . , xt), y = (y1, . . . , yt) and
α = (αh, . . . , αk). We divide the solutions of (4.1) into four classes: S1 counts the
solutions with min(xi, yi) ≤ P 1/5 for some i; S2 counts the solutions with xi = xj
or yi = yj for some 1 ≤ i < j ≤ t; S3 counts solutions not counted by S1 or S2, and
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with xiD(P 1/r)J(x) or yiD(P 1/r)J(y) for some i > t; S4 (which will be the main
term) counts the solutions not counted by S1, S2 or S3.

Evidently S0 ≤ 4max(S1, S2, S3, S4). If S1 is the largest, then by a trivial
estimate and Hölder’s inequality,

S0 ≤ 4S1 ≤ 8s

∫

Ut

|f(α)2s−1f(α;P 1/5, R)| dα

≤ 8sP 1/5

(∫

Ut

|f(α)2s| dα
)1− 1

2s

= 8sS
1−1/2s
0 P 1/5.

Therefore, S0 ≤ (8sP 1/5)2s. However, counting only the trivial solutions of (4.1)
(those with xi = yi for every i) and using (4.3) gives

(4.4) S0 ≥ |C (P,R)|s ≥ P s/2 > (8sP 1/5)2s,

giving a contradiction.
If S2 is the largest, then by Hölder’s inequality,

S0 ≤ 4S2 ≤ 8

(
t

2

)∫

Ut

|f(α)2s−2f(2α)| dα

≤ 4t2
(∫

Ut

|f(α)|2sdα
)1− 1

s
(∫

Ut

|f(2α)|2s dα
) 1

2s

= 4t2S
1− 1

2s
0 .

By (4.3), S0 ≤ (4t2)2s < (8s)4s < P s/2, contradicting (4.4). It follows that S0 ≤
4max(S3, S4).

Suppose next that S3 = max(S3, S4). From (4.2), we have J(x) 6= 0 and J(y) 6=
0 for each solution (x1, y1, . . . , xs, ys) of (4.1) counted in S3. Let

S (x) = {w ∈ C (P,R) : wD(P 1/r)J(x)}

and define

H(α) =
∑

x:J(x) 6=0
xi∈C(P,R)

∑

w∈S (x)

e




k∑

j=h

αj(w
j + xj1 + · · ·+ xjt )


 .

By the Cauchy-Schwarz inequality ,

S0 ≤ 4S3 ≤ 8(s− t)

∫

Ut

|H(α)f(α)2s−t−1| dα

≤ 8s

(∫

Ut

|f(α)|2s dα
)1/2(∫

Ut

|H2(α)f(α)2s−2t−2| dα
)1/2

= 8sS
1/2
0

(∫

Ut

|H2(α)f(α)2s−2t−2| dα
)1/2

.
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Therefore,

S0 ≤ (8s)2
∫

Ut

|H(α)2f(α)2s−2t−2| dα,

and the integral on the right is the number of solutions of

s−1∑

i=1

(xji − yji ) + (dw)j − (ez)j = 0 (h ≤ j ≤ k)

xi, yi ∈ C (P,R); d, e ∈ C (P 1/r, R); J(x) 6= 0, J(y) 6= 0;

w ∈ C (P/d,R), z ∈ C (P/e, R); s0(w)|J(x), s0(z)|J(y).

Writing

Gg(α) =
∑

x:J(x)6=0
g|J(x)

e




k∑

j=h

αj(x
j
1 + · · ·+ xjt )



 ,

G (α) =
∑

g∈C (P,R)

µ2(g)=1

Gg(α)
∑

d∈C (P 1/r,R)

∑

w∈C (P/d,R)
s0(w)=g

e
(
αh(dw)

h + · · ·+ αk(dw)
k
)
,

it follows that

(4.5) S0 ≤ (8s)2
∫

Ut

|G (α)2f(α)2s−2t−2| dα.

By the Cauchy-Schwarz inequality ,

|G (α)|2 ≤
(
∑

g

|Gg(α)|2
)

∑

g

∣∣∣∣
∑

d,w

1

∣∣∣∣
2

 .

Next,

∑

g

∣∣∣∣
∑

d,w

1

∣∣∣∣
2

≤
∑

g

(
P 1/r|{w ≤ P : s0(w) = g}|

) ∑

w∈C(P,R)
g|w

∑

d∈C (P/w,R)

1

≤ P 1/r
∑

g

|{w ≤ P : s0(w) = g}|
∑

n∈C(P,R)
g|n

d2(n)

≤ P 1/r max
g∈C(P,R)

µ2(g)=1

|{w ≤ P : s0(w) = g}|
∑

n∈C (P,R)

d22(n).

For any m ∈ C (P,R), τ(m) ≤ 2Ω(m) ≤ 22/η. Any g ∈ C (P,R) with µ2(g) = 1 can
be written as g = p1 · · · pn, where p1, . . . , pn are distinct primes each larger than
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√
R, and 0 ≤ n ≤ 2/η. Then

|{w ≤ P : s0(w) = g}| = |{u : u1 log p1 + · · ·+ un log pn ≤ logP : ui ≥ 1 ∀i}|
≤ |{u : u1 + · · ·+ un ≤ 2/η : ui ≥ 1 ∀i}|

=

(⌊2/η⌋
n

)
< 22/η.

Therefore,

|G (α)|2 ≤ 26/ηP 1/r|C (P,R)|
∑

g∈C(P,R)

µ2(g)=1

|Gg(α)|2,

whence by (4.5),

(4.6) S0 ≤ (8s)226/ηP 1/r|C (P,R)|V,

where

V =

∫

Ut

∑

g∈C(P,R)

µ2(g)=1

∣∣Gg(α)2f(α)2s−2t−2
∣∣ dα.

Here V counts the solutions (x1, y1, . . . , xs−1, ys−1, g) of

s−1∑

i=1

(xji − yji ) = 0 (h ≤ j ≤ k)

xi, yi, g ∈ C (P,R); J(x) 6= 0, J(y) 6= 0; µ2(g) = 1, g|J(x), g|J(y).

Clearly

V ≤ Js−1,k,h(C (P,R)) max
J(x)6=0

∣∣{g ∈ C (P,R), µ2(g) = 1, g|J(x)}
∣∣ .

Using (4.2),
√
R > k and µ2(g) = 1, g|J(x) implies g|J∗(x), where

J∗(x) = x1 · · ·xt
∏

1≤i<j≤t

(xi − xj).

Since |J∗(x)| < P t(t+1)/2, J∗(x) has at most t(t+1)/η distinct prime factors >
√
R.

If g|J∗(x), then g is a product of n of these primes, where 0 ≤ n ≤ 2/η. The number
of such g is at most

∑

0≤n≤2/η

(⌊(t2 + t)/η⌋
n

)
≤

∑

0≤n≤2/η

(2t2/η)n

n!
≤ t4/η

∞∑

n=0

(2/η)n

n!
= (et2)2/η.

From (4.6) we conclude that

S0 ≤ (8s)2(8et2)2/η|C (P,R)|P 1/rJs−1,k,h(C (P,R)).
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Lastly, applying Hölder’s inequality, we have

Js−1,k,h(C (P,R)) ≤ Js,k,h(C (P,R))1−
1

s−t Jt,k,h(C (P,R))
1

s−t

= S
1− 1

s−t

0 Jt,k,h(C (P,R))
1

s−t .

We have Jt,k,h(C (P,R)) ≤ kt|C (P,R)|t, which follows for instance from Lemma 2.4

(let p be a prime > tP , fix y1, . . . , yt and for each u the number of x with
∑
xji ≡ uj

(mod p)(h ≤ j ≤ k) is ≤ kt). This proves the lemma in the case S3 ≥ S4.
For the last case, suppose S4 = max(S1, S2, S3, S4). For every solution of (4.1)

counted by S4, each xi > P 1/r and yi > P 1/r and neither xiD(P 1/r)J(x) nor
yiD(P 1/r)J(y) for i > t. Fix i > t and let q be the greatest divisor of xi with the
property that (q, J(x)) = 1. If q ≤ P 1/r, then xiD(P 1/r)J(x), a contradiction.
Hence q > P 1/r, and since every prime divisor of q is ≤ R, there is a divisor qi of
xi with qi > P 1/r, qi ∈ C (P 1/rR,R) and (qi, J(x)) = 1. Likewise, each yi has a
divisor pi with pi > P 1/r, pi ∈ C (P 1/rR,R) and (pi, J(y)) = 1. Therefore S0 ≤ 4T ,
where T is the number of solutions of

t∑

i=1

(xji − yji ) +

s−t∑

i=1

((qiui)
j − (pivi)

j) = 0 (h ≤ j ≤ k)

xi, yi ∈ C (P,R); ui ∈ C (P/qi, R), vi ∈ C (P/pi, R);

pi, qi ∈ C (P 1/rR,R); pi, qi > P 1/r; (qi, J(x)) = (pi, J(y)) = 1.

Let

Fq(α) =
∑

x:(q,J(x))=1

e




k∑

j=h

αj(x
j
1 + · · ·+ xjt )



 .

Given q1, p1, . . . qs−t, ps−t, let

p̃ = p1 · · · ps−t, q̃ = q1 · · · qs−t

and set

Xi(α) =
∣∣Fq̃(α)2f((qhi αh, · · · , qki αk);P/qi, R)

2s−2t
∣∣ ,

Yi(α) =
∣∣Fp̃(α)2f((phi αh, · · · , pki αk);P/pi, R)

2s−2t
∣∣ .

Then, by Hölder’s inequality, we have

S0 ≤ 4
∑

p,q

∫

Ut

s−t∏

i=1

(Xi(α)Yi(α))
1

2s−2t dα

≤ 4
∑

p,q

s−t∏

i=1

(∫

Ut

Xi(α) dα

) 1
2s−2t

(∫

Ut

Yi(α) dα

) 1
2s−2t

.
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We have
∫
Ut Xi(α) dα ≤ W (qi) and

∫
Ut Yi(α) dα ≤ W (pi), where W (q) is the

number of solutions of

(4.7)

t∑

i=1

(xji − yji ) + qj
s−t∑

i=1

(uji − vji ) = 0 (h ≤ j ≤ k)

xi, yi ∈ C (P,R); ui, vi ∈ C (P/q, R); (q, J(x)J(y)) = 1.

Thus

(4.8) S0 ≤ 4
∑

p,q

s−t∏

i=1

(W (qi)W (pi))
1

2s−2t = 4

( ∑

q∈C (P 1/rR,R)

q>P 1/r

W (q)
1

2s−2t

)2s−2t

.

Next, by Proposition ZRD, for each possible 2t-tuple x,y in (4.7), the number of
u, v is at most Js−t,k,h(C (P/q, R)). By fixing y, the number of possible x,y is ≤
|C (P,R)|tmaxm B(m), where B(m) is the number of solutions of the simultaneous
congruences

t∑

i=1

xji ≡ mj (mod qj) (h ≤ j ≤ k)

with 1 ≤ xi ≤ P and (q, J(x)) = 1. For each j, the number of possibilities for mj

modulo qr is max(1, qr−j). Thus

B(m) ≤ q(r−h)(r−h+1)/2 max
n

B′(n; qr),

where B′(n; qr) is the number of solutions of

t∑

i=1

xji ≡ nj (mod qr) (h ≤ j ≤ k)

with 1 ≤ xi ≤ qr (recall qr ≥ P ) and (q, J(x)) = 1. By the Chinese Remainder
Theorem,

B′(n; qr) ≤
∏

pℓ‖q,p prime

B′(n; prℓ),

and Lemma 2.4 gives B′(n; prℓ) ≤ k!/(h − 1)! ≤ kt. Since ω(q) ≤ 2/(rη) + 2, we
have B′(n; qr) ≤ k2t(1+1/(rη)). This gives

W (q) ≤ k2t(1+1/(rη))q(r−h)(r−h+1)/2|C (P,R)|tJs−t,k,h(C (P/q, R)).

Together with (4.8), this proves the lemma in the fourth case. �

The optimal choice for r in the above lemma is close to h for the range of s that
we are interested in. The next lemma gives some bounds achievable with Lemma
4.1.
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Lemma 4.2. Suppose that k, h and L are integers satisfying

(4.9) k ≥ 60, h ≤ k, t = k − h+ 1 ≤ k
6
, 1 ≤ L ≤ h/2.

Let α = 1− 1/h. Suppose P,R and η are real numbers with

(4.10) 0 < η ≤ 2

3h
, R = P η ≥

(
2

η

)3

,

and

(4.11) |C (Q,R)| ≥ Q1/2 (P 1/3 ≤ Q ≤ P ).

Then

JLt,k,h(C (P,R)) ≤ (10η)tL((1/η+h)αL−1−h)CL(e
2R)

t
2L(L−1)P 2Lt− t

2 (h+k)+∆L ,

where

∆j =
t(t− 1)

2
+ ht(1− 1/h)j (j ≥ 1),

C1 = kt, Cℓ = max
2≤j≤ℓ

etEj (ℓ ≥ 2),

Ej = αL−j

[
4 log k

η
(j − 1)−

(
j − j − 1

h
− h+ hαj

)
logP

]
.

Proof. For 1 ≤ j ≤ L, define Pj = PαL−j

, Mj = PαL−j

R−h(1−αL−j), ηj = logR
logMj

and η′j =
logR
logPj

= αj−Lη. By (4.9) and (4.10),

(4.12) Mj ≥ PαL

R−h(1−αL) ≥ P 0.6R−0.4h ≥ P
1
3 ≥ (2/η)1/η ≥ (3h)75 > (8Lt)20.

