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SUMMARY
Purpose—To test the efficacy of the novel candidate anticonvulsant talampanel (GYKI 53773) in
a rodent model of hypoxic neonatal seizures. Talampanel is a noncompetitive antagonist of the alpha-
amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid subtype of the glutamate receptor
(AMPAR). We have previously shown that AMPARs play a critical role in the generation of acute
seizures and later-life seizure susceptibility in this model of neonatal seizures.

Methods—Seizures were induced in postnatal day (P) 10 Long-Evans rat pups by a 15 min exposure
to global hypoxia. Acute seizure activity at P10 and subsequent susceptibility to seizure-induced
neuronal injury with a “second-hit” kainite-induced seizure at P30–31 were compared between
animals receiving talampanel (1, 5, 7.5, or 10 mg/kg) intraperitoneal (i.p.) versus saline vehicle
treatment.

Results—Talampanel treatment suppressed seizures in a dose-dependent manner, with maximal
effect at 7.5 and 10 mg/kg. In addition, talampanel treatment 30 min before hypoxia prevented later-
life increases in seizure-induced neuronal injury as assessed by in situ DNA nick end-labeling.

Discussion—We have previously demonstrated efficacy of other AMPAR antagonists such as
NBQX and topiramate in this model. The present finding shows that the novel agent talampanel,
under revaluation as an antiepileptic drug in children and adults, may have clinical potential in the
treatment of neonatal seizures, particularly those occurring in the context of hypoxic encephalopathy.
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Hypoxic encephalopathy is a major cause of neonatal seizures, and can lead to long-term
neurologic deficits and epilepsy. The neonatal period has the highest incidence of seizures
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across the lifespan at 1.8 to 3.5 per 1,000 live births (Hauser & Kurland, 1975; Cowan, 2002;
Cowan et al., 2003). The most common cause of neonatal seizures is hypoxic/ischemic
encephalopathy (HIE), which occurs during approximately 1–2 per 1,000 live births (Lanska
et al., 1995; Ronen et al., 1999; Saliba et al., 1999). Clinical evidence suggests that seizure
activity in the setting of HIE may enhance stroke size as evidenced by more exaggerated
changes in magnetic resonance spectroscopy (MRS) compared to infants without seizures
(Wirrell et al., 2001; Miller et al., 2005). In addition, HIE is associated with a risk of long-term
morbidity, including cognitive disorders and epilepsy (Bergamasco et al., 1984; Volpe,
2001; Miller et al., 2005; Scher, 2006). Notably, HIE-related neonatal seizures are often
refractory to antiepileptic drug (AED) therapy (Painter et al., 1999; Painter & Alvin, 2001;
Sankar & Painter, 2005). The mainstay of treatment remains phenobarbital, benzodiazepines,
and phenytoin, and this practice has not changed significantly in the last 60 years, despite little
evidence that these drugs are effective in neonatal seizures (Sankar & Painter, 2005).

