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Abstract 26 

Aim 27 

Occurrence data are fundamental to macroecology, but accuracy is often compromised when 28 

multiple units are lumped together (e.g. in recently separated cryptic species or citizen 29 

science records). Using amalgamated data leads to inaccuracy in species mapping, to biased 30 

beta-diversity assessments and to potentially erroneously predicted responses to climate 31 

change. We provide a set of R functions (biodecrypt) to objectively attribute undetermined 32 

occurrences to the most probable taxon based on a subset of identified records. 33 

 34 

Innovation 35 

Biodecrypt assumes that unknown occurrences can only be attributed at certain distances 36 

from areas of sympatry. The function draws concave hulls based on the subset of identified 37 

records; subsequently, based on hull geometry, it attributes (or not) unknown records to a 38 

given taxon. Concavity can be imposed with an alpha value and sea or land areas can be 39 

excluded. A cross-validation function tests attribution reliability and another function 40 

optimizes the parameters (alpha, buffer, distance ratio between hulls). We applied the 41 

procedure to 16 European butterfly complexes recently separated into 33 cryptic species for 42 

which most records were amalgamated. We compared niche similarity and divergence 43 

between cryptic taxa, and we re-calculated and contributed updated CLIMBER variables for 44 

climatic preferences. 45 

 46 

Main conclusions 47 

Biodecrypt showed a cross-validated correct attribution of known records always ≥98% and 48 

attributed more than 80% of unknown records to the most likely taxon in parapatric species. 49 

The functions determined where records can be assigned even for largely sympatric species, 50 



and highlighted areas where further sampling is required. All the cryptic taxa showed 51 

significantly diverging climatic niches, reflected in different values of mean temperature and 52 

precipitation compared to the values originally provided in the CLIMBER database. The 53 

substantial fraction of cryptic taxa existing across different taxonomic groups and their 54 

divergence in climatic niches highlights the importance of using reliably assigned occurrence 55 

data in macroecology. 56 
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Introduction 63 

A solid record of species occurrence data is key to understand the multiple factors defining 64 

their large-scale geographic distributions and, by means of ecological niche modelling, to 65 

assess and project their responses to changing environmental conditions in terms of range 66 

expansion or contraction (Franklin, 2010; Schweiger et al., 2012; Hortal et al., 2015; Thuiller 67 

et al., 2016). In addition, resulting species-specific niche characteristics have provided 68 

conservation biogeography with a powerful set of species features, such as measures of mean 69 

and variation in multiple climatic characteristics (e.g. CLIMBER variables; Schweiger, 70 

Harpke, Wiemers, & Settele 2014), useful for assessing community-wide responses to global 71 

change (Devictor et al., 2012; Zografou et al., 2014; Herrando et al., 2019).  72 

Generating reliable species occurrence data at continental scale requires an enormous effort 73 

and such databases have been assembled over decades of field research, often based on, or 74 

improved by, citizen science projects (Dennis, Morgan, Brereton, Roy, & Fox, 2017; Titeux 75 

et al., 2017). In addition, proper definition and discrimination of species are necessary for 76 

reliable niche modelling, as well as for the identification of environmental preferences of 77 

species and the derived specific indices. However, the existence of a considerable fraction of 78 

cryptic species in almost all groups of living organisms (Bickford et al., 2007) poses a serious 79 

challenge to our understanding of diversity in general, and to this line of research in 80 

particular. When a taxon, believed to represent a single species, is recognized as two or 81 

multiple cryptic species, the occurrence data accumulated for decades suddenly become 82 

obsolete. Researchers often amalgamate the occurrence data for cryptic taxa, but this 83 

approach ignores a substantial fraction of diversity in terms of species identity, distribution, 84 

evolution, and its potential dynamics in changing environments. 85 

Most complexes of cryptic taxa are parapatric with minimal areas of sympatry, frequently 86 

because they evolved in allopatry and the achievement of secondary sympatry is delayed by 87 



(i) limited dispersal and competition due to a still incomplete separation of ecological niches 88 

or by (ii) reproductive interference due to the lack of a pre-mating barrier (Pigot & Tobias, 89 

2013, 2015; Vodă, Dapporto, Dincă, & Vila, 2015). Only a minor fraction of cryptic taxa are 90 

largely sympatric and these typically show strong reproductive barriers (Dincă, Lukhtanov, 91 

Talavera, & Vila, 2011; Dincă et al., 2013). Because cryptic species tend to show parapatric 92 

distributions (Waters, 2011; Vodă et al., 2015; Dapporto et al., 2017; Scalercio et al., 2020), 93 

they encompass a conspicuous fraction of beta-diversity (Vodă et al., 2015) and, since they 94 

inhabit different areas, are expected to be adapted to different climates (Toews, Mandic, 95 

Richards, & Irwin, 2014). For this reason, cryptic species are supposed to react differently to 96 

climatic changes and any modelling based on amalgamated records is likely inaccurate 97 

(Lecocq, Harpke, Rasmont, & Schweiger, 2019). 98 

We provide a methodology to objectively attribute occurrence data previously referring to a 99 

single taxon to the most likely taxon among two or more newly recognized entities, based on 100 

a subset of ascertained records and on justifiable geographic rules. We applied this procedure 101 

to the cryptic butterfly species of Europe recently separated into different taxa (Wiemers et 102 

al., 2018) that were amalgamated in the Distribution Atlas of Butterflies in Europe (Kudrna et 103 

al., 2011; Kudrna, Pennerstorfer, & Lux, 2015). This atlas, of which several editions have 104 

been published, represents the most comprehensive source of occurrence data for European 105 

butterflies, and the data from the 2011 edition were used to calculate the widely used 106 