Consequently, η ≤ η′j < ηj ≤ η1 ≤ 3η for every j. For M ≥ 1 let Hj(M) =
Jtj,k,h(C (M,R)). We prove by induction on j that

(4.13) Hj(M) ≤ (10η)tj/η1Cj(e
2R)

t
2 j(j−1)M2jt− t

2 (h+k)+∆j (Mj ≤M ≤ Pj).

By (4.10), R ≥ (3h)3 > k3 > 90000. By (4.11) and (4.12), when M1 ≤ M ≤ P
we have |C (M,R)| ≥M1/2, so all of the hypotheses (4.3) of Lemma 4.1 hold (with
M in place of P ). Also, if M1 ≤ Ru ≤ P then R ≥ (2/η)3 ≥ (2u)3, hence the
hypotheses of Lemma 2.3 hold. For M ≥ M1, as in the proof of Lemma 4.1 we
have H1(M) ≤ kt|C (M,R)|t. Writing ν = logM

logR
, by Lemma 2.3

(4.14) |C (M,R)| ≤M(2ν)1/ν ≤M(6η)1/η1 ,
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so (4.13) holds for j = 1. Next assume j ≥ 2, (4.13) holds with j replaced by j− 1,
and assume Mj ≤M ≤ Pj . We will apply Lemma 4.1 with r = h and P =M . By
the definition of Mj and Pj ,

Mj−1 ≤M/q ≤ Pj−1

(
P 1/h < q ≤ P 1/hR

)
.

By (4.9) and (4.10),

k(8jt)2(22t2)2/ν ≤
(
k3/h22t2

)2/ν
< (27t2)2/ν < k4/ν ≤ k4/η

′
j .

By Lemma 2.3 and ν ≤ 3η ≤ 2/h,

4k2t(
1
hν +1)|C (M,R)|t ≤ 4M te

t
ν (log(2ν)+(2/h+2ν) log k) ≤ 4M te

t
ν log(3.13ν).

Since e
t
ν log(3.33/3.13) ≥ 4, it follows that

4k2t(
1
hν +1)|C (M,R)|t ≤M t(10η)t/η1 .

By (4.14), Lemma 4.1 and the induction hypothesis,

Hj(M) ≤ max

[
(6η)tj/η1k

4t(j−1)

η′
j M tj+

t(j−1)
h , (10η)t/η1M t

×
{ ∑

M
1
h <q≤M

1
h R

Hj−1(M/q)
1

2t(j−1)

}2t(j−1)]

≤ (10η)tj/η1 max

[
k

4t(j−1)

η′
j M tj+

t(j−1)
h , Cj−1

× (e2R)
t
2 (j−1)(j−2)M2t(j−1)− t

2 (h+k)+∆j−1+tS2t(j−1)

]
,

where

S =
∑

M
1
h <q≤M

1
h R

qE , E = −1 +
(t/2)(h+ k)−∆j−1

2t(j − 1)
= −1 +

h(1− αj−1)

2j − 2
.

Making use of the inequalities

(4.15) 1− ℓ

h
≤ αℓ ≤ e−ℓ/h ≤ 1− ℓ

h
+

ℓ2

2h2
,

it follows that −5
8 ≤ E ≤ −1

2 . Thus

S ≤
∫ RM1/h

1

xE dx ≤ (RM1/h)E+1

E + 1
≤ 8

3
(RM1/h)E+1 ≤ eR1/2M (1−αj−1)/(2j−2).
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We then obtain

Hj(M) ≤ (10η)tj/η1 max

[
k

4t(j−1)

η′
j M tj+

t(j−1)
h , Cj−1(e

2R)
t
2 (j

2−j)M2tj− t
2 (h+k)+∆j

]
.

Write fj = j − j−1
h − h(1− αj), so that f1 = f2 = 0 and fj > 0 for j > 2. Then

Hj(M) ≤ (10η)tj/η1M2tj− t
2
(h+k)+∆j max

[
k

4t(j−1)

η′
j M−tfj , Cj−1(e

2R)
t
2
(j2−j)

]
.

By (4.15),

fj ≤ j − j − 1

h
− h

(
j

h
− j2

2h2

)
=
j2 − 2j + 2

2h
≤ j2 − j

2h
(j ≥ 2).

Since M ≥Mj ≥ R−hPαL−j

, we have

M−tfj ≤ RthfjP−tfjα
L−j ≤ R

t
2 (j

2−j)P−tfjα
L−j

.

Recalling the definition of Ej and η′j , we conclude that

Hj(M) ≤ (10η)tj/η1(e2R)
t
2 (j

2−j)M2tj− t
2 (h+k)+∆j max

[
etEj , Cj−1

]
.

Since etE2 > C1, (4.13) follows at once. The Lemma then follows from (4.13) by
taking j = L. �

Lemma 4.3. Suppose (4.9), (4.10) and (4.11) hold, and define Ej as in Lemma
4.2. Suppose that logP ≥ A and

(4.16) x :=
4 log k

Aηα
< 1.

Then

max
j≥2

Ej ≤
4 log k

η

[
1 + h

(
1 +

(1− x) log(1− x)

x

)]
.

Proof. We have Ej ≤ maxz≥2 F (z), where

F (z) = A(h− 1/h− αx+ αz(x− 1)− hαz).

By (4.16), F (z) → −∞ as z → ∞ and F (z) has a unique maximum point in
(−∞,∞). Solving F ′(y) = 0, we see that

(4.17) αy =
α(1− x)

−h logα .
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If y < 2, then

max
z≥2

F (z) = F (2) =
4 log k

η

and the lemma follows in this case, because of the inequality (1−x) log(1−x) ≥ −x.
Now assume y ≥ 2. Since −h logα = 1 + 1

2h + 1
3h2 + · · · , we have

1

1− 1
2h

≤ −h logα ≤ 1 +
3h− 1

6h(h− 1)
≤ 1 +

1

2h− 2
.

Consequently, by (4.17)

(4.18) x ≥ 1

2h− 1
.

Also,

log(−h logα) ≥ − log

(
1− 1

2h

)
≥ 1

2h
+

1

8h2
.

This gives
F (y) = A(h− 1)(x+ (1− x)V ),

where

V = 1− 1

−h logα (1 + log(−h logα)− log(1− x))

≤ 1− 6h(h− 1)

6h2 − 3h− 1

(
1 +

1

2h
+

1

8h2

)
+

2h− 2

2h− 1
log(1− x)

=
5h+ 3

4h(6h2 − 3h− 1)
+

2h− 2

2h− 1
log(1− x)

≤ 1

4h2
+

2h− 2

2h− 1
log(1− x).

Using (1− x) log(1− x) ≥ −x again, we obtain

F (y) ≤ (h− 1)(1− x)A

4h2
+ (h− 1)Ax+

(
1− 1

2h− 1

)
A(h− 1)(1− x) log(1− x)

≤ (h− 1)A

4h2
+ (h− 1)Ax

(
1

2h− 1
− 1

4h2

)
+ (h− 1)A(x+ (1− x) log(1− x)).

By (4.18), we apply 1 ≤ (2h− 1)x in the first summand to obtain

F (y) ≤ (h− 1)Ax

(
2h− 1

4h2
+

1

2h− 1
− 1

4h2
+ 1 +

(1− x) log(1− x)

x

)

≤ (h− 1)Ax

(
1

h
+ 1 +

(1− x) log(1− x)

x

)
.
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The lemma now follows from the definition of x (4.16). �

Proof of Theorem 4. Let L be an integer, 2 ≤ L ≤ h/2, and put R = P η and
A = Dk2. The hypotheses imply (4.9) and η ≤ 2

3h
. Next, by (1.10),

R ≥ eηDk2 ≥ k10 >

(
2

η

)3

,

so (4.10) holds. Since R ≥ 611, we may apply Lemma 2.2 with δ = 1
11
. Suppose

Q = Pω with 1
3 ≤ ω ≤ 1 and put w = ⌊1.1ω/η⌋. Since m! ≤ mm and (w + 1)η ≤

1.1ω + η ≤ 1.2,

|C (Q,R)| ≥ 11−w

(w + 1)w!

Q

logR
≥ 1

1.2

(
1

11w

)w
Q

logP
= Qβ ,

where, by (1.10),

β = 1− log(1.2 logP ) + w log(11w)

logQ

≥ 1− 3 log(1.2Dk2)

Dk2
− 1.1 log(12.1/η)

ηDk2

≥ 1− 0.001− 0.03 ≥ 0.9.

Thus, (4.11) holds and we may apply Lemmas 4.2 and 4.3. By (1.10), (4.16) and
the bound h ≥ 54,

x =
4h log k

Dk2η(h− 1)
∈
[
18

k
, 0.408

]
,

so that

1 +
(1− x) log(1− x)

x
=
x

2
+
x2

6
+
x3

12
+ · · · ≤ 0.5866x.

By Lemma 4.3,

max
j≥2

Ej ≤
4 log k

η
(1 + 0.5866hx)

≤ 2.57
xk log k

η
≤ 10.5

log2 k

Dkη2
.

Therefore, by Lemma 4.2,

JLt,k,h(C (P,R)) ≤ CL(e
2R)

t
2L(L−1)P 2Lt− t

2 (h+k)+∆L ,

where ∆L = t(t−1)
2 + htαL and

logCL =
10.5t log2 k

Dkη2
− tL

((
1

η
+ h

)
αL−1 − h

)
log

(
1

10η

)
.
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By hypothesis, the number s satisfies s = Lt + u, where 0 ≤ u ≤ t and 2 ≤ L <
L+ 1 ≤ h/2. By Hölder’s inequality,
(4.19)

Js,k,h(C (P,R)) ≤ (JLt,k,h(C (P,R)))
1−u/t

(JLt+t,k,h(C (P,R)))
u/t

≤ C
1−u/t
L C

u/t
L+1(e

2R)
t
2L

2+L(u−t/2)P 2s− t
2 (h+k)+(1−u/t)∆L+(u/t)∆L+1 .

Next,

(1− u/t)∆L + (u/t)∆L+1 =
t(t− 1)

2
+ htαL

(
1− u

ht

)
<
t(t− 1)

2
+ hte−s/(ht)

and
(e2R)

t
2L

2+L(u−t/2) < (e2R)s
2/(2t) = es

2/tP ηs2/(2t).

For the constants, we use αL−1 > αL ≥ αs/t. Together with (4.19), this proves the
theorem. �
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5. Exponential Sums : Theorem 2 for large λ.

In this section, we apply Theorems 3 and 4 to prove Theorem 2 for large λ
(λ ≥ 87), using a variant of Vinogradov’s method to relate S(N, t) to both Jr,k(P )
and Js,g,h(B). Korobov’s method [11] produces qualitatively similar bounds, but
does not have the seperation of variables property (the ci, di below in Lemma 5.1),
and therefore one cannot easily modify it to incorporate incomplete systems (1.8).
Rough calculations indicate that Korobov’s method, when combined with Theorem

3, gives S(N, t) ≪ N1−1/(866λ2).

Lemma 5.1. Suppose k, r and s are integers ≥ 2, and h and g are integers
satisfying 1 ≤ h ≤ g ≤ k. Let N be a positive integer, and M1, M2 be real
numbers with 1 ≤ Mi ≤ N . Let B be a nonempty subset of the positive integers
≤M2. Then

S(N, t) ≤ 2M1M2 +
t(M1M2)

k+1

kNk
+

N

(
M2

|B|

) 1
r (
(5r)kM−2s

2 ⌊M1⌋−2r+ 1
2k(k+1)Jr,k(⌊M1⌋)Js,g,h(B)Wh · · ·Wg

) 1
2rs

,

where

Wj = min

(
2sM j

2 ,
2sM j

2

r⌊M1⌋j
+
stM j

2

πjN j
+

4πj(2N)j

rt⌊M1⌋j
+ 2

)
(j ≥ 1).

Proof. For brevity write M = ⌊M1⌋. For N < R ≤ 2N and 0 < u ≤ 1, we have

∣∣∣∣
∑

N<n≤R

(n+ u)−it

∣∣∣∣ =
1

M |B|

∣∣∣∣
∑

a≤M1
b∈B

∑

N<n+ab≤R

(n+ ab+ u)−it

∣∣∣∣

≤ 1

M |B|

∣∣∣∣
∑

a≤M1
b∈B

∑

N<n≤R−1

(n+ ab+ u)−it

∣∣∣∣+
1

M |B|
∑

a≤M1
b∈B

(2ab− 1)

≤ N

M |B| max
N≤z≤2N

∣∣∣∣
∑

a≤M1
b∈B

e−it log(1+ab/z)

∣∣∣∣+ 2M1M2.

For 0 ≤ x ≤ 1 we have

(5.1)
∣∣log(1 + x)− (x− x2/2 + · · ·+ (−1)k−1xk/k)

∣∣ ≤ xk+1

k + 1
.

