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Summary

Group testing, where individuals are tested initially in pools, is widely used to screen a large 

number of individuals for rare diseases. Triggered by the recent development of assays that detect 

multiple infections at once, screening programs now involve testing individuals in pools for 

multiple infections simultaneously. Tebbs, McMahan, and Bilder (2013, Biometrics) recently 

evaluated the performance of a two-stage hierarchical algorithm used to screen for chlamydia and 

gonorrhea as part of the Infertility Prevention Project in the United States. In this article, we 

generalize this work to accommodate a larger number of stages. To derive the operating 

characteristics of higher-stage hierarchical algorithms with more than one infection, we view the 

pool decoding process as a time-inhomogeneous, finite-state Markov chain. Taking this 

conceptualization enables us to derive closed-form expressions for the expected number of tests 

and classification accuracy rates in terms of transition probability matrices. When applied to 

chlamydia and gonorrhea testing data from four states (Region X of the United States Department 

of Health and Human Services), higher-stage hierarchical algorithms provide, on average, an 

estimated 11 percent reduction in the number of tests when compared to two-stage algorithms. For 

applications with rarer infections, we show theoretically that this percentage reduction can be 

much larger.
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1. Introduction

Group testing, also known as pooled testing, was proposed by Dorfman (1943) as a strategy 

to screen military recruits for syphilis during World War II. Dorfman envisioned that instead 

of testing each recruit’s blood specimen separately, multiple specimens could be pooled 

together and tested at once. Individuals from negative pools would be declared negative, and 

specimens from positive pools would be retested individually to identify which recruits had 
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7. Supplementary Materials
The Web Appendices referenced in Sections 2–5 are available with this article at the Biometrics website on Wiley Online Library. We 
have also made our R programs available on this website. A description of our programs is given in Web Appendix F.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2017 June 15.

Published in final edited form as:
Biometrics. 2017 June ; 73(2): 656–665. doi:10.1111/biom.12589.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contracted syphilis. Over 70 years later, pooling biospecimens through group testing is 

commonplace in a variety of infectious disease settings. This is especially true in large-scale 

screening programs where, because of cost constraints or other physical limitations, there 

are restrictions on the number of tests that can be performed.

Dorfman’s motivation for using group testing was to reduce testing costs while still 

identifying all syphilitic-positive recruits. Today, this would be described as the “case 

identification problem,” because the goal is to identify all positive individuals among all 

individuals tested. Dorfman’s approach to case identification can be viewed as a two-stage 

hierarchical algorithm; i.e., non-overlapping pools are tested in the first stage and individuals 

from positive pools are tested in the second. When the disease prevalence is small, higher-

stage algorithms have proven to be useful at further reducing the number of tests needed. For 

example, motivated by HIV testing in North Carolina, Pilcher et al. (2005) use a three-stage 

algorithm where individuals are first tested in a master pool of size 90. If positive, 9 non-

overlapping subpools of size 10 are tested in the second stage, and individual testing is used 

to resolve all positive subpools in the third stage. Sherlock, Zelota, and Klausner (2007), in 

their survey of HIV screening practices in the United States, describe how variations of this 

three-stage algorithm are used in Atlanta, Los Angeles, San Francisco, and Seattle. In other 

applications, Kleinman et al. (2005) propose a three-stage algorithm to screen blood donors 

for HBV in the United States and Quinn et al. (2000) implement a four-stage algorithm for 

HIV testing in India.

