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1 | INTRODUCTION

Abstract

Aim: Alpine ecosystems differ in area, macroenvironment and biogeographical his-
tory across the Earth, but the relationship between these factors and plant species
richness is still unexplored. Here, we assess the global patterns of plant species rich-
ness in alpine ecosystems and their association with environmental, geographical and
historical factors at regional and community scales.

Location: Global.

Time period: Data collected between 1923 and 2019.

Major taxa studied: Vascular plants.

Methods: We used a dataset representative of global alpine vegetation, consisting of
8,928 plots sampled within 26 ecoregions and six biogeographical realms, to estimate
regional richness using sample-based rarefaction and extrapolation. Then, we evalu-
ated latitudinal patterns of regional and community richness with generalized additive
models. Using environmental, geographical and historical predictors from global ras-
ter layers, we modelled regional and community richness in a mixed-effect modelling
framework.

Results: The latitudinal pattern of regional richness peaked around the equator and at
mid-latitudes, in response to current and past alpine area, isolation and the variation
in soil pH among regions. At the community level, species richness peaked at mid-
latitudes of the Northern Hemisphere, despite a considerable within-region varia-
tion. Community richness was related to macroclimate and historical predictors, with
strong effects of other spatially structured factors.

Main conclusions: In contrast to the well-known latitudinal diversity gradient, the
alpine plant species richness of some temperate regions in Eurasia was comparable to
that of hyperdiverse tropical ecosystems, such as the paramo. The species richness
of these putative hotspot regions is explained mainly by the extent of alpine area and
their glacial history, whereas community richness depends on local environmental
factors. Our results highlight hotspots of species richness at mid-latitudes, indicating
that the diversity of alpine plants is linked to regional idiosyncrasies and to the his-

torical prevalence of alpine ecosystems, rather than current macroclimatic gradients.

KEYWORDS
Alpine vegetation, biodiversity hotspots, biogeographical history, global patterns, multiscale
analysis, plant species richness

been revealed as centres of biodiversity, with a disproportionately

high species richness in comparison to their corresponding low-

More than 200 years after the attempt by Alexander von Humboldt
to formulate a unified theory of the natural world, understanding
the global patterns of diversity remains one of the greatest chal-
lenges in biogeography and macroecology (Brummitt et al., 2020;
Keil & Chase, 2019; Kier et al., 2005; Kreft & Jetz, 2007; Kreft
et al.,, 2008; Weigelt et al., 2016). In particular, mountains have

land regions (Antonelli et al., 2018; Muellner-Riehl et al., 2019;
Rahbek, Borregaard, Antonelli, et al., 2019). Along the elevational
gradient of mountains, the compression of life zones brings differ-
ent biomes into proximity, with the alpine belt representing the
outpost for plant life above the climatic tree line. Alpine ecosys-

tems, governed by low-temperature regimes, cover c. 3% of land
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outside Antarctica and are distributed across all continents and
latitudes (Kérner et al., 2011; Testolin et al., 2020). Despite on-
going efforts to monitor changes in the biota of mountain sum-
mits in the face of climate change (Gottfried et al., 2012; Pauli
et al., 2012; Steinbauer et al., 2018), we still lack a picture of the
global patterns of plant diversity in alpine habitats, let alone an
understanding of its major drivers.

According to the general latitudinal diversity gradient, bio-
diversity is expected to peak at the equator (Hillebrand, 2004).
Among the possible explanations for this pattern (Lomolino
et al., 2017), latitude is normally interpreted as a proxy for climatic
conditions and available metabolic energy, which might have
an effect on speciation rates (Wang et al., 2009). Whether this
general rule also applies to alpine ecosystems, however, is still a
matter of debate. Regardless of their latitude, alpine ecosystems
are determined by low-temperature conditions, hence low en-
ergy input. Therefore, lowland and alpine thermal conditions from
polar to equatorial latitudes are increasingly decoupled from one
another (Testolin et al., 2020). Besides having a lower energy input
compared with the lowlands, alpine ecosystems are also highly
heterogeneous in their topoclimates (Quinn, 2008), which might
weaken the correlation between latitude and primary productivity
(Testolin et al., 2020). For these reasons, plant diversity in alpine
areas might decouple from major climatic gradients.