Also |eiy − 1| ≤ y for real y and ab/z ≤M1M2/N . Thus, for some z ∈ [N, 2N ],

(5.2) S(N, t) ≤ N

M |B| |U |+ t(M1M2)
k+1

(k + 1)Nk
+ 2M1M2,



VINOGRADOV’S INTEGRAL AND RIEMANN ZETA FUNCTION 43

where U =
∑

a,b e(γ1(ab) + · · · + γk(ab)
k) and γj = (−1)jt/(2πjzj). By Hölder’s

inequality,

|U |r ≤ |B|r−1
∑

b∈B

∣∣∣∣∣∣

∑

a≤M1

e(γ1(ab) + · · ·+ γk(ab)
k)

∣∣∣∣∣∣

r

= |B|r−1
∑

b∈B

εb




∑

a≤M1

e(γ1(ab) + · · ·+ γk(ab)
k)




r

= |B|r−1
∑

b∈B

εb
∑

c1,... ,ck

n(c)e(γ1bc1 + · · ·+ γkb
kck),

where εb are complex numbers with |εb| = 1, and for c = (c1, . . . , ck), n(c) is the

number of solutions of the simultaneous equations cj = aj1 + · · ·+ ajr (1 ≤ j ≤ k)
with each ai ∈ [1,M1]. A second application of Hölder’s inequality gives

(5.3)
|U |2rs ≤ |B|2rs−2s

(
∑

c

n(c)

)2s−2(∑

c

n(c)2

)
T

= |B|2rs−2sM2rs−2rJr,k(M)T,

where

T =
∑

c

∣∣∣∣∣
∑

b∈B

εbe(γ1bc1 + · · ·+ γkb
kck)

∣∣∣∣∣

2s

.

For 0 < w ≤ 1
2 , let ℓ(x;w) = max(0, 1− ‖x‖

w ). This function has an absolutely and
uniformly convergent Fourier series

ℓ(x;w) =
1

π2w

∞∑

n=−∞

(
sinπnw

n

)2

e(nx).

For 1 ≤ j ≤ k define

fj(x) =

(
rM j sin(πx/(2rM j))

x

)2

,

and we note that fj(x) ≥ 0 for all x and fj(x) ≥ 1 for 1 ≤ x ≤ rM j. Since
1 ≤ cj ≤ rM j for each j, we have

T ≤
∑

c
−∞<cj<∞

∣∣∣∣∣
∑

b∈B

εbe(γ1bc1 + · · ·+ γkb
kck)

∣∣∣∣∣

2s

f1(c1) · · ·fk(ck)

=
∑

c
−∞<cj<∞

∑

b1,··· ,b2s
bi∈B

εbe(γ1d1c1 + · · ·+ γkdkck)f1(c1) · · ·fk(ck),
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where |εb| = 1 and dj = bj1 + · · · + bjs − bjs+1 − · · · − bj2s for 1 ≤ j ≤ k. For
d = (d1, . . . , dk), write Js,n,m(B;d) for the number of b with bi ∈ B for each i

and dj = bj1 + · · · + bjs − bjs+1 − · · · − bj2s (m ≤ j ≤ n). By Proposition ZRD,
Js,n,m(B;d) ≤ Js,n,m(B). Then

T ≤
∑

d1,... ,dk

Js,k,1(B;d)

∣∣∣∣∣
∑

c

e(γ1d1c1 + · · ·+ γkdkck)f1(c1) · · · fk(ck)
∣∣∣∣∣

=
∑

d

Js,k,1(B;d)
k∏

j=1

∣∣∣∣∣

∞∑

c=−∞
e(cdjγj)fj(c)

∣∣∣∣∣

=
∑

d

Js,k,1(B;d)
k∏

j=1

(
(rM j)2

π2

2rM j
ℓ(djγj;

1
2rMj )

)

= (π2r/2)kM
1
2k(k+1)

∑

d

Js,k,1(B;d)

k∏

j=1

ℓ(djγj;
1

2rMj ).

Recalling the definition of ℓ(x;w), we obtain

(5.4) T ≤ (5r)kM
1
2k(k+1)

∑

dj∈Dj ∀j
Js,k,1(B;d),

where
Dj = {|dj| < sM j

2 − 1 : ‖djγj‖ < 1
2rMj }.

The sum in (5.4) may be interpreted as the number of solutions of the system of
equations

(5.5)
s∑

i=1

(xji − yji ) = dj (1 ≤ j ≤ k); xi, yi ∈ B; dj ∈ Dj .

There are now several ways to proceed. A simple method is to ignore the equations
in (5.5) corresponding to j > g or j < h. Then, by Proposition ZRD, for each
choice of dh, . . . , dg, the number of x,y is ≤ Js,g,h(B). Thus, by (5.4),

T ≤ (5r)kM
1
2k(k+1)Js,g,h(B)

g∏

j=h

|Dj |.

An alternate and slightly better method for bounding the number of solutions of
(5.5) will be given in §8. Lastly, for positive δ, γ and K, we claim that

(5.6) |{|d| ≤ K : ‖dγ‖ < δ}| ≤ 4Kδ + 2Kγ + 4δ/γ + 2.

Suppose that δ < 1/2, else (5.6) is trivial. The number of intervals of the form
[m−δ,m+δ] with integralm which intersect [−Kγ,Kγ] is≤ 2γK+1+2δ ≤ 2γK+2.
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Each such interval can contain at most 2δ/γ + 1 points of the form dγ, and this

proves (5.6). Putting K = sM j
2 − 1, γ = |γj| and δ = 1

2rMj gives |Dj| ≤Wj , hence

T ≤ Js,g,h(B)(5r)kMk(k+1)/2Wh · · ·Wg.

Together with (5.2) and (5.3), this proves the lemma. �

Proof of Theorem 2 for λ ≥ 87. Assume that

(5.7) ⌊M1⌋ ≥M2 ≥ 100g, s ≤ 2g, r ≥ 13g, r ≥ s, g ≥ h ≥ 3.

It turns out that the optimal parameters satisfy (5.7). By (5.7) and the definition
of Wj ,

Wj ≤ 4 +
stM j

2

πN j
+

13g2gN j

rtM j
1

≤ 2g+1 max

(
1,
tM j

2

N j
,
N j

tM j
1

)
.

Suppose that

(5.8) M1 = Nµ1 , M2 = Nµ2 , µ1 > µ2.

Then, the above bound for Wj is better than the trivial bound 2sM j
2 only when

λ < j < λ/(1− µ1 − µ2). Let

(5.9) φ = g/λ, γ = h/λ, 1 ≤ γ ≤ 1

1− µ2
<

1

1− µ1
≤ φ ≤ 1

1− µ1 − µ2
.

We then have

(5.10) Wh · · ·Wg ≤ 2g
2

M
h+(h+1)+···+g
2 N−H ,

where

(5.11) H =

g∑

j=h

min (jµ2, j − λ, λ− j(1− µ1 − µ2)) .

For i = 1, 2, write λ
1−µi

= mi + βi, where mi is an integer and 0 ≤ βi < 1. Then

H =

m2∑

j=h

(j − λ) +

m1∑

j=m2+1

jµ2 +

g∑

j=m1+1

(λ− j(1− µ1 − µ2))

=
(m2

1 +m1)(1− µ1) + (m2
2 +m2)(1− µ2)− h2 + h− (1− µ1 − µ2)(g

2 + g)

2
+ λ(h+ g −m1 −m2 − 1)

= λ2
(
φ+ γ − γ2

2
− 1− µ1 − µ2

2
φ2 − 2− µ1 − µ2

2(1− µ1)(1− µ2)

)

+ λ

(
γ

2
− φ

2
(1− µ1 − µ2)

)
− β1(1− β1)(1− µ1) + β2(1− β2)(1− µ2)

2
.
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Since βi(1− βi) ≤ 1
4 ,

(5.12)

H ≥ λ2
(
φ+ γ − γ2

2
− 1− µ1 − µ2

2
φ2 − 2− µ1 − µ2

2(1− µ1)(1− µ2)

)

+ λ

(
γ

2
− φ

2
(1− µ1 − µ2)

)
− 2− µ1 − µ2

8

=: H2λ
2 +H1λ−H0.

We shall take the near-optimal choice for the parameters

(5.13)
µ1 = 0.1905, µ2 = 0.1603, k =

⌊
λ

1−µ1−µ2
+ 0.000003

⌋
≥ 129,

r = ⌊ρk2 + 1⌋, ρ taken from (1.7),

and approximate values (to be specified precisely later)

g ≈ 1.2453λ, h ≈ 1.1818λ, s ≈ 0.3299h(t− 1).

With these choices we quickly deduce that S(N, t) ≪ N1−1/(132.31λ2) for sufficiently
large λ. By a standard argument (see §7), this implies (1.1) with B = 4.42736, but
only for 1 − σ sufficiently small. For completely explicit bounds, we pay more
attention to the constants, sacrificing a little bit in B in order to get a fairly small
value for A in Theorem 1.

By (5.13) and Theorem 3, we have

(5.14) ⌊M1⌋−2r+ 1
2k(k+1)Jr,k(⌊M1⌋) ≤ C1M

0.001k2

1 ,

where C1 = kθk
3

and θ is taken from (1.7). Let Y = 300 and assume that

(5.15) N ≥ eY λ2

,

for otheriwse trivially

S(N, t) ≤ N ≤ eY/133.66N1−1/(133.66λ2) ≤ 9.44N1−1/(133.66λ2).

We shall always choose g so that

(5.16) 106 ≤ g ≤ 1.254λ.

Thus by (5.13) and (5.15), M2 ≥ eµ2Y λ2 ≥ e0.1019Y g2

. Let D = 0.1019Y = 30.57
and η = 1

ξg3/2 , where 3 ≤ ξ ≤ 6. By (5.16), (1.10) holds and hence the hypotheses

of Theorem 4 hold (with P =M2 and k = g). By Theorem 4,

(5.17) Js,g,h(C (M2,M
η
2 )) ≤ C2P

2s− t
2 (h+g)+E2 ,
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where
(5.18)

E2 =
1

2
t(t− 1) +

ηs2

2t
+ ht exp{− s

ht
},

logC2 =
s2

t
+

10.5ξ2tg2 log2 g

D
− s

(
(ξg3/2 + h)(1− 1/h)s/t − h

)
log(ξg3/2/10).

By (1.10) and (5.16),

R =Mη
2 ≥ eDg2η ≥ g10 > 626.

By Lemma 2.2 (with δ = 1
26) plus the inequality w! ≤ (w/2.5)w (w ≥ 50), we have

M2

|C (M2, R)|
≤ (logR)(1.04ξg3/2 + 1)

(
27.04ξg3/2

2.5

)1.04ξg3/2

≤ (logN)C3 ≤ C3N
E3 ,

where

(5.19)
C3 = (10.82ξg3/2)1.04ξg

3/2

,

E3 =
log(Y λ2)

Y λ2
.

By (5.13),

(5.20) (5r)k ≤ (40λ2)1.6λ ≤ λ5λ

and

(5.21) r ≥ 7.509λ2.

Consequently
E3

r
≤ log(Y λ2)

7.5Y λ4
.

By Lemma 5.1, (5.10), (5.13), (5.14), (5.17) and (5.20), it follows that

(5.22)
S(N, t) ≤

(
C

1
r
3

(
λ5λC1C2

) 1
2rs

)
N1+E + 2N0.36 +

1

k
N1−0.0000019476,

E =
log(Y λ2)

7.5Y λ4
+

1

2rs

(
−H + 0.001µ1k

2 + µ2E2

)
.

We also need bounds on k/λ, which by (5.13) can be written as

(5.23) k0 := 1
0.6492 − 0.999997

λ ≤ k
λ ≤ 1

0.6492 + 0.000003
λ =: k1.
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Lemma 5.2. When λ ≥ 220, we have

S(N, t) ≤ 7.5N1−1/(133.58λ2) (N ≥ e300λ
2

).

Proof. We take

(5.24) h = ⌊1.1818λ+ 1
2⌋, g = ⌊1.2453λ+ 1

2⌋, s = ⌊σh(t−1)+1⌋, σ = 0.3299.

By (5.9) and (5.24), (5.16) holds and also

(5.25) |γ − 1.1818| ≤ 1
2λ , |φ− 1.2453| ≤ 1

2λ .

Further, by (5.13) and (5.24),

(5.26) g ≥ 274, h ≥ 260, t ≥ 13, k ≥ 338, s ≥ 0.02294λ2.

By (1.7), (5.13) and (5.14),

(5.27) C1 = k2.3291k
3 ≤ e9.2λ

3 log λ.

Taking
ξ = 6,

we have by (5.19) and (5.24),

(5.28) C3 ≤ e20.31λ
3/2 log λ.

To bound C2, we first note that by (5.24),

(1− 1/h)s/t ≥ (1− 1/h)σ(h−1) ≥ e−σ ≥ 0.71899.

This implies

(ξg3/2 + h)(1− 1/h)s/t − h ≥ 5.9785λ3/2 − 0.28101h ≥ 5.956λ3/2.

By (5.18), (5.24) and (5.26),

(5.29)
logC2 ≤ 0.3907sλ+ 20.86tλ2 log2 λ− 8.73sλ3/2 logλ

≤ 1.52λ3 log2 λ− 8.72sλ3/2 log λ.

By (5.21) and (5.26), 2rs ≥ 0.3445λ4. Combining (5.21), (5.27), (5.28) and (5.29),
we obtain
(5.30)

C
1
r
3

(
λ5λC1C2

) 1
2rs ≤ exp

{
logλ

λ1/2

(
20.31− 8.72/2

7.509

)
+

log λ

0.3445

(
5

λ3
+

9.2 + 1.52 logλ

λ

)}

≤ e2.011 ≤ 7.48.
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By (5.22), it remains to bound E. Note that −H + 0.001µ1k
2 + µ2E2 < 0. By

(5.9), (5.13), (5.18) and (5.22),

E ≤ log(Y λ2)

7.5Y λ4
+

−H + 0.001µ1k
2

2.002ρσγ(φ− γ)λ2k2
+
µ2E2

2ρk2s

≤ 1.52× 10−7

λ2
+

−λ2H2 − λH1 +H0

2.002ρσγ(φ− γ)λ2k2
+

0.001µ1

2.002ρσγ(φ− γ)λ2

+
µ2

2ρk2

[
φ− γ + 1

λ

2σγ
+

t
t−1e

−σ+σ/t

σ
+
σhg−3/2

12

]
.

