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Abstract
Our work is motivated by the search for metabolite quan-
titative trait loci (QTL) in a cohort of more than 5000 
people. There are 158 metabolites measured by NMR 
spectroscopy in the 31-year follow-up of the Northern 
Finland Birth Cohort 1966 (NFBC66). These metabolites, 
as with many multivariate phenotypes produced by high-
throughput biomarker technology, exhibit strong correla-
tion structures. Existing approaches for combining such 
data with genetic variants for multivariate QTL analysis 
generally ignore phenotypic correlations or make restric-
tive assumptions about the associations between phe-
notypes and genetic loci. We present a computationally 
efficient Bayesian seemingly unrelated regressions model 
for high-dimensional data, with cell-sparse variable selec-
tion and sparse graphical structure for covariance selec-
tion. Cell sparsity allows different phenotype responses 
to be associated with different genetic predictors and the 
graphical structure is used to represent the conditional de-
pendencies between phenotype variables. To achieve fea-
sible computation of the large model space, we exploit a 
factorisation of the covariance matrix. Applying the model 
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1  |   INTRODUCTION

Integrating high-dimensional molecular biomarker data sets is a fundamental problem in genetic ep-
idemiology and bioinformatics, in the search for molecular mechanisms mediating the effects of ge-
netic variants on clinical phenotypes. An important step in this search is to find associations between 
a set of genetic variants and downstream molecular phenotypes such as gene expression, proteomics, 
metabolomics or epigenetic data (quantitative trait loci or QTL analysis). In the simplest analysis, 
univariate regressions are performed for each phenotype–genotype pair, needing post hoc adjustment 
for multiple comparisons and ignoring any correlations between genotypes and between phenotypes. 
This is unlikely to be the best strategy for data where latent structures induce high levels of correlation 
between phenotypes, for example serum metabolomic profiles (Kettunen et al., 2012; Soininen et al., 
2009), imaging and gene expressions. Comparison studies show that using multivariate quantitative 
phenotypes increases the statistical power in association tests compared to univariate analysis (Fusi 
et al., 2012; Inouye et al., 2012).

In this paper, we develop a model designed for integrated multivariate QTL analysis, particular 
aimed at highly correlated molecular phenotypes. Our case study is in metabolomics quantitative trait 
locus (mQTL), a powerful approach used to identify genes associated with metabolic markers of dis-
eases, where the multivariate response is generally on the order of hundreds of metabolites. The model 
is also suitable for other multivariate molecular phenotypes. We have a data set from the Northern 
Finland Birth Cohort 1966 (NFBC66) 31-year follow-up, consisting of 158 nuclear magnetic reso-
nance (NMR) spectroscopy measured metabolites and over 9000 directly genotyped single nucleotide 
polymorphisms (SNPs) on chromosome 16, with a sample size of more than 5000 people. The me-
tabolites set comprises lipoprotein particle concentrations, low molecular weight metabolites such as 
amino acids, 3-hydroxybutyrate and creatinine and different serum lipids, including free and esterified 
cholesterol, sphingomyelin and fatty acid saturation. These data exhibit strong residual correlation 
(Kettunen et al., 2012; Marttinen et al., 2014), even after accounting for the variance explained by all 
reported SNPs.
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to the NFBC66 data with 9000 directly genotyped single 
nucleotide polymorphisms, we are able to simultaneously 
estimate genotype–phenotype associations and the residual 
dependence structure among the metabolites. The R pack-
age BayesSUR with full documentation is available at 
https://cran.r-proje​ct.org/web/packa​ges/Bayes​SUR/
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Brown et al. (1998, 2002) developed a general framework for Bayesian variable selection (BVS) 
models for multivariate outcomes (s responses) and multiple predictors (p covariates). In applications 
of this model, two alternative simplifying assumptions have been made in order to improve compu-
tational efficiency. The first simplifying assumption is to assume row sparsity, in which a single set 
of predictors is selected across all response variables. Petretto et al. (2010) use this assumption for 
expression quantitative trait loci (eQTL) analysis, with a dense residual covariance matrix across re-
sponses. Bhadra and Mallick (2013) also assume row sparsity, but include sparse residual covariance 
selection between regressions, using graphical modelling based on decomposable graphs. In these 
models, row sparsity induces conjugacy for regression coefficients and residual covariances, so these 
parameters are integrated out, resulting in a model search over the space of variable selection indicator 
variables. This approach has been used for small numbers of response variables (e.g. s around 10), 
with the number of predictors p in the thousands.

The second simplifying assumption is to assume conditional independence between regressions. 
Jia and Xu (2007), Bottolo et al. (2011), Scott-Boyer et al. (2012), Ruffieux et al. (2017, 2020a, b) take 
this approach for eQTL analysis, using hierarchical sparsity priors on the probabilities of associations, 
to share information across the gene expression outcomes. The assumption of residual independence 
between regressions ensures conjugacy of the regression coefficients and residual variances, enabling 
exploration of the full posterior space of selection models. In this scenario different predictors can be 
associated with different response variables without losing conjugacy. We refer to this as cell sparsity. 
These hierarchical models can be used for larger numbers response variables, for example, s in the 
hundreds or thousands.

Biologically complex phenotypes such as metabolomics and proteomics show strong correlation 
structures in comparison with transcriptomics data used in eQTL analyses, for which most BVS mod-
els have been developed. Therefore, accounting for correlation not only to better reveal associations 
with genetic profiles, but also to infer their dependence structure, is becoming increasingly important 
to improve our understanding of integrated functioning of living organisms (Cichonska et al., 2016; 
Rodriguez-Martinez et  al., 2017). Suitable statistical tools which can tackle these problems while 
retaining computational feasibility are thus necessary.

We present a Bayesian model for multivariate QTL analysis with correlated phenotypes, allowing 
for (i) cell sparsity in the genotype–phenotype associations and (ii) residual dependence among phe-
notypes. We present two versions of the model, one with dense residual dependence structure and one 
with sparse covariance selection. Each instance of the multivariate regression model has the form of 
a seemingly unrelated regressions (SUR) model. We exploit a factorisation of the covariance matrix 
parameter to enable faster computation using Markov chain Monte Carlo (MCMC) methods. We are 
able to infer associations with thousands of candidate predictors (p over 9000) multivariately on all 
responses. In the case of sparse covariance, thanks to the computationally efficient junction tree rep-
resentation of a decomposable graph as its state variable (Green & Thomas, 2013), we also infer an 
underlying graph detailing the conditional independence relationships between hundreds of responses 
(s = 158).

