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Abstract

Pain is a multidimensional experience that involves sensory, cognitive, and affective factors. The 

constellation of interactions between these factors renders the treatment of chronic pain 

challenging and financially burdensome. Further, the widespread use of opioids to treat chronic 

pain has led to an opioid epidemic characterized by exponential growth in opioid misuse and 

addiction. The staggering statistics related to opioid use highlight the importance of developing, 

testing, and validating fast-acting nonpharmacological approaches to treat pain. Mindfulness 

meditation is a technique that has been found to significantly reduce pain in experimental and 

clinical settings. The present review delineates findings from recent studies demonstrating that 

mindfulness meditation significantly attenuates pain through multiple, unique mechanisms—an 

important consideration for the millions of chronic pain patients seeking narcotic-free, self-

facilitated pain therapy.
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 Introduction

The construction and modulation of pain is mediated by sensory, cognitive, and affective 

factors, rendering the treatment of chronic pain difficult and often a financial burden. 

Chronic pain affects over 100 million Americans and 1.5 billion people worldwide and costs 

the United States approximately $635 billion per year in medical expenses and lost work 

productivity.1 Furthermore, the pervasiveness and burden of chronic pain has dramatically 

increased Medicare expenditures for steroid injections (over 629%) and opioid treatments 

(over 423%).2 The widespread use of opioids to alleviate chronic pain has led to an opioid 

epidemic3 characterized by an exponential rise in opioid misuse and addiction.4, 5 The 

importance of addressing concerns related to these staggering statistics are reflected in new 
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far-reaching policy changes, such as the recommendations from the Centers for Disease 

Control and Prevention (CDC) to develop and employ fast-acting nonpharmacological 

approaches to treat chronic pain.6–8 We postulate that mindfulness meditation could be such 

a suitable narcotic-free pain therapy for a number of reasons: firstly, mindfulness-based 

meditation has repeatedly been found to significantly reduce chronic pain 

symptomologies;9–14 second, mindfulness meditation attenuates pain through multiple 

unique psychological and neural processes;15–22 and further, it has recently been 

demonstrated that mindfulness meditation is more effective in reducing pain than placebo23 

and does not engage endogenously driven opioidergic systems to reduce pain.20 However, 

lack of mechanistic classification and reproducibility has reduced the clinical acceptance of 

meditation to treat pain. While there are a wide variety of meditation traditions and 

techniques, the present review article will focus on delineating the analgesic mechanisms 

supporting mindfulness meditation in particular and take into consideration varying levels of 

meditative expertise and the utility of employing robust control/comparison conditions to 

better disentangle the specific mechanisms underlying mindfulness meditation.

 What is mindfulness meditation?

Mindfulness meditation is a fairly loose term that applies to many meditation practices, 

which have been found to improve a wide spectrum of clinically relevant cognitive and 

health outcomes.24–27 In patients, training in mindfulness improves self-reports of 

anxiety,28–31 depression,10, 32–36 stress,37–39 and cognition.40–46 Mindfulness-related health 

benefits are associated with enhancements in mechanisms supporting cognitive control, 

emotion regulation, positive mood, and acceptance.47

Mindfulness has been described as a “non-elaborative, non-judgmental awareness” of the 

present-moment experience.9, 41 However, one does not need to be practicing, or even be 

trained in, meditation to be mindful. Varying degrees of trait mindfulness exist in the general 

population, outside of any formal training.48–50 Mindfulness can also be developed with 

mental training routines, such as meditation, and there are a variety of different practices that 

are subsumed under the general rubric of mindfulness meditation. Thus, it is critical that the 

specifics of the practice being taught or employed be recognized. Here, we will focus on two 

rather coarse categories of mindfulness practice, namely, focused attention (samatha in the 

Pali language) and open monitoring (Pali: vipassana),51 both of which are centered on 

developing a number of distinct cognitive skills.