Alpine areas are also isolated from each other, forming frag-
mented systems of “sky islands” surrounded by lowland envi-
ronments that limit species dispersal (McCormack et al., 2009).
Following the ecological principle of the species-area relationship
(Lomolino, 2000b) and its application to the theory of island bioge-
ography (MacArthur & Wilson, 1967), the extent of alpine habitats
and their isolation could have affected rates of colonization, specia-
tion and extinction of plants (Heaney, 2000; Steinbauer et al., 2016).
These processes might have resulted in biodiversity patterns linked
to the historical and current abundance of alpine habitats at the
global scale. Although it has been reported widely that the bio-
geographical history of mountains has shaped diversity patterns of
cold-adapted plant species in alpine regions (Flantua et al., 2019;
Harris, 2007; McGlone et al., 2001; Sklenaf et al., 2014), a major
unresolved question is the extent to which the interplay of ecolog-
ical drivers and historical contingencies dictates the patterns of al-
pine plant diversity at the global level (Nagy & Grabherr, 2009). The
significance of these drivers might shift from global to local spatial
scales and can reveal new patterns and relationships that are not ev-
ident at regional scales at which alpine plant diversity patterns have
been studied so far (Jiménez-Alfaro et al., 2014; Lenoir et al., 2010;
Moser et al., 2005; Vonlanthen et al., 2006).

Here, we compiled a dataset of 8,928 vegetation plots with
5,325 vascular plant species sampled by botanical experts in alpine
ecosystems over the past 100 years and representative of global al-
pine vegetation. By analysing the data at both regional and commu-
nity levels, we investigate: (a) the global latitudinal patterns of alpine
plant species richness; and (b) the relative influence of environmen-

tal, geographical and historical factors in driving such patterns. We

also evaluate how those patterns and drivers change between re-
gional and community levels and how they relate to hotspots of al-

pine plant diversity recognized at the global scale.

2 | METHODS
2.1 | Study system and data collection

We considered as zonal alpine vegetation any plant community dom-
inated by graminoids, forbs and dwarf shrubs above the climatic tree
line (Kérner, 2003). In addition to strictly zonal habitats, snow-patch
vascular plant communities and vegetation on rocks and screes are
also found ubiquitously in the alpine belt and were included in our
study. We did not consider vegetation from polar climates owing to
the absence of elevational tree lines and their distinct environments
(Quinn, 2008; Walter & Box, 1976). Therefore, the alpine vegetation
included in the present study corresponds to the “mid-latitude alpine
tundra” and the “tropical alpine biome” groups as defined by Quinn
(2008).

We assembled vegetation-plot data of vascular plant communi-
ties sampled by the authors, compiled from the literature or included
in sPlot (the global vegetation database; Bruelheide et al., 2019), with
the aim of obtaining a representative sample of the global alpine veg-
etation. The plots were selected using habitat classifications of the
data sources and revised by data providers based on the scope of
our study (Supporting Information Table S1). Datasets from different
sources were standardized by identifying a minimum common set
of plot attributes, including size, elevation and geographical coor-
dinates. When the geographical coordinates were missing for small,
clearly delimited areas, we estimated plot locations from maps (i.e.,
Mount Jaya; Hope et al., 1976) or by randomly assigning the coordi-
nates of raster cells with the same elevation (+10 m) as the plots in
that area (i.e., Mount Wilhelm and Drakensberg; Brand et al., 2015;
Wade & McVean, 1969), using the SRTM-3 digital elevation model
at 30 m resolution (Farr et al., 2007; NASA & JPL, 2013). Species
cover values with discrete scales were transformed to the mean
value of the corresponding percentage interval. Species names were
harmonized using the Taxonomic Name Resolution Service (Boyle
et al., 2013) online tool (https://tnrs.biendata.org/) with default
settings, updating the names to the most recent nomenclature and
merging subspecies and varieties to the species level by summing
their respective cover values.