The Bayesian framework has the advantage that it allows flexible sparsity priors on the regression 
and covariance coefficients, while being transparent about the overall level of sparsity. It also provides 
a rich output, full posterior distributions of coefficients and probabilities of variable inclusion.

The factorisation we use is related to the Cholesky decomposition of the precision matrix and was 
first proposed in the graphical modelling literature by Wermuth (1980) for multivariate Gaussian data 
with zero means and has been used in these so called ‘covariance selection’ models for computational 
convenience and for interpretability of the now unconstrained transformed off-diagonal elements of 
the covariance matrix, see for example Pourahmadi (1999), Stingo and Marchetti (2014). Modelling 
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Cholesky factors is also popular in econometrics in both conditional and simultaneous autoregressive 
models (Datta et al., 2019). Wang et al. (2012) use a similar idea in the context of sampling the pa-
rameters for the Bayesian lasso, and Zellner and Ando (2010) used this reparametrisation for a SUR 
model with fixed covariates that is not resulting from variable selection.

To our knowledge, this is the first model proposed for fully Bayesian analysis for multivariate 
QTLs allowing for both cell-sparsity and residual dependence. A similar model was proposed by Wang 
(2010) for autoregressive models in econometrics, with two computational algorithms, an MCMC 
algorithm using Gibbs updates (George & McCulloch, 1993) for variable selection called ‘indirect’ 
and a ‘direct’ algorithm involving numerical approximation of the marginal likelihood (Chib, 1995) 
combined with a Metropolis–Hastings algorithm for posterior models exploration. Both approaches 
work well for small data sets but are computationally prohibitive in high-dimensional space compris-
ing hundreds of responses and predictors such as in molecular QTL work. Our novel contribution to 
the computational method is that we derive the priors (dense and sparse versions) in the space of the 
transformed covariance matrix and therefore run the whole computation in this space, enabling paral-
lelisation over the response variables. We are thus able to estimate models for mQTLs with hundreds 
of response variables and thousands of predictors.

Section 2 introduces the model including the derived priors in the transformed space. Section 3 
provides the posterior computations for the parameters and details the MCMC algorithm used to esti-
mate them. In Section 4, the method is validated in an extensive simulation study, where we show that 
we can estimate larger models with more accuracy in considerably less computational time than the 
Wang (2010) software. We also obtain similar sensitivity but fewer false positives than the penalized 
likelihood method with simultaneous estimation of regression coefficients and covariance structure 
proposed by Rothman et al. (2010). Section 5 presents the results on the NFBC66 mQTL data set, 
including visualisation both of the genotype–phenotype associations and of the residual dependence 
structure between metabolites.

Further details of model derivations and posterior updates are available in the Supplementary 
Material. An R package BayesSUR with full documentation is available at https://cran.r-proje​ct.org/
web/packa​ges/Bayes​SUR/.

2  |   MODEL

The model can be seen as a set of regressions for multivariate phenotype responses Y = (y1, …, ys),  
yk = (y1k, …, ynk)T, for k = 1, …, s and corresponding covariate genotype matrices Xk with dimen-
sions n × p. We assume independence between samples, but allow for dependence across responses. 
Moreover, we assume that the same set of predictors is available for all responses. The same set of 
genotypes may be used for all regressions, but this is not necessary. The predictors may be continuous 
or categorical, hence the model accommodates the usual additive genetic association models using 
observed and imputed allele counts or can be extended to more complex genetic models including 
interactions.

Variable selection is performed on the predictors using binary indicators vector �k = (�k1, …, �kp)T, 
where �kj is 1 if covariate j is included in the regression for response k and 0 if not. We use the shorthand 
notation X�k

 for the columns of Xk selected by the vector �k and similar for ��k
. Thus, we can write the set 

of linked regressions as 

(1)yk = X�k
��k

+ uk, k = 1, …, s,

https://cran.r-project.org/web/packages/BayesSUR/
https://cran.r-project.org/web/packages/BayesSUR/
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but most importantly the residuals will be correlated, that is, ui = (ui1, …, uis) ∼ N(0, C).
We can also write the likelihood for this model as 

where  = vec(Y), vec(·) being the vectorisation operator, � = vec(�1, …, �s), �� = vec(��1
, …, ��s

) 
and � is a block-diagonal matrix with X�k

 as the k-th diagonal element.
Following George and McCulloch (1993), we set �kj = 0 conditional on �kj = 0, while non-

zero coefficients follow a diffuse normal distribution, that is, � |� ∼ N

(
0, W−1

�

)
. The precision 

matrix W is generally decomposed into a shrinking coefficient, say w, and a matrix that governs 
the covariance structure. Here, we use W� = w−1

�|�|, with an inverse-gamma prior on w and |γ| 
the number of selected predictors across all outcomes. A number of sparsity inducing priors for 
γ have been used in the literature, the most common being �kj ∼ Ber(�) with a fixed or random 
π. Another choice in QTL analysis is the ‘hotspot detection’ prior used in Bottolo et al. (2011), 
which decomposes the inclusion probability into an overall sparsity level for each outcome (ok) 
and a propensity parameter (πj) for each predictor, that is, �kj ∼ Ber(ok × �j). In this work, we use 
the hotspot detection model with a beta prior on ok and a gamma prior on the propensity �j and 
its simplified version with �j = 1, j = 1, …, p, which corresponds to a beta-binomial sparsity 
prior for each response.

2.1  |  Factorisation of the likelihood

If one assumes either a diagonal C or row sparsity for �k, with conjugate priors on C and ��, both 
�� and C can be integrated out analytically (Bhadra & Mallick, 2013). In our model, the usual priors 
on these parameters lose conjugacy and cannot be integrated out. Nonetheless, the full conditionals 
retain their simple forms, so it is straightforward to write a Gibbs sampler for the posterior distribu-
tions (Holmes et al., 2002). The computational time needed is, however, prohibitive for most high-
dimensional settings.

To overcome this issue, we decompose the covariance matrix C iteratively as 

for all k = 2, …, s, with C(s) = C and C(1) = c1 = C11 (the scalar variance of response 1) and c1 is null. 
Thus, each C(k) is the marginal covariance matrix for responses 1, …, k, ck is the variance of response k 
and ck is the vector of covariances between response k and responses {1, …, k − 1}.