To date, there have been no new drugs that have been proven effective in clinical trials for
suppression of neonatal seizures. We have previously developed a model of hypoxia-induced
seizures in the immature rat, in which hypoxia induces early refractory seizures as well as long-
term effects, including spontaneous seizures and increased susceptibility to seizure-induced
neuronal injury in later life (Jensen et al., 1991). In this model, activation of the alpha-amino-3-
hydroxy-5-methyl-4-isoxazole-propionic acid subtype of the glutamate receptor (AMPAR) is
a critical factor in the epileptogenic effect of hypoxia (Sanchez et al., 2001, 2005). AMPAR
antagonists such as NBQX and topiramate effectively suppress the acute and long- term
epileptogenic effects of hypoxia in the perinatal rodent (Jensen et al., 1995; Koh & Jensen,
2001; Koh et al., 2004). We have shown that AMPARs are over- expressed on cortical neurons
in the neonatal rat and term human, when the susceptibility to hypoxic seizures is highest
(Talos et al., 2006a,b). In addition, the AMPAR antagonists topiramate and NBQX do not
cause an increase in constitutive apoptotic neuronal death in the immature brain, unlike some
conventional AEDs (phenobarbital, phenytoin, diazepam, and valproate), suggesting a better
safety profile for use in the neonatal population (Silverstein & Jensen, 2007). Current obstacles
to clinical trial development of AMPAR antagonists in the neonatal population include the fact
that NBQX is not being developed for clinical use and topiramate is not available in parenteral
form. Experimental and human tissue studies suggest that the AMPAR plays a critical role in
the generation of neonatal seizures (Talos et al., 2006a,b; Silverstein & Jensen, 2007). Recently,
more specific AMPAR antagonists have been investigated for clinical use, and include the
novel noncompetitive AMPAR antagonist talampanel (GYKI-53773), which has been shown
to be anticonvulsant in experimental models of seizures in the adult brain (Belayev et al.,
2001; Jakus et al., 2004). Clinical trials in adults show anticonvulsant efficacy as monotherapy
in refractory epilepsy (Langan et al., 2003) and as an add-on for therapy for partial complex
seizures (Chappell et al., 2002; Howes & Bell, 2007). Given that talampanel has demonstrated
efficacy in adult epilepsy trials, we aimed to examine its potential efficacy for neonatal seizures.
As a first step to gather preclinical evidence and to further define a specific role for AMPAR
in epileptogenesis in the developing brain, we examined the efficacy of talampanel in a rodent
model of neonatal hypoxia-induced seizures.

Materials and Methods
Animals

Seizures were induced in Long-Evans male rats at postnatal (P) day 10. Each litter was divided
into three groups: control, hypoxic seizures with vehicle treatment, and hypoxic seizures with
talampanel treatment. Animals were maintained in a 12-h light/dark cycle. Pups were returned
to their dam following induction of hypoxic seizures or sham, and adult female rats were housed
with their pups in cages until pups were weaned at P21. All procedures were undertaken in
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accordance with the guidelines of the animal care and use committee at Children’s Hospital,
Boston.

Hypoxia-induced seizures
Long-Evans male rats at postnatal P10 were exposed to global hypoxia for 15 min in an airtight
chamber. As per our previously published methods, the oxygen concentration was gradually
decreased to 7% for 8 min, 5% for 6 min, and 4% for the final minute (Jensen et al., 1991; Koh
et al., 2004). During hypoxia, seizures were video- taped to record seizure activity. The tapes
were scored by an investigator, who was blinded to treatment condition for the number of
tonic–clonic head and limb movements and cumulative seizure duration during hypoxia. The
talampanel/hypoxia group received talampanel by intraperitoneal (i.p.) injection at a dose of
1, 5, 7.5, or 10 mg/kg. Talampanel or vehicle [dimethyl sulfoxide (DMSO) in 0.5% methyl
cellulose] was administered 30 min before hypoxia. Litter mate control pups were kept at room
air, and the body temperature of all pups were maintained at 32°–34° on a warming blanket.
The number of seizure episodes during hypoxia was compared by a one-way analysis of
variance (ANOVA).

Kainate-induced seizures
Following induction of hypoxic seizures, animals were permitted to survive until P30–31, when
they underwent a “second-hit” challenge of kainate-induced status epilepticus (10 mg/kg i.p.).
Seizure activity and severity was recorded over a 3-h period, and latency to seizure onset and
maximal severity was determined per our previously described modified Racine scale from 0
to V as follows: 0, no response; I, wet-dog shake and/or behavioral arrest; II, wet-dog shake,
staring, pawing, clonic jerks, rearing falling; IV continuous grade III seizures for >30 min; and
V, death (Koh et al., 2004). P30–31 rats with prior hypoxic seizures at P10 were compared to
their age-matched normoxic littermates. On the basis of our prior studies, we have found that
this dose of kainate results in 100% of animals reaching grade IV on this modified Racine
scale.