During focused attention, or samatha,52 the practitioner is taught to develop cognitive 

control and attentional stability by training the practitioner to sustain focus on the moment-

to-moment quality and characteristics of sensory, emotional, and cognitive events. In brief, 

samatha involves directing one’s attention to the dynamic nature of the chosen object of 

meditation, most often the sensations of breath or body. When attention drifts from the 

object of focus, for example, to a distracting sensory event, the practitioner is taught to 

acknowledge the event and disengage by returning their attention back to the meditative 

object (e.g., the breath). Often, samatha is taught as a series of distinct practices increasing 

in complexity (e.g., mindfulness of breath, emotions, and thoughts). While samatha practices 

aim primarily at gaining mental control and stabilization of attention, they naturally lead, in 
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a somewhat ambiguous way, to the traits associated with open-monitoring meditation. As a 

developmental derivative of focused-attention practice, the mindfulness practitioner almost 

naturally transitions into an open-monitoring mental stance, also known as vipassana. It is 

believed that extensive training in samatha is required before the open-monitoring aligned 

cognitive stance develops naturally. Whereas samatha often entails focus on a single, 

dynamic, meditative object, open-monitoring practices are more inclusive of perceived 

thoughts and emotions. When applied to the full extent, these practices are associated with a 

non-directed acknowledgement of any sensory, emotional, or cognitive event that arises in 

the mind. While practicing open monitoring, the practitioner is said to experience the current 

event without evaluation. To this extent, mindfulness meditation has been described as a 

state of non-appraisal and/or a non-elaborative mental stance.51

 Mindfulness and pain

For thousands of years, Buddhist monks have postulated that the practice of mindfulness 

meditation can significantly alter the subjective experience of pain. For instance, the ancient 

Buddhist text, the Sullatta Sutta (The Arrow), states that meditation practitioners have the 

unique ability to fully experience the sensory aspect of pain (first arrow) but to “let go” of 

the evaluation (second arrow) of pain. However, only recently have scientists examined the 

mechanisms underlying mindfulness meditation–induced pain relief and health 

improvements. In 1980, Nepalese “porters” were found to report significantly higher pain 

thresholds in response to pain-evoking electrical stimulation when compared to a well-

matched control group.53 While the authors attributed these effects to religious practices 

(presumably meditation), it was not clear, at the time, if meditation practice directly 

produced analgesia. We have recently witnessed a significant increase in studies 

demonstrating that mindfulness meditation reduces pain reports across a spectrum of chronic 

pain conditions.54–66 Furthermore, the advent of neuroimaging methodologies has provided 

cognitive scientists the means to identify the specific neural mechanisms supporting 

mindfulness meditation–based analgesia.

 Mindfulness meditation improves chronic pain symptomology

Mindfulness meditation–based interventions improve pain symptomology across a wide 

spectrum of pain-related disorders, including fibromyalgia,14, 67 migraine,68 chronic pelvic 

pain,61 irritable bowel syndrome,12, 13 and other conditions.69 Given that chronic low back 

pain is the most common clinical pain condition70 and the leading cause of disability in the 

United States, it is imperative to better determine if and how mindfulness meditation training 

affects chronic low back pain. The 8-week mindfulness-based stress reduction (MBSR) 

program9 is one the most studied and validated approaches for the treatment of chronic low 

back pain. In a seminal study, Kabat-Zinn and colleagues revealed that chronic pain patients 

reported improvements in pain symptomology and quality of life after completing the 

MBSR program9 and improvements were sustained after a 3-year follow-up.10 The work by 

Kabat-Zinn spawned a burgeoning of research initiatives focusing on mindfulness 

meditation, including a number of more recent investigations that have employed robust, 

carefully controlled experimental designs to examine the effectiveness of mindfulness 

meditation interventions on chronic pain. In an elegant study, Cherkin and colleagues 
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compared the effects of 8 weeks of MBSR to an 8-week cognitive behavioral therapy (CBT) 

intervention and usual care across a number of chronic low back pain outcomes.71 The 

MBSR and CBT programs were found to be significantly more effective at reducing pain 

intensity and reports of pain being bothersome when compared to usual care after 8, 26, and 

52 weeks.71 While there were no significant differences between the CBT and MBSR 

programs in pain-related outcomes, these findings demonstrate that mindfulness-based 

improvements in chronic pain could be enhanced across time. In another recent study, 

Morone and colleagues found that an 8-week MBSR program significantly improved 

numerical pain scale ratings and pain-symptom severity in older adults (i.e., older than 65 

years of age) suffering from chronic low back pain when compared to a “very active” pain-

related health education group.55 Taken together, these findings demonstrate that relatively 

brief bouts of mindfulness meditation training can significantly attenuate chronic low back 

pain symptomology. However, the specific analgesic neural mechanisms demonstrating how 

mindfulness meditation interventions produce chronic pain have yet to determined, which is 

a critical step in fostering the clinical validity of this ancient technique.