With this decomposition, the likelihood can be factorised (e.g. Giri, 2014) as 

where U(k−1) = Y(k−1) − (X�1
��1

X�2
��2

… X�k−1
��k−1

) is a matrix consisting of the first k  −  1 
residuals from the original linked regressions where U(0) is null. For k = 1, the likelihood simplifies to 
 (y1 |X�1

��1
, �2

1
�n). The parameters �2

k
 and �k are also defined through the reparametrisation of the 

residual covariance matrix, that is, �2
1
= c1 and 

 | , {�1, …, �s}, {�1, …, �s}, C ∼ N(��� , C ⊗ �n),

C(k) =

(
C(k−1) ck

c
T
k

ck

)

(2)p( | , �, �, C) =

s∏

k= 1

 (yk |X�k
��k

+ U(k−1)�k, �2
k
�n),
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Note that the joint distribution p( | , �, �, C) is the same regardless of the order used for the 
decomposition since we are simply factorising it by chain conditioning. From Equation (2), it is 
straightforward to see that �2

k
 is the residual variance of response k conditioned on U(k−1) and �k 

is the (k − 1)-vector of regression coefficients on the same U(k−1) residuals. The likelihood is thus 
decomposed into a product of independent (conditionally on the new parameters) factors over the 
outcomes. The novelty of our approach is two-fold. First, we estimate our model completely in the 
reparametrised space, deriving priors and posterior full conditionals for the parameters �2

k
 and �k. 

Second, this allows us to update these parameters in parallel, which greatly increases the computa-
tional efficiency of this model.

2.2  |  Prior for dense residual dependence

In order to take advantage of the factorisation of the model across responses, we must also transform 
the model priors. For modelling dense dependence structure between responses, we use an inverse-
Wishart prior on the original covariance matrix C ∼ IW(ν, M). We use standard matrix properties 
of the inverse-Wishart distribution (Dawid, 1981; Dempster, 1969; Roverato, 2000) to calculate the 
transformed prior. The C(k) is a submatrix of C, thus it also has an inverse-Wishart distribution. The 
new parameters are related to the block structure of the inverse of this matrix, �2

k
 being the Schur com-

plement of C(k−1) in C(k) and �k = C−1

(k−1)
ck. Decomposing M conformally with C into 

M(k) =

(
M(k−1) mk

m
T
k

mk

)
 

for k = 2, …, s, the priors on the changed variables become 

for k = 2, …, s and �2
1
∼ IGa((� − s + 1)∕2, m1∕2). From the prior on �2

1
, we can see that we the degrees 

of freedom in the inverse-Wishart distribution must be chosen to be ν > s − 1. Moreover, from these 
equations, we can see that we obtain independent priors for �2

k
 and �k for different k. Thus, since both 

likelihood and prior factorise across responses, the posterior full conditionals also factorise and hence the 
MCMC update of the residual covariance parameters can be parallelised.

2.3  |  Prior for sparse residual dependence

To model sparsity in the residual dependency structure, we introduce a decomposable graph G such 
that variables are conditionally independent if there is no direct edge between them in the graph 
(Lauritzen, 1996). Conditional on the graph, we use the hyper inverse-Wishart prior on the original 
covariance matrix C ∼ HIWG(�, M) (Carvalho et al., 2007). This is defined as the distribution such 
that the covariance matrix for each prime component in the decomposable graph is marginally inverse 
Wishart, that is, CPq

∼ IW(� − (s − |Pq | ), MPq
), where Pq is the q-th prime component, MPq

 is the sub-
matrix of M corresponding to Pq and |Pq | is its cardinality.

In the following, we derive the corresponding prior for the transformed variables �2
k
 and �k 

under the assumption of a sparse covariance matrix. A more in depth derivation of the following 

(3)
�2

k
= ck−c

T
k
C−1

(k−1)
ck

�k =C−1

(k−1)
ck

}
k = 2, …, s.

�2
k
∼ IGa((�−s+k)∕2, (mk−m

T
k
M−1

(k−1)
mk)∕2),

�k|�2
k
∼N(M−1

(k−1)
mk, �2

k
M−1

(k−1)
),
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results can be found in the Supplementary Material Section S.1.1. Briefly, the decomposability 
of the graph G allows us to define a sequence of complete, overlapping, subgraphs (i.e. cliques) 
called ‘prime components’ Pq, q ∈ (1, …, Q) that can be ordered in such a way that for every 
q > 1 there exists m < q such that Pq ∩ Hq ⊂ Pm, where Hq =

⋃ q−1

l=1
Pl for q = 2, …, Q. We also 

define the separators Sq = Pq ∩ Hq and residuals Rq = Pq�Sq for q = 2, …, Q. The nodes of G can 
also be arranged according to a so-called ‘perfect elimination ordering’, denoted by ξ, which 
implies that if Λ�(k)�(l) = 0 then ��(k)�(l) = 0, where Λ is the precision matrix C−1 (Paulsen et al., 
1989).

Due to this correspondence between Λ�(k)�(l) = 0 and ��(k)�(l) = 0, the transformation in Equation (3) 
decomposes across the prime components, so that, for nodes ordered according to a perfect elimina-
tion ordering, the new variables �2

k
 and �k are defined within the prime components, that is, 

where C(k−1)

Pq
 is the submatrix of CPq

 with variable k removed and ck,Pq
 is the final column of CPq

 without 
the last element. All other elements of �k are zero.

We parameterise G using the junction tree representation of a decomposable graph as its state 
variable proposed by Green and Thomas (2013). A decomposable graph may have many junction tree 
representations. However, for a given junction tree J, the implied graph G is uniquely determined.

To write the densities explicitly, we need to order the nodes using the perfect elimination order 
ξ, which respects the perfect ordering of the prime components. With this ordering, we find that the 
hyper inverse-Wishart prior on C is transformed to 

where the ordering of nodes within each residual does not matter. The corresponding prior densities are 

 

where q is the index of the prime residual that node k belongs to in the particular node ordering of 
the graph, for all k, except for the first node, that is, �2

� − 1
J

(1)
∼ IGa((� − s + 1)∕2, m�−1

J
(1)∕2). The sets 

Pq and Sq are defined above. The index t in Equations (4) and (5) is the index of the node within the 
graph residual component and is given by �J(k) − |H(J)

q |. Here, we have applied similar arguments as 
for the dense covariance case presented in Section 2.2, using the properties of block matrices and the 
inverse-Wishart distribution. Again, we see that the priors factorise over responses, so the posterior 
full conditionals in Equations (4) and (5) also factorise enabling faster computation of the model 
through parallelization of the MCMC updates. An important feature of working with this transfor-
mation is that we do not need to do any completion operation to fill in the covariances between the 
separated parts of prime components (Carvalho et al., 2007) since these correspond to the zeros in 
the �k, k = 1, …, s, parameters.

