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Abstract 

Social insects provide systems for studying epigenetic regulation of phenotypes, particularly 

with respect to differentiation of reproductive and worker castes, which typically arise from a 

common genetic background. The role of gene expression in caste specialization has been 

extensively studied, but the role of DNA methylation remains controversial. Here, we perform 

well-replicated, integrated analyses of DNA methylation and gene expression in brains of an ant 

(Formica exsecta) with distinct female castes using traditional approaches (tests of differential 

methylation) combined with a novel approach (analysis of co-expression and co-methylation 

networks). We found differences in expression and methylation profiles between workers and 

queens at different life stages, as well as some overlap between DNA methylation and 

expression at the functional level. Large portions of the transcriptome and methylome are 

organized into ‘modules’ of genes, some significantly associated with phenotypic traits of castes 

and developmental stages. Several gene co-expression modules are preserved in co-methylation 
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networks, consistent with possible regulation of caste-specific gene expression by DNA 

methylation. Surprisingly, brain co-expression modules were highly preserved when compared 

with a previous study that examined whole-body co-expression patterns in 16 ant species 

(Morandin et al. 2016), suggesting that these modules are evolutionarily conserved and for 

specific functions in various tissues. Altogether, these results suggest that DNA methylation 

participates in regulation of caste specialization and age-related physiological changes in social 

insects. 

 

Keywords 

Co-methylation network, co-expression network, ageing, phenotypic plasticity, caste 

 

Introduction 

DNA methylation is the most studied epigenetic mechanism and has been linked to variation in 

gene regulation in mammals (Maunakea et al., 2010; Shukla et al., 2011), plants (Ecker & Davis, 

1986; Zemach, Mcdaniel, Silva, & Zilberman, 2010; Zilberman, Coleman-Derr, Ballinger, & 

Henikoff, 2008), and insects (Bewick, Vogel, Moore, & Schmitz, 2017; Kucharski, Maleszka, 

Foret, & Maleszka, 2008; Li-Byarlay et al., 2013). DNA methylation regulates a wide range of 

cellular processes, such as development or disease (Jirtle & Skinner, 2007; Lister et al., 2009; 

Waterland & Jirtle, 2003; Wolffe & Matzke, 1999) and has been shown to affect processes such 

as gene expression (Keshet, Yisraeli, & Cedar, 1985; Tate & Bird, 1993), genomic imprinting (E. 

Li, Beard, & Jaenisch, 1993; Razin & Cedar, 1991), and transcriptional regulation (Eden & Cedar, 

1994; Schübeler, 2015). 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Biological characteristics, functions, localization, and even presence of DNA methylation vary 

greatly among taxonomic lineages (Colot & Rossignol, 1999). For example, in mammals, DNA 

methylation primarily occurs at CpG dinucleotides (Cheng & Blumenthal, 2008), with 60% to 

90% of all CpG sites methylated (Bird, 1986; Lister et al., 2009). DNA methylation is 

accomplished by DNA methyltransferase 3 (DNMT3) and persists due to the activity of the 

maintenance methyltransferase, DNMT1 (Cheng & Blumenthal, 2008; Goll & Bestor, 2005; Kim, 

Samaranayake, & Pradhan, 2009). In mammals, DNA methylation typically occurs in gene 

promoter regions, where it represses gene transcription (Bird & Wolffe, 1999; Suzuki & Bird, 

2008; Weber et al., 2007). In insect species with identified DNA methylation machinery, DNA 

methylation is predominantly found in coding regions and located in gene bodies of actively 

expressed genes (Bonasio et al., 2012; Feng et al., 2010; Lyko et al., 2010; Suzuki & Bird, 2008; 

Zemach et al., 2010). Gene body DNA methylation in insects correlates with alternative splicing 

and may modulate gene activities (Bonasio et al., 2012; Flores et al., 2012; Foret et al., 2012; 

Libbrecht, Oxley, Keller, Jan, & Kronauer, 2016; Lyko et al., 2010), or even affect gene function 

through nucleosome stability (Hunt, Glastad, Yi, & Goodisman, 2013a). This suggests that gene 

body DNA methylation may be involved in a wide range of biological processes, and that it may 

be involved in evolution of novel traits, through mechanisms such as genomic imprinting 

(Amarasinghe, Clayton, & Mallon, 2014). Furthermore, invertebrate genomes often display 

lower levels of DNA methylation than those of mammals or plants, ranging from 0% (the order 

Diptera) to 14% of all CpG sites (Asian cockroaches, Blattella asahinai) (Bewick et al., 2016). In 

the honey bee (Apis mellifera), a model species for social insect genomic analyses, less than 1% 

of CpG dinucleotides are methylated (Lyko et al., 2010). Furthermore, in some insect species 

(e.g. Aedes aegypti) no evidence of DNA methylation has been found. In these species, the 

responsible machinery (cytosine-5 DNA methyltransferases) is absent from their genomes 

(Falckenhayn et al., 2016; Standage, Berens, Glastad, & Severin, 2016). When present, DNA 

methylation in insects contributes to diverse processes, such as nutritional control of 

reproductive status (Kucharski et al., 2008), development (Lyko et al., 2010; Shi, Yan, & Huang, 
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2013; Yang, Guo, Zhao, Sun, & Hong, 2017), embryogenesis (Kay, Skowronski, & Hunt, 2017), 

alternative splicing (Bonasio et al., 2012; Flores et al., 2012; Foret et al., 2012; Li-Byarlay et al., 

2013; Libbrecht et al., 2016), host-parasite evolution (Vilcinskas, 2016), memory processing 

(Biergans, Jones, Treiber, Galizia, & Szyszka, 2012; Lockett, Helliwell, & Maleszka, 2010), age-

related changes in worker behavior (Herb et al., 2012), modulation of context-dependent gene 

expression (Wedd, Kucharski, & Maleszka, 2016), maternal care (Arsenault, Hunt, & Rehan, 

2018), and defense against territorial intrusion (Herb, Shook, Fields, & Robinson, 2018). 

Perhaps most dramatically, in social insects, DNA methylation has been proposed to control the 

developmental path taken by a totipotent egg to either a reproductive queen or a non-

reproductive worker (Herb et al., 2012; Kucharski et al., 2008; Yan, Bonasio, Simola, & Berger, 

2015). Despite a common genetic background, queen and worker castes acquire extensive 

behavioral, physiological and morphological differences, such as vast differences in lifespan, 

which can be on the order of decades (Page & Peng, 2001). Because epigenetic regulation has 

been proposed as a key mechanism in gene and environment interactions (Liu, Li, & Tollefsbol, 

2008), social insects provide an ideal model to investigate the function of DNA methylation on 

the development of alternative phenotypes (Lyko & Maleszka, 2011). 

  

Since its initial discovery in honey bees (Wang et al., 2007), the role of DNA methylation in 

regulating caste specification has been controversial. On one hand, many studies have reported 

DNA methylation differences between female castes [(honey bees: Elango, Hunt, Goodisman, & 

Yi, 2009; Foret et al., 2012; Kucharski et al., 2008; Lyko et al., 2010) (ants: Bonasio et al., 2012) 

(bumblebees: Amarasinghe et al., 2014) (termites: Glastad, Hunt, & Goodisman, 2012; Glastad, 

Gokhale, Liebig, & Goodisman, 2016)) and (non-social Jewel wasps, Nasonia vitripennis: Beeler 

et al., 2014), while others found no effect of DNA methylation on caste regulation (Libbrecht et 

al., 2016; Patalano et al., 2015). Several factors may explain these discrepancies. For instance, 

studies that failed to detect significant DNA methylation differences compared reproductive and 

non-reproductive individuals with similar morphology (Libbrecht et al., 2016; Patalano et al., 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

2015). Also, most previous studies did not employ appropriate replication, and those that did, 

failed to find significant differences between castes (Herb et al., 2012; Libbrecht et al., 2016; 

Patalano et al., 2015). Thus, it is still unclear whether the lack of biological replicates or the lack 

of distinct morphological castes explains the inconsistency among studies. Furthermore, only 

two previous studies have used whole-genome sequencing to investigate DNA methylation 

pattern differences between adult queen and worker brains in honey bees. Here again 

discrepancies arise. Lyko et al. (2010), with no technical or biological replicates, found around 

600 genes differentially methylated between castes, while Herb et al. (2012), with five 

replicates, found no significant differences in DNA methylation between irreversible workers 

and queens.   

 

Thus, to explore the role of DNA methylation on social insect caste and on individual traits 

important in social organization, a study employing a suitable number of biological replicates 

and a model system with clear caste differences was needed. To address this matter, we used 

the ant, Formica exsecta, to study changes in brain DNA methylation and gene expression 

associated with the two female castes. F. exsecta has morphologically differentiated castes, with 

queens living as long as 20 years, while workers have lifespans slightly over 1 year, including a 

winter hibernation (Pamilo, 1991). Thus, F. exsecta provides an extreme contrast in caste 

physiology and lifespan, especially during the adult stage. In a previous study of the F. exsecta 

transcriptome (Morandin et al., 2015), we found differential expression of DNA 

methyltransferase 3 (DNMT3, up-regulated in adult workers compared to queens), an enzyme 

responsible for establishing de novo DNA methylation patterns in mammalian genomes (Hata, 

Okano, Lei, & Li, 2002; Kato et al., 2007; Okano, Bell, Haber, & Li, 1999; Okano, Xie, & Li, 1998), 

which also affects caste development in honey bees (Kucharski et al., 2008). We hypothesized 

that DNA methylation states may differ between ant castes, either as a result of differential DNA 

methylation during larval development, or because of re-programming as adults. To test this 
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hypothesis, we sampled queens and workers at two adult developmental stages, soon after 

emergence from the cocoon and well after establishment in specific roles (foraging and social 

behavior vs. reproduction). We then tested predictions that (a) both DNA methylation and gene 

expression should differ between these stages; (b) if differences exist, expression and DNA 

methylation signals would show some level of correspondence; and (c) adults within a caste 

show persistent differences throughout life, suggesting an action of DNA methylation beyond 

larval development. While our experimental design cannot prove causality between DNA 

methylation and caste differentiation, it can show that caste-specific DNA methylation patterns 

have the potential to underpin differences in caste and adult development, hopefully spurring 

further functional investigation. 