The initial dataset, consisting of 10,408 plots, was filtered further
by removing plots with tree species or incomplete taxonomic identi-
fication. When taxa identified to the genus level or higher taxonomic
rank represented > 10% of the plot vegetation cover, the correspond-
ing plot was discarded; otherwise, we removed those taxa from the
plot record (3,086 plots from which at least one taxon was removed;
median number of taxa removed = 1). Each plot was then assigned
to a region based on its location. Regions were defined based on the
approximate extent of ecoregions (Olson et al., 2001), which repre-

sent an ecologically meaningful framework for identifying distinct
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geographical units at the global scale. Given that the names of some
ecoregions did not reflect the presence of an alpine vegetation belt,
we renamed these regions after the main mountain ranges where
the plots were located, following Kérner et al. (2017) (Supporting
Information Table S2). For the analyses, we retained only regions
with > 60 plots and removed extremely small or large plots (<.25
or >400 m?). To filter out compositional outliers, we performed a
detrended correspondence analysis (DCA) on each regional dataset,
excluding those plots whose score on the first axis (DCA1) was larger
or smaller than 10 times the width of the interquartile range from the
median. After removing the outliers, the gradient length of DCA1
ranged from 3.6 to 9.9 standard deviation units of species turnover
within different regions (Supporting Information Table S3), indicat-
ing different, yet high, degrees of regional beta diversity. Finally, to
assess the representativeness of our dataset, we compared the cli-
matic space of the plots against the climatic envelope of global alpine
areas (Testolin et al., 2020; Supporting Information Figure S1). The
final dataset consisted of 8,928 plots of alpine vascular vegetation
along elevational gradients above the tree line in 26 regions belong-
ing to six biogeographical realms (Keil & Chase, 2019; Figure 1a,b;
Supporting Information Table S3), distributed across all continents
except Antarctica and sampled over a period of almost 100 years,
between 1923 and 2019.

WILEY- 2

and Biogeography Mamesig

2.2 | Diversity measures

Given that the number of samples differed considerably among
regions, we estimated regional species richness using sample-
based rarefaction and extrapolation (Chao et al., 2014) with the
software R (R Core Team, 2020) and the package INEXT (Hsieh
et al., 2016). This technique allows a statistically sound compari-
son of diversity across groups with different sample sizes through
the construction of sampling curves for species richness. These
curves can be rarefied (interpolated) to smaller sample sizes or
extrapolated (predicted) to larger sample sizes (Chao et al., 2014;
Hsieh et al., 2016). Here, we estimated the regional richness for a
unique sample size of 180 plots, corresponding to approximately
three times the smallest regional sample (Figure 1b,c). We chose
180 plots as a trade-off between the loss of data in intensively
sampled regions versus the inclusion of all regions in the analy-
ses. As such, these estimates should not be interpreted as repre-
senting the total regional species pools, but rather as comparable
estimates of regional richness. Given that our global dataset com-
prised plots of different sizes, we evaluated the effect of plot size
on the species richness estimates. To do this, we compared the
same estimates using three subsets of different plot sizes (small,
<10 m?% medium, > 10 and <100 m?; and large, 2 100 mz). For those

(@) ()
18
500 - 11
9
400
22
12
== 19
f = - -
300
(b) g =24 71516
%) i
Region N Sg Region N S e %,26
g 1 Drakensberg 91 212 14 Central and Southern Cascades 239 130 :
.'..3 2 Eastern African Mountains 238 176 15 Sierra Nevada 153 279 5058 4 : zt 41 6
= / e P "y
& 3 Mount Cameroon 115 120 16 South Central Rocky Mountains 136 286 / g i 23
-------- 213
4 Australian Alps 157 205 17 Southern Rocky Mountains 153 260 52025
5 Central Range New Guinea 91 157 18 Colombian and Ecuadorian Andes 1534 543 _,,'-' ==cs= 3
14
6 North Island Mountains New Zealand 67 204 19 Cordillera de Mérida 74 350 // / 3
7 Southern Alps New Zealand 743 281 20 Southern Cordillera Occidental Peru 85 150 100 24
8 Alborz Mountains 524 143 21 Southern Cordillera Oriental Peru 168 253
9 Altai Mountains 544 486 % 22 Central and Eastern Alps 684 387
10 Ladakh Range 452 242 E 23 High Atlas Range 125 187 /
11 Pamir Mountains 175 497 § 24 Northern Scandes 76 98 0 )
12 Sayan Mountains 314 369 & 25Ria 267 147
2 0 90 180
13 Western Tien Shan 74 179 2 26 Western Carpathians 1649 252 Number of plots