CLIMBER variables describing species ranges and their climatic preferences over Europe 107 

(Schweiger et al., 2014).  108 

We provide six new R functions, added to the recluster R package (Dapporto et al., 2013), for 109 

parameter optimisation, record attribution to potential cryptic taxa and for testing the 110 

reliability of the procedure. Finally, we provide new climatic variables for the species 111 

included in this study and show that cryptic taxa differ substantially in their climatic niches. 112 



 113 

Methods 114 

 115 

The algorithm 116 

The objective of the algorithm is to reliably attribute species membership to a set of 117 

ambiguous records belonging to two (or more) cryptic species based on the distribution of a 118 

subset of accurately determined records. The main idea is that records from an area where 119 

only one taxon occurs can be attributed with confidence, while records from the areas of 120 

sympatry or too far from any ascertained record cannot be reliably attributed. For this 121 

purpose, we developed a series of R (R Core Team, 2019) functions added to the recluster R 122 

package (biodecrypt, biodecrypt.view, biodecrypt.cross, biodecrypt.wrap, 123 

optimize.biodecrypt, plot.biodecrypt). The main inputs for the functions are a matrix with 124 

longitude and latitude for all the occurrence data and a vector (in the same order) providing 125 

their identification. The records identified to species-level (identified records) must be 126 

indicated in the vector with a sequential numeric value (1, 2... n), which represents the 127 

verified membership to the nth species. The occurrence data with unknown identification 128 

(unidentified records) are marked with a 0 (Fig. 1). Based on this vector and on the 129 

geographical coordinates of identified records, biodecrypt builds hulls of distribution for each 130 

species. In a highly simplified hypothesis, the distribution of a species can be approximated 131 

by a convex hull among the geographic coordinates of identified records. Nevertheless, areas 132 

of distribution can be largely concave, mostly in geomorphologically highly heterogeneous 133 

regions. This is the case for Southern Europe, characterized by the presence of three major 134 

peninsulas and several insular systems with contrasting species assemblages (Vodă et al., 135 

2015), as well as by a complex quaternary biogeography (Schmitt, 2007; Dapporto et al., 136 

2019). For this reason, biodecrypt and biodecrypt.view use the function 137 



getDynamicAlphaHull of the rangeBuilder R package (https://github.com/ptitle/rangeBuilder, 138 

accessed 2020/02/05) to construct concave alpha-hulls.  139 

An alpha-hull is a piecewise series of linear simple curves in the Euclidean plane associated 140 

with the shape of a finite set of points (Edelsbrunner, Kirkpatrick, & Seidel, 1983). Alpha-141 

hulls generalize the concept of the convex hull since every convex hull is an alpha-hull, 142 

whereas not every alpha-hull is a convex hull. Alpha-hulls are not necessarily convex and 143 

two points inside an alpha-hull can be connected by a segment not completely lying inside 144 

the hull itself. The boundary of the alpha-hull is formed by arcs with radius α (see Fig. 2 for a 145 

polygon with α = 3). For α=0 the hull is reduced to the set of points. For increasing values, 146 

the area encompassed by the alpha-hull increases in the form of separate concave polygons 147 

connecting an increasing number of points, which in some cases remain isolated. For a very 148 

high value of α, an alpha-hull corresponds to the convex hull connecting the set of points. For 149 

these reasons, alpha-hulls are particularly suitable to model disjunct organism distributions 150 

including dot-like populations, which – using convex hulls – appear as continuous areas. 151 

The getDynamicAlphaHull function supports an initial alpha value that determines a starting 152 

custom degree of concavity, which is increased until a given fraction of identified records are 153 

included in the resulting hulls (default 95%) and the number of separate polygons is lower 154 

than a custom number (default 10). This function can also remove sea or ground areas from 155 

the hulls when terrestrial or aquatic organisms, respectively, are under study, thus improving 156 

the precision of the hull geometry. After the construction of the alpha-hulls, biodecrypt 157 

attempts the attribution of unidentified records to the most likely species (Fig. 1). For this 158 

aim, biodecrypt also requires a buffer and a ratio value (explained below). Based on hull 159 

geometry and their relative position, each unidentified record could be either: i) inside more 160 

than one hull, ii) inside a single hull, or iii) outside all hulls. The three cases are treated 161 

separately. 162 



 163 

Cases inside more than one hull 164 

In this case, the function cannot attribute the unidentified records to a species (case 1 in Fig. 165 

2) and only the a priori identified records belonging to intersection areas are passed to the 166 

final vector as identified.  167 

 168 

Cases inside a single hull 169 

The unidentified records falling inside a single hull are attributed to that species if their 170 

distance to any other hull is higher than the buffer value (in km) provided by the user (case 2 171 

in Fig. 2). Unidentified records inside the buffer of another hull are not attributed (case 3 in 172 

Fig. 2). 173 

 174 

Cases outside all hulls 175 

The unidentified records which do not fall inside any hull are attributed to the closest hull if: 176 

i) the distance from the second nearest hull is higher than the buffer and if ii) the ratio 177 

between the minimum distance to the second closest hull and to the closest hull is more than 178 

the ratio value indicated by the user. For example, in Fig. 2 point 4 is not attributed while 179 

point 5 is attributed to Polyommatus celina.  180 

 181 

Check for distances from the nearest identified record 182 

As described above, the attribution of unknown records is strictly determined by the distance 183 

from the hulls. The biodecrypt function also contains an option (“checkdist”) to check if 184 

cases attributed to a given species based on relative distance from hulls are closer to an 185 

identified record of another species, which may occasionally occur. If this option is selected 186 