 

Here, for the first time in social insects, we examined the relationships between networks of co-

expressed and co-methylated genes. Co-methylation networks were first used to describe 

relationships among methylation profiles (Busch et al., 2016; Eijk et al., 2012; Horvath et al., 

2012, 2016; Rickabaugh et al., 2015). Co-methylation analysis relies on the fact that adjacent 

CpG sites can be co-methylated due to locally coordinated activities of methyltransferases or 

demethylases. Weighted network methods (such as WGCNA) can be used on any high-

throughput, continuous, or semi-continuous datasets and preserves the continuous nature of 

co-methylation information (Langfelder & Horvath, 2008; B. Zhang & Horvath, 2005) by 

grouping highly correlated DNA methylation profiles into modules of genes. The overall DNA 

methylation level of genes clustered in a module can be represented by the module eigengene 

(Langfelder & Horvath, 2007; Langfelder, Mischel, & Horvath, 2013), which can later be 

correlated with several phenotypic traits. In addition, robust preservation statistics are also 

implemented in WGCNA and can be used to detect connections between modules of co-

expressed and co-methylated genes (Langfelder, Luo, Oldham, & Horvath, 2011).  
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Using DNA methylomes and expression profiling of individual queen and worker brains, we find 

a number of differentially methylated genes and CpG sites associated with either caste or 

developmental stages (newly emerged vs. old). In parallel, we find that the transcriptome and 

methylome can be partitioned into conserved modules of co-expressed and co-methylated 

genes, which are associated with caste and age-related physiological changes. Furthermore, 

some methylation modules are preserved in the gene expression data, consistent with a possible 

regulatory role of DNA methylation.  

  

Materials and Methods 

Sample collection and brain extractions 

All samples of F. exsecta were collected from colonies around the Tvärminne Zoological Station 

in the Hanko Peninsula, southwestern Finland, in the spring of 2013. Old adult queens and old 

adult workers were collected in April, when ants come to the colony surface for warmth, 

providing the only opportunity to easily collect egg-laying queens in the wild. The age of 

overwintered queens could not be controlled; however, they were all found in large mature 

colonies and were physogastric at the time of sampling (i.e., with greatly enlarged gasters due to 

egg production). At this time of year, all workers have overwintered once and are reaching the 

ends of their lives. Emerging queens were collected in June and emerging workers in July, right 

after they emerged from their cocoons. Samples were collected randomly from 19 colonies in 

close proximity, without bias toward specific ages or castes. After collection, samples were 

frozen immediately at -80 oC. Brains were dissected on ice and stored in 180 μL buffer ATL and 

20 μL proteinase K overnight (DNA, QIAamp DNA Micro Kit, Qiagen) or 350 μL buffer RLT (RNA, 

RNeasy Micro Kit, Qiagen) for further extractions.  
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Formica exsecta genome data 

Formica exsecta genome sequences and annotation (NCBI BioProject ID PRJNA393850 and 

BioSample: SAMN07344805) were obtained pre-publication from the authors (Dhaygude, Nair, 

Johansson, Wurm, & Sundström, 2018). In brief, the genome assembly consists of 14,617 contigs 

and scaffolds comprising a total of 278 Mb with an overall GC content of 36%.  Annotation of the 

genome reported 13,637 protein-coding genes, labeled FEX0000001 to FEX0013637.  

Functional annotation was not provided, and classification of gene models for this study was 

accomplished using BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul, Gish, Miller, Myers, & 

Lipman, 1990) and Blast2Go (www.blast2go.com/) (Conesa et al., 2005) searches, as described 

below. 

 

DNA methylation analysis 

DNA extraction, reduced representation bisulfite sequencing (RRBS) library preparation, 

and sequencing. RRBS was performed on 24 libraries from single ant brains (6 emerging 

queens, 5 old queens, 6 emerging workers, 7 old workers), representing biological replicates of 

each caste and developmental stage. Total DNA from each brain was extracted using a DNA 

micro kit (QIAGEN) and diluted in 20 μL of buffer AE (QIAGEN). Concentration and quality of 

extracted DNA was examined with an Agilent 2100 bioanalyzer (Agilent Technologies). 

 

Restriction enzyme digestion. DNA was digested with two enzymes (MspI and TaqI) prior to 

bisulfite conversion (Gu et al., 2011). The following procedure was carried out for each enzyme 

separately before combining samples at a later stage. First, 50 ng of DNA were mixed with 2 μL 

of 10 x T4 DNA ligase buffer, 1 μL unmethylated lambda DNA (0.45 ng/μL), 0.5 μL of the enzyme 

(20 U/μL), and distilled H2O up to 20 μL. The mixture was then incubated at 37 oC overnight. 
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Adaptor ligation. 1.25 μL of methylated adaptor (15 μM), 0.5 μL of 10 x T4 DNA ligase buffer, 1 

μL of T4 DNA ligase (2,000 U/μL), and 2.25 μL of distilled H2O were added to each mixture. 

Sequences of the methylated adaptors can be found in Table S1. The mixture was incubated at 4 

oC overnight. 

 

Size selection. Complete details of the size selection step can be found in Tan & Mikheyev  

(2016). In brief, in the first selection step, 100 μL of 13% PEG-6000/NaCl/Tris and 10 μL 

prepared Dynabeads were added to the mixture and resuspended. The mixture was incubated 

for 5 minutes and placed on a magnetic stand for 5 minutes. The supernatant (150 μL) was 

transferred to a new tube, and the beads were discarded. In the second selection step to select 

fragments between 200 and 400bp, 100 μL of 13.5 % PEG-6000/NaCl/Tris and 10 μL prepared 

Dynabeads were added to the supernatant and mixed. The mixture was incubated for 5 minutes 

followed by bead separation on a magnetic stand. This time, the supernatant was discarded, and 

the beads were collected. The beads were washed twice with 70% ethanol (with 10 mM Tris, pH 

6) and dried for 5 minutes. The tubes were then taken off the magnetic stand, and DNA was 

eluted from the beads by resuspending them in 15 μL EB.  

 

Bisulfite conversion. Unmethylated cytosines were converted to uracils using the Qiagen EpiTect 

Bisulfite Kit. The kit was used twice on each sample following the manufacturer’s instructions. 

Library amplification. Bisulfite libraries were synthesized with a limited number of PCR cycles 

(20). The 50 μL PCR reaction consisted of 5 μL of the bisulfite-converted genomic DNA from the 

previous step combined with 5 μL of 10 × Advantage 2 PCR buffer (Clontech), 1.25 μL of 10 mM 

dNTP mix, 2.5 uL of 5 μM Illumina primer, 1 μL of 50x Advantage 2 DNA Polymerase (Clontech) 

and 35.25 μL of distilled H2O. 50-μL PCR reactions were set up for each bisulfite-converted DNA 

sample.  PCR reactions were carried out under the following conditions: initial denaturation at 
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95 oC for 1 minute, with 20 cycles of denaturation at 98 oC for 10 seconds, 65 oC for 1 min, 

followed by final extension at 72 oC for 5 minutes. PCR products were purified by solid phase 

reversible immobilization using Dynabeads MyOne Carboxylic Acid (Invitrogen). We followed 

the above protocol using 14.5% PEG for purification. Prior to pooling, libraries were analyzed 

with a Bioanalyzer High-Sensitivity DNA Kit (Agilent Technologies). The quantity of the library 

was estimated using a Quant-iT PicoGreen dsDNA Assay Kit and libraries were pooled. 

Quantitative PCR (KAPA Biosystems) was used to estimate library concentrations. Pooled 

libraries were sequenced single-end for 50 cycles (1 x 50bp) on an Illumina Hiseq 2000 system 

at the Okinawa Institute of Science and Technology. Adaptors were removed from the raw 

reads. Subsequently the reads were parsed through quality filtration (Trimmomatic (Bolger, 

Lohse, & Usadel, 2014), options: MAXINFO:40:0.8  MINLEN:10). Read quality was inspected 

with FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw sequences 

were submitted to the DDBJ database (see Table S2 for the accession numbers), ranging from 

198 Mb to 802 Mb of total sequence data per sample.  Median trimmed read length for the 

samples ranged between 33 and 46 nucleotides. Mapping efficiencies (next section) ranged 

between 64.3% and 73.3%, with median 69.5% (Table S2).  To estimate the number of genomic 

cytosines accessible to mapping after the RRBS protocol of fragmentation and size selection, we 

compared whole genome mapping efficiencies with mapping efficiencies obtained against in 

silico fragmented genomes.  Results showed that mapping against fragments in the 50-440-bp 

range gave almost the same mapping efficiencies as for mapping against the whole genome.  