Group testing research for case identification has been largely motivated by applications 

involving a single infection, such as HIV. However, large-scale sexually transmitted disease 

screening practices are rapidly moving towards the use of “multiplex assays,” that is, assays 

that detect multiple infections at once. For example, as part of national screening programs 

in the United States, several federally funded testing centers use the Aptima Combo 2 Assay 

(Hologic/Gen-Probe, Inc.), a nucleic acid amplification test that simultaneously detects the 

presence of chlamydia and gonorrhea in pooled and individual specimens (Jirsa, 2008; 

Lewis, Lockary, and Kobic, 2012). For screening blood banks, the United States Food and 

Drug Administration (FDA) and the more recent infectious disease testing literature points 

to the development of multiplex assays that detect HIV, HBV, and HCV in pools while being 

able to discriminate against each one (Xiao et al., 2013; FDA, 2013). With the ongoing 

development of new assays and testing platforms that accommodate multiple disease 

screening, generalizing group testing algorithms for use with multiple infections is an 

important next step.

In this article, we develop S-stage hierarchical algorithms for multiple infections, where S ≥ 

2. Our goal is to generalize Tebbs, McMahan, and Bilder (2013), who characterized the 

performance of Dorfman’s two-stage (S = 2) algorithm for two infections. In Section 2, we 

introduce notation and state assumptions. In Section 3, we derive expressions for the 

expected number of tests and classification accuracy probabilities in a general S-stage 

hierarchical algorithm. This is accomplished by viewing the testing process from within a 

Markov chain framework, allowing us to characterize performance succinctly using 

transition probability matrices. In Section 4, we discuss different pool splitting strategies and 

show that higher-stage algorithms can be far more cost efficient than two-stage algorithms. 
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In Section 5, we use chlamydia and gonorrhea testing data collected in Alaska, Idaho, 

Oregon, and Washington to illustrate the benefits of implementing higher-stage algorithms 

with multiple diseases. In Section 6, we provide a summary discussion.

To mitigate the complexity of the notation used in this article, we restrict attention herein to 

two infections (e.g., chlamydia and gonorrhea, etc.). We use the Web Appendix to show how 

one can quickly generalize our derivations to handle three or more infections as needed.

2. Notation and Assumptions

Our work is motivated by the recent development of multiplex assays that test for multiple 

infections. Some multiplex assays are non-discriminating; i.e., a positive result means only 

that at least one infection is detected. For example, the cobas TaqScreen MPX Test (Roche, 

Inc.) screens plasma specimens for HIV, HBV, and HCV in pools of size up to 96, but it does 

not determine which virus(es) is(are) detected (Ohhashi et al., 2010). On the other hand, 

assays are described as discriminating when upon application a diagnosis for each infection 

is provided separately. Most multiplex assays based on nucleic acid amplification 

technology used for chlamydia/gonorrhea detection discriminate between the two infections 

in swab and urine specimens (Gaydos et al., 2010; CDC, 2014); as noted earlier, the Aptima 

Combo 2 Assay is an example. For three infections, the Procleix Ultrio Assay (Hologic/Gen-

Probe, Inc.) discriminates among HIV, HBV, and HCV in plasma/serum pools of size up to 

16. In this article, we assume that a discriminating assay is used each time a specimen is 

tested (pool or individual) and that one such assay is used throughout the testing process.

An S-stage hierarchical algorithm begins with testing n1 individuals in a master pool at stage 

1. Let ns denote the pool size at the sth stage, where s = 1, 2, ..., S – 1 and nS = 1. If a pool at 

the sth stage tests positively for at least one infection (excluding at stage S), it is split into 

ns/ns+1 subpools and each subpool is tested. Any pool or subpool that tests negatively for 

both infections is not split further, and its members are declared negative for both infections. 

Individual testing is used in stage S where final diagnoses are made. Figure 1 depicts the 

complete version of an S = 4 stage algorithm with master pool size n1 = 12 and subpool 

sizes n2 = 6, n3 = 2, and n4 = 1 at stages 2, 3, and 4, respectively.