 The construction and modulation of pain: a brief neurophysiological 

synopsis

Pain is a complex and subjective conscious experience constructed and modulated by a 

constellation of sensory, cognitive, and affective factors, including mood, psychological 

disposition, meaning-related cognitions (e.g., suffering), learning, desires, and pre-pain 

cognitive states (e.g., expectations; anxiety) to provide a continually changing experience. 

Feedback connections between low-level afferent and higher-order neural processes foster 

the cultivation of a distributed, multidimensional network associated with the subjective 

experience of pain. Nociceptive sensory events are first registered by peripheral primary 

afferents (first pain, A-delta fibers; second pain, C fibers) at the site of injury/tissue damage, 

which then relay this nociceptive information to the dorsal horn of the spinal cord. From the 

spinal cord, nociceptive information ascends contralateral to the site of pain to the brain, 

largely through the spinothalamic pathway. Nociceptive input is subsequently processed 

through feedback connections between lower-level sensory regions, including the 

parabrachial nucleus, periaqueductal gray matter (PAG), thalamus, and primary 

somatosensory (SI) and secondary somatosensory (SII) cortices.72–78 Ascending nociceptive 

information is then transmitted to the posterior and anterior insular cortices where it is fine-

tuned to foster the subsequent evaluation of pain.79, 80 The contextual meaning of pain is 

then facilitated through activation of higher-order brain regions, including the anterior 

cingulate cortex (ACC), dorsal ACC (dACC), and prefrontal cortex (PFC).80–82 Yet, the 

subjective experience of pain remains to be highly influenced by the context in which it 

occurs. That is, previous experiences, expectations, mood, conditioning, desires, 

sensitization/habituation, and other cognitive factors can dramatically amplify and/or 

attenuate pain.78, 83–87

Nonpharmacological-based pain manipulations attenuate the subjective experience of pain 

through a common final pathway, including overlapping endogenously driven and neural 

systems. While the cognitive modulation of pain is mediated through a host of endogenous 
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modulatory systems, including cannabinoid, serotonergic, dopaminergic, cholecystokinin, 

adrenergic, and other neurochemical systems (i.e., vasopressin), the endogenous opioidergic 

system is the most understood (and studied) pain modulatory system.88 Endogenous 

opioidergic mechanisms have been repeatedly demonstrated to mediate analgesia produced 

by placebo,89–93 conditioned pain modulation,94 acupuncture,95 hypnosis,96 and attentional 

control.97 Pain relief produced by these cognitive techniques are associated with significant 

reductions in pain-related brain activation (i.e., SI, SII, posterior insula, parietal operculum) 

and activation in higher-order brain regions, such as the ACC, PFC, and insula.86, 89, 98–110 

Importantly, the PFC, insula, and ACC contain high concentrations of opioid receptors and 

are associated with producing analgesia through descending inhibitory systems.105, 111–115 

The ACC and PFC project to the PAG,116 a structure that can be directly activated by 

opioids. The PAG projects to the rostral ventral medulla,117–119 which, in turn, projects to 

the spinal dorsal horn and can inhibit nociceptive processing through multiple 

neurotransmitter systems.120

 Brain mechanisms supporting the modulation of pain by long-term 

meditators

A large proportion of mindfulness meditation–based experimental pain research has focused 

on examining the effects of meditation practice ranging from 8 weeks to multiple decades. 

In one of the first mindfulness meditation–focused experimental pain studies, Grant and 

Rainville found that long-term Zen meditation practitioners required significantly higher 

levels of noxious thermal stimulation to report paralleling levels of pain as age-matched 

controls.121 In their follow-up study with an overlapping sample, the authors found that, in 

the presence of noxious thermal stimulation, long-term Zen practitioners showed significant 

activation of sensory processing–related brain regions (thalamus, insula) and reduced 

activation in brain areas that process the evaluation of pain (medial PFC (mPFC), OFC). 