Based on this result, we estimate that about 11 million of the 24.5 million genomic CpGs were 

accessible with our RRBS protocol. 
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Computational processing of BS-seq data. Individual read samples were mapped to the 

Formica exsecta genome and DNA methylation calls were tallied using using Bismark (Krueger & 

Andrews, 2011) with the BWASP workflow (https://github.com/brendelgroup/BWASP), 

modified for RRBS data.  In brief, BWASP is a workflow-enabling wrapper for Bismark, a BS-seq 

analysis tools that executes read and mapping quality control and produces sets of highly-

supported DNA methylation (hsm) sites. hsm sites are a subset of sufficiently covered sites 

(scd), i.e. genomic cytosines covered by enough reads to assess statistically significant DNA 

methylation at that site. Requisite calculations are done in the BWASP Creport2Cxreport.py and 

Cxreport2hsm.py scripts. Based on an assumed bisulfite conversion accuracy of 99.5%, a 

binomial test is performed to determine whether the observed DNA methylation frequency at a 

given site can be rejected as a chance event (1% significance level, Bonferroni adjusted). scd 

sites are sites with sufficient coverage (here: 4 reads; Table S3) to allow detection of significant 

DNA methylation, and hsm positions are where significant DNA methylation occurs (e.g., 4/4 

DNA methylation calls). Overall levels of DNA methylation in CpG, CHG, and CHH sequence 

contexts were estimated from mapped reads with BWASPR, as well as mean CpG methylation 

levels of introns, exons, 5’ UTRs, 3’ UTRs and intergenic regions. We also calculated and 

reported per-gene CpG methylation levels for queens, workers, emerging, and old samples. 

Samples were compared only on the basis of sites that were covered in both samples when 

replicates were averaged. Analysis of these sets of sites was done with a set of R functions that 

are available in the BWASPR package (https://github.com/brendelgroup/BWASPR). A typical 

BWASPR workflow reads the specified mcalls files (produced by Bismark) and generates 

various output tables and plots, including differential DNA methylation analysis, as described 

briefly below. Entire workflows are reproducible on any Linux system, following installation of 

the packages. For convenience, we made all workflow documentation and scripts available on 

the bgRAMOSE virtual machine (VM) image on the Jetstream scientific cloud computing 

platform (https://jetstream-cloud.org). Users can deploy an example of this VM image and can 

follow instructions from /usr/local/share/bgRAMOSE/MBSHM2018/0README to recap all of 
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our DNA methylation analysis workflows with a few keystrokes. Bismark’s sam file output 

(mcall) was used as input to methylKit (Akalin et al., 2012) and data were imported using the 

function read.bismark. Differentially methylated CpG sites were determined with BWASPR 

using logistic regression implememted in Methylkit (Akalin et al., 2012) from calls using the 

functions methylKit:calculateDiffMeth() and getMethylDiff. For site-level analysis, we discarded 

CpG sites covered by fewer than 10 reads, and we considered sites differentially methylated if 

they showed 25% methylation differences and a qvalue of less than 0.01. pvalues were adjusted 

to qvalues to account for multiple testing using the SLIM method. At the gene level, differentially 

methylated gene lists for all four comparisons (OQ vs. OW; EQ vs.  EW; OQ vs. EQ; OW vs. EW) 

were compared among samples with the Wilcoxon paired ranked sign test, applied only to genes 

of at most 20 kb and with at least two differentially methylated sites (restrictions applied to 

focus on the genes with highest concentration of sites). 

 

Weighted correlation network analysis of DNA methylation. We employed weighted co-

methylation networks analysis using the R package WGCNA (version 1.61.86, (Langfelder & 

Horvath, 2008)) to find weighted signed co-methylated sets of genes (modules) associated with 

caste and/or developmental stages, an approach analogous to that employed for gene 

expression data. The goal of our network analysis was to 1) identify sets of co-methylated genes 

(modules), 2) calculate module eigengenes (i.e., representative values for each module), and 3) 

correlate module eigengenes with phenotypes of interest (caste and stage). WGCNA identifies 

modules of co-methylated genes starting at the level of DNA methylation and correlates these 

modules to phenotypic traits. The network is created purely by gene DNA methylation levels 

and does not require genes to be classified into binary categories (i.e., whether a gene is 

methylated or not), as is typical for gene-level differential DNA methylation tests. Thus, it 

overcomes the problem of multiple comparisons. The input dataset (Table S4) consisted of 

results from DNA methylation calls of 12,112 genes measured as the average percentage of CpG 

methylation per site per gene, restricted to sites with highly-supported methylation data (high 
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coverage, at least 10 reads). These proportional levels control for the number of restriction 

enzyme sites present on each gene, gene length, and quality of mapping to avoid any biases. 

WGCNA can be used on any high-throughput continuous or semi-continuous data, and can 

calculate correlations from proportional DNA methylation data without requiring normalization 

for gene length. Our dataset was first filtered to remove genes with too many missing values, 

following WGCNA cutoff threshold recommendations using the function goodSamplesGenes 

(Langfelder & Horvath, 2008). After considering a range of soft thresholding power (10 to 30), a 

power of 20 was chosen based on the criterion of approximate scale-free topology and R2. After 

calculating topological overlap values for all pairs of genes, a hierarchical clustering algorithm 

identifies modules of highly interconnected genes. To define modules of co-methylated genes, 

we used average linkage hierarchical clustering with the topological overlap-based dissimilarity 

measure. Subsequently, modules of highly co-methylated genes were merged using a cut-off 

value of 0.45. The minimum module size was set to 30 (Langfelder & Horvath, 2008). As detailed 

in Morandin et al. (2016), we next calculated average signed, normalized gene DNA methylation 

values (called an ‘eigengene’) to determine the relationship between modules and phenotypic 

traits (e.g., caste and developmental stage). The eigengene is defined as the first principal 

component of a module and represents the gene DNA methylation profile. For each module, the 

eigengene can be used to define a measure of module membership, which indicates how close a 

DNA methylation profile is to the module. A general linear model was then used to find the 

association between external phenotypic traits (caste and developmental stage, and their 

interaction) and modules’ eigengenes. The general linear model approach provides a convenient 

means of testing the correlation of multiple traits with module eigengenes using a single model-

relating eigengene of expression or DNA methylation modules to caste phenotype and stage. We 

used the glm function in R with 1000 bootstrap pseudoreplicates, with caste and stage as the 

explanatory variables and their interactions. p-values were FDR-corrected to account for 

multiple testing. 
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Gene expression analysis 

RNA extraction, cDNA synthesis, and library preparation. Four independent replicates for 

each caste (queen, worker) and developmental stage (emerging, old), using single brains, were 

used in this study. Total RNA from each brain was extracted using an RNeasy® micro kit 

(QIAGEN) and diluted in 14 μL of RNAse-free water. Concentrations and qualities of extracted 

RNA were examined with an Agilent 2100 bioanalyzer (Agilent Technologies). Total input RNA 

was standardized to 100 ng prior to cDNA synthesis. cDNA synthesis and library preparation 

were done following an in-house protocol (Aird et al., 2013). Libraries were analyzed with a 

Bioanalyzer High-Sensitivity DNA Kit (Agilent Technologies). Library quantities were estimated 

with a Quant-iT PicoGreen dsDNA Assay Kit and equimolar concentrations of libraries were 

pooled. Quantitative PCR (KAPA Biosystems) was used to estimate the concentration of the 

libraries. Pooled libraries were sequenced paired-end with an Illumina NextSeq High Output 2 x 

150 bp (400M PE reads) at the FuGU lab in Helsinki (Finland). 

  

Read mapping and differential expression analysis. Raw read quality was assessed with 

FastQC tools (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc), and adaptor sequences 

were removed using cutadapt (Martin, 2011). Raw reads were subsequently parsed through 

quality filtration (Trimmomatic (Bolger et al., 2014), options: MAXINFO:40:0.8  MINLEN:30), 

and aligned to the reference F. exsecta genome (BioProject ID PRJNA393850, Dhaygude et al., 

2018) using Tophat2 (Kim et al., 2013) and Cufflinks (Trapnell et al., 2012). The genome 

alignment output file was then used to reconstruct known transcripts using Cufflinks (Trapnell 

et al., 2012). The transcriptome alignment output file of cuffmerge was subsequently used to 

quantify expression levels of genes and transcripts using RSEM (Li & Dewey, 2011). The 

resulting expected counts were used in the differential gene expression analysis with the R 

Bioconductor package, EdgeR (Robinson, McCarthy, & Smyth, 2010). Reads generated from the 

24 samples were used as replicates, and comparisons were made across castes and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

developmental stages (OQ vs. OW; EQ vs.  EW; EQ vs. OQ; EW vs. OW). For all comparisons, we 

first filtered out transcripts with very low read counts by removing loci lower than 1 per 

kilobase of exons per million fragments mapped in at least half of the sequenced libraries, as 

recommended by EdgeR. TMM normalization was applied to account for compositional 

differences between libraries, and expression differences were considered significant at a false 

discovery rate of FDR < 0.05.  