We assume ns/ns+1 is a positive integer for s = 1, 2, ..., S – 1; i.e., pool sizes are equal within 

a given stage. Denote the lth individual by ℐl, for l = 1, 2, ..., n1. Let Ỹlj = 1 if individual ℐl 

is truly positive for the jth infection, Ỹlj = 0 otherwise, for j = 1, 2. We assume Ỹl = (Ỹl1, 

Ỹl2)′ are independent and identically distributed with probability mass function 

, for ỹ1, ỹ2 ∈ {0, 1}, where p00 + 

p10 + p01 + p11 = 1. Because of potential misclassification arising from assay error, the Ỹl’s 

are best regarded as latent. Let s,i denote the ith pool at the sth stage whose true status is 

denoted by Zs̃,i = (Z̃
s,i1, Z̃

s,i2)′, for s = 1, 2, ..., S and i = 1, 2, ..., n1/ns. At the sth stage, the 

true pool statuses Z̃
s,ij are determined by the true statuses of those individuals within s,i; 

i.e., Z̃
s,ij = 1 if pool s,i contains at least one positive individual for the jth infection, Z̃

s,ij = 0 

otherwise. Note that “pools” S,i tested at stage S contain only one individual. Finally, let 

θnsz̃1z̃2denote the probability a pool of size ns has true statuses z̃1 ∈ {0, 1} and z̃2 ∈ {0, 1} 
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for the first and second infection, respectively. In Web Appendix A, we show that 

, and .

Let  and  denote the assay sensitivity and specificity, respectively, for the jth infection 

at the sth stage of testing, for j = 1,2 and s = 1, 2, ..., S, and let Zs,i = (Zs,i1, Zs,i2)′ denote the 

vector of (potentially incorrect) testing outcomes for pool s,i. We assume all testing 

outcomes are mutually independent, conditional on the true statuses of the specimens being 

tested. This type of assumption is pervasive in the group testing literature for single 

infections in the presence of testing error (Litvak, Tu, and Pagano, 1994; Kim et al., 2007; 

Kim and Hudgens, 2009) and is used to derive relevant quantities in closed form. For further 

discussion on our assumptions with multiple infections, see Section 6. To characterize the 

decoding process as a Markov chain, we utilize the notion of an “ancestor pool.” For pool 

s,i at stage s, denote its ancestor pool at stage s′ < s by , for s′ = 1, 2, ..., s – 1. We also 

use the term “parent pool” when referring to the ancestor pool at the previous stage. For 

example, consider pool 3,2 in Figure 1, which is the second pool tested in the third stage. 

Both 1,1 and 2,1 are ancestor pools of 3,2 and can be labeled as  and , 

respectively. Also, the master pool 1,1 is the parent pool of 2,1, which is the parent pool of 

3,2.

3. Operating Characteristics

3.1. Expected Number of Tests

In an S-stage algorithm, a pool at stage s+1, s = 1, 2, ..., S–1, is tested only when its parent 

pool in stage s tests positively for at least one infection. Let Ts+1 denote the number of tests 

expended at stage s+1 so that E(Ts+1) = (n1/ns+1)pr(Zs,i1+Zs,i2 > 0), for s = 1, 2, ..., S–1, a 

result established in Web Appendix A. Let T(S) denote the number of tests needed to classify 

all individuals in a master pool when using S stages. Including the master pool test and then 

summing over the stages, the expected value of T(S) is given by

(1)

The challenging part of Equation (1) is calculating pr(Zs,i1 + Zs,i2 > 0), the probability that 

pool s,i in stage s tests positively. We use a Markov chain conceptualization of the decoding 

process to calculate this probability, as we now describe.

If pool s,i tests positively for at least one infection, then each of its ancestor pools , s′ 
= 1, 2, ..., s–1, must have as well. Therefore, calculating pr(Zs,i1+Zs,i2 > 0) for s,i requires 

information on all of its ancestor pools’ true statuses. At any stage, each pool has four 

possible true statuses, denoted by “00,” “10,” “01,” and “11.” Traversing from the master 

pool  to pool s,i in stage s admits a potentially large number of paths, and it is not 
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practical to keep track of the probability of each one on a case-by-case basis. To simplify the 

problem, we conceptualize the true status path of , ..., s,i as a Markov chain with 

possible states in Ω = {00, 10, 01, 11}. The Markov property is satisfied because transition 

probabilities involving true statuses depend only on those at the previous state.