(default) these cases are not attributed to any species (Fig. 2, case 6). 187 



 188 

Different alpha values can better fit the distribution of a given cryptic species and the optimal 189 

alpha value can be evaluated by series of cross-validation analyses using biodecrypt.wrap 190 

(see below), or according to the researcher’s perception. For this reason, we implemented the 191 

biodecrypt.view function providing a visual representation of the alpha-hulls for the different 192 

cryptic taxa and given alpha values. The alpha values can be modified until an optimal 193 

representation is obtained (Fig. 1). The biodecrypt and biodecrypt.view functions also 194 

provide three measures: i) the area occupied by each hull (in km2), ii) the area of all the 195 

possible intersections between pairs of hulls (in km2) and iii) the fraction of area of 196 

intersection between pairs of hulls. 197 

 198 

Cross-validation  199 

A third function (biodecrypt.cross) wraps the biodecrypt function to carry out cross-200 

validation of identified cases and to verify the robustness of the attribution of unknown cases 201 

(Fig. 2). This function requires the same input of biodecrypt (coordinates and vector with 202 

attribution and distance ratio, buffer and alpha values) and a “runs” value defining the 203 

number of different runs, thus the fraction of test records in each run. The analysis is repeated 204 

as many times as defined in “runs” (a “runs” value of 10 will perform a ten-fold cross-205 

validation). In each run, a randomly selected fraction of 1/”runs” identified records are 206 

regarded as unidentified (0 value) and the biodecrypt function is carried out to attribute them. 207 

The blind attribution of identified records is compared with their membership and two values 208 

are provided: the percentages of cases attributed to a wrong species (misidentified records, 209 

MIR) and the percentage of cases not attributed to any species (non-attributed identified 210 

records, NIR). MIR and NIR represent measures for the power of the function to correctly 211 

attribute unknown records to a given species (NIR) and to avoid mis-identification (MIR). 212 



The function also has an option to calculate the percentage of non-attributed unidentified 213 

records (NUR) representing the fraction of unknown records that could not be attributed to a 214 

species after the biodecrypt function was completed using the parameters provided by the 215 

user and the complete set of identified and non-identified records.  216 

We also provide a function (biodecrypt.wrap) that replicates the cross-validation analysis by 217 

using all possible combinations of a series of distance ratio, alpha and buffer values to 218 

compare their resulting MIR, NIR and NUR. To optimise the three parameters for each 219 

species, we introduced a combination of MIR2+NIR+NUR as a penalty value for the different 220 

combinations of the parameters. Since the method showing the lowest penalty in cross-221 

validation might not necessarily be the optimal value for the final analysis, all the 222 

combinations showing a penalty value not higher than a certain threshold compared with the 223 

analysis showing the lowest penalty should be considered as similarly good. We provided a 224 

value of 10 as a default, representing a variation of about 3 for each addendum of the penalty. 225 

The optimal parameters can then be calculated as mean values of distance ratio, alpha and 226 

buffer among those used in these cross-validation analyses, weighted by 1/penalty to provide 227 

an increasing contribution to the solutions with low penalty values. This is done by 228 

optimise.biodecrypt, calculating the optimal values of alpha, buffer and distance ratio based 229 

on biodecrypt.wrap results. 230 

A plot.biodecrypt function can be applied to the results of biodecrypt to inspect the solution 231 

of the analysis and to locate the NUR records. The same function can be applied to the cross-232 

validation results to locate NIR and MIR records. 233 

 234 

Occurrence data used in this study 235 

As a main source for occurrence data of amalgamated data we used the Distribution Atlas of 236 

Butterflies in Europe (Kudrna et al., 2011) which also served as the basis for the calculation 237 



of the CLIMBER variables describing climatic preferences of European butterflies 238 

(Schweiger et al., 2014). An earlier edition of this atlas (Kudrna, 2002) was also used to 239 

generate the Climatic Risk Atlas of European Butterflies (Settele et al., 2008). As a 240 

supplementary source of occurrence data for both amalgamated and split species, we used 241 

specimens belonging to Roger Vila’s collection (Institut de Biologia Evolutiva, Barcelona). 242 

The main source for occurrence of cryptic species with known attribution was published data, 243 

in most cases represented by genitalia assessment and/or by mitochondrial DNA sequences 244 

(Appendix S1 for details). For ten species, a series of 52 specimens from the contact zones 245 

have also been specifically sequenced (DNA barcoded) for this study (sequencing methods in 246 

Appendix S1) that are included in the ”DS-WEUP” BOLD project.  247 

 248 

Case study species  249 

Following the latest taxonomic assessment for European butterflies (Wiemers et al., 2018), 250 

20 cases amalgamated in the Distribution Atlas should be divided into 41 distinct taxa with 251 

parapatric or sympatric ranges. Of these, we compiled sufficient identified records for 16 252 

cases amalgamated in the above-mentioned atlas, which represent 33 cryptic species. These 253 

species were used in this study : 1) Carcharodus alceae and C. tripolinus, which co-exist in 254 

southern Iberia (Dincă et al., 2015); 2) Spialia sertorius and S. rosae, largely sympatric in 255 