There was also a significant relationship between greater deactivation of the mPFC/OFC, 

meditative experience, and lower pain reports.18 Remarkably, these findings were exhibited 

during a non-meditative cognitive state, suggesting that long-term meditation training 

produces stabilized changes in the subjective evaluation of pain.

In addition, Lutz and colleagues examined the psychophysical and neural effects of 

meditation across 14 long-term mindfulness meditation practitioners (approximately 10,000 

h of formal meditation practice in the Nyingma and Kagyu traditions of Tibetan Buddhism) 

during noxious heat stimulation compared to 14 non-meditating controls.19 The control 

group was provided with guidelines to practice mindfulness meditation and instructed to 

practice at home for 30 min/day for 1 week. Surprisingly, there was no difference between 

long-term meditators and the novice meditation group on pain intensity ratings during 

samatha practice. Not surprisingly, open-monitoring meditation produced significant 

reductions in pain unpleasantness in the expert meditation group when compared to the 

controls.19 This form of meditation was associated with reduced anticipatory (before the 

painful heat stimulus) activation in the anterior insula. Further, the reduced baseline 

activation in left anterior insula correlated with lifetime meditation experience. These 
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findings and others16 indicate that reducing expectations of impending pain is at least one 

process/mechanism by which mindfulness meditation reduces pain.

In a study by Gard et al., the neural mechanisms supporting mindfulness meditation–based 

analgesia were examined in 17 long-term vipassana practitioners (mean meditation practice 

experience = 5979 h) in response to noxious electrical stimulation compared to 17 age-, 

gender-, and education-matched non-meditating controls.17 Similar to other studies,16, 19, 122 

the authors did not find a significant difference between the meditation and control groups in 

pain intensity ratings, but did find a significant reduction in pain unpleasantness ratings 

compared to the control group during the mediation state in the presence of noxious 

stimulation.17 Greater activation of the contralateral SII/posterior insula was associated with 

meditation-induced pain unpleasantness ratings. The authors also found greater rACC and 

ventromedial PFC (vmPFC) activation during the prestimulus anticipatory phase, suggesting 

that cognitive control mechanisms were at play. However, meditation-induced analgesia was 

directly associated with greater deactivation of the PFC and increased activation of the 

posterior insula, which is consistent with the abovementioned work by Grant and 

Rainville.18 Taken together, these findings are important because they demonstrate that the 

neural mechanisms involved in mindfulness-based pain relief are consistent with the 

postulated psychological expression/experience of mindfulness (i.e., greater sensory 

processing and parallel reductions in pain appraisal).

These findings have advanced our knowledge of the mechanisms supporting the stabilized 

psychological and neural changes associated with long-term meditation practice. Yet, the 

utility of meditation for treating pain remains limited because of the assumption that the 

benefits of meditation require lengthy training regimens.15, 27 Specifically, extensive class 

time requirements123 and overall length of meditation training regimens have been cited as 

leading barriers to the clinical utility of meditation interventions.124 Furthermore, the 

aforementioned studies employed cross-sectional and/or case control designs, consequently 

limiting their generalizability because of the wide spectrum of potential between-group 

differences (e.g., demographics, demand characteristics, and meditative tradition) that may 

exist.15 Thus, random assignment and longitudinal designs are encouraged for meditation-

focused studies.27 In light of these findings, we postulate that if the benefits of meditation 

can be elicited by brief mindfulness-based mental training regimens, then meditation may be 

more feasible to apply in clinical settings.

 Mindfulness meditation after brief training reduces pain through unique 

mechanisms

Recent studies from our laboratory have focused on disentangling the specific analgesic 

behavioral, neural, and pharmacologic mechanisms involved in mindfulness meditation–

related pain relief. In 2011, we examined the effects of mindfulness meditation in 15 healthy 

pain-free subjects after participation in a brief (four sessions; 20 min/session) mindfulness 

meditation–based intervention on experimentally induced (ten 12-s plateaus of 49 °C) pain, 

using arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI). ASL is a 

neuroimaging technique that provides a direct quantifiable measurement of global cerebral 
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blood flow, an important consideration for breathing-focused cognitive practices, such as 

meditation.21 During meditation training, subjects were instructed to close their eyes, sit 

with a straight posture and focus on the breath sensations, acknowledge distracting thoughts 

and feelings, and to simply let go of arising sensory events without judgment. Participants 

were taught that perceived sensory and affective events are momentary and fleeting and do 

not require further evaluation. In the first two meditation training sessions, subjects were 

instructed to focus on the breath sensations occurring at the tip of the nose and full flow of 

the breath. Meditation, after the four-session intervention, during noxious heat produced a 

mean 40% reduction in pain intensity and 57% reduction in pain unpleasantness ratings. 