DNA fragmentation by in situ end-labeling histochemistry
We compared neuronal death in hippocampus (areas CA1 and CA3) and amygdala in rats
permitted to survive 72-h postkainate-induced seizures. As per our previous studies, neuronal
injury was assessed by ISEL staining (Koh & Jensen, 2001; Koh et al., 2004). At 72 h after
kainate-induced seizures, rats were killed and then perfused transcardially with 4%
paraformaldehyde. Normoxic littermates were also sacrificed at the same age. Each brain was
removed, postfixed, cryoprotected in 20% sucrose overnight, and mounted onto a freezing
microtome. Three 50-μm–thick coronal sections/per rat at stereotactically identical locations
between rats were processed for in situ nick translation using a modification of the protocol
developed by Wijsman et al. (Wijsman et al., 1993; Koh et al., 2004). To quantify DNA
fragmentation, counts of positively stained cells were compared at a final magnification of
×100. Positively stained cells were counted using a grid reticule over areas CA1, CA3, and the
amygdala and the values were compared by a one-way ANOVA. Similar to Koh et al.
(2004), counts were made by averaging three fields (4.16 mm2 per region × 3 = 12.5 mm2

total): both left and right hippocampi in CA1, CA3 (−3.0 to −3.3 mm from Bregma and 0–3
mm lateral to midline), and basolateral/basomedial amygdaloid nucleus (−3.0 to −3.3 mm from
Bregma and 3–6 mm lateral to midline) on three coronal sections per animal (Paxinos &
Watson, 1986) A total of 126 sections from 42 animals were analyzed (three sections per rat
and two hippocampi per section).
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Assessment of cell death after talampanel administration to normal P10 rats
Because a number of AEDs have been shown to acutely increase constitutive apoptosis in the
developing rodent brain following single dosing, we examined whether the optimal dose of
talampanel would cause cell death when administered at P10. Normal P10 Long-Evans rats
were given one dose of talampanel (i.p.) at 7.5 mg/kg and were sacrificed 24 h after the
injection, as described previously (Bittigau et al., 2002). Briefly, each brain was dissected,
postfixed, cryoprotected in 20% sucrose overnight, and mounted onto a freezing microtome,
and processed for in situ end-labeling as described previously. Counts (cells/12.5 mm2) were
made by counting total number of ISEL- positive cells in coronal sections at −2.0 to −2.6 mm
from Bregma (Sherwood & Timiras, 1970). Total section counts of talampanel versus vehicle
injection were compared with Student’s t test.

Results
Talampanel suppresses hypoxia-induced seizures

Acute hypoxia-induced seizures were suppressed by talampanel in a dose-related manner
within the range of administration from 1–10 mg/kg. Similar to our previously published
reports, vehicle-treated rats responded initially to hypoxia with myoclonic jerks, followed by
the onset of tonic–clonic head and trunk movement (Jensen et al., 1991; Koh & Jensen,
2001; Koh et al., 2004). To determine treatment efficacy, we compared the number or episodes
of tonic–clonic seizures between groups. Compared to vehicle-treated animals, the
anticonvulsant activity of talampanel was maximal at 7.5 and 10 mg/kg, where seizures were
blocked 74.6% at 10 mg/kg (25.4 ± 7.3, n = 17; p < 0.001) and 86.7% at 7.5 mg/kg (13.4 ±
3.2, n = 17; p < 0.001) (Fig. 1). The effect on time spent in tonic–clonic seizure activity was
less at the lower doses of 1 mg/kg (52.6 ± 11.3, n = 7; p = 0.056) and 5 mg/kg (44.28 ± 10.4,
n = 17; p = 0.002). There was no difference between groups in the number of myoclonic jerks
exhibited during hypoxia. Using the data from all the doses, linear regression analysis of the
percentage inhibition of tonic–clonic seizure activity yielded a median effective dose (ED50)
of 0.57 mg/kg (SigmaPlot 9.0) (Fig. S1).