FIGURE 1 Overview of the alpine vegetation dataset and regional species richness. (a) Spatial distribution of alpine vegetation plots. (b)
Number of plots collected in this study (N) and estimated species richness (S_,) for a comparable number of 180 plots in 26 alpine regions
and six biogeographical realms. (c) Rarefaction curves of species richness for each region. Dashed lines indicate extrapolated values beyond
the available number of plots. Continuous lines indicate that regional estimates were interpolated from larger sample sizes. The shaded areas
represent the 95% bootstrap confidence intervals [Colour figure can be viewed at wileyonlinelibrary.com]


www.wileyonlinelibrary.com

TESTOLIN ET AL.

1222
Global Ecology A dournalof
Wl LEY and Biogeography Magveks

regions where 2 60 plots of each of the three different sizes were
available (Alborz Mountains, Central and Eastern Alps, Colombian
and Ecuadorian Andes, Eastern African Mountains, South Central
Rocky Mountains and Western Carpathians), we compared rich-
ness estimates obtained from the different subsets. We found
that, regardless of the subset used, the relative differences among
regions were largely preserved, especially for those datasets
comprising large numbers of plots (e.g., Central and Eastern Alps
and Western Carpathians). An exception was the region of the
Colombian and Ecuadorian Andes, where regional richness esti-
mates were highly dependent on plot size (Supporting Information
Figure S2). However, large and small plots both resulted in lower
species richness estimates compared with medium-sized plots,
suggesting that the differences are driven by different vegetation
types being sampled with differently sized plots.

For each plot, we calculated community richness as the total
number of species. We evaluated latitudinal patterns of regional and
community richness using generalized additive models (GAMs), with
a smoothing term for latitude. Our alpine regions were characterized
by very different extents, and plot size varied widely. To account for
different regional extents and plot sizes in the evaluation of species
richness patterns, we also fitted GAMs on the residuals from ordi-
nary least square regressions of In(regional richness) as a function of
In(current local alpine area) and In(community richness) as a function
of In(plot size). The procedure for calculating local alpine area is de-
scribed in section 2.4.

2.3 | Environmental predictors

To analyse the drivers of species richness, we retrieved a set of en-
vironmental variables linked to plant diversity in the alpine belt from
online sources. We calculated several climatic predictors at the plot
level using digital sources at c. 1 km resolution. We used data from
CHELSA (Karger et al., 2017) within the time frame of the growing
season, defined as days with mean temperature > .9°C (Paulsen &
Koérner, 2014). Given that daily temperature data were not available,
we estimated the growing season using monthly averages, including
the months with a mean temperature > .9°C. Although this might
have resulted in a sharper delimitation of season lengths, it prob-
ably had little effect on our global analyses. We included the mean
temperature, precipitation, growing degree days and mean potential
evapotranspiration of the growing season, all of which have been
reported to have positive effects on photosynthetic activity and
species richness in alpine areas (Kérner, 2003; Moser et al., 2005;
Nagy & Grabherr, 2009). Growing degree days (i.e., the sum of
monthly temperatures > .9°C multiplied by the total number of days
in such months) were calculated using the “growingDegDays” func-
tion of the R package envirem (Title & Bemmels, 2018). The mean
potential evapotranspiration of the growing season was estimated
with the “hargreaves” function of the R package SPEI (Begueria &
Vicente-Serrano, 2017), using maximum and minimum monthly val-

ues of temperature and monthly precipitation. The monthly values

of potential evapotranspiration obtained were then averaged across
months with a mean temperature > .9°C.