Greater activation of the subgenual ACC (sgACC), OFC, and right anterior insula (Fig. 1) 

was associated with mindfulness meditation–based analgesia. The sgACC is critically 

involved in the cognitive and affective control of pain.83, 86, 99, 125, 126 The OFC has been 

implicated in altering the contextual evaluation of arising sensory events,127–130 and the 

right anterior insula is associated with the modulation of afferent nociceptive 

processing,74, 75, 80, 100, 131 and processing interoceptive awareness.132–134. We also found 

that mindfulness meditation–based pain relief was associated with greater bilateral thalamic 

deactivation (Fig. 1) 21. Thus, meditation may reduce pain by fine-tuning the amplification 

of nociceptive sensory events through top-down control processes,15, 21, 23 potentially 

reflected by the significant attenuation of SI activation corresponding to the stimulation site 

when subjects meditated during noxious heat when compared to rest (right leg).21 We 

postulated that mindfulness meditation attenuates pain through engagement of top-down 

(OFC to thalamus) inhibition of ascending nociceptive information.15, 20, 21, 23 Thus, the 

cognitive state of mindfulness meditation–based analgesia does not reduce pain through one 

avenue but rather multiple, unique neural mechanisms. Although this study employed a 

longitudinal design, a control group was not included. However, our follow-up studies 

addressed this caveat.20, 23

 Does mindfulness meditation engage mechanisms consistent with 

placebo analgesia?

While mindfulness meditation practice can improve health and well-being, the active 

mechanisms supporting mindfulness meditation have yet to be fully characterized. 

Importantly, a wide range of nonspecific placebo-related effects are likely involved during 

meditation training. Here, we define the placebo response as benefits or effects driven by 

nonspecific and/or inert dimensions of a drug, intervention, or manipulation. Nonspecific 

and potentially confounding variables, such as conditioning effects, psychosocial contexts, 

facilitator attention, intervention setting, body posture, and/or demand characteristics 

associated with the belief that one is practicing meditation,15, 27, 135 could mediate 

mindfulness meditation–related health improvements.136, 137 Randomized, placebo-

controlled studies are the gold-standard approach to identify the effectiveness and specific 

mechanisms supporting the modulation of pain by mindfulness meditation. Yet, placebo-

controlled meditation studies have been limited, which is problematic when considering that 

meditation is arguably highly susceptible to placebo-type effects.
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Some recent studies have successfully disentangled the processes by which meditation 

affects health. For example, Creswell and colleagues examined the behavioral and 

inflammatory stress markers (i.e., interleukin-6 (IL-6) and neural mechanisms related to 

participating in an intensive 3-day mindfulness meditation intervention compared to a 3-day 

health enhancement relaxation program in unemployed and clinically stressed adults.138 The 

researchers matched all aspects of the relaxation program to the meditation intervention, 

including sitting in silence, meals, stretching exercises, slow walking, facilitator interviews, 

and even the location of the intervention. Both groups reported significant differences in 

perceived stress. However, increases were shown in pre- to post-meditation intervention 

functional neural connectivity between a central node of the default fault mode network (i.e., 

posterior cingulate cortex (PCC) and the dorsolateral PFC (dlPFC), a brain region implicated 

in cognitive and affective control. Furthermore, the dlPFC–PCC connectivity mediated 

reductions in circulating IL-6 from baseline to the 4-month follow-up. In contrast, the 

relaxation intervention group exhibited mild increases in IL-6 after the intervention. These 

findings provide supplementary evidence that mindfulness meditation employs unique 

mechanisms to improve health in clinically relevant populations.