�2
k
= ck−c

T
k,Pq

(C
(k−1)

Pq
)−1

ck,Pq
,

�k,Pq
= (C

(k−1)

Pq
)−1

ck,Pq
,

p(�2

� − 1
J

(1)
)
∏

k∈P
(J)

1

p(�2
k
)p(�k |�2

k
)

Q∏

q= 2

∏

k∈R(J)
q

p(�2
k
)p(�k |�2

k
),

(4)�2
k
∼ IGa((� − s + t + |Sq | )∕2, (mk − m

T
k
M−1

Pq,(t−1)
mk)∕2),

(5)�k |�2
k
∼ N(M−1

Pq,(t−1)
mk, �2

k
M−1

Pq,(t−1)
),
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We use a prior on the junction tree J which is proportional to a Binomial distribution on the num-
ber of edges |J| in the graph, that is, p(J |�) ∝ (

s(s−1)∕2

|J|
)� | J | (1 − �)s(s−1)∕2− | J |. Since sparser graphs in 

general have more junction tree representations (Thomas & Green, 2009), this prior favours sparse 
structures. Finally, we use a conjugate Beta prior on the hyperparameter η.

2.4  |  Summary of full model

In this section, we summarise the full model with all its conditional dependencies. We provide the 
version using the sparse covariance structure. The dense covariance case is as below, except that there 
are no J or η parameters and the distributions for �2

k
 and �k are the simpler expressions presented in 

Section 2.2. In Sections 2.2 and 2.3, we have illustrated the results in terms of a general matrix M in 
the (hyper) inverse-Wishart distribution. In our implementation, we use M = ��s.

The joint distribution is 

where 

with U(k−1) is defined as in Equation (2) and �0 is the Dirac delta function centred at 0. The parameter J 
stands for the junction tree representing the graph and |J| is the number of edges in the graph represented 
by the junction tree. �J is a perfect elimination ordering of the nodes in the graph. Both S(J)

q
 and H(J)

q
 depend 

on the graph and are defined in Section 2.3. The index q(k) is the index of the prime residual R(J)

q
 that node 

k belongs to in the current node ordering for graph J.
Finally, the parameters ao, bo, a�, b�, aw, bw, a�, b� and a�, b� are fixed. The degrees of freedom 

ν > s − 1 in the inverse-Wishart distribution is also fixed.

s∏

k= 1

p(yk|�k, �k, �2
k
, �k)p(ok)

p∏

j= 1

p(�kj|�kj, w)p(�kj|ok, �j)p(�j)p(w)p(J|�)p(�)

×p(�)p(�2

�−1
J

(1)
)
∏

k∈P
(J)

1

p(�2
k
|�, J)p(�k|�2

k
, �, J)

Q∏

q= 2

∏

k∈R(J)
q

p(�2
k
|�, J)p(�k|�2

k
, �, J),

yk|�k , �k , �2k , �k ∼ N(X�k
��k

+U(k−1)�k , �
2
k
�n),

�kj|�kj, w ∼ �kjN(0, w
−1)+ (1−�kj)�0,

�kj|ok , �j ∼ Ber(ok ×�j),

ok ∼ Beta(ao, bo),

�j ∼ Ga(a� , b�),

w ∼ IGa(aw, bw),

�2
k
|�, J ∼ IGa((�− s+�J (k)− |H (J)

q(k)
|+ |S(J)

q(k)
|)∕2, �∕2),

�k|�2k , �, J ∼ N(0, �2
k
∕��|�k |),

� ∼ Ga(a� , b�),

p(J|�) ∝
(
s(s−1)∕2

|J|

)
�|J|(1−�)s(s−1)∕2−∣J ∣,

� ∼ Beta(a� , b�),
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3  |   POSTERIOR COMPUTATIONS

In the original model space, posterior full conditionals for �� and C are available analytically 
(Holmes et al., 2002). However, these updates require inverting at every MCMC update both the 
|γ| × |γ| quadratic form in the selected columns of the design matrix � and the s × s matrix for the 
covariance matrix C. Additionally, the update of γ and all other unknowns where the likelihood is 
involved, require the heavy computation of the non-factorised likelihood. Our approach, based on 
the reparametrisation of C which leads to the factorisation of the model and the introduction of a 
sparse precision matrix via the junction tree representation of the decomposable graph G as its state 
variable, allows us to introduce a much more computational efficient MCMC scheme that scales 
well in high-dimensional settings.

Zellner and Ando (2010) used the same reparametrisation in a simpler SUR model without 
variable selection, using Jeffrey’s priors. They devised a direct Monte Carlo procedure for β, �2 
and ρ. Their method uses an approximation to the full conditionals, with an additional resam-
pling step for the β. However, it is possible to recover the correct posterior full conditional for 
β, avoiding unnecessary and computationally prohibitive resampling steps as we show below.

To sample from the posterior distribution of the binary indicators vector γ, we use the evolutionary 
stochastic search (ESS) algorithm (Bottolo & Richardson, 2010; Bottolo et al., 2011; Lewin et al., 
2016), which uses a particular form of evolutionary Monte Carlo as defined in Liang and Wong 
(2000). Within this framework, posterior samples of ��, �2 and ρ are obtained by employing a Gibbs 
sampler, but used instead in the joint updates of {�, ��} and {J, �2, �}. Specifically, the posterior 
full conditionals for �� and �2, ρ are used as proposal distributions in the joint updates with γ and J, 
respectively, since it reduces the posterior correlation between γ–�� and J–{�2, �}. In this set-up, the 
proposal and target densities cancel out in the Metropolis–Hastings acceptance ratios. This is known 
as ‘implicit marginalisation’ (Alexopoulos & Bottolo, 2020; Holmes & Held, 2006) since the resulting 
acceptance ratio does not contain the current and proposed values of �� or {�2, ρ} and it has been 
shown to greatly improve mixing of the structural parameters γ and J which are in our case the main 
focus of inference.