Together with climate, soil pH is known to be a significant driver
of species richness in the alpine belt (Vonlanthen et al., 2006) and is
a good surrogate for the dominant bedrock, effectively differentiat-
ing calcareous and siliceous substrates (Jiménez-Alfaro et al., 2018;
Lenoir et al., 2010). We derived estimates of soil pH from the
SoilGrids database, averaging the values estimated at 5 and 15 cm
depths (Hengl et al., 2017). When the pH value was missing for a
plot location (45 plots), we assigned the value of the closest pixel
to the plot. Despite the limitations posed by the use of global data-
sets to estimate fine-scale soil properties (Hengl et al., 2017), the
obtained values covered a wide span of soil pH variation in alpine
environments (4.40-8.35) and were, therefore, useful to distinguish
dominant bedrock types.

In addition to climate and soil, topography also represents a
major factor linked to plant diversity in alpine areas (Jiménez-Alfaro
et al., 2014; Lenoir et al., 2010), because it creates a fine-scale mosaic
of contrasting microclimates (Kérner, 2003; Nagy & Grabherr, 2009;
Rahbek, Borregaard, Antonelli, et al., 2019; Rahbek, Borregaard,
Colwell, et al., 2019). As measures of topographical heterogeneity
of the terrain surrounding each plot, we used the topographical po-
sition index and the terrain ruggedness index (Amatulli et al., 2018).
Regional values of the predictors computed at the plot level were then
estimated as the average of all vegetation plots within a region. For cli-
matic predictors and soil pH, we also calculated the standard deviation

of the predictor to test for the effect of environmental heterogeneity.

2.4 | Geographical and historical predictors

In addition to environmental variables, large-scale geographical
factors, such as area and isolation, are known to influence the cur-
rent diversity of island-like ecosystems (MacArthur & Wilson, 1967,
Whittaker et al., 2008, 2017), as do their historical changes caused
by climatic fluctuations (Fernandez-Palacios et al., 2016; Weigelt
et al., 2016). We delimited alpine area as the portion of land with
a mean temperature of the growing season between 3.5 and 6.4°C
or with a length of the growing season between 1 and 3 months
(Paulsen & Korner, 2014). We did this both for current climatic con-
ditions and considering climate during the Last Glacial Maximum
(LGM) (Supporting Information Figure S3).

Alpine areas were calculated at two scales, reflecting the spatial
extents of each regional sample (local area) and the total continuous
alpine area extending beyond the samples (total area). We defined
the local area as the extent of the alpine area contained within the
convex hull formed by all plots of each region. In some cases, the
coarse resolution of the climatic datasets used to estimate the alpine
areas failed to detect any alpine patch within the hulls. Therefore, we
applied a 5 km buffer around each hull to include at least some alpine
area patches for all regions. The total alpine area for each region was
estimated as the continuous extent of all alpine patches intersected

by the hulls, reflecting the total extent of alpine habitats available
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to species dispersal (Supporting Information Figure S4). Calculating
alpine areas at two scales also allowed us to estimate the complete-
ness of the regional samples by calculating the percentage of the
local alpine area encompassed by the samples over the total alpine
area (Supporting Information Table S3). Given that the local and total
In-transformed areas were highly correlated (Pearson's r > .8), only
the former was retained in the subsequent analyses.

In addition, we estimated the current and LGM isolation as the
minimum distance from the centroid of each alpine region to the
boundary of the nearest alpine area = 1,000 km?. We set a thresh-
old of 1,000 km? to exclude smaller alpine patches that could still
be part of the same alpine region, that is, islands of the same ar-
chipelago (Steinbauer et al., 2016). If an alpine region had a total
area > 1,000 km?, isolation was set to zero. Current and LGM alpine
areas and isolation were In-transformed.

Given that past climatic changes could have affected current di-
versity patterns (Graham et al., 2014), we also calculated the velocity
of climate change since the LGM as a measure of regional climatic
instability (Loarie et al., 2009; Sandel et al., 2011), using the “gVoCC”
function of the VoCC package (Molinos et al., 2019) with current and
LGM mean annual temperatures. The latter was calculated as the av-
erage of the two PMIP3 climatic datasets derived using the CCSM4
and MIROC-ESM climate models (Sandel et al., 2011; Weigelt
etal,, 2013, 2016).