  

Weighted correlation network analysis of expression. Weighted gene co-expression 

network analysis was conducted using the R package WGCNA, as for the co-methylation 

network detailed above. The input dataset consisted of a matrix with 16 libraries from either 

queens or workers from both developmental stages, and 13,041 gene expression levels (Table 

S5). Log-transformed FPKM values were used as input to avoid gene length biases, and as 

recommended by Langfelder & Horvath (2008), the same procedure as in the co-methylation 

network analysis was used to construct the co-expression network, with two exceptions. After 

considering a range of soft thresholding power (10 to 30), a power of 20 was chosen, based on 

the criterion of approximate scale-free topology and R2, and modules of highly co-expressed 

genes were merged using a cut-off value of 0.2 (Langfelder & Horvath, 2008).  

 

  

         Functional analysis and overlap between differentially methylated and 

differentially expressed genes 

The software Blast2GO (www.blast2go.com) was used to infer functional annotation of the F. exsecta 

gene set using structural similarity (BLASTx with an e-value cut-off ≤  10-3). The GOstat package for 

R (Beissbarth & Speed, 2004) was used to conduct GO term enrichment analysis on differentially 

expressed and differentially methylated gene sets, using all genes having GO terms as the 

universe. A similar procedure was used to conduct GO-term enrichment analysis on co-

expressed and co-methylated gene sets retrieved from WGCNA. Overlaps between differentially 
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expressed and differentially methylated gene lists were visualized using a Venn diagram 

(http://bioinformatics.psb.ugent.be/webtools/Venn/) and statistical analysis of the significance 

of overlaps between the two gene sets was calculated using the GeneOverlap BioConductor 

package (Shen & Sinai, 2016). 

  

Association between DNA methylation and expression at the network level 

To assess preservation of modules between the expression and DNA methylation networks, we 

used the network module preservation statistics Zsummary methods implemented in the R 

function modulePreservation in the WGCNA R package (Langfelder & Horvath, 2008; Langfelder 

et al., 2011). Network module preservation statistics assess whether the density (strength of 

interactions among genes in a module) and connectivity patterns of modules (for example 

hub/central genes) are preserved between two independent datasets. This method does not 

require that modules and genes be identified in the target network (only in the reference data 

set); therefore, it is independent of ambiguities associated with module identification 

(Langfelder et al., 2011). The Zsummary statistic result summarizes the evidence that network 

connections of the modules are significantly more preserved than connections of random sets of 

genes of equal size (Langfelder et al., 2011). We used the ‘modulePreservation’ function in the 

WGCNA R package (Langfelder & Horvath, 2008) that enables rigorous testing of module 

preservation with 100 permutations. This reproducibility method was used to estimate the 

relationship between modules obtained from our co-expression and co-methylation network. In 

addition, to understand the biological relevance and reproducibility of our analysis, we 

conducted the same module preservation statistics (Langfelder et al., 2011) between our co-

expression network modules and modules retrieved from a recent study of caste specialization 

across 16 ant species (Morandin et al., 2016). 

Detailed scripts can be found in https://github.com/oist/formica-methylation  under a MIT 

license. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Results 

      DNA methylation profiles 

Overall patterns: DNA methylation frequency was assessed in two ways. The overall level of 

DNA methylation in the mapped reads (e.g. as reported by Bismark (Krueger & Andrews, 2011) 

and referring to all DNA methylation calls made on all mapped reads) was found to be about 1% 

in all samples. The proportions of highly supported DNA methylated (hsm) CpGs in the 

respective sets of detectable (scd) sites were 2.93% for emerging queens, 1.63% for emerging 

workers, 1.71% for old queens and 1.95% for old workers (Table S6 and S7; Figures S1, S2). 

Hsm statistics/proportions allow us to establish whether DNA methylation is localized. These 

low DNA methylation levels are similar to previous observations for honeybees (0.1%, Lyko et 

al., 2010), the ants, Camponotus floridanus (0.3%, Bonasio et al., 2012), Harpegnathos saltator 

(0.2%, Bonasio et al. 2012), and Cerapachys biroi (2.1%, Libbrecht et al. 2016). Consistent with 

observations on other hymenopterans, cytosine DNA methylation was found almost exclusively 

in a CpG context (Table S8). Highly supported methylated DNA CpGs sites occur in all annotated 

genomic regions, but are observed at about 2.5-fold higher numbers in coding regions than 

expected by random distribution over all scd sites (Tables S9 and S10). DNA methylation was 

found mostly within genes (90.8% +/- 3.5%), and predominantly in exons (64.5% +/- 8%) 

(Figure 1, Tables S9 and S10).  There was a positive correlation between expression levels and 

the mean % DNA methylation per site, implying that highly expressed genes are more likely to 

be highly methylated (cor = 0.28, p < 0.001; Spearman's product-moment correlation, Figure 2). 

Results of the Wilcoxon rank-sum test showed that overall DNA methylation levels were 

significantly higher in queens compared to workers (p < 0.001), at both emerging and old 

stages. Emerging ants had higher overall DNA methylation than old ants among both queens and 

workers (p < 0.001 each; Wilcoxon signed rank test).  
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As a control for our experiments, lambda DNAs were included to rule out any issues with conversion 

efficiency differences between samples. Conversion rates were verified by mapping the BS-reads to 

the lambda genome. None of the samples show any conversion problems. For instance, for the 6 

emerging worker samples, the % of unmethylated C calls on lambda DNA by Bismark were between 

99.38% and 99.71%. Our sequencing depth was not sufficient to meaningfully assess and compare the 

DNA methylation status of replicates individually. Rather,  the statistical analysis relies on 

comparisons made between the replicated aggregate groups with safeguards against accidental 

reliance on a non-representative individual. 

 

Differentially methylated sites: Across castes, and after correcting for multiple testing, we found 

1,528 sites differentially methylated between old queens and old workers (869 up-methylated in old 

workers and 659 in old queens), and 1,620 differentially methylated sites between emerging queens 

and emerging workers (886 sites up-methylated in workers, and 734 in queens). Similarly, between 

developmental stages, we found 1,344 sites differentially methylated between emerging and old 

queens (692 sites up-methylated in emerging queens and 652 sites up-methylated in old queens). 

Likewise there were 1,894 sites differentially methylated between emerging and old workers (949 

sites up-methylated in emerging workers and 945 sites in old workers) (Table S11).  

 

Differentially methylated genes: At the gene level and across castes, these differentially 

methylated CpG sites resulted in 226 genes (1.7%) having at least two sites differentially 

methylated between old queens and old workers (118 genes up-methylated in queens and 108 

in workers), with no significant differences in the number of differentially methylated genes (p 

= 0.55, Fisher’s exact test). Between emerging queens and emerging workers, 264 genes (1.9%) 

were differentially methylated with 164 genes up-methylated in emerging queens and 100 

genes in emerging workers. Emerging queens up-methylated significantly more genes than 

emerging workers (p < 0.001, Fisher’s exact test, Figure S3). 75 genes were differentially 
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methylated between castes in both old and emerging stages, which is more than expected by 

chance (Figure S4, GeneOverlap R package, p < 0.001). Over half of those genes were caste-

biased in opposite directions across both developmental stages (41 genes, 55%). These results 

parallel expression patterns, suggesting that caste-biased genes are more specific to 

developmental stage than to caste. 

 

Across stages, 198 genes (1.5%) had at least two sites differentially methylated between 

emerging queens and old queens (105 sites up-methylated in emerging queens and 93 in old 

queens). No significant differences were found in the number of genes up-methylated in 

emerging and old queens (p = 0.43, Fisher’s exact test). And 300 genes (2.3%) had at least two 

sites differentially methylated in emerging and old workers (172 genes up-methylated in 

emerging and 128 in old workers). A significant difference was found in the number of genes 

up-methylated between emerging workers and old workers (p = 0.01, Fisher’s exact test, Figure 

S3). There were 66 genes in common among those differentially methylated between stages for 

queens and workers; however, this is not more than expected by chance (Figure S4, 

GeneOverlap R package, p = 0.2). However, half of those genes were over-methylated in 

different direction (35 genes, 53%). Blast annotations of the differentially methylated gene lists 

for all comparisons can be found in Table S12. 

 

Differential DNA methylation GO term annotation: The complete list of enriched GO terms can be 

found in Table S13, but here we summarize some of the most conspicuous findings. Between old 

queens and old workers, the queen up-methylated gene list included GO terms such as response 

to stress and DNA repair, whereas worker up-methylated genes were associated with oxoacid 

metabolic process and ncRNA metabolic process. Between emerging queens and emerging 

workers, the queen up-methylated gene list included GO terms similar to the old stage, such as 

DNA repair and ncRNA metabolic process. Worker gene list included GO terms such as cellular 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

response to DNA damage stimulus and positive regulation of catabolic processes. Across queens, 

old ants up-methylated genes that were related to GO terms such as ncRNA metabolic processes 

and DNA repair and methylation, whereas visual perception and eye morphogenesis were 

enriched in the emerging ant up-methylated gene set. Across workers, old ants up-methylated 

genes that were related to GO terms such as oxoacid metabolic processes and ATP metabolic 

processes. In contrast, RNA processing and DNA replication initiation were enriched for the 

emerging ant up-methylated gene set. Sets of GO terms associated with caste and/or 

developmental stage differences are consistent with hypothetical regulatory roles for 

differential DNA methylation (similar to previous studies (Foret et al., 2012; Kucharski et al., 

2008; Libbrecht et al., 2016; Lyko et al., 2010). 

 

      Expression profiles 

Overall patterns: We recovered 99 Gb of 100-bp paired-end reads from the 16 libraries. 