We have derived the full conditionals for the regression parameters and state the results here. 
Further details regarding the derivations can be found in the Section S1.5. The posterior conditional 
for the non-zero regression coefficients is 

where the subscript ‘∖k’ implies that the vector of the regression coefficients consists of all the elements 
except those that are related to the kth response, 

and 
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ỹk = � −2
k

(
yk −

∑

l∈J(k)

�klul

)
−

∑

m∈J(k)

�mk�
−2
m

(
um −

∑

h∈J(k,m)

�mhuh − �mkyk

)



      |  895BOTTOLO et al.

with uk defined as the residuals given in Equation (1).
In the sparse covariance case, the index sets are defined with respect to the perfect elimination 

order ξ, that is, 

where l∼k means that nodes l and k are in the same prime component. In the dense case, these reduce to 

The posterior updates of the reparametrised covariance parameters depend on the ordering of the 
nodes and prime residuals of the graph 

 

with t = �J(k) − |H(J)

q
| as before, M̃ = ��s + UTU, M̃Pq,(t−1) and m̃qt are submatrices of M̃ defined con-

formally with previous transformations. In the dense covariance case, the posterior updates reduce to the 
following equations (with any ordering on the outcomes) 

To efficiently explore the graphical structure G, we use the sampler introduced by Green and 
Thomas (2013), making use of the junction tree representation of a decomposable graph as its 
state variable to allow for bolder, multi-edge proposals in the graph space. The edge probability η 
is updated via a Gibbs perturbation. All other unknowns are updated via Metropolis-within-Gibbs 
updates with adaptive proposal distributions (Roberts & Rosenthal, 2009). Algorithm 1 provides 
an overview of the designed MCMC algorithm to sample from the joint posterior distribution 
p(�, �, �2, �, J, �, o, w, �, � |Y).

Note that, even though each sample is from a decomposable model, the sampler allows us to dis-
cover non-decomposable graph structures via Bayesian model averaging of the marginal edge inclu-
sion probabilities. As the graph is updated, the perfect elimination ordering ξ changes, hence we do 
not retain the sampled values of �2 and ρ. Moreover, as we are interested mainly in structure learning, 
both for variable and covariance selection, we consider the reparametrised covariance as nuisance 
parameters.
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4  |   SIMULATION STUDY

We evaluate the performance of the reparametrised multivariate sparse SUR model and our efficient 
sampler in simulated mQTL data. We first investigate the effect of allowing for residual dependence 
in the phenotypes, by comparing dependent and independent covariances within our own model. We 
then compare our model with sparse dependence structure against other methods that also allow for 
dependence. For all the work in the simulation study, we employ the same priors as we use for the 
mQTL analysis of the NFBC cohort data, see Section 5 for details, except in the comparison with 
other models that allow covariance selection where we use the simplified version of the hotspot detec-
tion prior with �j = 1, j = 1, …, p.

4.1  |  Comparison with models without covariance selection

We validate our method against the Hierarchical Evolutionary Stochastic Search (HESS) algorithm of 
Bottolo et al. (2011) in a synthetic setting. Following Richardson et al. (2010) and Bhadra and Mallick 
(2013), we set up our simulation study by randomly subsampling p = 300 SNPs from our real -omics 
data set (see Section 5). This forms our covariate set X and allows us to mimic real correlation effects 
and linkage disequilibrium between genetic markers that would be difficult to simulate artificially. 
The observed correlations between predictors range from small to over 0.8 in absolute value. We set 
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n = 200 and s = 30 and proceed by selecting the correlation structure for the outcomes in form of a 
graph. We explore three graphical structures, that is, a block diagonal, a decomposable and a non-
decomposable model.

To present a range of possible association patterns between outcomes and predictors, we fix (con-
ditionally on the selected graph structure) the binary indicators vector γ so that different sets of predic-
tors display associations with, that is, all outcomes (representing true hotspots), all outcomes within 
each prime component, all outcomes within each residual component (so predictors are linked only 
with correlated outcomes and not to conditionally independent ones) and finally with a set of selected 
outcomes that spans multiple components, so that selected predictors are linked to both correlated 
and (conditionally) independent outcomes. See Figure S2 for an example of the generated structures.

With the structure fixed, we sample the non-zero regression coefficients from a N(5, 1), so that 
most of them are distinct from zero, and the residuals from a matrix variate normal distribution, that 
is, MN

(
0, �n, C

)
. C−1 is sampled from a G-Wishart distribution, WG (s + 2, M), using the R package 

BDgraph (Mohammadi & Wit, 2019) with M = αR, R a correlation matrix with r on the off-diagonal 
elements and � ∈ ℝ

+ to obtain data sets with the desired noise.
We consider two summaries of signal to noise, designed to be sensitive to the information con-

tained in the predictors and in the covariance matrix, respectively: 

 

where �2 and ρ are the reparametrised values of the covariance matrix C and  is as defined in Equation 
(7). We observe that SNRC is highly correlated with the off-diagonal (residual) correlation r. Thus, we 
parameterise the simulation study in terms of G (block-diagonal, decomposable and non-decomposable), 
r ∈ {0.3, 0.6, 0.9} and SNR�. For each value of G and r, we generate multiple data sets with different α 
values and use the data with resulting SNR� within 10% of each of the desired values of 5, 15 and 25. 
Based on this criteria, we simulate 20 replicates for each combination of the parameters and run both 
sparse BayesSUR model and HESS for 250,000 iterations of which 50,000 as burn-in.

To report on performance, we focus on posterior marginal inclusion probabilities, that is, the aver-
age over the MCMC iterations of �kj, k = 1, …, s, j = 1, …, p. Figure 1 shows the average ROC curves 
over 20 replicates for each simulation set-up corresponding to SNR� = 5, the lowest signal-to-noise 
ratio, for both BayesSUR with covariance selection and HESS. The results correspond to our expec-
tations, that is, HESS is known to perform relatively well even in cases where residuals are correlated 
(Bottolo et al., 2011; Lewin et al., 2016) as long as r is not too high. In most cases though, especially 
at higher r, HESS estimates are more noisy and more false positives are picked up due to the con-
founding effect of the correlations. BayesSUR has a more marked separations between true and false 
positive signals and overall returns less noisy estimates (see Figure S5, top panels). The ROC curves 
relative to the other SNR� levels are reported in Figures S3 and S4.

BayesSUR is also able to recover simultaneously the conditional (in)dependence structure of the 
residuals. Table 1 shows the average over 20 simulated replicates of true positive rates (TPR) and false 
positive rates (FPR) for graph edges found by thresholding Pr(Gkk� = 1 |data) at 0.5 probability level. 
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The graphs are in general well estimated. For non-decomposable graphs, there is a tendency towards 
over-inclusion, as we would expect based on Fitch et al. (2014), who find that graphs constrained to be 
decomposable converge to a close (in the graph space), more dense, chordal graph alternative (see for 
example Figure S.5 in the Supplementary Material). The estimated TPR and FPR for different values 
of SNR� do not differ significantly from the one presented here. See, for details, Table S1.