Iberia (Hernández‐Roldán et al., 2016), 3) Pyrgus malvae and P. malvoides, parapatric with a 256 

contact along central France and the Alps (Koren, Beretta, Črne, & Verovnik, 2013; Litman 257 

et al., 2018), 4) Iphiclides podalirius and I. feisthamelii, parapatric with a contact zone in the 258 

Pyrenees and southern France (Wiemers & Gottsberger, 2010; Gaunet et al., 2019); 5) 259 

Zerynthia polyxena and Z. cassandra, parapatric with contact zone in northern Italy (Zinetti 260 

et al., 2013); 6) Pontia daplidice and P. edusa, parapatric with a contact zone in northwestern 261 

Italy (Porter, Wenger, Geiger, Scholl, & Shapiro, 1997); 7) Leptidea sinapis/reali/juvernica, 262 



with L. reali and L. juvernica being allopatric, but each sympatric with respect to L. sinapis 263 

(Dincă, Lukhtanov et al., 2011, Dinca et al., 2013); 8) Lycaena tityrus and L. bleusei 264 

parapatric in Iberia (Dincă et al., 2015); 9) Polyommatus icarus and P. celina, parapatric with 265 

contact in southern Iberia (Dincă, Dapporto, & Vila, 2011); 10) Lysandra coridon and L. 266 

caelestissima, parapatric in central Iberia (Talavera, Lukhtanov, Rieppel, Pierce, & Vila, 267 

2013); 11) Melitaea athalia and M. celadussa parapatric with a contact zone from southern 268 

France through the Alps. We also applied the assignment procedure to a series of species 269 

showing almost complete allopatric distribution that were split in Wiemers et al. (2018) but 270 

not yet considered in the CLIMBER dataset: 12) Aglais urticae and A. ichnusa, 13) Iolana 271 

iolas and I. debilitata, 14) Pseudochazara anthelea and P. amalthea. For two largely 272 

allopatric species: 15) Erebia hispania and E. rondoui and 16) Zizeeria knysna and Z. 273 

karsandra, applying the procedure was pointless because of their clear allopatry (Appendix 274 

S1), but we separated their records and re-calculated the CLIMBER variables (see below). In-275 

depth descriptions of the markers used to generate the subset of identified records of each 276 

species are provided in the Appendix S1. We excluded four species groups from the study 277 

because knowledge regarding their distribution was still incomplete. This is caused by 278 

uncertainty in the identification of records due to the absence of unequivocal morphological 279 

markers, sharing of DNA barcodes, and/or to their insufficiently assessed distribution 280 

(Hipparchia semele/neapolitana/blachieri, Pieris napi/balcana, Lycaena hippothoe/candens, 281 

Melitaea phoebe/ornata).  282 

To identify the best combination of alpha, buffer and distance ratio parameters, we ran the 283 

biodecrypt.wrap function for each species in 80 possible combinations of four alpha values 284 

(1, 5, 10, 15), four distance ratio values (2, 3, 4, 5) and five buffer values (0, 40, 80, 120, 285 

160).  286 

 287 



Dependency of attribution on range overlap and on parameters  288 

The most problematic cases are represented by records in or close to areas of sympatry 289 

between species, which cannot be attributed with confidence. To verify the effect of the 290 

degree of sympatry, we correlated the percentage of MIR, NIR and NUR and of optimised 291 

distance ratio, alpha and buffer values with the percentage of the overlapping area between 292 

species. The significance of the correlations was tested with Spearman tests. We also 293 

evaluated the relationship of MIR, NIR and NUR from the three different parameters by 294 

using Generalized Additive Mixed Models. We collated the output of the wrap analyses of 295 

the 12 species to which biodecrypt.wrap was applied (960 biodecrypt.cross analyses) and 296 

modelled MIR, NUR and NIR in three separate analyses against smoothed (k=2) alpha, ratio 297 

and buffer using species as a random factor.  298 

 299 

Evaluation of niche overlap among cryptic taxa and calculation of CLIMBER variables 300 

To evaluate the potential impact of separation of cryptic taxa on macroecological studies, we 301 

evaluated climatic niche overlap among the taxa separated in this study. We used an approach 302 

based on a PCA of the climate space in Europe and a density smoothing of the occurrence 303 

points for each target species within this space (Broennimann et al., 2012). This is followed 304 

by the calculation of niche overlap based on Schoener's D (Schoener, 1968) and the modified 305 

Hellinger metric I (Appendix S1 for details). Both indices range from 0 to 1, indicating no 306 

niche overlap (0) to full overlap (1). We verified whether the observed overlap is 307 

significantly different among separated taxa as done by Warren, Glor, & Turelli (2008). We 308 

performed two one-sided tests based on a randomised null model approach, one for niche 309 

conservatism and one for niche divergence by testing (i) niche equivalency, i.e. without 310 

considering overall available niche space, and (ii) niche similarity, i.e. accounting for the 311 



available niche space in Europe (Warren et al., 2008). Analyses were performed with the R 312 

package ecospat (Broennimann, Di Cola, & Guisan, 2016) and ade4 (Dray & Dufour, 2007). 313 