By (5.26),

t
t−1e

σ/t ≤ 1 +
1.33413

t− 1
= 1 +

1.33413

(φ− γ)λ
.

Therefore

λ2E ≤ 1.52× 10−7 +
f(γ, φ) +G1/λ

1/2 +G2/λ

ρ
,

where, by (5.24) and (5.25),

f(γ, φ) =
1

2.002σγ

[
0.001µ1

φ− γ
+

1

k21

( −H2

φ− γ
+ 1.001µ2

(
φ− γ

2
+ γe−σ

))]
,

G1 =
µ2σγφ

−3/2

24k20
≤ 0.0008,

G2 =
1

2.002σ(k/λ)2

[−H1 +H0/λ+ 1.33547µ2γe
−σ

γ(φ− γ)
+

1.001µ2

2γ

]
.

Let U be the bracketed expression in the definition of G2. By (5.12) (the definition
of H1 and H0), (5.25) and (5.26),

U ≤ 0.3246φ− 0.34608γ + 0.20615/λ

γ(φ− γ)
+

1.001µ2

2γ

=
1.001µ2 + 0.6492

2γ
+

−0.02148 + 0.20615
h

φ− γ

≤ 0.80967

2.3636− 1/λ
+

−0.02148 + 0.20615/h

0.0635 + 1/λ

≤ 0.0392.

Thus

G2 ≤ 0.0392

2.002σγk20
≤ 0.021334.

Then

(5.31)

λ2E ≤ 1.52× 10−7 +
f(γ, φ) + 0.0008λ−1/2 + 0.021334λ−1

ρ

≤ 0.00004711 +
f(γ, φ)

ρ
.
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A short analysis with the aid of Maple shows that in the range |φ− 1.2453| ≤ 1
440 ,

|γ − 1.1818| ≤ 1
440

, we have

f(γ, φ) ≤ −0.0242145,

the maximum occuring at γ = 1.1818+ 1
440 , φ = 1.2453− 1

440 . By (1.7), (5.13) and
(5.31), we conclude that

λ2E ≤ −0.0074862 ≤ − 1

133.58
.

Together with (5.22) and (5.30), this proves the lemma. �

Lemma 5.3. When 87 ≤ λ ≤ 220, we have

S(N, t) ≤ 8.4N1−1/(133.66λ2) (N ≥ e300λ
2

).

Proof. Here we take

ξ = 3.6, s = ⌊σht⌋+ 1, σ = 0.3299.

We choose g, h satisfying (5.16) and

g =
⌊

λ
1−µ1

⌋
+ 1 + a, h =

⌊
λ

1−µ2

⌋
− b, t = g − h+ 1, a, b ∈ {0, 1}.

To bound the exponent of N , consider λ ∈ I = [λ1, λ2), a small interval on which
each of the quantities m1 = ⌊ λ

1−µ1
⌋, m2 = ⌊ λ

1−µ2
⌋ and k (defined in (5.13)) is

constant. We choose constant values of a and b in I, so that g, h, t, s, r are also
fixed. By the definition of H, we have for λ ∈ I

H = Z0 + Z1λ,

Z0 =
(m2

1 +m1)(1− µ1) + (m2
2 +m2)(1− µ2)− h2 + h− (1− µ1 − µ2)(g

2 + g)

2
,

Z1 = h+ g −m1 −m2 − 1 = a− b ∈ {−1, 0, 1}.

Therefore,

H ≥ H ′ := Z0 +






λ1 Z1 = 1

0 Z1 = 0

−λ2 Z1 = −1

.

By (5.22),

E ≤ log(Y λ21)

7.5Y λ41
−
H ′ − 0.001µ1k

2 − µ2

(
t(t−1)

2 + s2

ξtg3/2 + hte−s/(ht)
)

2rs
:= E′.



VINOGRADOV’S INTEGRAL AND RIEMANN ZETA FUNCTION 51

Then, by (5.22), when λ ∈ I we have

S(N, t) ≤ CN1−1/(uλ2) +
1

k
N1−1/(133λ2),

where u = 1/(E′λ21) and C = C
1/r
3 (λ5λC1C2)

1/(2rs). A short computer program
(Program 2 in the Appendix) is used to compute C and u in each interval, and to
find the best choice for a and b (the choice which gives the smallest C subject to
u ≤ 133.66). In all cases, C ≤ 8.38. For most λ, we take b = 0 and for λ ∈ [136, 220]
we take a = 1. This concludes the proof.

No choice of parameters g, h, s produced C < 9.5 in the range 86 ≤ λ ≤ 87. �

Together, Lemma 5.2 and 5.3 prove Theorem 2 for λ ≥ 87.
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6. Theorem 2 for small λ

We begin with a general inequality derived from the Weyl shifting method. Sup-
pose N is a positive integer andM is a real number satisfying 1 ≤M ≤ N . Arguing
as in the proof of Lemma 5.1, for N < R ≤ 2N and 0 < u ≤ 1, we have

∣∣∣∣
∑

N<n≤R

(n+ u)−it

∣∣∣∣ =
1

⌊M + 1⌋

∣∣∣∣∣∣

∑

m≤M+1

∑

N<n+m≤R

(n+m+ u)−it

∣∣∣∣∣∣

≤ 1

M

∣∣∣∣∣∣

∑

m≤M

∑

N<n≤R−1

(n+m+ u)−it

∣∣∣∣∣∣
+
N

M
+

1

M

∑

m≤M

(2m− 1).

Therefore,

(6.1) S(N, t) ≤ 1

M
max
0<u≤1

∑

N<n≤2N−1

∣∣∣∣∣∣

∑

m≤M

e−it log(1+m/(n+u))

∣∣∣∣∣∣
+
N

M
+M.

Lemma 6.1. If |α − p/q| ≤ 1/q2, (p, q) = 1, m is a positive integer, and x ≥ 1
and y ≥ 2 are real numbers, then

∑

n≤x

min

(
y,

1

2‖αmn‖

)
≤
(
1 +

2mx

q

)
(2q log(ey) + 4y) .

Proof. For 0 ≤ j ≤ 2q − 1 let Ij be the interval [ j
2q ,

j+1
2q ). The interval [1, x] can

be partitioned into intervals Bi, 1 ≤ i ≤ 1 + 2mx/q, each of length ≤ q/(2m). If
n, n′ ∈ Bi and {αmn}, {αmn′} ∈ Ij then

∥∥∥∥
pm

q
(n− n′)

∥∥∥∥ ≤ ‖αmn− αmn′‖+
∣∣∣∣
m(n− n′)

q2

∣∣∣∣ <
1

q
,

hence n = n′. So, for 0 ≤ j ≤ q − 1, there are at most G = 2 + 4mx/q values of n
giving ‖αmn‖ ∈ Ij . We take the summand to be y when j ≤ q/y + 1, thus

∑

n≤x

min

(
y,

1

2‖αmn‖

)
≤ Gy(q/y+2)+G

∑

q/y+1<j≤q−1

q/j ≤ G(q+2y+q log y). �

Next, we use the Weyl method to prove Theorem 2 for 1 ≤ λ ≤ 2.6. There is
much room for improvement here, but the bounds below more than suffice for our
purposes.
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Lemma 6.2. We have

S(N, t) ≤ 5N1−1/20 (1 ≤ λ ≤ 1.9),

S(N, t) ≤ 30N1−1/83 (1.9 ≤ λ ≤ 2.6).

Consequently, when 1 ≤ λ ≤ 2.6, we have

S(N, t) ≤ 1.81N1−1/(133λ2).

Proof. Suppose k ≥ 2. By (6.1) and (5.1), for some real number z ∈ [N, 2N ],

(6.2) S(N, t) ≤ N

M
|U |+ N

M
+M +

tMk+1

(k + 1)Nk
,

where

U =
∑

m≤M

e−it((m/z)−m2/(2z2)+···+(−1)k−1mk/(kzk)).

By the proof of Weyl’s inequality (e.g. Lemma 2.4 of [27]), we have

|U |2k−1 ≤ (2M)2
k−1−k

∑

h1,... ,hk−1

|hi|≤M−1

min

(
M,

1

2‖αh1 · · ·hk−1k!‖

)
,

where α = t/(2πkzk). There are at most (k − 1)(2M)k−2 vectors (h1, · · · , hk−1)
with some hi = 0, thus

(6.3)

|U |2k−1 ≤ (2M)2
k−1−k

(
(k − 1)Mk−12k−2

+ 2k−1
∑

1≤h≤Mk−1

dk−1(h)min
(
M,

1

2‖αhk!‖
))
.

Suppose 1 ≤ λ ≤ 1.9. Let q = ⌊1/α⌋ and note that (4π−1)N2

t
≤ q ≤ 16πN2

t
.

Assume M ≥ 10000. By (6.3) with k = 2 and Lemma 6.1,

(6.4)

|U |2 ≤ 9M +
32M2

q
+ (16M + 4q) log(eM)

≤ 32M2t

(4π − 1)N2
+

(
17M +

64πN2

t

)
log(eM).

We may assume that N ≥ 520, otherwise the claimed bound is trivial. We shall
take M = Nµ, where µ = 2.95−λ

3
∈ [0.35, 0.65], so that M ≥ 57 > 10000. By (6.2)
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and (6.4),

S(N, t) ≤ N

(
32t

(4π − 1)N2
+

(
17

M
+

64πN2

tM2

)
log(eM)

)1/2

+
N

M
+M +

tM3

3N2

≤ N
(
3Nλ−2 +

(
17N−0.35 + 64πN−0.3

)
logN

)1/2
+ 2N0.65 +

N0.95

3

≤ N
(
3N−0.1 + 205N−0.3 logN

)1/2
+ 0.334N0.95

≤ 4.1N0.95.

When 1.9 ≤ λ ≤ 2.6, we apply (6.3) with k = 3, obtaining

|U |4 ≤ 2M


4M2 + 4

∑

1≤h≤M2

d2(h)min
(
M,

1

2‖6αh‖
)

 .

We shall use a crude upper bound on τ(h):

d2(h)

h1/3
=
∏

pe‖h

e+ 1

pe/3
≤
∏

p

max
e≥0

e+ 1

pe/3

=
∏

p≤7

max
e≥0

e+ 1

pe/3
=

24

3151/3
≤ 3.53.

Take q = ⌊6πz3

t
⌋, so that (6π−1)N3

t
≤ q ≤ 48πN3

t
. By Lemma 6.1 (with m = 6,

x =M2, y =M), we obtain

(6.5)

|U |4 ≤ 8M3 + 28.24M5/3
∑

1≤h≤M2

min
(
M,

1

2‖6αh‖
)

≤ 8M3 + 28.24M5/3
(
(2q + 24M2) log(eM) + 4M + 48M3

q

)
.

We choose µ = 1− λ+1/50
4

∈ [0.345, 0.52] and put M = Nµ. Then

3− λ = 3− 4(1− µ) + 1
50 = −49

50 + 4µ ∈
[
µ+ 0.055, µ(2 + 3

26)
]
,

and consequently

MN0.055 ≤ N3

t
≤M2+3/26.

We assume that N ≥ 3060, otherwise the claimed bound is trivial. ThenM ≥ 3020.7

and

N0.055 ≥ 74000,
log(eM)

M1/13
≤ 0.318.
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Thus,

(2q + 24M2) log(eM) + 4M +
48M3

q
≤ (96πM2+3/26 + 24M2) log(eM)

+ 4M +
48

6π − 1

M2

N0.055

≤M2+5/26

(
(96π + 24M−3/26)(0.318) +

4

M1+5/26
+

1

26000M5/26

)

≤ 96M2+5/26.

By (6.5), |U |4 ≤ 2712M4−11
78 , and (6.2) then gives

S(N, t) ≤ 4N(7.22M− 11
312 ) + 2N0.655 + 1

4
N1− 1

50 ≤ 30N1−1/83.

This completes the proof of the first part of the lemma. The last part follows a
general inequality: if λ is fixed and 0 < d < c < 1, then

(6.6) S(N, t) ≤ CN1−c (N ≥ 1) =⇒ S(N, t) ≤ Cd/cN1−d (N ≥ 1).

For the proof, if N ≤ C1/c, then trivially S(N, t) ≤ N = NdN1−d ≤ Cd/cN1−d.
When N > C1/c, the hypothesis of (6.6) implies that

S(N, t) ≤ CN1−c = CNd−cN1−d ≤ C · C 1
c (d−c)N1−d = Cd/cN1−d.

For λ ∈ [1, 1.9], take c = 1
20 , d = 1

133 in (6.6) and for λ ∈ [1.9, 2.6] take c = 1
83 ,

d = 1
133.66(1.92)

. �

For larger λ, we relate S(N, t) to Js,k(P ) using an older method (§6.12 of [25]).

Lemma 6.3. Suppose k ≥ 2, s ≥ 2, N ≥ 1, 1 ≤M ≤ Nt−
1

k+1 and t ≤ Nk. Then

S(N, t) ≤ 4N1− 1
2s

M

(
πkk!kkWM

1
2k(k+1)Js,k(M)

) 1
2s

+
N

M
+M,

where

W =
2k+2Nk+1

k2tMk
+ 1.

Proof. By (6.1) and Hölder’s inequality,

(6.7) S(N, t) ≤ max
0<u≤1

N1− 1
2s

M




∑

N<n≤2N−1

|T (n)|2s



1
2s

+
N

M
+M,

where

T (n) =
∑

m≤M

e

(
− t

2π
log

(
1 +

m

n+ u

))
.
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With n fixed, let γj = γj(n) = (−1)j t
2πj(n+u)j for 1 ≤ j ≤ k. Define

S(x;β) =
∑

m≤x

e(mβ1 + · · ·+mkβk),

δ(m;β) = − t

2π
log

(
1 +

m

n+ u

)
−

k∑

j=1

βjm
j .