Following quality filtering, we realigned the reads to the F. exsecta genome, and on average a 

mapping rate of ~84% was obtained. A total of 10,874 genes were expressed, with over 1 count-

per-million in at least half of the samples (Robinson, McCarthy, & Smyth, 2010). 

  

Differential expression patterns: Among old queens and old workers, a total of 1,185 genes (8.7% 

of the total number of genes present in the genome) were differentially expressed, with queens 

up-regulating significantly more genes than workers (675 vs. 510, p < 0.001, Fisher’s exact test). 

Between emerging queens and emerging workers, a total of 416 genes (3.1%) were 

differentially expressed, with queens over-expressing more genes than workers (291 vs. 125, p 

< 0.001, Fisher’s exact test) (Figures S3, S5). We compared the list of genes differentially 

expressed between castes across old and emerging stages and found 164 genes overlapping. 

These genes are always differentially expressed between queens and workers regardless of the 

developmental stage (Figure S4, GeneOverlap R package, p < 0.001). However, many genes (48 
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genes, 29.3%) were caste-biased in opposite directions in different developmental stages, 

meaning that caste-biased genes tend to be specific to developmental stages. A similar pattern 

was also found in a previous study looking at caste-biased genes over several development 

stages in the same species (Morandin et al., 2015). 

 

Across stages, within the queen caste, a total of 892 genes (6.5% of all genes in the genome) 

were found differentially expressed between emerging and old ants, with no significant 

differences in the number of genes over-expressed (433 vs. 459, p = 0.4, Fisher’s exact test). 

Within the worker caste, a total of 1,568 genes (11.5%) were differentially expressed between 

emerging and old workers, with more genes up-expressed by the emerging workers (893 vs. 

675, p < 0.001, Fisher’s exact test, Figure S3, S5). We compared the genes differentially 

expressed between stages across queen and worker castes, and found 292 common genes. 

These genes are always differentially expressed between stages regardless of caste (Figure S4, 

GeneOverlap R package, p < 0.001). Many genes were consistently over-expressed by the same 

caste (269 genes, 92.1%) between developmental stages. Blast annotations of the differentially 

expressed gene lists for all comparisons can be found in Table S12.  

  

Differential expression GO term annotation: The complete list of enriched GO terms can be found 

in Table S13. Between old queens and old workers, GO terms enriched for oxidation-reduction 

process and hormone transport were associated with queens, and terms such as social behavior 

and multi-organism behavior were enriched for workers. Between emerging queens and 

emerging workers, GO terms such as oxidation-reduction process and response to hormone 

were associated with queens, and cellular response to stimulus for workers. Between old and 

emerging queens, old ants up-regulated genes for telomere organization and response to stress, 

while emerging ants up-regulated genes associated with GO terms such as oxidation-reduction 

process and regulation of TOR signaling. Comparing old and emerging workers, old ants 
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enhanced expression of gene for DNA recombination and sensory perception of smell, while 

emerging ants over-expressed genes associated with regulation of hormone levels and response 

to stimulus. 

  

Overlap between differentially expressed and differentially methylated genes 

To examine the hypothesis that expression and DNA methylation signals would show 

correspondence when looking at caste and developmental stage differences, we investigated 

whether list of differentially expressed and differentially methylated genes (all comparisons) 

might overlap at three different levels: genes and GO terms, in addition to network-based 

analyses described below. When comparing the lists of genes, very few were both differentially 

expressed and differentially methylated. We found 19 genes differentially expressed and 

differentially methylated between old queens and old workers, and 6 genes between emerging 

queens and emerging workers. We also found 8 genes that are both differentially expressed and 

differentially methylated between emerging and old queens, and 37 genes between emerging 

and old workers (Figure 3). The lists of genes differentially expressed and differentially 

methylated genes across the four comparisons did not overlap significantly for any comparisons 

(GeneOverlap R package, Old queens vs. workers (1185 vs. 226, p = 0.6); Emerging queens vs. 

workers (416 vs. 264,  p = 0.82); Emerging queens vs. old queens (892 vs. 198, p = 0.95); 

Emerging workers vs. old (1568 vs. 300, p = 0.35); Figure 3). We also examined whether the 

direction of up/down expression and DNA methylation (e.g. whether a gene that is more 

expressed in one caste is also more methylated in the same caste). Surprisingly the direction of 

overexpression/DNA methylation only matched in around half of the genes (Figure S6; OQ vs. 

OW: 9 genes out of 19; EQ vs. OQ: 4 genes out of 8; EW vs. OW: 15 out of 37), except in the case of 

emerging queens vs. emerging workers, where all genes (8), both differentially expressed and 

differentially methylated, were upregulated by the emerging queens. 
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Next, we investigated whether we could find a correspondence between expression and DNA 

methylation and gene function, looking at the overlap between lists of GO terms. Surprisingly, 

given the small number of genes, we found a significant overlap between lists of GO terms 

associated with genes differentially expressed and differentially methylated genes across the 

four comparisons (GeneOverlap R package, Old queens vs. workers (158 vs. 162, p < 0.001); 

Emerging queens vs. workers (51 vs. 243,  p < 0.001); Emerging queens vs. old queens (68 vs. 

137, p < 0.001); Emerging workers vs. old (136 vs. 264, p < 0.001); Figure 4 and Table S13). 

Despites possible limitations with GO terms analyses, which rely on orthology with distantly related 

references, they provide insights into biological processes possibly involved, beyond what can be 

gleaned from gene lists alone. 

 

     DNA methylation and expression modules correspond to castes and 

developmental stages 

We separately constructed co-expression and co-methylation networks from the expression and 

DNA methylation datasets using the Weighted Correlation Network Analysis approach (WGCNA 

(Langfelder & Horvath, 2008)). In the methylation dataset, 8,200 genes were retained for 

further analyses following the cleaning step. Due to low coverage, one old queen sample and 

three old worker samples were removed from the co-methylation network input dataset. A total 

of 6 emerging queens, 6 emerging workers, 4 old queens and 4 old workers were used for this 

analysis. A total of 348 genes were not co-methylated and were excluded from further analysis. 

A total of 20 co-methylated modules (labelled M1-M20) were identified, ranging in size from 56 

(M1) to 3,230 (M18) genes, with 393 genes per module on average. In the expression dataset, 

10,700 genes were retained after removing genes with too many missing values, and 6,570 

genes were subsequently assigned to one of the co-expression modules. A total of 4130 genes 

were not co-expressed and were consequently removed from further analysis. We identified 14 

co-expression modules (labeled E1-E14) with sizes ranging from 46 (E11) to 2,454 (E9) genes, 
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with an average of 469 genes per module. For both datasets, we calculated the module 

eigengenes which are defined as the first principal component of a module and are 

representative of gene expression or gene DNA methylation profiles in a module (Langfelder & 

Horvath, 2008). Afterward, we correlated these eigengenes with two phenotypic traits, i.e., caste and 

stage, using a glm approach. When the eigengene of a module is correlated with a trait of interest, it 

means that most/all genes in the module exhibit a significant correlation/association with the trait, and 

we can define which genes/modules are likely to underlie the phenotype via gene expression. For the 

methylation dataset, one of the modules was significantly correlated with one of the caste phenotypes 

(M2; Queen phenotype), and 11 of 20 modules were significantly correlated with stage 

(Emerging phenotype). For the expression dataset, 7 out of 14 modules were correlated with 

one of the two female castes (4 associated with the worker phenotype and 3 with the queen) 

and 9 modules were correlated with stage (5 with the old phenotype and 4 with the emerging). 

In addition, 3 methylation modules and 5 expression modules were significantly associated with 

the interaction of caste and stage phenotypes (Figure 5, Table 1). 

 

To gain insight into the biological relevance and functional significance of modules, we 

performed GO term enrichment analysis on the genes in each module (Tables S14 and S15). 

Here we summarize some of the main findings. In the methylation dataset, the module 

associated with the queen phenotype (M2) was correlated with gene expression and RNA 

metabolic processes. Modules associated with the emerging phenotype were correlated with 

gene expression (M3), response to pheromone (M7), ATP biosynthetic process (M8), RNA 

metabolic process (M11), mRNA transport (M12), oxidative phosphorylation (M14), nerve 

development (M15), regulation of RNA biosynthetic process (M16), social behavior (M17), 

developmental process (M18) and DNA repair (M19) (Table S15). In the expression dataset, 

queen-associated modules were related to detection of chemical stimulus involved in sensory 

perception of smell (E7), oxoacid metabolic process (E13) and oxidation-reduction process 
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(E14). Worker-associated modules were linked to social behavior (E1), TOR signaling (E2), 

response to stress (E3) and sensory perception (E5). Modules associated with stage in the 

expression dataset, were correlated with DNA recombination (E4), detection of chemical 

stimulus (E5), growth (E6), muscle contraction (E7) and development of the central nervous 

system in old adults (E8), while modules associated with the emerging phenotype were 

associated with biological functions such as response to growth factor (E11), regulation of cell 

death (E12), cell cycle (E13) and response to hormone (E14) (Table S15). As a precaution, it is 

worthy to note that GO terms associated with eye pigmentation (M14) were also enriched and 

could potentially be a sign of contamination. 