We also recalculated the CLIMBER variables for the improved distribution data of 33 cryptic 314 

taxa following the same procedure applied by Schweiger et al. (2014). For each cryptic 315 

group, the former values of mean temperature and precipitation in the distribution area for the 316 

amalgamated species complex and for the separated cryptic species were plotted in bivariate 317 

plots, together with the values of all the other European species, to illustrate divergence in 318 

climatic preferences among cryptic taxa. In order to assess if cryptic pairs have smaller or 319 

larger differences in mean temperature and precipitation compared to their congeneric 320 

species, we proceeded as follows: We scaled and centered the complete dataset of CLIMBER 321 

for mean temperature and precipitation (mean=0, sd=1). Within each genus of the 16 322 

complexes examined we calculated the Euclidean distances in scaled mean temperature and 323 

precipitation between all pairs of congeneric species included in CLIMBER. Then, we 324 

compared the distances between pairs of cryptic taxa separated in this study and between all 325 

the other congeneric taxa by using a generalized linear mixed model with a gamma family 326 

distribution (glmer function of the lme4 R package) (Bates et al., 2015), including genus as a 327 

random factor. Script and data are uploaded in Dryad 328 

(https://doi.org/10.5061/dryad.hmgqnk9dh). 329 

 330 
Results 331 
 332 
Cross-validation analyses obtained by biodecrypt.wrap identified the models under a penalty 333 

threshold of 10 compared to the model with the lowest penalty, and allowed setting of 334 

appropriate alpha, buffer and distance ratio for each species (Fig. 1, Table 1). Compared to 335 

the relatively large range of the three parameters tested, the optimization by penalty produced 336 

similar values for all the species, with optimal ratio ranging from 2.1 to 3.2, alpha from 5.6 to 337 

11.0 and buffer from 31.7 to 96.1 (Table 1). When using the optimised alpha values, the 338 



parapatric taxa revealed very limited overlap, with intersections among the hulls usually 339 

lower than 5% (Table 1). All species showed very low values of misidentified records (MIR), 340 

which were at most 2.0% in the case of Z. polyxena/cassandra and I. podalirius/feisthamelii. 341 

The percentage of non-attributed identified records (NIR) was much higher and ranged 342 

between 1.2 and 84.7%, with very high values in sympatric species (Spialia and Leptidea 343 

groups, Fig. 3; Table 1) because, based on the assignment algorithm, all the test records 344 

belonging to the overlap areas cannot be attributed in a cross-validation analysis. The 345 

percentage of non-attributed unknown records (NUR) also varied considerably but, except for 346 

the sympatric Leptidea (71.1% NUR) it did not exceed 20.0% of the unknown records (Fig. 347 

3; Table 1). The percentage NIR and NUR correlated with the percentage of area of overlap 348 

(Spearman test: NIR, Rho=0.932, P<0.001; NUR, Rho=0.587, P=0.027; Supplementary 349 

Figure S1). Conversely, the percentage MIR, and the optimised parameters revealed no 350 

correlations with the area of overlap (Spearman test: MIR, Rho=0.432, P=0.160; alpha, 351 

Rho=0.030, P=0.919; buffer, Rho=0.048, P=0.870; distance ratio, Rho=-0.073, P=0.804; 352 

Supplementary Figure S1). 353 

When the different solutions obtained by biodecrypt.wrap for all species were compared in 354 

GAMM analyses it emerged that ratio had no significant effect on MIR, while it strongly 355 

increased NIR and NUR with an almost linear trend (Fig. 4 and effective degrees of freedom 356 

close to 1 in Table 2). Increasing the buffer had a strong effect in reducing MIR, but it also 357 

increased NUR and NIR (with a strongly curvilinear effect for MIR flattening around 100 358 

km), while high values of alpha reduced the number of MIR and NUR and slightly increased 359 

NIR (Fig. 4; Table 2). 360 

The analysis of niche overlap (Table 3) showed that climatic niches are more similar than 361 

expected by chance for all species pairs, as indicated by non-significant divergence for the 362 

niche similarity test (SDD and SDI in Table 3), but only S. sertorius/rosae and L. 363 



sinapis/reali also showed a significant conservatism in terms of niche similarity (SCD and 364 

SCI in Table 3). However, significant divergence for the niche equivalency tests indicated 365 

that the climatic niches differ considerably for all species pairs (EDD and EDI in Table 3). 366 

Taken together, these results show that the climatic niches of all species pairs are 367 

significantly different, but still more similar than expected by a random distribution across 368 

Europe. These results were consistent for both measures of niche overlap, D and I. 369 

CLIMBER variables were calculated for the 33 cryptic species and are available in Appendix 370 

S2. When the mean temperature and precipitation for the formerly amalgamated species were 371 

plotted together with the data of the newly separated cryptic taxa, it became obvious that the 372 

values for the separated species diverge considerably, in some cases spreading all across the 373 

main sector of the space occupied by most European species (Fig. 5a-f). A Generalised 374 

Linear Mixed Model revealed that differences in mean temperature and precipitation among 375 

the cryptic taxa separated here are not smaller than the differences among all congeneric 376 

species included in CLIMBER (cryptic taxa, mean difference=1.29=±0.63; congeneric taxa 377 

mean difference=1.68±1.21, Estimate=-0.020, Standard Error=0.121, df=1825, t=-0.161, 378 

P=0.872). 379 

 380 

Discussion 381 

Recently diverged taxa (Pigot & Tobias, 2013), as well as cryptic species of butterflies (Vodă 382 

et al., 2015; Dapporto et al., 2017; Scalercio et al., 2020), tend to have parapatric 383 

distributions with narrow contact zones. This phenomenon facilitates the reliable attribution 384 

of ambiguous records to newly discovered species following a hull-based procedure based on 385 

the distribution of a subset of identified records. After the parameters used to build the hulls 386 

and to attribute records to species had been optimised in a series of cross-validation analyses, 387 

the procedure showed a very high attribution of identified records to their correct species 388 