Another research group developed an active comparison intervention, referred to as a health 

enhancement program (HEP), to specifically isolate and control for the effects of 

MBSR.139–141 The HEP was postulated to control for facilitator allegiance, time spent 

providing instruction/therapy, social support, and other components related to participating 

in an MBSR program.139 Although the HEP and MBSR program were effective at reducing 

self-reports of anxiety, distress, hostility,139 and attentional stability,140 there were no 

significant differences between groups. However, the MBSR program was more effective at 

reducing inflammatory responses following social stress141 and experimentally-induced pain 

ratings.139 These studies demonstrated the unique health-promoting properties supporting 

mindfulness-based health promotion. However, the question arises as to whether it is 

possible that the benefits of meditation may simply be related to the belief that one is 

practicing mindfulness meditation.

A recent study23 examined whether mindfulness meditation–based pain relief engages 

neural mechanisms that are distinct from placebo analgesia and sham mindfulness 

meditation–related analgesia. Similar pain-evoking thermal stimulation paradigms and 

neuroimaging methods (ASL MRI) were employed as described previously.21 Seventy-five 

healthy, pain-free subjects were randomly assigned to one of four 4-session (20 min/session) 

regimens: (1) a brief mindfulness meditation intervention similar to an intervention 

described previously;21, 31, 36, 46, 142 (2) placebo conditioning; (3) sham mindfulness 

meditation; and (4) a book-listening intervention. Participants in the placebo-conditioning 

group were led to believe that the effects of an experimental form of lidocaine was being 

tested, in which the analgesic effects of the cream (placebo cream was petroleum jelly) 

progressively increase as a function of repeated applications. To enhance placebo 

conditioning, the stimulus temperatures delivered to the treated skin were covertly reduced, 

from 49 °C, in a progressive fashion across sessions (placebo conditioning session 1: 48 °C; 

sessions 2 and 3: 47 °C; session 4: 46.5 °C). The 49 °C stimulus was administered after 

applying/removing the placebo cream in the post-intervention MRI session to measure the 

efficacy of the placebo conditioning regimen. The sham mindfulness meditation intervention 
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was designed so that the only difference in training between the mindfulness and sham 

mindfulness meditation groups was the explicit mindfulness-based instructions (e.g., non-

judgmental attention to the breath) given to the mindfulness meditation group. Subjects were 

first informed that they were randomly assigned to the mindfulness meditation intervention. 

Across four 20-min sessions, participants were trained to take deep breaths “as we sit here in 

mindfulness meditation.” The control group listened to the Natural History of Selborne143 

across four sessions.

All cognitive manipulations (mindfulness meditation, placebo cream, sham mindfulness 

meditation) reduced pain intensity and unpleasantness ratings compared to the control 

group. Importantly, mindfulness meditation was significantly more effective at reducing pain 

than both placebo groups. Mindfulness meditation–based pain relief was associated with 

similar brain activation as in our previous neuroimaging study,21 including greater activation 

of the OFC, pregenual ACC (pgACC), and right anterior insula. Placebo-cream analgesia 

was associated with significant reductions in pain-related brain activation (posterior insula/

parietal operculum; secondary somatosensory cortices) and produced greater activation in 

the thalamus and PAG compared to mindfulness meditation. Interestingly, the main effects 

of mindfulness meditation and sham mindfulness meditation significantly overlapped in 

activation of the bilateral putamen, SI corresponding to the nose/mouth, and the dACC, 

suggesting that the two breathing-focused practices engage similar mechanisms (Fig. 2). 

However, the two techniques were associated with significantly distinct neural processes 

when the analyses were focused on the pain-related MRI series. In contrast to mindfulness 

meditation, sham mindfulness meditation produced greater activation in the thalamus and 

deactivation of the rostral ACC. Importantly, sham mindfulness meditation–related analgesia 

was associated with greater reductions in respiration rate, demonstrating a mechanistic 

difference between sham and mindfulness meditation. That is, mindfulness meditation–

related pain relief was associated with greater executive-level modulation of pain and, in 

contrast, sham mindfulness meditation–induced analgesia was driven by bottom-up 

processes consistent with placebo and relaxation.144

While the endogenous pain modulatory systems supporting mindfulness-based analgesia 

remain unknown, it is well established that the cognitive modulation of pain, including 

manipulations such as placebo89, 91–93, 105, 145, conditioned pain modulation,94 and 