To illustrate this last point, refer again to Figure 1. Suppose the true status of the master pool 

1,1 is “11,” the true status of the stage 2 pool 2,1 is “10,” and the true status of the stage 3 

pool 3,2 is “00.” In other words, the true status process starts in state 11, transitions to state 

10 in stage 2, and then transitions to state 00 in stage 3. Given the true status of 2,1, the true 

status of 1,1 does not provide additional information about the true status of 3,2. For this 

specific path realization, the joint probability can be calculated as

(2)

Note that  and  in Equation (2) can 

be viewed as “one-step” transition probabilities associated with the true status process. The 

probability  describes the initial state of the process.

To generalize this discussion; i.e., so that we can account for all possible paths, define M = 

diag(θn1,00, θn1,10, θn1,01, θn1,11) and

The matrix M contains probabilities corresponding to the initial state of the true status 

process (i.e., for the master pool in stage 1). The entries in π(t) are of the form  and give 

the probability that the parent pool  in stage t transitions from state A to state B with its 

subpool t+1,i in stage t + 1. For example,

where  denotes the true status of . In Web Appendix A, we 

derive expressions for each transition probability in π(t). Because the transition matrix π(t) 

characterizes the true status process, it is lower triangular. Note also that π(t) changes from 

stage to stage because different stages use different pool sizes. In the language of Markov 
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processes, the chain identified by the true status paths of , ..., s,i is therefore best 

described as time-inhomogeneous.

Joint probabilities for all possible true status paths are collected in the entries of C = 

Mπ(1)π(2) · · ·π(s–1). However, this matrix does not account for misclassification (which can 

occur at any stage), so we must augment the matrix to incorporate it. Recall that if the sth 

stage pool s,i tests positively for at least one infection, then each of 

must have too, even if one or more of these pools is truly negative. Therefore, we need a 

matrix “operator” that, at any stage, allows us to diagnose both truly positive and truly 

negative pools as positive for at least one infection. Under our assumptions,

where  and  for j = 1, 2, is the matrix that does this at stage s, s = 

1, 2, ..., S – 1. To understand what role P(s) plays, take, for example, the initial state matrix 

M and post-multiply it by P(1) to form MP(1). The (1,1) entry in MP(1), which is 

, gives the probability a truly negative master pool (in stage 1) is 

incorrectly diagnosed as positive for at least one infection. Other diagonal entries inMP(1) 

have analogous interpretations, and the matrix π(t)P(t+1) summarizes similar diagnosis 

calculations at stage t + 1, for t = 1, 2, ..., s – 1. Because pools can be diagnosed correctly or 

incorrectly at any stage, joint probabilities for all paths where s,i tests positively for at least 

one infection are collected in the entries of D = MP(1)π(1)P(2)π(2)P(3) · · ·π(s–1)P(s). The 

quadratic form , where , then adds these probabilities to obtain pr(Zs,i1 

+ Zs,i2 > 0).

Updating our expression in Equation (1), we can write the expected number of tests as

(3)

where π(0) = (P(1))−1. We include the t = 0 term in Equation (3) only so that our expression 

for E(T(S)) remains correct when S = 2. In this case,  reduces to 

Equation (1) in Tebbs et al. (2013) for two-stage Dorfman algorithms. We call 

the expected number of tests per individual; this measure allows us to compare the efficiency 

of hierarchical algorithms using different values of n1 and S. It is straightforward to extend 

Equation (3) to J > 2 infections. This is done by making obvious modifications to ω, π(t), M, 

and P(s), and then changing 14 to 12J. Details are provided in Web Appendix B.
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3.2. Classification Accuracy