Talampanel attenuates later-life seizure-induced neuronal injury following hypoxia-induced
seizures

We compared differences in status-induced neuronal injury in rats at P30–31 with prior hypoxic
seizures at P10 treated with vehicle or the optimal talampanel dose of 7.5 mg/kg, and naive
P30–31 litter mates with no prior hypoxic seizures. Both groups of rats were treated with
kainate (10 mg/kg, i.p.) at P30–31, and all animals reached grade IV status epilepticus. Mean
latency to onset of seizures was 23.1 ± 2.2 min (±SEM) across all groups, without differences
between treatment groups. However, there were differences in the extent of injury between the
naive controls, vehicle-, and talampanel-treated hypoxic seizure rats when examined at 72 h
after the “second-hit” kainate seizure. The total number of ISEL-positive cells in sections from
stereotactically identical regions was compared between naive controls, vehicle-treated, and
talampanel- (7.5 mg/kg) treated rats. Naive control litter mate rats showed cell death in
hippocampal CA1 and CA3 regions (Figs 2A–D), as well as throughout basal amygdala
(basolateral and basomedial amygdaloid nucleus) (Figs 2E–F). Rats pretreated with vehicle
prior to hypoxia at P10 showed significantly more (4-fold) combined neuronal injury in
amygdala, CA1, and CA3 following kainate-induced seizure at P30–31 (105.8 ± 30.4, n = 14)
compared to naïve controls (20.1 ± 2.2 n = 13; p < 0.001) (Fig. 3). Talampanel treatment (7.5
mg/kg) prior to hypoxia at P10 resulted in significant attenuation of cell death in these regions
(41.3 ± 16.8, n = 15; p < 0.001) compared to vehicle treatment, representing about a 60%
decrease. Notably, the talampanel-treated animals had injury counts comparable to those of
naive controls (Fig. 3).
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Assessment of cell death after talampanel administration to normal P10 rats
To determine whether the optimal dose of talampanel caused acute cell death at P10, normal
P10 male Long- Evans rats were given one dose of talampanel (i.p.) or vehicle at 7.5 mg/kg
and perfused 24 h later, at P11. Consistent with prior descriptions of constitutive apoptosis
during development (Ikonomidou et al., 1999; Bittigau et al., 2002), there was some scattered
baseline cell death in the vehicle-treated P11 rats upon inspection of three stereotactically
chosen areas. Over the total coronal section in vehicle-treated pups, 24.9 ± 2.8 (±SEM) ISEL-
positive cells were counted per 12.5 mm2 (n = 10 pups) (Fig. 4). No significant difference was
observed in the ISEL- positive cell counts in the rodent brain sections following a single dose
of talampanel (7.5 mg/kg) [28.8 ± 5.0 (±SEM), n = 10] (Fig. 4). These counts are similar to
those reported in our other studies in control groups from animals of this age (Koh & Jensen,
2001).

Discussion
We and others have previously shown that AMPARs play a critical role in the induction and
potential epileptogenic effects of neonatal seizures. Using our model of hypoxia-induced
neonatal seizures in the P10 rat, we show here that the noncompetitive AMPAR antagonist
talampanel (GYKI-53773) effectively suppresses seizures in a dose-dependent manner. In
addition, early talampanel treatment also prevents the enhanced susceptibility to later-life
seizure-induced neuronal injury that has been shown to occur following early life seizures. We
also show that therapeutic doses of talampanel do not result in any increase in constitutive
apoptosis at P10, consistent with other observations regarding the safety of AMPAR
antagonists in the developing brain. Taken together, these findings suggest that the specific
AMPAR antagonist talampanel may have potential for treatment of neonatal seizures.