 

Preservation of co-expression sets of genes in DNA methylation data 

Next, we looked for evidence of preservation between the co-expression and co-methylation 

networks using the WGCNA R package. Values of “Zsummary below 2” indicate no evidence of 

preservation. Values between 2 and 5 indicate moderate evidence for preservation, while values 

over 5 indicate strong evidence of preservation. Although conservation of modules between co-

expression and co-methylation datasets was weak, four expression modules were conserved in 

the co-methylation data. Based on the preservation statistic Zsummary, we found that four co-

expression sets of genes (E1, E6, E9, and E10) exhibited moderate preservation within the co-

methylation network (Figure 6). The expression module E6 is correlated with the old 

phenotype, module E9 with the association of both phenotypes, and module E1 with the worker 

phenotype (Table S16). An online resource has been created to simplify visualization of module 

organization and the association between expression and DNA methylation networks (the 

website is available at https://mikheyev.github.io/formica-brain-expression-

methylation/). The online tool allows users to visualize caste and stage association for each 

module (Figure 5). Many of the modules belonging to the co-expression or co-methylation 

networks were correlated with either caste (inner band), or stage (outer bands).  
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 Preservation of co-expression sets of genes with a previous study 

Similarly, we looked for preservation between our brain co-expression network and our 

multiple species co-expression network published in an earlier study (Morandin et al., 2016). 

Based on the preservation statistic Zsummary, we found that 3 out of 36 of our 2016 co-

expression modules exhibited moderate preservation with our brain co-expression network. 

Additionally, 9 out of 14 brain co-expression modules in return exhibited moderate to strong 

preservation with the 2016 co-expression network (e.g. modules E1, E2, E3, E6, E8, E9, E10, E12 

and E13) (Figure S7, Table S17). This module preservation analysis confirmed that our modules 

are found in an independent data set.  

 

Discussion 

The goal of this study was to examine whether socially important phenotypic traits correlate 

with divergence in DNA methylation and expression. We found distinct transcriptional and 

methylation differences between castes within a developmental stage and different 

developmental stages within a caste. Furthermore, there was some evidence of overlap between 

methylation and gene expression states, but only at the functional level, that of biological 

processes gene ontology terms. More specifically, some modules in the co-expression data are 

preserved in co-methylation modules (retain similar network structure (genes) and network 

properties), though not vice versa. This is consistent with a role of DNA methylation as a 

proximate mechanism regulating gene expression, which is already known to affect caste 

specialization, as well as task specialization and ageing, in social insects (Kozeretska, Serga, 

Koliada, & Vaiserman, 2017; Yan et al., 2015), though further investigations are necessary to 

confirm this link. 
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Here we used individual brains to conduct the first reduced representation bisulfite sequencing 

study on social insects. RRBS brings down the scale and cost of whole genome bisulfite 

sequencing by only analyzing a representative portion of the genome. In vertebrates, this 

approach has been shown to capture around 85% of the CpG islands and 60% of promoters 

while requiring very little input material (Gu et al., 2011), and it permits more replicates per 

experiment while providing an efficient way to generate overall quantification of DNA 

methylation, and to apply powerful network-based analysis methods with individual-relevel 

replication. Nonetheless, it is important to note the limitations of RRBS. Because restriction 

enzymes digest DNA sequences at restriction sites randomly across the genome, many relevant 

methylated fragments in each sample are missed. Thus, these results encompass only a fraction 

of all methylated sites. As a result, global patterns are more easily captured compared to specific 

mechanisms. Furthermore, the size selection step associated with RRBS results in stochastically 

uneven coverage across samples, and large amounts of missing data. This must be carefully 

accounted for in the analysis, and it also makes per-site comparisons, and comparisons across 

more than two conditions problematic. In this analysis, after rigorously filtering sites based on 

coverage and quality, we conducted analyses aggregated at the gene level. Despite these 

limitations, RRBS produces data that are comparable across different experimental conditions, 

and can provide biological insights, given the right statistical approach. In particular, co-

methylation analysis overcomes some of the limitations introduced by data sparseness, as DNA 

methylation levels at nearby CpG-sites tend to be highly correlated. For instance, variation in DNA 

methylation across treatments has been showed to occur more frequently in aggregated CpGs (Jaffe, 

Feinberg, Irizarry, & Leek, 2012). Because co-methylation analysis leverages information from the 

entire data set to construct the network, sporadic missing sites do not significantly alter the overall 

data structure. Thus, this type of analysis is more powerful than those focusing on detecting single-site 

differences, and allows more sophisticated types of analyses, such as full-factorial designs with main 

effects and interaction terms (Table 1). 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Previous work proposed that social insect castes differ in DNA methylation states, which are 

established during caste differentiation that occurs during larval development (Bonasio et al., 

2012; Elango et al., 2009; Foret et al., 2012; Glastad et al., 2016; Kucharski et al., 2008; Lyko et 

al., 2010), though that view has been challenged (Herb et al., 2012; Libbrecht et al., 2016; 

Patalano et al., 2015). We tested this hypothesis, also expanding it to include changes in DNA 

methylation states that take place in the course of adult development and ageing. To do this we 

sampled queens and workers at different ages, and made comparisons both within castes across 

developmental categories, as well as between castes within the same age category, without 

maintaining that “old” and “emerging” are necessarily equivalent states for the two castes. 

Indeed, emerging and old ants were sampled a few weeks apart, and emerging queens are also 

unmated compared to old queens. Keeping in mind that age categories are difficult to 

standardize between castes, we found significant changes in DNA methylation and gene 

expression between these phenotypic endpoints, showing that DNA methylation differs 

between ant castes, as well as across the lifetime of the adult. The latter finding is particularly 

interesting since it suggests that caste differences due to DNA methylation may be dynamic, and 

not necessarily fully fixed during the developmental program when the castes differentiate. The 

same pattern holds true when comparing DNA methylation between castes over the two 

developmental stages, suggesting that age-related changes in DNA methylation differ between 

queens and workers at least at the adult stage. Developmental specificity of DNA methylation 

bias in general is certainly a promising direction for future research. Furthermore, we found 

some significant interaction terms in co-expression and co-methylation analysis, suggesting that 

gene expression and DNA methylation levels do not necessarily change in the same direction as 

a function of caste and adult developmental stage (Table 1).  This suggests that ants have a 

dynamic DNA methylation system that is active throughout their lives. Indeed, the overall 

positive relationship between gene body DNA methylation and expression (Figure 2), which is a 

hallmark of other insects, suggests that DNA methylation in ants largely functions in the same 

way as in other species. From this perspective, finding differences between castes and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

developmental stages, as we did in this study, is not surprising given the many ancient 

developmental and regulatory mechanisms coopted into caste differentiation (Robinson, 

Grozinger, & Whitfield, 2005). 

 

Patterns of DNA methylation. We found more overall DNA methylation in queens compared to 

workers, at both developmental stages, in contrast to previous findings that found a lower level 

of DNA methylation in queens during the larval stage (Shi et al., 2013), or even no differences in 

the adult stage (Lyko et al., 2010) in the honey bee. However, similar results were observed for 

the ant, Pogonomyrmex barbatus, in which virgin queens exhibited higher levels of DNA 

methylation compared to workers (Smith et al., 2012). Unfortunately, studies are still too few to 

draw any general patterns. Also, considering that Formica exsecta queens live ~20 years and the 

workers just over a year (Pamilo, 1991), if DNA methylation accumulated over time/ageing, we 

would expect to find large differences in overall DNA methylation between old queens and 

emerging queens, and more subtle differences between emerging and old workers. However, 

contrary to this hypothesis, we found the opposite pattern, with emerging ants showing more 

DNA methylation overall than old ants. The important role of DNA demethylation in diverse 

biological processes by regulating gene expression has been well documented in mammals 

(Richardson, 2003), but its exact role with gene body DNA methylation remains unclear. Further 

experimental studies of DNA demethylation in social insects (especially considering caste 

longevity and behavior differences) are needed to further understand how DNA demethylation 

is transduced into physiological changes over time in the two castes. 

 

Previous work has demonstrated the usefulness of network-based approaches for detecting 

links between expression and DNA methylation that could be missed by more commonly used 

approaches focused on comparing lists of differentially expressed and differentially methylated 

genes (Davies et al., 2012; Eijk et al., 2012; Horvath et al., 2012; J. Zhang & Huang, 2017). Our 
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results reveal that both the brain transcriptome and methylome can be organized into modules. 

All co-methylation and co-expression modules are significantly enriched with gene ontology 

categories (Table S14), thus providing additional evidence that these modules are biologically 

meaningful. For instance, co-expressed modules associated with castes were enriched for gene 

functions such as social behavior, TOR pathways and pheromone synthesis, while co-

methylation modules were enriched for core biological functions such as DNA repair. 

Interestingly, co-expression modules identified in this study in brain tissue were also conserved 

in whole-body transcriptional data from an earlier study (Figure S7), suggesting that similar 

gene regulatory processes act at both tissue-specific and whole-body levels. 

 

Conclusion. We propose that in addition to action on single genes or their isoforms, gene DNA 

methylation may be thought of in a network context, with co-methylation modules associated 

with specific phenotypes, e.g., caste and stage (Table 1). We hope that future work will focus on 

reconstructing ever more accurate co-methylation networks, which will require large numbers 

of replicates across different phenotypic states to fully understand the role of DNA methylation 

and how it interacts with gene co-expression to generate phenotypic novelty, as it has been 

done recently for gene co-expression networks (Morandin et al., 2016). Investigations of diverse 

taxa using similar methodologies would be particularly useful for identifying the extent to which 

DNA methylation is associated with caste or other phenotypic traits among social insects, and 

how it evolves.  
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Figure legends 

Figure 1  

Mapping of methylation sites on the genome annotation. Output was generated by 

BWASPR::map_methylome() and accounts for where CpGhsm and CpGscd (control) sites reside 

relative to the genome annotation, in every sample. a) All regions b) Exon regions. Cytosine DNA 

methylation was found almost exclusively in a CpG context. Highly supported DNA methylated 

CpGs sites are observed at ~2.5-fold higher numbers in coding regions than expected by 

random distribution over every scd site. 