To complete our characterization of hierarchical algorithms for multiple infections, we 

derive accuracy measures commonly cited in the case identification literature. For the jth 

infection, define the pooling sensitivity as PSe:j = pr(ZS,ij = 1|Z̃
S,ij = 1), that is, the 

probability an individual is classified as positive for the jth infection given that the individual 

is truly positive for the jth infection. The pooling specificity PSp:j is defined analogously for 

truly negative individuals being classified negatively. An individual is classified negatively if 

and only if it is not classified positively in stage S; therefore, PSp:j = 1 − pr(ZS,ij = 1/Z̃
S,ij = 

0). Deriving expressions for PSe:j and PSp:j is possible by again viewing the decoding 

process from within our Markov chain framework. We now illustrate this with PSe:1 when S 
> 2.

Consider the true status path of , ..., S,i, but now, conditional on the event that 

each pool in this sequence contains a common individual ( S,i) that is truly positive for the 

first infection. For t = 1, 2, ..., S − 1, let  denote the true status of pool  after 

individual GS,i is removed. The joint probability of the true status path of , ..., S,i, 

conditional on the event {Z̃
S,i1 = 1}, can be found by calculating

(4)

where  and z̃2 ∈ {0, 1}. The first probability 

on the right-hand side of Equation (4) is p1z̃2/(p10 + p11). The second probability is 

calculated by recognizing the Markov structure of  that emerges after 

removing GS,i. That is, the same conceptualization we exploited in calculating E(T(S)) 

applies and probabilities of the form  are 

collected in the entries of . The matrices M−1 and  are the 

same as M and π(t) in Section 3.1, respectively, except that all pool sizes are reduced by one.

To complete our derivation, all that remains is to incorporate the effect of misclassification 

that can occur at any stage. Misclassification can arise due to either infection, so the two 

values of z̃2 ∈ {0, 1} in Equation (4) must be treated separately. If z̃2 = 0, then  must be 

truly positive for the first infection, because Z̃
S,i1 = 1 by assumption, and the second 

infection's true status is determined by . If z2̃ = 1, then each pool in the sequence 

, ..., S,i, must be truly positive for both infections. To cover both cases, 

respectively, we define the two matrix operators 

 and , 

where I4 is the 4 × 4 identity matrix. The matrices  and  then augment C−1 
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accordingly for the two values of z̃2 ∈ {0, 1} in the same way P(s) augmented C in Section 

3.1. Adding up the probabilities for all transition paths, we obtain

(5)

The additional “ ” in the expression for PSe:1 accounts for the final diagnosis at stage S 
where individual testing occurs.

The preceding derivation also applies when S = 2; i.e., for the Dorfman-type algorithm in 

Tebbs et al. (2013). The only difference is that  and  in 

Equation (5) are replaced by identity matrices. Furthermore, as shown in Web Appendix C, 

general expressions for PSe:2, 1 − PSp:1, and 1 − PSp:2 all possess the same form as PSe:1; 

i.e., each one can be written as a convex combination of two quadratic forms. Each quantity 

is derived by exploiting the Markov structure of  that arises after 

removing one individual. This structure remains regardless of the number of infections 

considered, so generalizing these expressions when J > 2 is also straightforward.

Two additional measures of classification accuracy are the pooling positive predictive value 
and the pooling negative predictive value. For the jth infection, these are given by

respectively, where η1 = p10 +p11 and η2 = p01 +p11 are the marginal probabilities. In words, 

PPVj (NPVj) gives the probability that an individual is truly positive (negative) for the jth 

infection given that the individual has been classified positively (negatively) for the jth 

infection. Expressions for PPVj and NPVj are found by using Bayes’ Rule.