F I G U R E  1   Averaged (over 20 simulated replicates) ROC curves for BayesSUR with covariance selection 
(red line) and HESS (black line) to compare the variable selection performance of the two methods for different 
combinations of the simulated graphical model G and the (residual) correlation between responses r and with signal-
to-noise ratio for the predictors SNR� = 5 [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E  1   Averaged (over 20 simulated replicates) true positive and false positive rates for the graph estimation 
after thresholding at 0.5 the posterior marginal edge inclusion probabilities

G r True positive rate False positive rate

Block diagonal 0.3 0.937 0.008

Block diagonal 0.6 0.960 0.036

Block diagonal 0.9 0.953 0.016

Decomposable 0.3 0.935 0.085

Decomposable 0.6 0.958 0.108

Decomposable 0.9 0.922 0.127

Non-decomposable 0.3 0.962 0.027

Non-decomposable 0.6 0.986 0.117

Non-decomposable 0.9 0.979 0.146

Results are reported for SNR� = 5 and for different combinations of the graphical model G and the (residual) correlation between 
responses r.

www.wileyonlinelibrary.com
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4.2  |  Comparison with alternative covariance models

We compare the performance of BayesSUR to two different software implementations of a sparse 
seemingly unrelated regressions (SSUR) model by Wang (2010). SSUR indirect performs posterior 
computation of the SSUR model using MCMC, where the regression coefficients are sampled using 
the Gibbs sampler described in George and McCulloch (1993). SSUR direct uses the marginal likeli-
hood approach of Chib (1995) for ‘direct’ variable selection of important predictors and non-zero en-
tries of the sparse inverse covariance matrix via Metropolis–Hastings steps. The Matlab version of the 
SSUR code is available from the author web site. For the ‘indirect’ version, we run the algorithm for 
5 × 105 iterations with 105 as burn-in, storing the MCMC output every 500 iterations. For the ‘direct’ 
version, we run the algorithm for 2 × 103 iterations with 103 as burn-in. In each iteration, the calcula-
tion of the marginal likelihood requires 500 extra samples from the Gibbs sampler, including 100 as 
burn-in. Overall, the algorithm is run for 106 iterations. All hyperparameters and proposal densities are 
left unchanged as originally set-up in the Matlab code. The prior probability of inclusion is set equal to 
0.1 in both versions of the Matlab code. We run BayesSUR with covariance selection for 5 × 105 itera-
tions with 105 as burn-in, two parallel chains in the EES sampler and matching the hyperparameters 
of the Beta-Binomial prior on the inclusion probability with the prior used in the SSUR algorithms.

We simulate three scenarios, with differing levels of sparsity in the inverse covariance matrix. For 
each scenario, we simulate 20 replicates with n = 150, p = 30 and s = 20. Out of 30 × 20 regression 
coefficients, 120 (20%) are simulated from an uniform distribution in (−2, 2). We selected at random 
the same proportion of cells in the 30 × 20 matrix of regression coefficients and assigned to them 
the simulated values, while the other cells are set to zero. In our experiment, for each response, on 
average between 2 and 10 non-zero regression coefficients are assigned. To generate the correlated 
predictors, we follow Rothman et  al. (2010) and simulate, for each i = 1, …, n and k = 1, …,  s, 
xik ∼ N(0, V), where Vjj� = 0. 7 | j− j� | is the (j, j′)th element of V, j, j� = 1, …, p, implying the same 
unit marginal variance. The inverse error covariance T−1 is a Toeplitz matrix with value 0.5 in the 
first principal diagonal, 0.5 and 0.4 in the first two principal diagonals and 0.5, 0.4 and 0.3 in the first 
three principal diagonals in Scenario 1, 2 and 3, respectively. In all scenario considered, the sparse 
diagonal inverse error covariance is positive definite with 19 (10%), 37 (19%) and 54 (28%) non-zeros 
entries in Scenario 1, 2 and 3, respectively, while the corresponding covariance matrices are dense. 
Finally, the responses are generated from a Normal matrix variate distribution using the simulated 
matrix of regression coefficients, the predictors matrix and the dense covariance matrices, that is, 
Y ∼ MN(XB, �n, T), where B is the p × q matrix of the simulated regression coefficients and T is the 
inverse of the q × q Toeplitz matrix.

Figure 2 shows the ROC curves obtained from the simulation study distinguishing between the 
estimation of the non-zeros regression coefficients (top panels) and the estimation of non-zero en-
tries of the inverse error covariance (bottom panels). From the plots, it is apparent that BayesSUR 
(with or without covariance selection) has better or similar performance to SSUR. It is more efficient 
than SSUR direct in all scenarios considered due to the expensive computation of the approximate 
marginal likelihood that prevents running the algorithm for many iterations. BayesSUR performs 
better than SSUR indirect whose performance deteriorates as the estimation of the sparse inverse 
error covariance becomes less sparse (Scenarios 2 and 3). A closer inspection of the MCMC output 
shows that in Scenarios 2 and 3 both versions of the SSUR algorithm incorrectly estimate that the 
responses are almost independent conditionally on the estimated regression coefficients (results not 
shown).

We also compare the performance of BayesSUR with MRCE, the penalized likelihood method 
with simultaneous estimation of the regression coefficients and the covariance structure proposed 
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by Rothman et al. (2010). While the power to detect non-zero regression coefficients and non-zero 
elements of the precision matrix is similar to BayesSUR, in all simulated scenarios, MRCE seems to 
include a larger number of false positives, in particular in the covariance selection.

In addition, we examine the computational time of the algorithms presented in this section. For the 
Bayesian algorithms, we match the values of the sparse priors hyperparameters and, as far as possible, the 
total number of iterations. For MRCE, we select the option cv, i.e., the penalty parameters for the regres-
sion coefficients and for the covariance structure are chosen by using a 5-fold cross-validation procedure. 
We also specify different dimensions of the candidate penalty vectors to check the impact of this choice on 
the computation time. All algorithms are run on an Intel(R) CPU 2.60 GHz with 64 Gb memory.