When 0 ≤ w ≤M ,

(6.8)

|δ′(w;β)| ≤ tMk

2πNk+1
+

k∑

j=1

j|βj − γj|M j−1

≤ 1

2πM
+

k∑

j=1

j|βj − γj |M j−1.

Let Ωn be the region {β : |βj − γj| ≤ 1
2πjkMj ∀j}. By (6.8), for β ∈ Ωn and

0 ≤ w ≤M , |δ′(w;β)| ≤ 1
πM

. For any β ∈ Ωn, partial summation gives

T (n) = S(M ;β)e(δ(⌊M⌋;β))− 2πi

∫ M

0

S(w;β)e(δ(w;β))δ′(w;β) dw,

and thus

|T (n)| ≤ |S(M ;β)|+ 2

M

∫ M

0

|S(w;β)| dw =: S0(β).

Integrating over Ωn then gives

|T (n)|2s ≤ 1

|Ωn|

∫

Ωn

S0(β)
2s dβ = πkk!kkM

1
2k(k+1)

∫

Ωn

S0(β)
2s.

For any β, the number of n with β ∈ Ωn is at most the number of n with |γk(n)−
βk| ≤ 1

2πk2Mk . By hypothesis, |γk(N) − γk(2N)| < 1
2
and by the mean value

theorem, when N ≤ n ≤ 2N − 2,

|γk(n)− γk(n+ 1)| ≥ t

2π(2N)k+1
.

Therefore the number of such is n is at most W . Hence

(6.9)
∑

N<n≤2N−1

|T (n)|2s ≤ πkk!kkM
1
2k(k+1)W

∫

Uk

S0(β)
2s dβ.

By Hölder’s inequality,

S0(β)
2s ≤ 22s−1



|S(M ;β)|2s +
(

2

M

)2s
(∫ M

0

|S(w;β)| dw
)2s





≤ 22s−1|S(M ;β)|2s + 24s−1

M

∫ M

0

|S(w;β)|2s dw.
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Thus

∫

Uk

S0(β)
2s dβ ≤ 22s−1

∫

Uk

|S(M ;β)|2s dβ +
24s−1

M

∫ M

0

∫

Uk

|S(w;β)|2s dβ dw

= 22s−1Js,k(M) +
24s−1

M

∫ M

0

Js,k(w) dw

≤ 24sJs,k(M).

Combined with (6.7) and (6.9), this gives the lemma. �

Corollary 6.4. Suppose k ≥ 4, 1 ≤ n ≤ k2 and s = nk. Assume that

Js,k(P ) ≤ CP 2s− 1
2k(k+1)+∆ (P ≥ 1).

Then, for t = Nλ with k − 1 ≤ λ ≤ k, we have

S(N, t) ≤ 4N1− 1
2nk

(
C(2πk)kk!N

2+2∆
k+1

) 1
2nk

+N
k

k+1 +N
1

k+1 .

Proof. This follows from Lemma 6.3, taking µ = 1 − λ
k+1 ∈ [ 1

k+1 ,
2

k+1 ], M = Nµ

and noting that W ≤ 2kM . �

Bounds for Js,k(P ) with the best exponents of P come from Lemma 3.5, how-
ever the constants are very large. By using older methods without “repeat efficient
differencing”, we obtain bounds with far better constants, while sacrificing some-
thing in the exponents of P . In fact, using Corollary 6.4 with the older bounds for
Js,k(P ) gives

S(N, t) ≤ CλN
1−1/16λ2

(6 ≤ λ ≤ 100),

which is far better than needed for Theorem 2. Since we will then use (6.6) to

greatly reduce the constant (to C
16/133.66
λ ), it is better for us to minimize Cλ rather

than the exponent of P . Lemma 6.5 below comes from using Lemma 3.2 in a non-
iterative way. For some s, even better constants can be obtained using an older
variation of the method (Lemma 6.6), where solutions modulo a single prime are
considered (as opposed to considering a set of k3 primes).

Lemma 6.5. Suppose k ≥ 4 and 1 ≤ n ≤ k2. Suppose 0 < ω ≤ 1
2 or ω = 1, and let

η = 1 + ω. Put V (ω) = 6k3 log k if ω = 1 and V (ω) = max(e1.5+1.5/ω, 18ω k
3 log k)

otherwise. If

Jnk,k(P ) ≤ CP 2nk− 1
2k(k+1)+∆ (P ≥ 1),

then
Jnk+k,k(P ) ≤ C′P 2nk− 1

2k(k+1)+∆′

,

where ∆′ = (1− 1/k)∆ and

C′ = Cmax
[
4k3k!ηk

2−∆, V (ω)∆
]
.
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Proof. This comes from Lemma 3.2 with Q = P , M = P 1/k, r = k, d = 0, T = 1,
s = nk, q = 1 and ψj(z) = zj for each j. Lemma 2.1 implies that the interval

[P 1/k, ηP 1/k] contains at least k3 primes. Also, P 1−1/k ≥ k3k−3 ≥ 32s2, so the
hypotheses of Lemma 3.2 are satisfied. Together with the inequality

Ls(P, P/p;Φ; p, 1, k) ≤ P kJs,k(P/p),

this proves that for P ≥ V (ω)k and k ≤ s ≤ k3, there is a prime p ∈ [P 1/k, ηP 1/k]
giving

(6.10) Js+k,k(P ) ≤ 4k3k!p2s+
1
2 (k

2−k)P kJs,k(P/p).

The upper bound on p now gives the lemma. If P < V (ω)k, trivially

J(n+1)k,k(P ) ≤ P 2kJnk,k(P ) ≤ CP 2(n+1)k− 1
2k(k+1)+∆

≤ CV (ω)k(∆−∆′)P 2s− 1
2k(k+1)+∆′

.

�

Lemma 6.6. Suppose k ≥ 9, k ≤ s ≤ k3 − k, P ≥ kk and p is a prime in
[P 1/k, 2P 1/k]. Then

Js+k,k(P ) ≤ max
[
(ep)2k−2(k − 1)2s+2Js+k,k(

P
p ),

32
k! (s+ k)2kp2s+

1
2 (k

2−k)P kJs,k(
P
p )
]
.

Proof. Let S1 be the number of solutions of (1.4) (with s → s + k) with at least
k distinct residues modulo p among x1, . . . , xs+k or at least k distinct residues
modulo p among y1, . . . , ys+k. Let S2 be the number of remaining solutions. Clearly
Js+k,k(P ) ≤ 2max(S1, S2). Let

f(α;Q) =
∑

x≤Q

e(α1x+ · · ·+ αkx
k).

If S2 ≥ S1, for 1 ≤ b ≤ p let

g(α; b) =
∑

x≤P
x≡b (mod p)

e(α1x+ · · ·+ αkx
k)

=
∑

1≤y≤P+p−b
p

e(α1(py + b− p) + · · ·+ αk(py + b− p)k).

Define B to be the set of (b1, . . . , bs+k) with 1 ≤ bi ≤ p for each i, and containing
at most k − 1 distinct values. Then

(6.11) |B| ≤
(

p

k − 1

)
(k − 1)k+s ≤ pk−1

(k − 1)!
(k − 1)k+s ≤ 1

2
(ep)k−1(k − 1)s+1.
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By Hölder’s inequality,

Js+k,k(P ) ≤ 2

∫

Uk

∣∣∣∣∣
∑

b∈B

g(α; b1) · · · g(α; bs+k)

∣∣∣∣∣

2

dα

≤ 2

∫

Uk



∑

b,b′∈B

|g(α; b1)|2s+2k




1
2s+2k

· · ·



∑

b,b′∈B

|g(α; b′s+k)|2s+2k




1
2s+2k

dα

= 2
∑

b,b′∈B

∫

Uk

|g(α; b1)|2s+2k dα.

By the binomial theorem, the last integral is Js+k,k(
P+p−b1

p ), hence

Js+k,k(P ) ≤ 2|B|2Js+k,k(P/p+ 1).

For brevity, write P1 = P/p+ 1. We have Js+k,k(P1) ≤ 2max(S3, S4), where S3 is
the number of solutions of (1.4) with every xi, yi ≤ P/p and S4 is the number of
remaining solutions. If S4 ≥ S3, Hölder’s inequality implies

Js+k,k(P1) ≤ 2(2s+ 2k)

∫

Uk

|f(α;P1)|2s+2k−1 dα

≤ 4(s+ k)

(∫

Uk

|f(α;P1)|2s+2k dα

)1− 1
2s+2k

= (4s+ 4k)Js+k,k(P1)
1− 1

2s+2k ,

whence Js+k,k(P1) ≤ (4s+ 4k)2s+2k. On the other hand, since k ≥ 9 and P ≥ kk,
counting only trivial solutions gives

Js+k,k(P1) ≥ (P/p)s+k ≥ ( 12P
1−1/k)s+k > (4k3)2s+2k ≥ (4s+ 4k)2s+2k,

a contradiction. Therefore, Js+k,k(P1) ≤ 2Js+k,k(P/p), and by (6.11),

Js+k,k(P ) ≤ 4|B|2Js+k,k(P/p) ≤ (ep)2k−2(k − 1)2s+2Js+k,k(P/p).

This proves the lemma in the case S2 ≥ S1.

If S1 ≥ S2, then S1 is at most 2
(
s+k
k

)
times the number of solutions of (1.4) with

x1, · · · , xk distinct modulo p. Let X be the set of k-tuples (x1, · · · , xk) which are
distinct modulo p and

F (α) =
∑

x∈X

e(α1(x1 + · · ·+ xk) + · · ·+ αk(x
k
1 + · · ·+ xkk)).
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Then, by the Cauchy-Schwarz inequality ,

Js+k,k(P ) ≤ 2S1 ≤ 4

(
s+ k

k

)∫

Uk

|F (α)f(α;P )2s+k| dα

≤ 4

(
s+ k

k

)(∫

Uk

|F (α)2f(α;P )2s| dα
) 1

2
(∫

Uk

|f(α;P )2s+2k| dα
) 1

2

= 4

(
s+ k

k

)(∫

Uk

|F (α)2f(α;P )2s| dα
) 1

2

(Js+k,k(P ))
1/2

.

Thus

Js+k,k(P ) ≤ 16

(
s+ k

k

)2 ∫

Uk

|F (α)2f(α;P )2s| dα = 16

(
s+ k

k

)2

S3(p),

where S3(p) is defined as in the proof of Lemma 3.2 (with Ψj(x) = xj for j =

1, . . . , k). All the hypotheses of Lemma 3.2 hold, with d = 0, T = 1, M = P 1/k,
r = k, Q = P and q = 1. Recalling the definition (3.2) of Ls(P,Q;Ψ; p, q, r) and
using (3.7),

Js+k,k(P ) ≤ 16
(s+ k)2k

(k!)2
2k!p2s+

1
2k(k−1)Ls(P, P/p;Φ; p, 1, k)

≤ 32
k! (s+ k)2kp2s+

1
2k(k−1)P kJs,k(P/p),

and the lemma follows in the case S1 ≥ S2. �

The chief advantage of Lemma 6.6 over Lemma 6.5 is the much smaller lower
bound required for P (see (6.10)).

Lemma 6.7. Suppose k ≥ 9, 1 ≤ n ≤ k2 and

Jnk,k(P ) ≤ CP 2nk− 1
2k(k+1)+∆ (P ≥ 1).

Suppose that 1 < η ≤ 2 and that for x ≥ k, there is a prime in [x, ηx]. Then

(6.12) J(n+1)k,k(P ) ≤ C′P 2nk− 1
2k(k+1)+∆′

,

where ∆′ = (1− 1/k)∆ and

C′ = Cmax
[
U∆, 32

k!
(nk + k)2kηk

2−∆
]
,

U = max
[
k,
{
e2k−2(k − 1)2kn+2

} 1
2nk−k(k+1)/2+∆′+2

]
.

Proof. If P ≤ Uk then as in the proof of Lemma 6.5, we have the trivial estimate

J(n+1)k,k(P ) ≤ CUk(∆−∆′)P 2(n+1)k− 1
2k(k+1)+∆′

.
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Next suppose P > Uk ≥ kk. We prove (6.12) by induction on ⌊P ⌋, observing that
(6.12) for integral P = m implies (6.12) for m ≤ P < m + 1. Assume (6.12) is
true for ⌊P ⌋ ≤ Q − 1, where Q is an integer ≥ Uk, and apply Lemma 6.6. If the
first term in the maximum in the conclusion on Lemma 6.6 is largest, (6.12) follows
from the bound p ≥ U and the induction hypothesis on m. If the second term in
the maximum is largest, (6.12) follows from the upper bound p ≤ ηP 1/k and the
upper bound on Jrk,k(P ). �

Lemma 6.8. Theorem 2 holds for 2.6 ≤ λ ≤ 87. In particular, for each row of
Table 6.1, when λ is in the stated range,

S(N, t) ≤ CN1−1/(133.66λ2) (N ≥ 1).