4. Comparisons

We now compare hierarchical algorithms that use a different number of stages. For an S-

stage algorithm, we first identify the optimal configuration of n1, n2, …, nS for given values 

of p00, p10, p01, and p11. In this article, we define the “optimal” configuration as the one that 

minimizes , the expected number of tests per individual, subject to the constraint 

that (n1, n2, …, nS)′ resides in
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where ℕ>1 = {2, 3, …,}. The condition ns/ns+1 ∈ ℕ>1 simply ensures that pool sizes will be 

common within a given stage. Because extremely large pool sizes are rarely seen in the 

infectious disease testing literature, we assume the master pool size n1 is no larger than 100. 

This restriction was also used by Kim and Hudgens (2009) who evaluated the utility of 

higher-stage array group testing algorithms for single infections. For us, this restriction puts 

a constraint on the space of possible configurations and allows us to identify the optimal one 

using a direct search. Hierarchical algorithms which implement halving; i.e., ns/ns+1 = 2, for 

s = 1, 2, …, S − 2 and nS = 1, arise as a special case. Halving algorithms for single infections 

were highlighted by Litvak et al. (1994) and Black, Bilder, and Tebbs (2012).

In Table 1, we calculate the expected number of tests per individual for different values of S 

under different configurations of p00, p10, p01, and p11 with  and , for j = 

1, 2 and s = 1, 2, …, S. To evaluate the performance of algorithms with different levels of 

disease prevalence, we let p00 ∈ {0.90, 0.95, 0.97, 0.99, 0.999} and vary the other 

probabilities accordingly. Values of p00 = 0.90, 0.95 were chosen to be consistent with our 

chlamydia and gonorrhea application in Section 5. Values of p00 = 0.99, 0.999 were chosen 

to emulate what would occur when the two infections are very rare (e.g., HIV-1 and HIV-2, 

etc.). For each setting, we calculate the overall optimal testing configuration by minimizing 

 and, separately, the master pool size that corresponds to the most efficient use 

of halving. We kept  and  constant across the stages in Table 1 for 

simplicity. Proper assay calibration and/or the adjustment of dilution ratios would be needed 

to make this assumption reasonable; see McMahan, Tebbs, and Bilder (2013) and the 

references therein. Web Appendix D contains additional results where  varies across 

stages.

Our calculations in Table 1 show that as the combined disease prevalence decreases (p00 

increases), higher-stage algorithms for multiple infections can markedly reduce the value of 

. For example, when p00 = 0.97 and the marginal disease probabilities η1 = 

p10+p11 and η2 = p01+p11 are each 0.02 (the third case in Table 1), the optimal hierarchical 

algorithm uses S = 4 stages (with pool sizes n1 = 27, n2 = 9, n3 = 3, and n4 = 1) and confers 

a 24.6% reduction in the expected number of tests per individual when compared to the 

optimally sized Dorfman algorithm from Tebbs et al. (2013). The optimal halving algorithm 

in this same setting uses S = 5 stages (with master pool size n1 = 24) and confers a 23.2% 

reduction when compared to the best Dorfman algorithm. Those cases in Table 1 involving 

rarer infections (i.e., p00 = 0.99, 0.999) provide even larger reductions. To provide a panoptic 

examination, we display in Figure 2 the best number of stages S to use when the marginal 

disease probabilities η1 and η2 range from 0.001 to 0.20,  and , and the 

correlation between the true disease statuses ρ = corr(Ỹl1, Ỹl2) is fixed at ρ = 0.10 and ρ = 

0.25. At each configuration of η1 and η2, the optimal hierarchical algorithm is determined 

for each S ≥ 2, and the regions in Figure 2 identify the number of stages S that minimizes 
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. Clearly, there is a sizeable subset of the parameter space for which higher-stage 

designs are more efficient than those that use only two stages.

To better understand how hierarchical algorithms will perform in practice, we conducted a 

simulation study to assess the variability in the number of tests expended on a per-individual 

basis. For each parameter configuration in Table 1, we first generated the true infection 

statuses of 100,000 individuals according to the specified cell probabilities. This sample size 

was chosen to be comparable to our data application in Section 5. Under each optimal and 

halving configuration in Table 1, we assigned our 100,000 individuals to pools, performed 

our hierarchical algorithms using  and , and recorded the number of tests 

per individual. This process was repeated B = 5000 times for each design listed in Table 1. 