(MIR always lower or equal to 2%). Moreover, following this procedure, the fraction of 389 

unknown records which remained non-attributed (NUR) was at most 20% for parapatric taxa. 390 

The number of incorrectly attributed specimens does not considerably increase with the 391 

degree of sympatry. However, the values of optimised parameters did not depend on the 392 

degree of overlap, and they are more likely imposed by the geometry of the distribution areas.  393 

The comparison of a large set of cross validation analyses (GAMM approach) revealed how 394 

the parameters can be varied to impose stricter or wider inclusion possibilities for a given 395 

taxon. Theoretically, higher distance ratio and buffer, and lower alpha values are expected to 396 

decrease the number of incorrectly attributed records, but to increase the number of non-397 

attributed records. Accordingly, increasing buffer strongly reduced MIR but increased NIR 398 

and NUR (Fig. 4), while the ratio and the alpha values had much lighter effects on MIR. This 399 

is probably due to the relatively simple (not interdigitated) shape of the distribution 400 

boundaries among cryptic species of butterflies for which a high alpha value (producing 401 

slightly concave hulls) and an optimized distance from other hulls (buffer) can avoid most 402 

MIR. These observations can help in refining the solutions. In the genus Iphiclides, 403 

unavailability of identified specimens from northern areas did not allow to attribute 404 

northernmost unidentified records (most probably belonging to I. podalirius) and this could 405 

have slightly affected the assessment of climatic niches. When including a few misclassified 406 

specimens does cause more problems than generating several non-attributed unrecognized 407 

record (NUR), a computational strategy could be excluding the squared exponent of MIR 408 

from the penalty calculation in biodecrypt.optimise (e.g. MIR+NIR+NUR). This can reduce 409 

the maximum ratio for attribution, thus lowering the number of NUR with a very small 410 

increase in MIR (Fig. 4). Finally, the values of the procedure parameters can also be adjusted 411 

according to researcher’s perception. 412 



The framework presented here provides a standardised method that allows researchers to take 413 

advantage of previous efforts of data collection even when modern investigation methods 414 

identify new layers of biodiversity. This is not necessarily restricted to cryptic species but can 415 

also be relevant for analyses of evolutionary significant units such as those highlighted by 416 

species delimitation methods (Lecocq et al., 2019). Moreover, biodecrypt can also be used in 417 

cases where very similar species are treated as a single unit in citizen science projects.  418 

Clearly, in the presence of largely sympatric species the approach described here is less 419 

efficient because all the occurrence data for the overlapping zones must be directly verified. 420 

In general, this can happen when climatic distance governs limits between species 421 

distributions more than geographic distance, as revealed by the existence of several species 422 

with small ranges being restricted to climatically rare areas (Ohlemüller et al., 2008). In our 423 

dataset this could be the case of two pairs, Leptidea sinapis/L. reali and Spialia sertorius/S. 424 

rosae. In fact, L. reali and S. rosae are specialized to mountain areas, while L. sinapis and S. 425 

sertorius are climate generalists. Although the distance-based biodecrypt algorithm is less 426 

efficient in attributing unknown records in areas where the pairs of species are mostly 427 

separated by climatic distances, it remains conservative in avoiding mis-identifications. 428 

Moreover, even predominantly sympatric taxa often do not co-occur in large areas of their 429 

distributions (Fig. 3) and in these cases, biodecrypt can highlight areas where the attribution 430 

to a given taxon is reliable based on distances as opposed to areas where climatic distances 431 

might exert an important complementary effect. The detection of poorly studied areas is 432 

another notable result stemming from our analysis. In fact, the distribution of non-attributed 433 

unknown records can highlight where further research efforts are needed to confirm the 434 

distribution of recently recognized species by means of dedicated field research or by 435 

morphological examination and DNA sequencing from existing natural history collections 436 

(e.g. Kharouba, Lewthwaite, Guralnick, Kerr, & Vellend, 2019). An example of such regions 437 



is north-western France for Pontia daplidice/edusa, Melitaea athalia/celadussa, and Pyrgus 438 

malvae/malvoides (Fig. 3).  439 

It has already been demonstrated that considering cryptic taxa as amalgamated entities 440 

overlooks a large fraction of beta-diversity (Vodă et al., 2015). Our results also indicate that 441 

amalgamating cryptic taxa may affect macroecological studies investigating the response of 442 

species and communities to climatic changes (Settele et al., 2008; Devictor et al., 2012).We 443 

found significant niche divergence for all the pairs of cryptic species and a particularly low 444 

level of niche conservatism (two species pairs out of sixteen). This is reflected in the strong 445 

differences in the values of CLIMBER variables, which are widely used in macroecology to 446 

assess butterfly responses to current and future climatic conditions. The differences in mean 447 

temperature and precipitation experienced by cryptic species pairs in Europe are considerable 448 

and in the same order of magnitude as the differences among other congeneric species. In 449 

some cases, the variables describing climatic preferences of cryptic taxa were so divergent 450 

that they spread all over the space defined by the mean temperature and precipitation of most 451 