Proof. Take k, n and n0 from a row of the table. For reasons connected with the
size of U in Lemma 6.7, it is advantageous to use a completely trivial bound

Jnk,k(P ) ≤ P 2nk−2kJk,k(P ) ≤ k!P 2nk− 1
2k(k+1)+∆n , ∆n =

1

2
k2(1− 1/k)

for 1 ≤ n ≤ n0. We then proceed iteratively, taking a bound of the form

Jnk,k(P ) ≤ CnP
2nk− 1

2k(k+1)+∆n (P ≥ 1)

and producing a bound

J(n+1)k,k(P ) ≤ Cn+1P
2nk− 1

2k(k+1)+∆n+1 (P ≥ 1),

where ∆n+1 = (1− 1/k)∆n and Cn+1 is the smaller of the constants coming from
Lemmas 6.7 (only for k ≥ 9) or 6.5 (with optimal choice of ω). As for the number
η in Lemma 6.7, (2.1) implies that

π(1.12x)− π(x) ≥ x

log x

[
1.12

(
1 +

1/2− log 1.12

log x

)
− 1− 3

2 log x

]

≥ x

log x

(
0.12− 1.067

log x

)
> 0 (x ≥ 7300).

Using a table of primes < 7300, we find that the following are admissible choices
for η:

η =






17/13 9 ≤ k ≤ 13

29/23 14 ≤ k ≤ 32

53/47 k ≥ 33.

The optimal value of ω in Lemma 6.5 is found by solving

(6.13) 4k3k!(1 + ω)k
2−∆n = max(e1.5+1.5/ω, 18

ω
k3 log k),
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λ k n0 n C λ k n0 n C

2.6–4 4 1 13 2.5543 45–46 46 44 365 3.5897
4–5 5 1 17 1.7474 46–47 47 46 375 3.6728
5–6 6 1 22 1.7805 47–48 48 48 386 3.7580
6–7 7 1 28 1.8406 48–49 49 50 397 3.8453
7–8 8 1 34 1.9173 49–50 50 52 408 3.9348
8–9 9 3 40 1.6808 50–51 51 54 419 4.0266
9–10 10 3 46 1.7062 51–52 52 56 430 4.1207

10–11 11 3 52 1.7362 52–53 53 58 441 4.2171
11–12 12 4 59 1.7678 53–54 54 60 452 4.3160
12–13 13 4 66 1.8021 54–55 55 63 465 4.4174
13–14 14 5 73 1.8295 55–56 56 65 476 4.5214
14–15 15 6 81 1.8669 56–57 57 67 487 4.6280
15–16 16 6 88 1.9057 57–58 58 69 498 4.7373
16–17 17 7 96 1.9464 58–59 59 71 509 4.8494
17–18 18 8 104 1.9883 59–60 60 74 522 4.9643
18–19 19 8 111 2.0317 60–61 61 76 533 5.0821
19–20 20 9 119 2.0766 61–62 62 79 546 5.2030
20–21 21 10 127 2.1229 62–63 63 81 557 5.3268
21–22 22 11 136 2.1706 63–64 64 84 569 5.4539
22–23 23 11 143 2.2190 64–65 65 86 581 5.5841
23–24 24 12 152 2.2688 65–66 66 89 593 5.7176
24–25 25 13 161 2.3201 66–67 67 91 605 5.8546
25–26 26 14 169 2.3728 67–68 68 94 617 5.9950
26–27 27 15 178 2.4270 68–69 69 96 629 6.1390
27–28 28 17 188 2.4826 69–70 70 99 642 6.2867
28–29 29 17 196 2.5398 70–71 71 102 654 6.4381
29–30 30 19 206 2.5987 71–72 72 104 666 6.5934
30–31 31 20 215 2.6590 72–73 73 107 679 6.7527
31–32 32 21 224 2.7210 73–74 74 110 691 6.9160
32–33 33 23 233 2.6797 74–75 75 113 704 7.0836
33–34 34 25 243 2.7396 75–76 76 116 717 7.2553
34–35 35 26 252 2.8010 76–77 77 118 729 7.4315
35–36 36 28 263 2.8641 77–78 78 121 742 7.6122
36–37 37 29 272 2.9287 78–79 79 124 754 7.7975
37–38 38 31 283 2.9950 79–80 80 127 767 7.9876
38–39 39 32 292 3.0630 80–81 81 130 780 8.1825
39–40 40 34 303 3.1327 81–82 82 133 793 8.3825
40–41 41 36 313 3.2042 82–83 83 136 806 8.5876
41–42 42 37 323 3.2775 83–84 84 139 819 8.7979
42–43 43 39 333 3.3526 84–85 85 143 833 9.0136
43–44 44 41 344 3.4297 85–86 86 146 846 9.2350
44–45 45 43 355 3.5088 86–87 87 149 859 9.4620

Table 6.1

obtaining a positive real solution ω0. The solution is unique since the left side of
(6.13) is increasing in ω, while the right side is decreasing. If ω0 ≥ 1, we take ω = 1.
If 1

2 ≤ ω0 < 1 we take ω to be either 1
2 or 1, whichever gives the best constant C′.

Otherwise take ω = ω0.

Having computed admissible sequences Cn and ∆n, we turn to Lemma 6.3 and
Corollary 6.4 to bound S(N, t). When 2.6 ≤ λ ≤ 4 (k = 4, n = 12), take µ = 1− λ

5
,
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M = Nµ and apply Lemma 6.3. We have W ≤ 2kM and thus

S(N, t) ≤ 4
(
4!(8π)4Cn

) 1
2nk N1−c + 2N0.8, c =

1

2nk
(1− 0.48(1 + ∆)) < 0.8.

Hence

S(N, t) ≤
(
4
(
4!(8π)4Cn

) 1
2nk + 2

)
N1−c (N ≥ 1).

Applying (6.6) then gives the claimed inequality. For λ ≥ 4, we use Corollary 6.4
directly, obtaining

S(N, t) ≤
(
4
(
k!(2πk)kCn

) 1
2nk + 2

)
N1−c.

Then (6.6) implies the stated claim. A short computer program (Program 3 in the
appendix) provided the computations of Cn and ∆n, and found the best choices of
parameters n0 and n. The values of C listed in the table have been rounded up in
the last displayed decimal place. �
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7. Bounding ζ(s) and ζ(s, u)

We start with a crude bound for ζ(s) and ζ(s, u) which takes care of s with either
σ or t small.

Lemma 7.1. Suppose 1
2 ≤ σ ≤ 1, 0 < u ≤ 1, t ≥ 3 and s = σ + it. If either

σ ≤ 15
16 or t ≤ 10100, then

|ζ(s)|, |ζ(s, u)− u−s| ≤ 58.1t4(1−σ)3/2 log2/3 t.

Proof. Applying integration by parts, when σ > 0 we have

(7.1) ζ(s, u) =
∑

0≤n≤N

1

(n+ u)s
+

(N + 1
2
+ u)1−s

s− 1
+ s

∫ ∞

N+1/2

1/2− {w}
(w + u)s+1

dw,

where N is a positive integer. We take N = ⌊t⌋, and note that d2

dn2 (n+ u)−σ > 0.
Therefore,

|ζ(s, u)− u−s| ≤
∫ N+1/2+u

1/2+u

dw

wσ
+

(N + 1
2 + u)1−σ

t
+

|s|
2

∫ ∞

N+1/2

dw

(w + u)1+σ

=

∫ N+1/2+u

1/2+u

dw

wσ
+

(N + 1
2 + u)1−σ

t
+

|s|(N + 1
2 + u)−σ

2σ

≤
∫ N+1/2+u

1/2+u

dw

wσ
+ (1 + 1

t )(t+ 3/2)1−σ.

If σ < 1, ∫ N+1/2+u

1/2+u

dw

wσ
≤ (N + 1/2 + u)1−σ

1− σ
≤ (t+ 3/2)1−σ

1− σ

and for all σ ∈ (0, 1], we have

∫ N+1/2+u

1/2+u

dw

wσ
≤ (N + 1/2 + u)1−σ

∫ N+1/2+u

1/2+u

dw

w
≤ (t+ 3/2)1−σ log(2N + 1).

Therefore, we obtain the inequality

(7.2) |ζ(s, u)− u−s| ≤ (t+ 3/2)1−σ
(
1 + 1

t +min
(

1
1−σ , log(2t+ 1)

))
.

Consider first the case when t ≥ 3 and 1
2 ≤ σ ≤ 15

16 . Here (1− σ) ≤ 4(1− σ)3/2, so
by (7.2)

|ζ(s, u)− u−s| ≤
√
1.5t4(1−σ)3/2

(
4
3 + 16

)
≤ 21.3t4(1−σ)3/2.

Next, if 15
16 ≤ σ ≤ 1 and 3 ≤ t ≤ 10100, (7.2) gives

|ζ(s, u)− u−s| ≤ (t+ 3/2)1−σ(1 + 1/t+ log(2t+ 1)).
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If 3 ≤ t ≤ 106, the right side is ≤ 36.8. If t > 106, the right side is

≤ 1.123t1−σ log t = 1.123
(
t4(1−σ)3/2 log2/3 t

)(
t1−σ−4(1−σ)3/2 log1/3 t

)
.

The maximum of 1− σ − 4(1− σ)3/2 is 1
108 , thus

|ζ(s, u)− u−s| ≤ 58.1t4(1−σ)3/2 log2/3 t.

Lastly, taking u→ 0+ shows that the lemma holds for |ζ(s)| as well. �

Lemma 7.2. If s = σ + it, 15
16 ≤ σ ≤ 1, t ≥ 10100 and 0 < u ≤ 1, then

∣∣∣∣∣∣
ζ(s, u)−

∑

0≤n≤t

(n+ u)−s

∣∣∣∣∣∣
≤ 10−80.

Proof. Let E(s, u) = ζ(s, u)−
∑

0≤n≤t(n+ u)−s. By (7.1) with N = ⌊t⌋,

|E(s, u)| ≤ (t+ 3/2)1−σ

t
+ |s|

∣∣∣∣
∫ ∞

⌊t⌋+1/2+u

1/2− {w}
w1+s

dw

∣∣∣∣

≤ (t+ 3/2)1−σ

t
+

3|s|
4(t− 1/2)σ+1

+ |s|
∣∣∣∣∣

∫ t2

t

1/2− {w}
ws+1

dw

∣∣∣∣∣+
|s|t−2σ

2σ

≤ 10−81 + (t+ 1)

∣∣∣∣∣

∫ t2

t

{w} − 1/2

wσ+1
(cos(t logw)− i sin(t logw)) dw

∣∣∣∣∣ .

We bound the intergal using the Fourier expansion {x}− 1
2
= − 1

π

∑∞
m=1

sin(2πmx)
m

,
as in [3]. We also use the trigonometric identities

sin a sin b =
cos(a− b)− cos(a+ b)

2
, sin a cos b =

sin(a+ b) + sin(a− b)

2
.

Therefore, writing

Im = max
h=sin,cos

∣∣∣∣∣

∫ t2

t

h(t log x+ 2πmx)

x1+σ
dx

∣∣∣∣∣+
∣∣∣∣∣

∫ t2

t

h(t log x− 2πmx)

x1+σ
dx

∣∣∣∣∣

and separating real and imaginary parts, we obtain

(7.3) |E(s, u)| ≤ 10−81 +
t+ 1

π

∞∑

m=1

Im
m
.
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To bound Im, let f(x) = x−σ/(t ± 2πmx)) and g(x) = k(t log x ± 2πmx), where
k′(x) = h(x) and k(x) ∈ {± sin(x),± cos(x)}). Since f is monotonic on [t, t2], we
obtain
∣∣∣∣∣

∫ t2

t

h(t log x± 2πmx)

x1+σ
dx

∣∣∣∣∣ =
∣∣∣∣∣

∫ t2

t

f(x)g′(x) dx

∣∣∣∣∣

=

∣∣∣∣∣f(t
2)g(t2)− f(t)g(t)−

∫ t2

t

g(x)f ′(x) dx

∣∣∣∣∣

≤ |f(t)g(t)|+ |f(t2)g(t2)|+ max
t≤x≤t2

|g(x)|
∫ t2

t

|f ′(x)| dx

= |f(t)g(t)|+ |f(t2)g(t2)|+ max
t≤x≤t2

|g(x)||f(t2)− f(t)|

≤ 4

t1+σ(2πm± 1)
.

Therefore,

Im ≤ 4

t1+σ(2πm+ 1)
+

4

t1+σ(2πm− 1)
=

16πm

t1+σ(4π2m2 − 1)
≤ 16π

(4π2 − 1)t1+σm
.

Together with (7.3), this proves the lemma. �

Lemma 7.3. Suppose that S(N, t) ≤ CN1−1/(Dλ2) (1 ≤ N ≤ t) for positive con-

stants C and D, where λ = log t
logN

. Let B = 2
9

√
3D. Then, for 15

16
≤ σ ≤ 1, t ≥ 10100

and 0 < u ≤ 1, we have

|ζ(s)| ≤
(
C + 1 + 10−80

log2/3 t
+ 1.569CD1/3

)
tB(1−σ)3/2 log2/3 t,

|ζ(s, u)− u−s| ≤
(
C + 1 + 10−80

log2/3 t
+ 1.569CD1/3

)
tB(1−σ)3/2 log2/3 t.

Proof. Let

S1(u) =
∑

1≤n≤t

(n+ u)−s.

By Lemma 7.2, |ζ(s, u) − u−s| ≤ 10−80 + S1(u). Put r = ⌈ log t
log 2

⌉. By partial

summation,

|S1(u)| ≤ 1 +

r−1∑

j=0

∣∣∣∣∣∣

∑

2j<n≤min(t,2j+1)

(n+ u)−σ−it

∣∣∣∣∣∣

≤ 1 +

r−1∑

j=0

(2j)−σS(2j , t)

≤ 1 + C
r−1∑

j=0

eg(j),
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where

g(j) = (1− σ)(j log 2)− (j log 2)3

D log2 t
.