For the third case in Table 1 where p00 = 0.97, Figure 3 displays boxplots of 5000 values of 

the number of tests per individual for each number of stages S. One notes that the variation 

in the number of tests per individual for this case is fairly constant across the values of S and 

that higher-stage algorithms are always preferred. Similarly constructed figures for the other 

four parameter configurations in Table 1 are provided in Web Appendix D.

Finally, a comparison of the classification accuracy measures derived in Section 3.2 is given 

in Web Appendix D under the same settings as in Table 1. This comparison shows that 

pooling sensitivity PSe:j decreases as the number of stages S increases, as expected, but not 

as rapidly as it would in S-stage hierarchical algorithms for single infections where the 

pooling sensitivity equals . In fact, provided that  for s = 1, 2, …, S, one can 

show algebraically that  for all S ≥ 2, an important additional benefit of 

using hierarchical algorithms with multiplex assays. Also, the pooling positive predictive 

value PPVj increases in higher-stage algorithms for multiple infections, substantially so 

when both infections are rare. Values of PSp:j and NPVj remain fairly constant across values 

of S.

We conclude this section with a remark. While we have used the expected number of tests 

per individual  to determine optimal group configurations in this section, other 

objective functions which incorporate classification accuracy could be used. Based on the 

recommendations of anonymous referees, we have also determined optimal configurations in 

this section by maximizing E(C(S))/E(T(S)), where C(S) denotes the number of individuals 

correctly classified in a master pool tested in S stages. This type of objective function was 

recommended by Malinovsky, Albert, and Roy (2016) for single infections and two-stage 

testing. In Web Appendix D, we use our Markov chain framework to derive E(C(S)) for 

multiple infections with any number of stages, and we reproduce Table 1 and Figure 2 using 

the configurations obtained from maximizing E(C(S))/E(T(S)). For the cases we considered in 

this section, there is nearly perfect agreement between the configurations found from 

minimizing  and from maximizing E(C(S))/E(T(S)).
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5. Region X Infertility Prevention Project Data

The Infertility Prevention Project (IPP) was a national program that started in 1988 and was 

implemented in all 50 states. The purpose of the program was to screen individuals for 

chlamydia and gonorrhea in high-risk populations and to offer treatment services for those 

who were infected. Chlamydia and gonorrhea are two of the most common sexually 

transmitted diseases in the United States with approximately 1.6 million new infections 

reported each year (CDC, 2014). The IPP, which was funded by the Department of Health 

and Human

Services (HHS) and overseen by the Centers for Disease Control and Prevention (CDC), was 

discontinued in 2013 after the Affordable Care Act was passed. This has since forced STD 

clinics and public health laboratories nationwide to rely on other sources of external funding 

(e.g., private health insurance, Medicaid, etc.) for the purpose of screening these same high-

risk populations. As a result, public-health officials have experienced increased pressure to 

be mindful of testing costs (JSI Research & Training Institute, Inc., 2013).

Because chlamydia and gonorrhea remain moderately rare even in higher-risk populations, 

our higher-stage hierarchical algorithms emerge as excellent candidates to further reduce the 

number of tests. Public health laboratories in multiple states have used two-stage Dorfman 

algorithms with multiplex assays to screen for chlamydia and gonorrhea (Jirsa, 2008; Lewis 

et al., 2012), and Tebbs et al. (2013) show this provides a sizeable reduction in the number 

of tests when compared to individual testing. Our goal is to determine if higher-stage 

algorithms (i.e., S > 2) can provide additional savings. To accomplish this, we use chlamydia 

and gonorrhea data collected from HHS Region X during 2010–2011. Region X consists of 

four states, Alaska, Idaho, Oregon, and Washington, and our data set contains about 260,000 

individual testing results for both chlamydia and gonorrhea among these states (roughly 

130,000 individuals each year). Because approximately 99% of the testing results were 

obtained from using the Aptima Combo 2 Assay, we focus on these individuals in our 

analysis.