The neonatal period is characterized by increased seizure susceptibility compared to later life.
Multiple factors are likely to play a role in the enhanced excitability of the immature brain,
including the increase in AMPAR expression (Sanchez et al., 2001; Talos et al., 2006a,b), N-
methyl-D-aspartate receptor (NMDAR) expression, the presence of depolarizing γ-
aminobutyric acid (GABA) receptors (Dzhala et al., 2005), and increased synaptogenesis
(Takashima et al., 1980; Huttenlocher et al., 1982). In accordance with these recent findings,
a number of studies have translated this information to therapeutic trials in models of early life
seizures and hypoxic/ischemic injury. NMDAR antagonists have been shown to be protective
in models of neonatal stroke (Chen et al., 1998; Wen et al., 2004; Vexler et al., 2006), but they
do not show efficacy in neonatal seizures (Jensen et al., 1995). In addition, NMDAR
antagonists have been reported to increase apoptosis and affect synaptic plasticity in the
developing brain (Stafstrom et al., 1997; Ikonomidou et al., 1999), raising a concern for their
clinical use in human term infants. As noted previously, GABA receptors are paradoxically
depolarizing in early postnatal development, by virtue of high intracellular chloride
concentrations compared to the adult (Dzhala et al., 2005; Ben Ari et al., 2007). The chloride
importer NKCC1 is highly expressed in developing rat and human brain, making this another
potential therapeutic target for treatment of neonatal seizures (Dzhala et al., 2005). Finally,
AMPAR expression is increased in immature hippocampus (Sanchez et al., 2001) and cortex
(Kumar et al., 2002; Talos et al., 2006a,b) in rodents and humans (Talos et al., 2006a,b).
Accordingly, AMPAR antagonists have been shown to be effective in a variety of neonatal
seizure and excitotoxicity models. In rodent models, AMPAR antagonists such as NBQX and
topiramate have been shown to be effective in both the acute suppression of early life seizures
(Jensen et al., 1995; Koh & Jensen, 2001; Cha et al., 2002; Koh et al., 2004) as well as
preventing long-term epileptogenic sequelae (Cha et al., 2002; Koh et al., 2004; Suchomelova
et al., 2006). AMPAR antagonists also have been demonstrated to be protective in models of
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hypoxia/ischemia in the developing brain (Follett et al., 2000, 2004; Liu et al., 2002; McCarran
& Goldberg, 2007).

Despite preclinical data suggesting efficacy of AMPAR antagonists in a variety of models of
epilepsy and excitotoxicity in the developing brain, no AMPAR antagonist is available for
clinical study in human infants. Both NBQX and topiramate are not available for parenteral
administration, which would be a necessity in this population of infants in intensive care with
variable gastrointestinal absorption. Talampanel is a selective antagonist for AMPAR, acting
in a noncompetitive manner at an allosteric site referred to as the GYKI receptor (Solyom &
Tarnawa, 2002). Doses of talampanel in adult trials are in the range of 1–4 mg/kg day, and
prior adult mouse models have shown anticonvulsant efficacy at 8–24 mg/kg and
neuroprotection against hypoxic/ischemic injury at 12 mg/kg. In this study we report acute
seizure suppression in the immature rat brain that is dose dependent, maximal at 7.5 mg/kg,
with an ED50 of 0.57 mg/kg. These data are in a similar range to that of the 8.0 mg/kg, i.p.,
dose of talampanel reported to be neuroprotective in a P7 rat model of excitotoxic injury
(Vilagi et al., 2002).