Finally, we included biogeographical realms (Keil & Chase, 2019)
as a proxy for differences in evolutionary history. Owing to the lack
of regional data, we did not account for differences in the geologi-
cal history of mountains. However, we acknowledge that this could
influence speciation and partly explain species richness (Whittaker
etal., 2008, 2017).

2.5 | Statistical analyses

We tested the influence of environment, geography and history on
estimated regional richness by fitting individual Poisson generalized
linear mixed-effects models (GLMMs) to each predictor with the
“glmer” function of the R package Ime4 (Bates et al., 2015). Initially,
we tested univariate relationships to select a set of significant vari-
ables to be used in subsequent multivariate modelling. To account for
uncertainties in regional richness estimates, we weighted the obser-
vations by the inverse of their 95% confidence interval width. We also
scaled the predictors by subtracting their mean and dividing by their
standard deviation across the regions to ensure model convergence.
To control for overdispersion and reduce the risk of type | errors, we
added an observation-level random effect (OLRE) to the models, that
is, a unique level of a random effect for each data point that models
the extra-Poisson variation present in the data (Harrison, 2014). The
ratios between the sum of squared Pearson residuals and the residual
degrees of freedom of the fitted models with OLRE indicated no ad-
ditional overdispersion. Next, we analysed the correlations among
significant predictors with the Pearson correlation coefficient. We

found that some of our regional variables were strongly correlated
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with one another (Supporting Information Figure S5), limiting our abil-

and Biogeography Macreeeclon)

ity to distinguish partial contributions. However, we built alternative
multivariate models by retaining only the significant, uncorrelated
predictors. Finally, we checked for the presence of spatial autocor-
relation in model residuals with the Moran's | test implemented in
the “testSpatialAutocorrelation” function of the DHARMa package
(Hartig, 2020) and found none (Supporting Information Table S4). We
also fitted a null (intercept-only) model to compare the goodness of the
fits. Models were compared using the Akaike Information Criterion
corrected for small sample sizes (AICc) in addition to marginal and
conditional R? (mR? and cR?), calculated with the “r.squaredGLMM”
function of the MuMIn package (Barton, 2019). Given that the only
random effect in the models was an OLRE, mR? = cR2.

We modelled community richness by fitting Poisson GLMMs
including the environmental, geographical and historical predic-
tors. Growing degree days and precipitation of the growing season
were highly correlated with temperature and evapotranspiration of
the growing season, respectively (Pearson's r > .6). Likewise, area
and isolation-related variables were highly correlated with one an-
other. Thus, to avoid multicollinearity issues, we retained tempera-
ture and evapotranspiration of the growing season, in addition to
current and LGM local areas, and excluded the other variables. We
also accounted for different plot sizes by adding their In-transformed
values to the model and controlled for overdispersion by adding an
OLRE. Given that the plot-level predictors were derived from digital
datasets at 1 km resolution, we randomly selected one plot for each
.01° cell (c. 1 km). We repeated the process 999 times and obtained
as many random subsets of 2,534 plots, that is, one plot for each
.01° cell. Before modelling, all predictor variables were scaled to en-
sure model convergence. We then fitted the GLMMs to each of the
999 subsets. Given that the Moran's [ tests highlighted strong spa-
tial autocorrelation of the models’ residuals, we re-fitted the models
including random intercepts for .05 (=5 km) and .1 (=10 km) degree
cells, which largely resolved the issue (Moran's | = 0; p > .05 for 75%
of model fits). We also tested for regional effects by fitting another
model to the 999 subsets, with an additional random intercept for
regions. Finally, we averaged the fixed effect coefficients of the re-
sulting models using weights based on their AICc with the “model.
avg” function of the MuMlIn package. The two resulting averaged
models (with and without the random intercept for region) were
compared using mean AlICc, mR? and cR?, obtained by calculating

the weighted average of the respective indices for the 999 fits.