attentional control,97 is partially dependent on descending pain control systems98, 146 and 

can be reversed by the opioid antagonist naloxone.90, 91, 97, 147 Interestingly, meditation 

reduces pain by engaging brain regions (sgACC, OFC, anterior insula) that contain high 

concentrations of opioid receptors.92, 111, 113, 148 On the other hand, mindfulness meditation 

also reduces activation in the PAG, a brain region involved in facilitating opioid-mediated 

descending pain inhibition.72, 149 Thus, a recent double-blind psychophysical study tested 

whether mindfulness meditation–based analgesia was mediated by endogenous opioids; 78 

healthy pain-free subjects were randomized to one of four 4-session intervention groups 

(meditation + naloxone, book-listening control + naloxone, meditation + saline, book-

listening control + saline) to determine if intravenous administration of high doses of 

naloxone would reverse meditation-induced analgesia. Surprisingly, it was found that, 

independent of naloxone or placebo-saline administration, meditation significantly reduced 

pain intensity and unpleasantness ratings compared to rest and the control groups (Fig. 3)20. 
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These findings provide supplementary evidence that mindfulness meditation engages 

mechanisms that are distinct from placebo to reduce pain and are of critical importance to 

the millions of chronic-pain patients seeking a fast-acting non-opioid pain therapy. 

Specifically, it was proposed that the combination of mindfulness-based and pharmacologic/

nonpharmacologic analgesic strategies may be particularly effective in the treatment of pain.

 Conclusion

Mindfulness meditation engages multiple unique brain mechanisms that attenuate the 

subjective experience of pain. Yet, analgesic mechanisms supporting mindfulness-based 

meditation change as a function of increasing meditative experience/training. While 

meditation after brief training (less than 1 week) produces significant reductions in pain 

intensity and unpleasantness ratings,20, 21, 23, 122, 142 long-term meditation does not produce 

changes/differences in pain intensity but rather influences the unpleasantness dimension of 

self-reported pain.17, 121, 122 This proposed change in the subjective experience is likely 

attributable to a shift in approach to meditating in the context of incoming sensory 

information between novice and adept practitioners. For instance, a shift in meta-awareness 

has been proposed,45 in which adept meditators can engage an invasive sensation (e.g., pain) 

without appraising/evaluating the event. It remains unclear how this shift changes as a 

function of greater practice.51, 52, 150 Nevertheless, it is not surprising that a decoupling 

between sensory and appraisal-related brain regions is exhibited in adept meditators in the 

presence of noxious stimulation.17, 18 In contrast, novice meditators engage more effortful 

reappraisal processes to reduce pain, and adept meditators employ no-appraisal mechanisms.

We propose that, at the early stages of training, mindfulness meditation alters the evaluation 

and meaning of pain as a function of self-referential processing. Subject testimonials from 

our previous studies20, 21, 23, 142 provide supplementary support for this hypothesis. Study 

subjects routinely stated that the experience of noxious heat stimulation during meditation 

was “shorter,” “softer,” and accompanied with “less dwelling” and a greater ability to “fully 

embrace the feeling of pain,” but to simply “let go” of the appraisal of what the pain meant 

to them. These reports are remarkably consistent with the mindfulness principles that were 

instilled during their meditation training. Neuroimaging data provide supplementary support 

for these experiences. Novice meditators recruit higher-order brain regions (OFC, sgACC, 

anterior insula) to downregulate ascending nociceptive input at the level of the thalamus 

through shifts in executive attention.21,23 Thus, meditation after brief mental training affects 

sensory and affective pain-related responses. The comprehensive modulation of both the 

intensity- and unpleasantness-related dimensions of pain is hypothetically facilitated through 

changes in executive attention. Activation of the OFC may facilitate inhibitory connections 

of the thalamic reticular nuclei (TRN) to further reduce the elaboration of nociceptive 

information throughout the cortex (evidenced by reductions in thalamic, PAG, and SI 

activation).21, 23 Thus, brief mental training in mindfulness meditation engages cortico–

thalamic–cortical interactions to reduce pain through mechanisms such as inhibitory 

control45 or reappraisal (or “re-perceiving”151) to essentially “close the gate” on ascending 

nociceptive information. In contrast, the neural mechanisms involved in long-term 

meditation practice are associated with significantly greater activation in somatosensory 

regions and deactivation of appraisal-related brain regions (vmPFC).17, 18 The decoupling 
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between the sensory experience and the meaning and/or contextualization of what the pain 

means to the self, in long-term meditation practitioners, provides evidence that the analgesic 

effects of meditation can be developed and enhanced through greater practice, a critical 

consideration for those seeking long-lasting narcotic-free pain relief.