As a function of x, g(x) is increasing on [0, x0] and decreasing on [x0,∞), where

x0 log 2 =
√
D(1− σ)/3 log t. Thus

|S1(u)| − 1

C
≤ eg(x0) +

∫ r

0

eg(x) dx

≤ tB(1−σ)3/2 +
D1/3 log2/3 t

log 2

∫ ∞

0

e3y
2u−u3

du,

where y =
√
(1− σ)/3D1/6 log1/3 t. To bound the last integral, we make use of the

inequality

e−2y3

∫ ∞

0

e3y
2u−u3

du ≤ 1.0875034 (y ≥ 0),

where the maximum occurs near y = 0.710. Therefore

|S1(u)| − 1

C
≤ tB(1−σ)3/2

(
1 +

1.0875034

log 2
D1/3 log2/3 t

)
,

which proves the lemma. �

Proof of Theorem 1. Apply Lemma 7.3 using C = 9.463, D = 133.66 (from Theo-
rem 2). �
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8. Possible improvements to the constant B

There are a number of ways in which the constant B in Theorem 1 may be
improved, and we sketch three of them below. To provide complete details would
involve a substantial lengthening of this paper, and even more work would be
required to obtain a decent constant A. Taken together, the three ideas have the
potential to reduce the constant B only to about 4.1.

1. As noted in section 3, there are some improvements possible in the method
for bounding Js,k(P ). Tyrina’s method could be used for small s (when ∆ ≥ 4

9k
2),

and in Lemma 3.5 we could take r ≈
√
k2 + k − 2∆ in Lemma 3.5. The end result

is a slight reduction in the constant 3
8 appearing in the definition of ∆s in Theorem

3. This can lower B by less than 0.02.

2. As mentioned in section 4, the use of repeat efficient differencing (repeat-
edly forming divided differences of the polynomials Ψj as in [34]) produces superior
bounds for Js,g,h(C (P,R)). Preliminary computations indicate a potential reduc-
tion in B of 4 − 5%, or 0.2 at most, making it hardly worth the effort of working
out the details. There is also the problem of obtaining good explicit constants
(e.g. eC in Theorem 4). In particular, when Wooley’s methods are used directly,
the constants C are far too large to be of any use in bounding ζ(s). Referring to
Lemma 4.1 of [34], relations (4.9) and (4.10) essentially bound Js,g,h in terms of
Js−1,g,h. When iterated, the constants grow too rapidly with s. In our Lemma 4.1
above, we avoided this pitfall by an application of Hölder’s inequality at the end
of the third case (assuming S3 = max(S1, S2, S3, S4)), a tool which is unavailable
when using repeat efficient differencing. Incidentally, this idea was also used in the
proof of Lemma 6.7 above. Presumably some clever argument would overcome this
problem.

3. In the estimation of the quantity T in section 5, the number of solutions
of (5.5) may be bounded in a more sophisticated way. First we note that when

sM j
2 |γj| ≤ 1

4 (essentially j ≥ λ
1−µ2

), Dj is the set of integers in an interval of the

form [−Dj , Dj ], where Dj is a non-negative integer. If in addition |γj| ≥ 1
2rMj

(essentially λ
1−µ2

≤ j ≤ λ
1−µ1

), in fact Dj = {0} (i.e. Dj = 0 in this case).

Let h0 be the smallest integer with Dh0
= 0 and let g̃ be the largest integer with

|γg̃| ≥ 1
2rM g̃ . Assuming h0 ≤ h ≤ g̃ ≤ g ≤ k, the number of solutions of (5.5) is at

most J∗
s,g,h(B;D), the number of solutions of

(8.1)
s∑

i=1

(xji − yji ) = dj (h ≤ j ≤ g),

with xi, yi ∈ B and |dj | ≤ Dj for each j. Now set B = C (P,R) and for non-
negative integers D define

H(α;D) =
1

D + 1

∣∣∣∣
∑

|x|≤D

e(αx)

∣∣∣∣
2

=
∑

|x|≤2D

(
2D + 1− |x|

D + 1

)
e(αx).
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Define f(α) as in section 5 and let

J̃s,g,h(B;D) =

∫

Ug−h+1

|f(α)|2sG(α) dα, G(α) = H(αh;Dh) · · ·H(αg;Dg).

Then J∗
s,g,h(B;D) ≤ J̃s,g,h(B;D), because the latter quantity counts the solutions

of (8.1) each with weight

(8.2) w(d) =

g∏

j=h

max

(
0,

2Dj + 1− |dj|
Dj + 1

)
.

Since G(α) is real and non-negative, we may follow the proof of Lemma 4.1 to

bound J̃s,g,h(B;D). We show the proof in some detail, as this method may have
other applications.

Lemma 8.1. Suppose h, g̃, g, r, s are positive integers with

g ≥ g̃ ≥ h ≥ 9, t = g̃ − h+ 1, h ≤ r ≤ g̃, s ≥ 2t.

Further suppose that

0 ≤ Dj ≤ sP j (h ≤ j ≤ g), Dj = 0 (h ≤ j ≤ g̃)

and
R = P η > g2, |C (P,R)| ≥ P 1/2, P > (8s2g/s)8.

Then

J∗
s,g,h(C (P,R);D) ≤ max

[
(8s)2s(22t2)2s/η2gP s(1+1/r),

4g2t(1+1/(rη))(P 1/rR)2s−2t+ 1
2 (r−h)(r−h+1)2gP tJ∗

s−t,g,h(C (P 1−1/r, R);E)

]
,

where Ej = ⌊ 2Dj

P j/r ⌋ for h ≤ j ≤ g.

Sketch of proof. First, J∗
s,g,h(B;D) ≤ J̃s,g,h(B;D), and we follow the proof of

Lemma 4.1 to bound S0 := J̃s,g,h(B;D). Define S1, . . . , S4 analogously, and con-
sider the same four cases. When S1 is the largest, we obtain

S0 ≤ (8s)2s
∫

Ug−h+1

|f(α;P 1/r)|2sG(α) dα ≤ (8sP 1/r)2s
∫

Ug−h+1

G(α) dα.

By (8.2), the last integral is ≤ 2g−h+1 ≤ 2g, so S0 ≤ 2g(8sP 1/r)2s. However, the
hypotheses imply S0 ≥ (P − 1)s/2, giving a contradiction. When S2 is the largest,

S0 ≤ 4t2
∫

Ug−h+1

|f(α)2s−2f(2α)|G(α) dα

≤ 4t2S
1−1/s
0

(∫

Ug−h+1

|f(2α)|2sG(α) dα

) 1
2s
(∫

Ug−h+1

G(α) dα

) 1
2s

.
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By considering the underlying Diophantine equations, the first integral on the right

is ≤ S0, thus S0 ≤ 4t2S
1− 1

2s
0 2g/(2s), whence S0 ≤ (4t2)2s2g. Again by the lower

bound S0 ≥ (P−1)s/2 and the assumed lower bound on P , this gives a contradiction.
Therefore, S0 = 4max(S3, S4).

When S3 is largest, we obtain

S0 ≤ (8s)2(8et2)2/ηP 1+1/r

∫

Ug−h+1

|f(α)|2s−2G(α) dα

≤ (8s)2(8et2)2/ηP 1+1/r

(∫

Ug−h+1

|f(α)|2sG(α) dα

)1− 1
s
(∫

Ug−h+1

G(α) dα

) 1
s

≤ (8s)2(8et2)2/ηP 1+1/rS
1−1/s
0 2g/s.

Therefore S0 ≤ (8s)2s(22t2)2s/η2gP s(1+1/r).
If S4 is the largest, we add a factor G(α) to each Xi(α) and Yi(α) and obtain

S0 ≤ 4(P 1/rR)2s−2t max
P

1
r <q≤P

1
r R

W (q),

where W (q) counts solutions of

t∑

i=1

(xji − yji ) + qj
s−t∑

i=1

(uji − vji ) = dj (h ≤ j ≤ g)

each with weight w(d). Since dj = 0 for h ≤ j ≤ g̃, the argument in the proof of

Lemma 4.1 implies that there are at most g2t(1+1/(rη))q(r−h)(r−h+1)/2P t possibilities
for x,y (note that here t = g̃ − h+ 1). Let S be the set of possible x,y and put

F (α) =
∑

(x,y)∈S

e




g∑

j=h

αj(x
j
1 − yj1 + · · ·+ xjt − yjt )



 .

Putting α̃ = (qhαh, . . . , q
gαg), we obtain

W (q) ≤
∫

Ug−h+1

|F (α)||f(α̃;P/q)|2s−2tG(α) dα

≤ g2t(1+1/(rη))q(r−h)(r−h+1)/2P t

∫

Ug−h+1

|f(α̃;P/q)|2s−2tG(α) dα.

The integral on the right counts the solutions of

qj
s−t∑

i=1

(uji − vji ) = dj (h ≤ j ≤ g),
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each counted with weight w(d). Since q > P 1/r, this is at most 2g times the number
of solutions of

s−t∑

i=1

(uji − vji ) = ej (h ≤ j ≤ g),

with ui, vi ∈ C (P 1−1/r, R) and |ej | ≤ 2Dj/P
j/r. This proves the lemma in the last

case. �

In Lemma 8.1 it is common that there are more zeros among the numbers Ei

than among the numbers Di. Thus, as Lemma 8.1 is iterated, t steadily increases
(if t reaches g−h+1, then one can apply the bounds from §4). This is the primary
source of the improvement over Lemma 4.1, but the analysis of the exponents of
P and the constants is much more complicated. The analysis becomes even more
complex if repeat efficient differencing is used. By taking optimal parameters, using
Lemma 8.1 in place of Lemma 4.1 has the potential to reduce B by about 0.09, or
≈ 2%.

Lastly, we indicate what is the limit of our method, i.e. the limit of what could
be accomplished with Lemma 5.1. Assume now that the lower bound (1.5) for
Js,k(P ) is close to the truth, i.e. Js,k(P ) ≤ C(k, s)P s for s ≤ 1

2k(k + 1). Assume

also best possible upper bounds Js,g,h(B) ≤ C(s, g, h)P s for s ≤ t
2
(g + h), valid

for any B ⊂ [1, P ]. Adopt the notations from section 5. With these assumptions,
it turns out that the best choices for r, s, µ1, µ2 are given by

r =
k(k + 1)

2
, s =

t(g + h)

2
, µ1 = µ2 = µ =

1

6
.

Also, one takes φ very close to (and larger than) 1
1−µ and γ very close to (and

smaller than) 1
1−µ . Plugging these values into (5.22) yields

λ2E =
2

27
− ε,

where ε → 0+ as φ − γ → 0. An application of Lemma 7.3 (with D = 27/2 + ε′)
gives Theorem 1 with a constant B =

√
2 + ε′′ (valid for σ ≥ 15

16), where ε
′, ε′′ can

be taken arbitrarily small.
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Appendix: Computer program listings

/* PROGRAM 1. exponents and constants in Vinogradov’s integral for small k.

Used to prove the second part of Theorem 3; written 12/12/2000 K. Ford */

#include <stdio.h>

#define max(x,y) (((x)>(y))?(x):(y))

#define min(x,y) (((x)>(y))?(y):(x))

double newdel(k,r,del) /* returns delta_0(k,r,del) */

double k,r,del;

{

double y, sqrt(),p,tkr;

long j,jj;

if ((r<4.0) (r>k)) return(2.0*del); /* invalid r */

tkr = 2.0*k*r; y=2.0*del-(k-r)*(k-r+1.0);

if ((y<0.0)(2.0*k/(tkr+y))<=1.0/(k+1.0)) return(del*2.0); /* invalid r */

j = min((long) (0.5*(3.0+sqrt(4.0*y+1.0))), 9*r/10);

p = 1.0/r;

for (jj=j-1; jj>=1; jj--)

p = 0.5/r+0.5*(1.0+(jj*jj-jj-y)/tkr)*p;

return(del-k+0.5*p*(tkr-y));

}

main()

{

long j,k,k0,k1,r,r0,r1,n,bestr,s;

double kk,logk,del0,del1,sqrt(),log(),exp(),bestdel, goal, maxs, eta, om;

double logH,logW,logC,k3,theta,thetamax;

printf("enter k range : "); scanf("%ld %ld",&k0,&k1);

maxs = 0.0; thetamax=0.0;

for (k=k0; k<= k1; k++) {

kk=(double) k;

logk=log(kk); k3 = kk*kk*kk*logk;

om=0.5; for (j=1;j<=10;j++) om=1.5/(log(18.0*k3/om)-1.5);

eta = 1.0+om;

logW = (kk+1.0)*max(1.5+1.5/om, log(18.0/om*k3));

del0 = 0.5*kk*kk*(1.0-1.0/kk);

goal = 0.001*kk*kk;

logH = 3.0*kk*logk+(kk*kk-4.0*kk)*log(eta); /* log(k^3k eta^(k^2-4k) */

logC = kk*logk; /* upper bound for log(k!) */

for (n=1;;n++) {

r0 = (long) (sqrt(kk*kk+kk-2.0*del0)+0.5)-2; r1 = r0+4; /* r range */

bestdel=kk*kk; bestr=-1;

for (r=r0;r<=r1;r++) {

del1=newdel(kk,(double) r,del0);

if (del1<bestdel) { bestdel=del1; bestr=r; }

}

del1=bestdel; r=bestr;

if ((del1 >= del0) (r<r0)) exit(-1);
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logC += max(logH + 4.0*kk*n*log(eta),logW*(del0-del1));

if (del1<=goal) { /* reached goal */

s=(long) ((n+(del0-goal)/(del0-del1))*kk+1);

theta = logC/k3;

printf("%4d: s=%8.6f k^2 eta=%9.7f theta=%10.8f\n",k,

s/kk/kk,eta,theta);

if ((s/kk/kk) > maxs) maxs=s/kk/kk;

if (theta>thetamax) thetamax=theta;

break;