In addition to acute anticonvulsant efficacy, talampanel treatment prior to hypoxic seizures
also attenuated the long-term increases in susceptibility to seizure-induced neuronal injury seen
in this model. Previous data reveals that adult rats with prior hypoxic seizures show a 2- to 4-
fold increase in neuronal injury compared to naive rats. Both NBQX and topiramate
administered to rat pups in a pre- or post-treatment paradigm, result in an approximate 60%
decrease in the amount of neuronal injury seen after kainate seizures in adulthood in this group
of sensitized rats (Koh & Jensen, 2001; Koh et al., 2004). NBQX is an AMPAR and kainate
receptor antagonist, with preferential action at AMPARs, and topiramate acts as an AMPAR
antagonist but has other potential mechanisms of action, such as GABA agonism, and Ca2+

and Na+ channel block (Shank et al., 2000). Both NBQX and topiramate have been shown to
be effective at blocking long-term effects of early life seizures (Jensen et al., 1995; Koh &
Jensen, 2001; Cha et al., 2002; Koh et al., 2004). Talampanel is a selective AMPAR antagonist,
and early prehypoxia treatment results in a quantitatively similar protective profile
(approximately 60% reduction in status-induced cell loss) to these other agents, supporting a
specific role for AMPARs in sensitizing neuronal populations to later seizure-induced injury.
Given the similarities in the pretreatment results, these data suggest that postseizure treatment
trials with talampanel are warranted in this model. Talampanel may not only be effective as
an anticonvulsant but, like topiramate, might exhibit antiepileptogenic efficacy in the
developing brain. Indeed, we have recently reported that talampanel treatment following
hypoxia-induced seizures reverses seizure-induced increases in network and neuronal
excitability in hippocampal CA1 neurons in P10 rats (Rakhade et al., 2008).

The pattern of injury following “second hit” seizures has previously been reported to include
hippocampal regions (Koh et al., 1999, 2004; Koh & Jensen, 2001; Cha et al., 2002; Stafstrom
& Sasaki-Adams, 2003). This susceptibility to injury has been suggested to reflect seizure-
induced changes that result in long-term hyperexcitabilty of hippocampal networks.
Electrophysiologic recordings of hippocampal neurons reveal both network hyperexcitability
and a decrease in GABAergic inhibition on pyramidal neurons in area CA1 (Swann et al.,
1989; Brooks-Kayal et al., 1998; Sanchez et al., 2001, 2005; Khazipov et al., 2004; Ben Ari et
al., 2007; Rakhade et al., 2008). Here we show that talampanel suppression of acute seizure
activity results in protection from these long-term increases seen in the fifth postnatal week of
life. Another novel finding is that early life hypoxia-induced seizures alter long-term
susceptibility to seizure-induced neuronal injury in the amygdala, and that talampanel also is
protective against this long-term change. The observation that there is increased sensitivity to
later seizure-induced injury in the amygdala is potentially relevant to clinical data suggesting
that early life seizures and asphyxia may predispose to amygdala dysfunction. Early life injury
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to limbic structures such as the amygdala are thought to increase the risk of mental disorders
such as autism and schizophrenia (Daenen et al., 2002; Diergaarde et al., 2004; Shaw et al.,
2004).

Recent studies have cautioned against the use of anticonvulsant drugs and certain glutamate
receptor antagonists in early postnatal life. NMDARs are essential for normal synaptogenesis
and plasticity, and exposure to NMDAR antagonists during development results in increased
constitutive apoptosis as well as later-life deficits in neurobehavior and learning (Tandon et
al., 1996; Bittigau et al., 2002). A number of the conventional anticonvulsants have also been
shown to affect later-life learning (Wirrell, 2005; Kim et al., 2007) and phenobarbital,
carbamazepine, valproate, and diazepam have all been reported to increase neuronal apoptosis,
even after one administration in early postnatal development in the rodent (Bittigau et al.,
2002). Notably, the AMPAR antagonists NBQX and topiramate do not show this increased
apoptosis. In addition, AMPAR antagonists appear to have a favorable safety profile in the
developing brain, without inducing apoptosis (Bittigau et al., 2002) or affecting later-life
learning and behavior (Zhao et al., 2005). Like- wise, we show here that talampanel treatment
at P10 with the effective dose does not affect this normal developmental phenomenon of
apoptosis. Future studies could address additional potential effects on behavior and learning
in this model.