 

Figure 2 

Scatter plot showing the correlation between expression level (FPKM) and average 

percentage of DNA methylation per site.  A positive correlation between expression and DNA 

methylation was found, implying that highly expressed genes are more likely to be highly 

methylated (cor = 0.28, p < 0.001; Spearman's product-moment correlation). This is the typical 

pattern found in insect genomes that rely on DNA methylation (Hunt, Glastad, Yi, & Goodisman, 

2013b; Xiang et al., 2010), providing a level of validation for these findings. 

 

Figure 3 

Venn diagram summarizing overlap between differentially expressed and differentially 

methylated genes between all comparisons at the gene level. No significant overlap was 

found at the gene level for any of the four comparisons. Statistical analysis of the significance of 

the overlap between the two gene sets was calculated using the GeneOverlap BioConductor 

package. 
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Figure 4  

Venn diagram summarizing overlap between GO terms of differentially expressed and 

differentially methylated genes between comparisons. Significant overlap was found at the 

GO term level for all comparisons. Statistical analysis of the significance of the overlap between 

the two gene sets was calculated using the GeneOverlap BioConductor package. 

 

Figure 5 

Visual representation of the link between co-expression and co-methylation modules.  

Many modules belonging to the co-expression and co-methylation networks were correlated 

with either caste (inner band), or stage (outer bands). Significant correlations with the queen 

caste and developmental maturity are highlighted in red, while worker and newly 

eclosed developmental stage correlations are highlighted in blue. Significant caste by 

developmental stage interactions are highlighted in purple. Although conservation of 

modules between co-expression and co-methylation datasets was generally weak, four 

expression modules (E1, E6, E9 and E10) were conserved in the co-methylation data. Their 

connections are highlighted in orange. 

 

Figure 6  

Preservation and association of co-expression and co-methylation modules using the 

Module preservation statistic, Zsummary, of WGCNA. a) preservation of expression modules 

in the methylation dataset b) preservation of methylation modules in the expression dataset. 

Values of Zsummary below 2 indicate no evidence of preservation; values between 2 and 5 

indicate moderate evidence for preservation; values above 5 strong evidence for preservation. 

Four co-expression modules (E1, E6, E9 and E10) were conserved in the co-methylation data. 
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Table legends 

Table 1  

Correlation between module eigengenes and biological traits (caste and stage, and 

caste/stage interactions). Expression and DNA methylation patterns of most modules are 

strongly associated with developmental stage phenotype. In addition, expression of several of 

these modules was also associated for both phenotypes and phenotype interactions. This shows 

that modules likely play multiple roles, and that their constituent genes have many functions. 

Caste/black: module associated with queen phenotype. Caste/grey: module associated with 

worker phenotype. Stage/black: module associated with old phenotype. Stage/grey: module 

associated with emerging phenotype. Caste x Stage/grey/black: module associated with both 

caste and stage. 

 

Supplementary figures 

Figure S1 

Histogram of CpG read coverage per cytosine for all aggregate samples of emerging 

queen, old queen, emerging worker, old worker. The range of coverage was restricted to the 

range [10-1000] for easy comparison.  Plots were generated with methylKit:getCoverageStats() 

as implemented in the BWASPR workflow. 

  

Figure S2 

Histogram of % DNA methylation per CpG site for all aggregate samples of emerging 

queens, old queens, emerging workers, old workers. The range of coverage was restricted to 

the range [10-1000] for easy comparison.  Plots were generated with 

methylKit:getMethylationStats() as implemented in the BWASPR workflow. 
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Figure S3 

Barplot showing the number of genes differentially expressed and differentially 

methylated across castes (Old queens (OQ) vs. old Workers (OW); Emerging queens (EQ) vs. 

Emerging Workers (EW)) and across stages (Emerging Queens (EQ) vs. Old Queens (OQ); 

Emerging Workers (EW) vs. Old Workers (OW)). A larger number of genes were found 

differentially expressed than differentially methylated. *p < 0.05, ** p < 0.01, *** p < 0.001 

 

Figure S4 

Venn diagram summarizing numbers of genes that are found always differentially 

expressed/methylated between castes regardless of the developmental stage (OQW vs. 

EQW) and genes that are always differentially expressed/methylated between 

developmental stages regardless of the caste (Queen vs. Worker). Three of the four 

comparisons presented a significant overlap, implying that a larger number of genes is 

consistently differentially expressed by caste or developmental stage than by chance. For 

methylation, a larger number of genes was consistently caste differentially methylated across 

stages than expected by chance. Statistical analysis of the significance of the overlaps between 

the two gene sets was calculated using the GeneOverlap BioConductor package. 

 

Figure S5 

Differentially expressed and differentially methylated genes across comparisons (Old 

queens vs. Old workers; Emerging queens vs. Emerging workers) visualized as ‘MA’ plots 

(log ratio versus abundance).  
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Figure S6 

Caste- and developmental stage- bias direction of the genes that were both differentially 

expressed and differentially methylated across all treatments (OQ vs. OW; EQ vs. EW; EQ 

vs. OQ; EW vs. OW). Only half of the genes that were over-expressed in one direction tended to 

be also over-expressed in the same direction, apart from the emerging queens vs. emerging 

workers comparison, where all eight genes were over-expressed and over-methylated in 

emerging queens. 

 

Figure S7 

Preservation and association of F. exsecta brain co-expression and 16 ant species co-

expression network published in an earlier study (Morandin et al. 2016) using the 

Module preservation statistic Zsummary of WGCNA. a) preservation of expression modules 

in the 2016 expression data b) preservation of expression modules in the 2016 expression data. 

Values of “Zsummary below 2” indicate no evidence of preservation. Values between 2 and 5 

indicate moderate evidence for preservation. Values above 5 demonstrate strong evidence for 

preservation. Three 2016 expression modules were preserved in the present study expression 

modules, while 9 expression modules from the present study were preserved in the 2016 

expression modules. 

 

Supplementary tables 

Table S1 

RRBS primer sequences. Sequences of RRBS primer used for the RRBS library preparation 

(see methods for more details). 
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Table S2 

Statistics of deposited RRBS and RNAseq samples. All methylation data were derived with 

the BWASP/BWASPR workflows.  Median length was determined with FastQC.  Mapping 

efficiency was determined with Bismark software, as implemented in BWASPR. All expression 

data were derived with the Tophat2, cufflinks and RSEM pipeline.  

 

Table S3 

Details of the analysis performed to find minimal coverage of sites required to potentially 

observe significant DNA methylation. Following this analysis, a cut-off of 4 reads was set as 

the threshold to detect sites with enough coverage (scd sites) to perform detection of significant 

DNA methylation.  

 

Table S4 

Dataframe used as input for the co-methylation network analysis with WGCNA. Each 

column represents one sample analyzed and each row represents the DNA methylation level of 

one gene across all samples. The input dataset consists of results from DNA methylation calls of 

the 12,112 genes measured, as the average percentage of DNA methylation per site per gene, 

restricted to sites with highly-supported DNA methylation data (high coverage, at least 10 

reads). These proportional levels control for the number of restriction enzyme sites present on 

each gene, gene length, and quality of mapping to avoid any biases. 
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Table S5 

Dataframe used as input for the co-expression network analysis with WGCNA. Each 

column represents one sample analyzed and each row represents the expression level of one 

gene across all samples. The input dataset consists of the expression level (raw counts) of the 

13,041 genes evaluated. Raw counts were log-transformed as recommended by Langfelder & 

Horvath (2008). 

 

Table S6 

Overall level of DNA methylation (percent reads reporting conversion or non-conversion) on 

all C, CpG sites, CHG sites and CpG sites for all biological samples (old queens, emerging queens, 

old workers, emerging workers).  

 

Table S7 

Number of CpG sites, CHG sites, CHH sites, for each biological sample (old queens, 

emerging queens, old workers, emerging workers). 

 

Table S8 

Per aggregate sample DNA methylation statistics. scd, sufficiently covered detectable sites, 

and hsm, highly supported methylated sites, were reported by the BWASPR workflow. The scd 

percentage refers to the proportion of genomic CpG that are scd. The hsm percentage refers to 

the proportion of scd that are hsm. The overall DNA methylation level refers to the proportion 

of Cs in all mapped reads that are called methylated, as determined by Bismark software as 

implemented in the BWASPR workflow.  
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Table S9 

Distribution of CpG (hsm) sites in genome feature regions for all biological samples (old 

queens, emerging queens, old workers, emerging workers). Cytosine DNA methylation was 

found almost exclusively in CpG contexts, as expected for insects. 

 

Table S10 

Distribution of CpG (hsm) sites in exon feature regions for all biological samples (old 

queens, emerging queens, old workers, emerging workers). Highly supported DNA methylated 

CpGs sites are observed at about 2.5-fold higher frequencies in coding regions than expected by 

random distribution over every scd site. 

 

Table S11 

List of differentially methylated sites as determined by methylKit::getMethylDiff with qvalue 

< 0.01. The list of differentially methylated CpG regions was based on q-values (0.01) and percent 

DNA methylation difference cutoffs (25%) for sites with coverage of at least 10 reads, for all four 

comparisons using for multiple testing correction. 