European species.  452 

Failing to consider the divergent climatic niches of cryptic taxa can have considerable 453 

impacts on climatic risk assessments based on species distribution modelling. It has been 454 

shown, in the case of locally adapted subspecies, that individual responses of taxa to climate 455 

change do not necessarily resemble the modelled response of the amalgamated group, which 456 

might lead to severe over- or underestimation of the risks (Lecocq et al., 2019). Also, 457 

assessments of the response of communities, such as based on the community-weighted mean 458 

temperature index, might be improved by considering cryptic species. The replacement of a 459 

cool-adapted species by a warm-adapted species of an initially amalgamated group will 460 

clearly contribute to an increase in the community-weighted mean temperature index, while 461 

ignoring climatic niche divergence within the amalgamated group will be interpreted as no 462 



change. Such an effect might, partly, contribute to an observed time lag in the response of 463 

butterfly communities to climate change (Devictor et al., 2012). Our dataset comprised 33 464 

species, representing 6.7% of the 496 species recorded in Europe (Wiemers et al., 2018). 465 

Notably, some of these complexes represent widely distributed and common butterflies in 466 

Europe (Polyommatus icarus/celina, Aglais urticae/ichnusa, Carcharodus alceae/tripolinus, 467 

Melitaea athalia/celadussa, Pontia daplidice/edusa and Leptidea sinapis/reali/juvernica). 468 

Given the range, density and the large differences in climatic preferences displayed by 469 

cryptic taxa, their separation can be an important improvement for monitoring and analysing 470 

community-level responses to climate change. This information can also help in connecting 471 

large-scale and long-term evolutionary processes with ecological processes through the 472 

analysis of species interactions with their abiotic and biotic environments, or shed light on the 473 

phylogenetic conservation of niche characteristics relevant to climate-change (e.g. Devictor 474 

et al., 2012; Kharouba et al., 2019; Ohlemüller et al., 2008). 475 

In conclusion, it is our hope that the framework here presented, which allows the objective 476 

attribution of undetermined occurrence data to recently assessed taxonomic units, will benefit 477 

biodiversity mapping, highlight gaps in current knowledge and improve macroecological 478 

analyses.  479 
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Table 1. Results of cross-validation, parameters estimated by optimization and range overlap. 627 

 628 

 629 

Table 1. Misidentified identified records (MIR), non-attributed identified records (NIR) and 630 

non-attributed non-identified records (NUR) obtained for each species after optimization of 631 

alpha, buffer and distance ratio parameters. The parameters have been estimated with series 632 

of cross-validation analysis. The alpha, buffer and ratio of the solutions showing a penalty 633 

(MIR2+NIR+NUR) not higher than 10 compared to the model with lowest penalty have been 634 

averaged weighted by their inverse penalty by biodecrypt.optimise. The percentage of range 635 

overlap among hulls in the solution obtained by using these parameters is also reported. For 636 

Leptidea, the pairwise overlap values between L. sinapis (Ls), L. reali (Lr) and L. juvernica 637 

(Lj) are provided.  638 

  639 

Species MIR NIR NUR Alpha Buffer Ratio Overlap% 
S. sertorius/rosae 1.9 41.2 18.2 11.0 96.1 2.3 15.6 
P. malvae/malvoides 0.0 33.6 7.6 9.7 68.7 2.4 2.3 
C. alceae/tripolinus 0.5 35.2 5.0 7.3 92.4 2.4 4.4 
Z. polyxena/cassandra 2.0 12.0 7.6 5.6 35.3 2.3 0.1 
I. podalirius/feisthamelii 2.0 9.1 6.2 7.7 39.0 2.1 0.2 

 
P. daplidice/edusa 0.6 4.3 3.9 9.0 50.5 2.6 0.0 
L. sinapis/reali/juvernica 1.9 84.7 71.1 8.5 52.5 3.2 Lr-Lj 0.0 

Lr-Ls 4.1 
Ls-Lj 50.1 

L. tityrus/bleusei 0.0 2.7 2.0 9.2 74.0 2.9 0.0 
I. iolas/debilitata 0.0 4.5 1.5 7.6 80.5 2.4 0.0 
P. icarus/celina 0.7 11.4 3.1 8.5 52.5 3.2 1.9 
L. coridon/caelestissima 0.0 1.2 0.3 8.9 76.4 2.7 0.0 

M. athalia/celadussa 1.9 10.2 7.2 10.4 31.7 2.7 1.0 
A. urticae/ichnusa NA NA 0.2 8.0 60.0 2.5 0.0 
P. anthelea/amalthea NA NA 20.0 8.0 60.0 2.5 0.0 



Table 2. Generalized Additive Mixed Model (GAMM) results for the influence of the three 640 

parameters on record attribution. 641 

 642 

 MIR NIR NUR 

 edf F P edf F P edf F P 

Ratio 1 0.486 0.486 1 219.2 <0.001 1.168 933.36 <0.001 
Buffer 1.992 430.06 <0.001 1.546 832.8 <0.001 1.825 186.48 <0.001 
Alpha 1.611 16.972 <0.001 1.54 11.7 <0.001 1.967 95.09 <0.001 

 643 

Table 2. The effect of ratio, buffer and alpha of misidentified records (MIR), non-attributed 644 

identified records (NIR) and non-attributed unidentified records (NUR) as verified by 645 

GAMMs (edf, effective degrees of freedom, F and P values are provided).  646 

  647 



Table 3. Tests for niche equivalency, divergence and conservatism. 648 

 649 

 650 

Table 3. Niche overlap metrics Shoener's D (D) and the modified Hellinger metric I (I) 651 

calculated in multivariate climatic space for pairs of the studied taxa. Four tests have been 652 

performed per metric and respective P values are provided for conservatism based on niche 653 

equivalency for D and I (ECD P; ECI P), divergence based on niche equivalency (EDD P; 654 