In summary, this study supports further investigation of talampanel in the prevention and
possibly the long-term effects of neonatal seizures. Here we show that talampanel treatment
appears to have similar efficacy to that previously demonstrated for NBQX and topiramate. In
addition, talampanel does not alter the normal pattern of apoptosis present in early
development. Another finding of note in this study is that early life hypoxia-induced seizures
alter susceptibility of amygdala to later-life seizure- induced injury, and this susceptibility to
neuronal injury is attenuated by talampanel. A parenteral formulation of talampanel would
have excellent potential for translation to the clinic for the indication of neonatal seizures.
Given the present data regarding efficacy and safety, additional preclinical trials are justified
to evaluate the more clinically relevant postseizure treatment efficacy, as well as additional
safety trials to assess more subtle adverse effects on neuromotor development.
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Figure 1.
Efficacy of talampanel at blocking acute hypoxia- induced seizures. P10 rat pups were exposed
to global hypoxia and acute hypoxia-induced seizures were suppressed by talampanel
pretreatment in a dose-dependent manner. Data represent mean number of seizures for
talampanel pretreatment group compared to percentage of the mean number of seizures for the
paired vehicle pretreatment group. Anticonvulsant activity was maximal at 7.5 and 10 mg/kg,
where seizures were blocked 74.6% at 10 mg/kg [25.4 ± 7.3 (±SEM), n = 17; p < 0.001] and
86.7% at 7.5 mg/kg [13.3 ± 3.2 (±SEM), n = 17; p < 0.001].
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Figure 2.
Talampanel protects against later increases in susceptibility to seizure-induced neuronal injury.
At P30–31 (20 days after the P10 hypoxic seizures), kainate was administered i.p. (10 mg/kg)
and rats were killed 48 h after seizure induction (P33–34). DNA fragmentation is shown in
area CA1 and CA3 of hippocampus (A–D) and the basolateral amygdala (E–H). Naive controls
(no hypoxia or kainate-induced seizure) show no appreciable staining in hippocampus (A) or
amygdala (E). Control litter mates that did not undergo hypoxia at P10 but did undergo kainate-
induced seizures on P30–P31 show less DNA fragmentation in hippocampus (B) and amygdala
(F) compared to animals that underwent both hypoxia at P10 and kainate-induced seizures at
P30–31 in hippocampus (C) and amygdala (G). Talampanel pretreatment before P10 hypoxia
reduced later kainate-induced cell death in hippocampus (D) and amygdala (H). Box insets are
higher-magnification views of CA1 hippocampal subfields (A–D) and basolateral amygdala
(E–H). Scale bars = 50 μm.
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Figure 3.
Quantification of cumulative ISEL-positive cells after kainate-induced seizures at P30–31.
Rats pretreated with vehicle prior to hypoxia showed significantly more neuronal injury in
CA1, CA3, amygdala, and bilateral cortex following kainate-induced seizures at P30–31
[105.75 ± 30.38 (±SEM), n = 14] than did normoxic controls [20.12 ± 2.19 (±SEM), n = 13;
p < 0.001] or rats pretreated with talampanel (7.5 mg/kg) prior to hypoxia [41.31 ± 16.75
(±SEM), n = 15; p < 0.001] at P10 (p < 0.001, one-way ANOVA).
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Figure 4.
Protective doses of talampanel do not alter constitutive apoptosis in the developing rat brain.
There was no difference in number of ISEL-positive cells after one dose of talampanel at 7.5
mg/kg compared with vehicle controls at P10. Quantification of ISEL-staining in total coronal
section of P10 rats perfused 24 h after one dose of talampanel given at 7.5 mg/kg [28.830 ±
5.003 (±SEM), n = 10] versus vehicle [24.9 ± 2.826 (±SEM), n = 10].

Aujla et al. Page 14

Epilepsia. Author manuscript; available in PMC 2009 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