3 | RESULTS

According to sample-based rarefaction and extrapolation of regional
richness (estimated for 180 plots), the richest alpine regions in this
study were the Colombian and Ecuadorian Andes (Neotropics; 543
species), followed by the Pamir Mountains (Eastern Palaearctic; 497
species) and the Altai Mountains (Eastern Palaearctic; 486 species). At
intermediate species richness levels, we found the Central and Eastern

Alps (Western Palaearctic; 387 species), Sayan Mountains (Eastern
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FIGURE 2 Latitudinal patterns and drivers of estimated regional species richness. (a) Regional plant species richness estimated for 180
plots (S,,,). The scatterplot on the right represents the latitudinal trend. The three horizontal grey lines on the map and the scatterplot
represent the equator and the tropics. The black line represents a generalized additive model (GAM) fit. (b) Single-predictor models of
regional species richness. The dots represent the regional plant species richness estimated for 180 plots (S,,). The error bars represent the
95% bootstrap confidence intervals of the richness estimates. Black lines represent the individual Poisson generalized linear mixed-effects
model (GLMM) fits. The grey bands are the 95% bootstrap confidence intervals. Marginal R? (mR?) and model significance are reported.
Significance codes: <.001 (***); <.01 (**); <.05 (*). The numbers of the main coldspot and hotspot regions are reported according to Figure 1.

Abbreviation: LGM = Last Glacial Maximum [Colour figure can be viewed at wileyonlinelibrary.com]

Palaearctic; 369 species) and Cordillera de Mérida (Neotropics; 350
species). On the other end of the gradient, the poorest regions were
Mount Cameroon (Afrotropics; 120 species) and the Northern Scandes
(Western Palaearctic; 98 species) (Figure 1b,c).

The latitudinal pattern of regional richness peaked around the

equator and at mid-latitudes of the Northern Hemisphere, with

low species richness values around the tropics and at high latitudes
(Figure 2a). At the community level, we observed a single peak at
mid-latitudes of the Northern Hemisphere, but a wide range of
species richness values across all regions (Figure 3a). The same pat-
terns emerged even when different regional extents and plot sizes

were accounted for, with an additional peak of regional richness at
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mid-latitudes of the Southern Hemisphere corresponding to the
Drakensberg (Afrotropics) and the Australian Alps (Australasia)
(Supporting Information Figure Séa,b).

The null model of estimated regional richness had AlCc = 67. The
GLMMs of estimated species richness against individual predictors
highlighted a positive significant effect of current area (ﬁ =.33+.07;
AlCc = 54), LGM area (B =.26 +.08; AlCc = 61) and soil pH variability
(B = .24 + .08; AICc = 61), whereas current isolation (B = -.26 + .08;
AlCc = 61)and LGM isolation (E =-.20+.09; AlICc = 65) had a negative
effect (Figure 2b; Supporting Information Table S4; Figure S7). Among
significant predictors, current area was correlated with soil pH vari-
ability (r = .70, p < .001) and with current isolation (r = -.76, p < .001),
and LGM area was correlated with LGM isolation (r = -.72, p < .001)
(Supporting Information Figure S5). Multivariate Poisson GLMMs

with uncorrelated significant predictors explained 67% (current

(a) Community richness
60

40
20
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isolation + LGM isolation; AlCc = 58) and 79% (current area + LGM
area; AlCc = 52) of the variance (Supporting Information Table S4).
At the community scale, species richness was positively related
to the evapotranspiration of the growing season (ﬁ =.13+.05;p<
.001), velocity of climate change (B =.10 + .05; p < .001) and LGM
alpine area (ﬁ =.19 + .05; p < .001), whereas it was negatively re-
lated to soil pH (ﬁ = -.12 + .05; p < .001). Nearctic plots were gen-
erally poorer in species than plots in other realms (A =-44 + .22;
p < .001; Figure 3b; Supporting Information Table S5). Overall, the
fixed effects explained 22% of the variance, and the inclusion of the
random effects controlling for the spatial aggregation of plots at 5
and 10 km increased the explained variance to 58%. The inclusion of
regions as an additional random effect increased the total explained
variance further to 65% and left as significant fixed effects the mean

temperature of the growing season (E =.04 + .03; p < .05) and soil
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FIGURE 3 Latitudinal patterns and drivers of community species richness. (a) Community plant species richness. The scatterplot on the
right represents the latitudinal trend. The three horizontal grey lines on the map and the scatterplot represent the equator and the tropic