EDI P), conservatism based on niche similarity (SCD P, SCI P) and divergence based on 655 

niche similarity (SDD P, SDI P). Significant values are indicated in bold.  656 

Group D I ECD P ECI P EDD P EDI P SCD P SCI P SDD P SDI P 

C. alceae/tripolinus 0.179 0.367 1.000 1.000 0.010 0.010 0.069 0.089 0.881 0.842 
C. sertorius/rosae 0.155 0.376 1.000 1.000 0.010 0.010 0.030 0.030 0.950 0.960 
P. malvae/malvoides 0.252 0.429 1.000 1.000 0.010 0.010 0.178 0.208 0.772 0.762 
I. podalirius/feisthamelii 0.351 0.485 1.000 1.000 0.010 0.010 0.248 0.267 0.752 0.743 
Z. polyxena/cassandra 0.341 0.538 1.000 1.000 0.010 0.010 0.059 0.069 0.931 0.931 
P. daplidice/edusa 0.481 0.608 1.000 1.000 0.010 0.010 0.079 0.119 0.960 0.931 
L. sinapis/reali 0.274 0.507 1.000 1.000 0.020 0.030 0.069 0.050 0.970 0.970 
L. sinapis/juvernica 0.266 0.491 1.000 1.000 0.010 0.010 0.129 0.079 0.782 0.861 
L. reali/juvernica 0.179 0.303 1.000 1.000 0.010 0.010 0.208 0.178 0.832 0.861 
L. tityrus/bleusei 0.131 0.326 0.990 1.000 0.010 0.010 0.168 0.158 0.812 0.832 
I. iolas/debilitata 0.255 0.429 1.000 1.000 0.010 0.010 0.149 0.168 0.901 0.871 
P. icarus/celina 0.115 0.294 1.000 1.000 0.010 0.010 0.347 0.347 0.634 0.653 

L. coridon/caelestissima 0.012 0.104 1.000 1.000 0.010 0.010 0.238 0.248 0.703 0.693 
M. athalia/celadussa 0.271 0.429 1.000 1.000 0.010 0.010 0.257 0.317 0.723 0.703 
A. urticae/ichnusa 0.054 0.226 1.000 1.000 0.010 0.010 0.267 0.238 0.723 0.812 
P. anthelea/amalthea 0.060 0.120 1.000 1.000 0.010 0.010 0.059 0.277 0.941 0.752 



 657 

Figure 1. A diagram showing the workflow of the six functions of the biodecrypt family. 658 

Function names are indicated as blue boxes. Circles with arrows indicate wrapping of a 659 

function inside another one. Options/Parameters are indicated as pink boxes and a short 660 

description is given. Results are shown in orange boxes. 661 

 662 

  663 



 664 

 665 

Figure 2. An example of the assignment procedure based on the overlapping distributions of 666 

Polyommatus icarus (red) and P. celina (blue) in Iberia. Red and blue dots represent the sites 667 

from where specimens of the respective species have been sequenced, empty circles represent 668 

sites with unidentified records. The continuous red and blue lines represent the hulls obtained 669 

for the two species based on occurrence of sequenced specimens (alpha = 3 in this example 670 

compared to the optimized value of 8.5 to show the effect of a low alpha value on polygon 671 

shape), the dotted blue line represents the buffer of the P. celina hull (for clarity, the buffer of 672 

the P. icarus hull is not represented). Unidentified record 1 is not attributed since it falls 673 

inside both hulls; record 2 is attributed to P. icarus, record 3 is not attributed since it falls in 674 

the buffer of the P. celina hull; record 4 (external to both hulls) is not attributed because the 675 

distance ratio (d1/d2; where d1 represents the larger distance) is smaller than the default ratio 676 



of 2.5; while record 5 is attributed to P. celina because d1/d2 is larger than 2.5 (default in 677 

biodecrypt). If checkdist is selected, point 6 is not attributed to P. icarus because the closest 678 

known record is of P. celina. 679 

 680 

  681 



 682 

Figure 3. Distribution maps obtained for nine groups of cryptic species by using the 683 

optimised parameters reported in Table 1. Dots with darker colour represent records 684 



identified based on DNA sequences (mostly mitochondrial), genitalic morphology or other 685 

markers. Circles with paler colours represent records attributed by the algorithm. Black 686 

circles are non-attributed records. The physical map used is freely available from Natural 687 

Earth (www.naturalearthdata.com). 688 

  689 



 690 
Figure 4. The standardized effect (trends) of ratio, buffer and alpha obtained after 691 

Generalized Additive Mixed Model on non-attributed unknown records (NUR), non-692 

attributed known records (NIR) and misidentified known records (MIR). Data belongs to 693 

series of biodecrypt.wrap analyses. 694 

 695 

 696 

  697 



 698 

Figure 5. Climatic space defined by mean annual temperature and annual precipitation for all 699 

European species included in the CLIMBER dataset (a). The blue rectangle represents the 700 

climate space where the species under study are located and which is used for figures b-f. For 701 

the five families, the resulting values for the cryptic taxa separated in this study are 702 

represented by filled dots connected with a line to the former values of the amalgamated 703 

taxon (diamonds). Each cryptic complex within a family is represented by a different colour 704 

(b-f) and separated cryptic species names are reported. 705 