Table 2 shows that BayesSUR is 20 times faster than SSUR direct in all scenarios considered. 
Interestingly, it is also almost 10 times faster than SSUR indirect with the SSVS Gibbs sampler. This is 
due to the effect of the direct manipulation of the junction tree representation of a decomposable graph 
(Green & Thomas, 2013) used in this work, in contrast to the computational expensive evaluation of 
the decomposability after edge perturbation employed in Wang (2010) and originally proposed by 
Giudici and Green (1999). The different computational efficiency depends also on the programming 

F I G U R E  2   Averaged (over 20 simulated replicates) ROC curves to compare the selection performance of the 
non-zero regression coefficients (top panels) and non-zero elements of the precision matrix (bottom panels) for 
the methods considered: BayesSUR with covariance selection (solid red line), BayesSUR with dense covariance 
estimation (dashed red line), SSUR Indirect (black line), SSUR Direct (blue line) and MRCE (green dot). For MRCE, 
each dot represents the averaged specificity and sensitivity of the corresponding penalised likelihood solution. 
BayesSUR with dense covariance estimation appears only in the top panels since it does not perform covariance 
selection. Its performance with respect to selecting regression coefficients is equal to that of BayesSUR with sparse 
covariance selection, hence the red dashed lines are indistinuishable from the red solid lines. Different scenarios are 
obtained by specifying distinct Toeplitz matrices for the inverse error covariance [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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language used by the two algorithms, C++ and Matlab, respectively. Note that we employ a single 
core to run BayesSUR in order to make the comparison with other methods fair. However, large 
computational gains can be achieved by using a multi-core parallel computing architecture such as 
Message Passing Interface to exploit the parallelization of step 9 in Algorithm 1. The computational 
time of MRCE greatly depends on the number of candidate values where the fivefold cross-validation 
procedure is performed. At the default value, 4 equally spaced grid points, the algorithm is very fast, 
but it becomes slower than BayesSUR when 200 candidate values are specified. Moreover, in contrast 
to BayesSUR, the sparser the graph, the slower MRCE becomes. Similarly to the number of iterations 
in MCMC algorithms, for penalised likelihood methods the choice of the number of candidate penalty 
values depends on the trade-off between accuracy and computational time.

Finally, we repeat the same analysis presented in this section with s = 150 responses to mimic the 
number of responses in the motivating application presented in the next section. Results are similar 
to those presented here, although the analysis becomes computationally prohibitive for both SSUR 
direct and SUUR indirect. Details of the selection performance of the different methods as well as 
their computational time are shown in Figure S6 and Table S2, respectively.

5  |   METABOLITE QUANTITATIVE TRAIT LOCI (mQTL) 
ANALYSIS IN THE NORTHERN FINNISH BIRTH COHORT

In this section, we present our results of the mQTL analysis of the NFBC66 data. The serum metabolic 
data are from the 31-year follow-up study of the NFBC66 and based on a widespread metabolomics 
platform in epidemiology and genetics (Würtz et al., 2017). After quality control and data cleaning, 
the data consist of p = 9310 directly genotyped SNPs on chromosome 16 and s = 158 metabolite 
concentrations, measured on n = 5154 individuals. The metabolites are normalised and standardised 
via the inverse rank-Normal transformation, following Kettunen et al. (2016).

Thanks to growing evidence in favour of pleiotropy (the association of multiple phenotypes with 
the same locus) in mQTL analysis (Sabatti et al., 2009), we expect these associations to be driven by 
a handful of SNPs that associate with numerous metabolites. To drive the variable selection proce-
dure we will therefore use the hotspot prior introduced by Bottolo et al. (2011) which expresses the 
prior probabilities for variable inclusion into overall sparsity level ok for outcome k and a propensity 
parameter �j for each predictor j with �kj ∼ Ber

(
ok × �j

)
, �j ∼ Ga(1∕2, 1∕2) (E(�j) = 1, Var(�j) = 4) 

and ok ∼ Beta(ao, bo) under the constraint ok × �j ≤ 1 ∀ j, k. The hyperparameters ao, bo are chosen so 

T A B L E  2   Averaged (over 20 simulated replicates) computational time in minutes for the algorithms considered: 
BayesSUR with covariance selection (Sparse), BayesSUR with dense covariance estimation (Dense), SSUR indirect, 
SSUR direct and MRCE with different numbers of candidate values for the penalty parameters where the cross-
validation procedure is performed

Algorithm Scenario 1 Scenario 2 Scenario 3

BayesSUR Sparse 57 89 87

Dense 54 64 60

SSUR Indirect 655 823 790

Direct 1549 1810 1661

MRCE 200 candidate values for penalty parameters 281 156 109

40 candidate values for penalty parameters 32 9 7

4 candidate values for penalty parameters 2 1 1



902  |      BOTTOLO et al.

that the average model size and its variance for each outcome is small, as we want to enforce a strong 
sparsity in the model, that is, E(ok) = 2 and Var(ok) = 2. These values imply a priori a range of associ-
ations for each response between 0 and 6. We use independent N(0, w) priors on non-zero regression 
coefficients which correspond to W� = w−1

�� and let the prior matrix in the Inverse-Wishart for the 
covariance be diagonal, that is, M = ��s. Since we standardise and centre all responses and predictors, 
the hyperparameters for τ and w are set such that these variances are centred on small values but, at 
the same time, allowing the respective prior to be diffuse (aw = bw = 0.1 and a� = b� = 0.1). Finally, 
we set a� = 1, b� = 1 (E(η) = 1/2, Var(η) ≃ 1/12) which a priori does not push for a sparse graph G.

Our model provides us with a rich output that can be summarised in many ways. Regarding the 
regression structure, one example is that we can use the posterior of the covariate propensity pa-
rameter �j, j = 1, …, p, to search for hotspots (i.e. genetic variants that are associated with multiple 
metabolites). Figure 3 shows the posterior expectations of �j for each SNP on chromosome 16. In par-
ticular, we report rs4985124, rs931406 and most importantly rs12102766 and rs3764261. Analysing 
the whole binary indicators vector γ gives us a lot more information though, as shown in Figure 4, 
where we plot the marginal posterior inclusion probabilities (mPIP) for each SNP in chromosome 16, 

F I G U R E  3   Manhattan plot of the posterior expectation of �j, j = 1, …, 9310, ordered along chromosome 16, for 
hotspots detection. Red triangles indicate putative hotspots identified by BayesSUR with the corresponding genetic 
variant name [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  4   Manhattan plot of marginal posterior inclusion probabilities of association for SNPs in 
chromosome 16, all metabolites superimposed. Red triangles indicate putative hotspots identified by BayesSUR 
with the corresponding genetic variant name. Only a few SNPs seem to be relevant and for a restricted number of 
metabolites. Some SNPs appear to be associated with more than one metabolite. Vertical green dotted lines show 
previously identified loci associated with lipids metabolites (Kettunen et al., 2016) [Colour figure can be viewed at 
wileyonlinelibrary.com]

20 40 60

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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all metabolites superimposed. From the plot, we can see how some SNPs are associated with only one 
or a few outcomes and would thus be missed by only looking at hotspots detection. By thresholding 
mPIPs at 0.5, we discover a total of 38 associations and the average Bayes FDR (bFDR, see, e.g. 
Lewin et al., 2016) is ≈0.058. The associations found using the mPIP are presented in Supplementary 
Tables S.3 and S.4. By increasing the mPIP threshold to 0.9, we would keep 32 SNP-metabolite asso-
ciations with bFDR < 0.01.