When taking into consideration the current chronic pain152 and opioid epidemic,153, 154 the 

use of mind–body approaches, such as mindfulness meditation, may prove to be an 

important resource to teach patients to self-regulate their respective experience of pain 

directly with a present-centered and acceptance-based focus. Converging lines of evidence 

demonstrate that mindfulness meditation significantly attenuates pain across clinical and 

experimental settings. In contrast to other health outcomes, the health-promoting effects of 

meditation are most pronounced for pain and pain-related comorbidities, including opioid 

addiction and misuse,155–158 stress,37, 138 depression,159–161 and anxiety.31, 162, 163 Some 

recent studies of fibromyalgia22 and chronic low back pain54 patients who received 

mindfulness training also see a similar decoupling of sensory and affective pain, such that 

pain intensity or frequency does not necessarily decrease, but coping with the pain does 

improve. Furthermore, across almost all mindfulness/pain–focused experiments, the 

unpleasantness dimension of pain was significantly more attenuated with respect to pain 

intensity,16–21, 23, 121, 122 which is a critically important effect when considering the use of 

meditation for clinical pain. For instance, the experience of chronic pain is dramatically 

influenced by the context in which it occurs. One example of this comes from studies 

assessing pain in patients and in women giving birth.164 The pain of labor was rated as 

significantly higher on sensory aspects compared to the affective dimension. In contrast, 

cancer pain was rated significantly higher on pain unpleasantness than pain intensity.165 The 

suggestion here is that the contextual evaluation of welcoming a new baby into the world 

when compared to facing one’s own death has profound implications for what might have 

otherwise been very similar experiences. We suggest that mindfulness, in a similar, albeit 

less profound manner than giving birth or dying, also alters the meaning, interpretation, and 

appraisal of nociceptive information, an important consideration for producing stabilized 

and long-lasting improvements in chronic pain symptomology, and can potentially serve as a 

mechanism to buffer against the chronification of pain.
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Figure 1. 
Mindfulness meditation–based pain relief is associated with multiple brain mechanisms. 

Regression analyses corresponding to those in Zeidan et al.21 revealed that reductions in 

mindfulness meditation–induced pain intensity were associated with greater activation 

(depicted in red) in the right anterior insula and rostral aspects of the anterior cingulate 

cortex (ACC). Greater reductions in pain unpleasantness ratings were associated with greater 

activation of the orbitofrontal cortex (OFC) and thalamic deactivation (depicted in blue).
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Figure 2. 
The main effects of mindfulness meditation and sham mindfulness meditation involve 

similar neural processes. Mindfulness meditation and sham mindfulness meditation 

produced activation (red) in the bilateral putamen and primary somatosensory cortex (SI) 

corresponding to the nose/face regions and deactivation (blue) of the medial prefrontal 

cortex (mPFC) and precuneous/poster cingulate cortex (PCC). Mindfulness meditation also 

activated the right inferior frontal gyrus and produced deactivation of the bilateral thalamus. 

Conjunction analyses revealed significant overlapping activation in the bilateral putamen, SI 

representation of the nose/face, and deactivation of the PCC and mPFC.
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Figure 3. 
Psychophysical pain intensity (left graph) and unpleasantness (right graph) ratings (95% 

confidence intervals). Meditation during saline (meditation + saline) infusion significantly (P 
< 0.001) reduced pain intensity and unpleasantness ratings compared with rest and the 

control and saline (control + saline) group. Naloxone did not reverse meditation-induced 

pain relief. Meditation during naloxone administration (meditation + naloxone) significantly 

(P < 0.001) reduced pain intensity and unpleasantness ratings compared with rest, the 

control + saline group, and the control and naloxone (control + naloxone) groups. There 

were also no significant differences in pain intensity or unpleasantness ratings between the 

meditation + saline and the meditation + naloxone groups (P > 0.69).
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