}

del0=del1;

}

}

printf("\n max s = %9.6fk^2 maxtheta=%10.8f\n",maxs,thetamax);

}

/* PROGRAM 2. Find optimal parameters for use in bounding S(N,t) for the

Riemann zeta function : intermediate lambda. For Lemma 5.3,

lambda in [84,220]. By K. Ford 10/22/2001 */

#include <stdio.h>

#include <math.h>

long k,g,h,s,r,t, g0, h0,g1,h1,flag;

double mu1,mu2,xi,lam,lam1,lam2,D,sigma, Y, goal;

void calc(ex,c,pr)

double *ex,*c; int pr;

{

double kk,logk, k2, log(),exp(),pow(),floor(), ceil();

double th,rr,ss,tt,gg,hh,rho,H,E1,E2,E3,m1,m2,Z0,Z1,reta,

logC1,logC2,logC3,logC,dc;

k=(long) (lam/(1.0-mu1-mu2)+0.000003);

/* if (k<129) exit(-1); */

kk=(double) k;

logk=log(kk); k2=kk*kk;

rho=3.21432; th=2.3291;

if (k<=199) { rho=3.21734; th=2.3849; } /* 150 to 199 */

if (k<=149) { rho=3.22313; th=2.4183; } /* 129 to 149 */

r = (long) (rho*k2+1.0);

rr=(double) r; ss=(double) s;

gg=(double) g; hh=(double) h; tt=(double) t;

/* calculate minimum H = Z1 + lam*Z2 */

m1 = floor(lam/(1.0-mu1));

m2 = floor(lam/(1.0-mu2));

Z0 = 0.5*((m1*m1+m1)*(1.0-mu1)+(m2*m2+m2)*(1.0-mu2)-hh*hh+hh-(1.0-mu1-mu2)*

(gg*gg+gg));

Z1 = hh+gg-m1-m2-1.0;

if (Z1<0.0) H = Z0 + lam2*Z1;

else H=Z0 + lam1*Z1; /* H is now the H’ from Lemma 5.3 */

reta = xi*pow(gg,1.5); /* 1/eta */

E1 = 0.001*k2;

E2 = 0.5*tt*(tt-1.0)+hh*tt*exp(-ss/(hh*tt))+ss*ss/(2.0*tt*reta);

E3 = log(Y*lam1*lam1)/(7.5*Y*lam1*lam1*lam1*lam1);

*ex = (-E3 + (1.0/(2.0*rr*ss))*(H-mu1*E1-mu2*E2))*lam1*lam1;
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logC1=th*k2*kk*logk;

logC2 = ss*ss/tt+10.5*xi*xi*tt*gg*gg*log(gg)*log(gg)/D;

logC2 -= (ss*log(0.1*reta)*((reta+hh)*pow(1.0-1.0/hh,ss/tt)-h));

logC3=1.04*reta*log(10.82*reta);

logC = logC3/rr+(5.0*lam2*log(lam2)+logC1+logC2)/(2.0*rr*ss);

*c = exp(logC)+1.0/kk; /* constant for exponent ex */

if (pr==1) {

printf("%8.4f-%8.4f %4d",lam1,lam2,k);

if (g>0) printf(" %3d %2d %2d %2d %9.4f %7.4f\n",

s,g-g0,h1-h,t,1.0/(*ex)+0.00005,*c+0.00005);

else printf("\n");

}

}

main()

{

double E,lam8,lam9,r[9],tmp,maxex,con,maxcon,bestth,bestcon,bp[5000];

/* bp[] are endpoints of intervals */

long i,j,i0,w,n,m,maxm,bestg,besth, bests,s0,s1;

mu1 = 0.1905; mu2 = 0.1603;

goal=133.66;

while (1) {

printf("enter Y : "); scanf("%lf",&Y);

D = 0.1019*Y;

printf("enter xi : "); scanf("%lf",&xi);

printf("enter sigma : "); scanf("%lf",&sigma);

if (sigma<0.0) flag=1; else flag=0;

/* flag=1 means let the program find the best value of s */

printf("enter lambda range: "); scanf("%lf %lf",&lam8, &lam9);

if ((lam9<lam8) (lam8<=80.0) (lam9>=300.0)) continue;

printf(" approx.\n");

printf(" lambda range k s a b t exp const\n");

printf("---------------- ---- --- --- --- --- -------- --------\n");

bp[1] = lam8; bp[2] = lam9; j=3; /* make list of endpoints */

i0 = (long) (lam9/(1.0-mu1-mu2))+10;

for (i=1; i<=i0;i++) {

w=(double) i;

r[1]=w*(1.0-mu1);

r[2]=w*(1.0-mu2);

r[3]=(w-0.000003)*(1.0-mu1-mu2);

for (m=1;m<=3;m++) if ((r[m]<lam9) && (r[m]>lam8)) bp[j++]=r[m];

}

n=j-1; /* number of endpoints */

for (i=1; i<=n-1; i++) for(j=i+1;j<=n;j++) /* Bubble sort */

if (bp[j]<bp[i]) { tmp=bp[i]; bp[i]=bp[j]; bp[j]=tmp; }

maxex=0.0; /* maximum exponent of N */

maxcon = 0.0; /* maximum constant */

for (j=1; j<=n-1; j++) {

lam = 0.5*(bp[j]+bp[j+1]); /* midpoint of interval */

lam1=bp[j]; lam2=bp[j+1]; /* endpoints */

g0 = (long) (lam/(1.0-mu1)+1.0); g1=g0+1; /* g range */

h1 = (long) (lam/(1.0-mu2)); h0=h1-1; /* h range */

bestg=-1; besth=-1; bestth=1.0e20; bestcon=1.0e40;
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for (g=g0;g<=g1;g++) for (h=h0;h<=h1;h++) {

t=g-h+1;

if ((g>=100) && ((double) g <= 1.254*lam1)) { /* condition (5.16) */

if (flag==0) {

s0=(long) (sigma*h*t+1.0); s1=s0;

}

else {

s0=h*(t-1)/4;

s1=h*t/2;

}

for (s=s0; s<=s1; s++) {

calc(&E,&con,0);

if ((E>0.0) && (1.0/E < goal) && (con<bestcon)) {

/* look for best constant such that 1/exponent < goal */

bestth=1.0/E; bestg=g; besth=h; bests=s;

}

}

}

}

g=bestg; h=besth; t=g-h+1;

s=bests;

calc(&E,&con,1);

if (1.0/E>maxex) maxex=1.0/E;

if (con>maxcon) maxcon=con;

}

printf(" max. ex: %10.6f max. const.: %10.6f\n",maxex,maxcon);

}

}

/* PROGRAM 3. find optimal parameters for use in bounding S(N,t)

for small lambda; Section 6. Written by K. Ford 10/20/2001 */

#include <stdio.h>

#include <math.h>

#define max(x,y) (((x)>(y))?(x):(y))

#define min(x,y) (((x)<(y))?(x):(y))

long k,n0;

double kk, logk, logk1, pi, eta, logeta, L32, lam, lam4, lkf,k3,logA,B,C;

double Delta[10000], logC[10000]; /* Delta and log of constants */

double log(), exp(), pow(), sqrt();

/* #define DEBUG */

double logV(double w) /* log(V(w)) */

{

if (w==1.0) return(k3);

if ((w<=0.5)&&(w>0.0)) return(max(1.5+1.5/w,k3+log(3.0/w)));

exit(-1);

}

double F(double w)

{

return((1.0+w)*exp(logA/B)-exp(logV(w)*C/B));

}

double bestomega(int n) /* best omega value for Lemma 6.5 */

{
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double w0,w1,w2;

B = kk*kk-Delta[n]; /* exponent of (1+w) */

C = Delta[n]; /* exponent of V */

if (F(1.0)<=0.0) return(1.0); /* take w=1 */

if (F(0.5)<=0.0) { /* take w=1 or 1/2 */

if (exp(logV(0.5)*C/B)<2.0*exp(logA/B)) return(0.5);

else return(1.0);

} /* solve F(w)=0 */

w0=0.5; w1=0.2; while (F(w1)>=0.0) w1*=0.5;

while (((w0-w1)/w1)>=0.0000001) {

w2=0.5*(w0+w1);

if (F(w2)>0.0) w0=w2; else w1=w2;

}

return(w1);

}

void calcparm() /* calculate Delta_n and C_n */

{

long n1,n,i;

double f, s, logU, omega, logM1, logM2, AA, BB;

kk=(double) k;

logk=log(kk);

logk1=log(kk-1.0);

k3=3.0*logk+log(6.0*logk); /* log(6k^3 log k) */

lkf=0.0; for (i=2;i<=k;i++) lkf += log(((double) i)); /* log(k!) */

logA = 3.0*logk+lkf+log(4.0); /* log(4k^3 k!) */

logeta=log(eta);

L32=log(32.0)-lkf;

n1 = (long) (2.6*kk*logk+50);

if (n1>=9999) n1=9998; /* calculate constants up to n=n1 */

for(i=1;i<=n0;i++) { /* use trivial bound for 1<= n<= n0 */

Delta[i] = 0.5*kk*(kk-1.0);

logC[i] = lkf;

}

f = 1.0-1.0/kk;

for (n=n0+1; n<=n1+1; n++) Delta[n]=f*Delta[n-1];

for (n=n0; n<=n1; n++) {

s=kk*n;

omega=bestomega(n);

logM1 = max(logV(omega)*C,logA+B*log(1.0+omega));

/* M1=multiplier for constant in Lem. 6.5 */

if (k>= 9) { /* Lemma 6.7 only for k>=9 */

AA =(kk*kk-Delta[n])*logeta+2.0*kk*log(s+kk)+L32;

logU = (2.0*kk-2.0+(2.0*s+2.0)*logk1)/

(2.0*s+2.0-0.5*kk*(kk+1.0)+Delta[n+1]);

if (logU<logk) logU=logk;

BB=Delta[n]*logU;

logM2 = max(AA,BB); /* M2=multiplier for constant in Lemma 6.7 */

}

else logM2=1.0e40;

logC[n+1] = logC[n] + min(logM1,logM2);

#ifdef DEBUG

printf(" logM1=%f logM2=%f logC[%d]=%f\n",logM1,logM2,n+1,logC[n+1]);



78

#endif

}

}

int exponent(n,c,pr) /* from Lem. 6.3, 6.4 */

int n,pr; double *c; /* return constant in ’c’ */

{

double s,goal,logd,c1,e,mu,log(),pow(),exp();

lam=kk-1.0; if (k==4) lam=lam4; /* lower limit of lambda */

mu=1.0-lam/(kk+1.0); /* largest mu */

s=kk*n;

logd = log(4.0) + 0.5/s*(logC[n]+lkf+kk*log(2.0*kk*pi));

logd = log(exp(logd)+2.0); /* add 2 */

goal = 133.66*lam*lam; /* goal for denominator */

e = (1.0-(1.0+Delta[n])*mu)/(2.0*s);

if (e<1.0/goal) return(-1); /* exponent not good enough */

*c = exp(logd/e/goal);

if (((*c) <= 10000.0) && (pr==1))

printf("n=%6d 1/(e lam^2)=%8.2f c=%e\n",n, 1.0/e/(kk-1.0)/(kk-1.0),*c);

return(0);

}

main()

{

double log(),bestc,c,e,mu, CC[200];

long bestn,bestn0,n, n2, i,k1,k2,j,nn[200], n00[200], n01, n02;

pi=3.1416; /* good enough upper bound */

printf(" k range : "); scanf("%ld %ld",&k1,&k2);

if (k1<4) exit(0);

if (k1==4) {

printf("enter lower bound on lam for k=4 : ");

scanf("%lf",&lam4);

}

/* printf(" n0 range : "); scanf("%ld %ld",&n01, &n02); */

for (k=k1; k<=k2; k++) {

if (k<=13) eta=1.308;

else if (k<=32) eta=1.2609;

else eta=1.12766;

bestn0=0; bestn=0; bestc=1.0e40;

for (n0=1; n0<=2*k; n0++) {

calcparm();

n2 = (long) (kk*2.5*logk) + 50;

for (n=k+1;n<=n2;n++) {

if (exponent(n,&c,0)==0) {

if (c<bestc) { bestc=c; bestn=n; bestn0=n0; }

}

}

if (bestn<1) bestc=-99.99;

} /* for n0 */

if (bestn0<1) CC[k]=-99.99;

else {

#ifdef DEBUG

for (n=bestn-25; n<=bestn+5 ; n++) exponent(n,&c,1);

#endif
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nn[k]=bestn; CC[k]=bestc+0.00005; n00[k]=bestn0;

printf("k=%d lambda: %d - %d n0=%d n=%d c=%8.5f\n",

k,k-1,k,bestn0,bestn,bestc+0.000005);

}

} /* for k */

nn[k2+1]=999; CC[k2+1]=99.999; /* print in TeX tabular format */

i = (k1+k2)/2-k1+1;

for (j=k1; j<=(k1+k2)/2; j++) {

if (j==4) printf("&& %3.1f",lam4);

else printf("&& %3d",j-1);

printf("--%-2d & %2d & %3d & %3d & %7.4f &&",j,j,n00[j],nn[j],CC[j]);

printf(" %2d--%-2d & %2d & %3d & %3d & %7.4f &\\cr\n",j+i-1,j+i,j+i,

n00[j+i],nn[j+i],CC[j+i]);

}

}
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