The results obtained by BayesSUR confirm the known association between SNP rs3764261 in 
the CEPT gene and HDLs (Kettunen et al., 2012; Sabatti et al., 2009), but additionally highlights the 
relevance of the CEPT locus on different lipoproteins. rs4985124, that we report associated with fatty 
acids, is situated in the PDXDC1 locus, roughly 23 Kb from SNPs rs11075253 and rs11644601 which 
were previously linked with fatty acids metabolism (Kettunen et al., 2012, 2016). Finally, rs1210276, 

F I G U R E  5   Network representation of the associations between SNPs (right) and metabolite (left) after 
thresholding the marginal posterior inclusion probabilities at 0.5 and dependence structure between metabolites 
estimate from the graph G after thresholding the marginal posterior edge inclusion probabilities at 0.5 [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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that we report associated with multiple metabolites connected to VLDL, is situated in the proximity 
of rs74249229, previously reported by Kettunen et al. (2016).

A comparison with MatrixeQTL (Shabalin, 2012), a widely used ‘one-SNP-one-trait-at-a-time’ 
method in GWAS analysis is presented in the Supplementary Material. Not accounting for correla-
tions between metabolites, highly reduces the number of findings in the GWAS analysis. While 
mostly consistent with BayesSUR in terms of detected loci, multiple close-by SNPs are selected by 
MatrixeQTL as significantly predictive, whereas BayesSUR method picks only one (see Figures S7 
and S8). Our method, that accounts for residual correlation, was also able to uncover other potential 
important associations that warrant further investigations, in particular rs7191766 associated with 
multiple cholesterol-related phenotypes.

Finally, Figure 5 presents a summary of the estimated graph G. By thresholding the marginal pos-
terior edge inclusion probabilities (mEPIP) at 0.5, we obtain an adjacency matrix that we represent 
as a network plot, using the R package igraph (Csardi & Nepusz, 2006). In the same plot, we also 
represent the selected SNPs and their associations with the metabolites.

An interesting feature of the estimate of G is that we recover the three macrogroups men-
tioned in the Introduction, that is, lipoprotein concentrations (represented by circles), serum lipids 
(squares) and low molecular weight metabolites (triangles), with the lipoproteins being further 
separated into two components. HDLs and LDLs in particular seem to be highly associated with 
serum lipids, while the VLDL and IDL concentrations form a group almost by themselves. There 
are associations between the serum lipids and low molecular weight metabolites, driven mostly by 
a couple of low molecular weight hubs. It is important to note that edges here represent non-zero 
conditional correlations and we thus expect a much sparser graph than would be seen using mar-
ginal correlations. The highly sparse estimate of G also implies that considerable computational 
gains were achieved using the sparse model.

6  |   DISCUSSION

In this work, we present a novel computational method to perform Bayesian variable selection in 
a multivariate regression setting for QTLoci analysis that takes into account residual correlations 
between phenotypes while maintaining a flexible association pattern between phenotypes and geno-
types. Although conjugacy is lost for this model, by virtue of a crucial reparametrisation of the covari-
ance matrix, our novel results show that: (i) it is possible to obtain simple expressions for the priors 
distribution of the reparametrised parameters �2

k
 and �k, k = 1, …, s, in both dense and sparse cases, 

(ii) posterior full conditionals are available in closed-form expression, including for the regression 
coefficients �k, and (iii) since the likelihood is now computed as a product of independent factors, the 
posterior updates of �2

k
 and �k can be trivially parallelised which greatly increases the computational 

efficiency of our model. Thus, our method is able to analyse a large number of outcomes and their 
associations with a large set of predictors, thanks as well to the efficient C++ implementation, as il-
lustrate in the simulation study and in the motivating application. It is moreover possible to introduce 
further computational gains by assuming that the conditional independence structure between the 
residuals is sparse, and inference on the resulting graph is straightforward to obtain. We demonstrate 
this feature in a simulated example with 150 responses, where BayesSUR with covariance selection is 
30% faster than the version of the algorithm with dense covariance estimation.

We have also shown in the simulation study that, when there is non-negligible residual cor-
relations between the responses, our method exhibits better performance in selecting relevant pre-
dictors than existing methods (Bottolo et  al., 2011; Lewin et  al., 2016) and is able at the same 
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time to effectively perform covariance selection. Computationally, BayeSUR is faster than existing 
Bayesian sparse SUR methods with covariance selection, although in the simulated examples we 
have not shown the reduction in computational time when multiple cores are used in order to exploit 
the factorisation of the proposed model. When a large number of responses are considered and the 
graph is very sparse, BayeSUR computational time is almost comparable to penalized likelihood 
methods, although the output of the former is much richer (full posterior distributions versus point 
estimates).

Our method is able to scale well in the regime of hundreds of outcomes and thousands of predic-
tors, as demonstrated in the analysis of the NFBC66 mQTL data set; we are able to recover already 
published and known associations, as well as uncovering some previously unknown associations that 
might offer new insights into the relationships between chromosome 16 and lipid metabolism.

One might expect the restriction to decomposable graphs to be too stringent for real applications 
and various attempt have been made to relax such an assumption, using the G-Wishart distribution 
first introduced by Roverato (2002) (see also Mitsakakis et al., 2011; Mohammadi & Wit, 2015; Wang 
et al., 2012 and references therein for some recent examples). However, the computational disadvan-
tages connected with a general graph are in general exceedingly high (Jones et al., 2005).

The work of Fitch et al. (2014) concludes that, under model assumptions similar to ours, infer-
ence on G will asymptotically converge towards minimal triangulations of the true graph, that is, the 
decomposable graph with the smallest number of extra edges, and that inference on the covariance 
matrix is competitive in terms of prediction errors against penalised likelihood methods that estimate 
unrestricted graphs like the graphical lasso. In practice, assuming decomposability seems to be sensi-
ble and inference on the covariance matrix under such an assumption sound. Additionally, Bayesian 
modelling averaging enables the estimation via marginal edge inclusion probabilities of a general 
non-decomposable graph.

Thanks to the very general formulation of the SUR models we expect the present work to find 
applications beyond the mQTL application presented here, for example in finance, econometrics and 
other biological settings where linked regression models are already widespread.
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