 

Table S12 

List of differentially expressed and differentially methylated genes for all four 

comparisons (OQ vs. OW; EQ vs.  EW, OQ vs. EQ; OW vs.  EW). Blast annotations for the 

genes are provided, as well as differential analysis results (EdgeR results for DEG and 

BWASP outputs for DMG). The software Blast2GO (www.blast2go.com) was used to infer 
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functional annotation of the F. exsecta gene set using structural similarity (BLASTx with an e-value 

cut-off ≤  10-3
).  

  

Table S13 

List of enriched GO terms for differentially expressed and differentially methylated genes 

found in all four comparisons. Gene ontology (GO) terms for all genes of the F. exsecta gene 

set were determined using BLAST2GO (using BLASTp with an e-value cut-off ≤10–3. We used the 

GOstats package in R to conduct GO term enrichment analysis on the list of differentially 

expressed/methylated genes presented in Table S12, using the set of all genes for which GO 

terms were available, as the universe. 

 

Table S14 

List of enriched GO term for each module found in the co-methylation and co-expression 

network. We used the GOstats package for R to conduct GO term enrichment analysis on gene 

sets included in the co-expression and co-methylation modules, using the set of all genes for 

which GO terms were available as the universe. Modules were enriched with gene ontology 

categories, which provides indirect evidence that these sets of co-expressed genes are 

biologically meaningful. 

 

Table S15 

List of blast annotations for all genes belonging to a co-methylation or a co-expression 

module. The software Blast2GO (www.blast2go.com) was used to infer functional annotation of the 

F. exsecta gene set using structural similarity (BLASTx with an e-value cut-off ≤  10-3
).  
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 Table S16 

Preservation between co-expression and co-methylation networks. Module preservation 

statistic Zsummary that summarizes evidence of preservation of expression modules in DNA 

methylation data, and preservation of DNA methylation modules in expression data. Values of 

Zsummary below 2 indicate no evidence of preservation; values between 2 and 5 indicate 

moderate evidence for preservation; values above 5 strong evidence for preservation. Four co-

expression modules (E1, E6, E9, and E10) were conserved in the co-methylation data. 

 

Table S17 

Preservation between the brain co-expression network and the co-expression network 

from Morandin et al. (2016). The module preservation statistic, Zsummary, that summarizes 

evidence of preservation of expression modules in our 2016 study (Morandin et al. 2016), and 

vice versa. Values of Zsummary below 2 indicate no evidence of preservation. Values between 2 

and 5 indicate moderate evidence for preservation. Values above 5 strong evidence for 

preservation. Three 2016 expression modules were preserved in the present study expression 

modules, while 9 expression modules from the present study were preserved in the 2016 

expression modules. 

 

Table S18 

List of genes defined as hub genes for co-expression and co-methylation networks (High 

connectivity ((cor.geneModuleMembership > 0.8) and high gene significance 

(cor.geneTraitSignificance > 0.5)). Hub genes are genes that are highly connected within a 

module, and that participate in biological processes associated with the modules (He & Zhang, 

2006; Langfelder & Horvath, 2008; Langfelder et al., 2013). 
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Table S19 

Expression and DNA methylation profiles of the ten hub genes belonging to module E6 

(correlated with stage, the interaction of caste x stage, and is preserved across the co-

methylation modules). Two of the ten hub genes were also found differentially expressed across 

caste (OQ vs. OW) and across stages (OQ vs. EQ).  
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a) Methylation 

network 

             

               

 

Caste 

 

Stage 

 

Caste * Stage 

 

CI pvalue FDR  pvalue 

 

CI pvalue FDR  pvalue 

 

CI pvalue FDR  pvalue 

M1  - 1.04  - 0.0011 0.041 0.112 

 

 - 1.03 0.016 0.175 0.318 

 

0.004 1.069 0.061 0.153 

M2  - 1.037  - 0.0119 0.011 0.044 

 

 - 1.02 0.02 0.216 0.36 

 

 - 0.031 1.015 0.284 0.437 

M3  - 0.009 1.053 0.148 0.278 

 

0.017 0.104 0.009 0.042 

 

 - 1.066 0.01  0.109 0.234 

M4  - 0.051 0.047 0.937 0.937 

 

 - 0.016 0.078 0.146 0.278 

 

 - 0.031 0.97  0.302 0.453 

M5  - 0.024 0.093 0.696 0.743 

 

0.007 0.194 0.018 0.068 

 

 - 0.064 0.742 0.513 0.669 

M6  - 0.031 0.02 0.696 0.743 

 

0.002 0.788 0.039 0.111 

 

 - 0.775 0.009 0.099 0.227 

M7  - 0.026 1.048 0.124 0.257 

 

0.029 0.218 0.005 0.025 

 

 - 1.075 0.0073 0.067 0.161 

M8  - 0.015 0.043 0.242 0.392 

 

0.017 0.121 0 < 0.001 

 

 - 0.062 0.659 0.574 0.68 

M9  - 0.991 0.038 0.356 0.521 

 

 - 0.973 0.137 0.572 0.68 

 

 - 0.132 0.98 0.548 0.68 

M10  - 1.038 0.039 0.437 0.6  

 

 - 0.992 0.113 0.531 0.678 

 

 - 0.084 1.024 0.5  0.667 

M11  - 0.051 0.074 0.489 0.667 

 

0.025 0.712 0 < 0.001 

 

 - 0.673  - 0.008 0.026 0.085 

M12 0.011 0.997 0.029 0.087 

 

0.031 0.361 0.002 0.011 

 

 - 1.01  - 0.032 0.011 0.044 

M13  - 0.079 0.044 0.882 0.897 

 

0.001 0.408 0.046 0.12 

 

 - 0.178 0.506 0.707 0.743 

M14  - 0.099 0.0522 0.193 0.333 

 

 - 0.03 0.919 0 < 0.001 

 

 - 0.845  - 0.007 0.026 0.085 

M15  - 0.091 0.033 0.685 0.743 

 

0.018 0.404 0 < 0.001 

 

 - 0.159 0.56 0.578 0.68 

M16  - 0.052 0.048 0.387 0.553 

 

0.051 0.793 0 < 0.001 

 

 - 0.768  - 0.03  0.002 0.011 

M17  - 0.034 0.03 0.606 0.699 

 

0.029 0.403 0 < 0.001 

 

 - 0.193 0.542 0.709 0.743 

M18  - 0.059 0.09  0.261 0.412 

 

0.032 1.066 0 < 0.001 

 

  - 1.032 0.011 0.102 0.227 

M19 0.008 0.977 0.027 0.085 

 

0.016 1.943 0.002 0.011 

 

 - 0.984  - 0.039 0 < 0.001 

M20  - 0.0124 1.051 0.194 0.333 

 

 - 0.038 0.089 0.718 0.743 

 

 - 1.059 0.013 0.141 0.278 
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b) Expression 

network 

             

               

 

Caste 

 

Stage 

 

Caste * Stage 

 

CI pvalue FDR  pvalue 

 

CI pvalue FDR  pvalue 

 

CI pvalue FDR  pvalue 

E1 0.06   1.029 0 < 0.001 

 

 - 0.095   - 0.003 0.035 0.061 

 

 - 0.964   0.055 0.252 0.33 

E2 0.057   0.981 0 < 0.001 

 

 - 0.11   - 0.003 0.04 0.067 

 

 - 0.863   0.128 0.37 0.457 

E3 0.305   0.585 0 < 0.001 

 

 - 0.135   0.123 0.57 0.614 

 

 - 0.86   - 0.114 0 < 0.001 

E4  - 0.159   0.513 0.15 0.21 

 

 - 0.445   - 0.078 0 < 0.001 

 

 - 0.502   0.25 0.24 0.325 

E5 0.007   0.932 0 < 0.001 

 

 - 0.294   - 0.097 0 < 0.001 

 

 - 0.809   0.135 0.45 0.54 

E6  - 0.949   0.053 0.13 0.188 

 

 - 1.047   - 0.065 0 < 0.001 

 

0.032   1.017 0.01 0.02 

E7  - 0.827   - 0.151 0 < 0.001 

 

 - 0.998   - 0.384 0 < 0.001 

 

0.255   0.927 0 < 0.001 

E8  - 0.885   0.01 0.33  0.42 

 

 - 1.041  - 0.138 0 < 0.001 

 

 - 0.04   0.943 0.1 0.156 

E9  - 0.463   0.058 0.13 0.188 

 

 - 0.28   0.24 1 1 

 

0.11   0.948 0 < 0.001 

E10  - 0.011   0.49 0.06 0.1 

 

 - 0.223   0.228 0.57 0.614 

 

0.024   0.646 0.03 0.055 

E11 0.002   0.244 0.03 0.055 

 

0.327   0.701 0 < 0.001 

 

 - 0.311   0.148 0.71 0.727 

E12  - 0.069   0.242 0.51 0.591 

 

0.088   1.038 0 < 0.001 

 

 - 0.903   0.179 0.521 0.591 

E13  - 0.658  - 0.183 0 < 0.001 

 

0.067   0.459 0 < 0.001 

 

0.074   0.583 0 < 0.001 

E14  - 0.558   - 0.122 0 < 0.001 

 

0.026   0.401 0 < 0.001 

 

 - 0.356   0.218 0.7  0.727 
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