To illustrate the potential use of higher-stage algorithms, we use female specimens only. 

Male subjects are more likely to be tested only when they exhibit symptoms of infection 

(e.g., painful urination, etc.), resulting in much higher positivity rates and therefore making 

higher-stage testing less attractive. On the other hand, females are routinely screened as part 

of annual health examinations and visits to family-planning health centers. In Web Appendix 

E, we provide the observed prevalences for the 107,463 females tested in 2010, cross-

classiffied by specimen type (swab/urine) and state within Region X. We also provide values 

of the Aptima Combo 2 Assay sensitivity and specificity for each infection; these values 

were taken from the most recent product literature available at the manufacturer's website.

Using the 103,690 females tested in 2011, we investigate the performance of hierarchical 

algorithms with S = 2, 3, and 4 stages. For each state and within specimen type, we 

randomly assign the 2011 individuals to master pools under the optimal testing configuration 

which we determine using the 2010 prevalences. In doing so, we set the maximum allowable 

master pool size at 20, because documented applications of group testing for chlamydia and 
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gonorrhea do not use pool sizes larger than this. In order to measure classification accuracy, 

we treat the 2011 individuals' responses as the \true" statuses; we then test and decode pools 

ourselves by simulating test outcomes using the assay accuracies reported for the Aptima 

Combo 2 Assay at each stage. This entire procedure was repeated B = 5000 times to include 

multiple sets of possible pools and to average over the effects of simulation.

For each state in Region X, Table 2 displays the number of tests expended for female 

subjects during 2011 (averaged over the 5000 implementations) and, for higher-stage 

algorithms, the percent reduction in the average number of tests when compared to S = 2. 

Boxplots of the 5000 simulated values of T(S), shown cross-classified by specimen type 

(swab/urine) and state (AK, ID, OR, WA), are given in Web Appendix E. Our results suggest 

that using higher-stage hierarchical algorithms in all four states would be highly beneficial. 

For example, for females tested using swabs in Alaska, a three-stage algorithm (with pool 

sizes n1 = 9, n2 = 3, and n3 = 1) confers an 11.0% reduction in the average number of tests 

when compared to the best two-stage algorithm from Tebbs et al. (2013). This same 

reduction for swabs is 10.8%, 11.8%, and 12.4% for Idaho, Oregon, and Washington, 

respectively. Note that higher-stage gains are smaller when testing urine specimens because 

the 2011 marginal infection rates are slightly larger (see Web Appendix E); however, the 

corresponding three-stage gains still do range from 5.9–10.5%. There are even a few 

instances in Table 2 where an optimal four-stage algorithm is the most efficient (i.e., swab 

testing in Oregon and Washington). However, four-stage gains for these data are small when 

compared to the best three-stage algorithms.

Overall, our analysis demonstrates that moving from two-stage to three-stage hierarchical 

algorithms would be preferred for Region X and in other regions where the marginal 

infection rates of chlamydia and gonorrhea are similar. Among the 103,690 Region X 

females tested in 2011, implementing the optimal two-stage algorithm from Tebbs et al. 

(2013) requires 53,231 tests on average, calculated by summing across the states and 

specimen types in Table 2. Optimal three-stage hierarchical algorithms require 47,412 tests 

on average, an overall 11% reduction and a savings of over 5,800 tests. Finally, we use Web 

Appendix E to display the classification accuracy results from our investigation. There is a 

loss in pooling sensitivity for both infections as the number of stages increases, which is 

expected for any hierarchical procedure; however, this loss is often minor for gonorrhea. On 

the other hand, higher-stage algorithms provide larger positive predictive values for both 

infections.

6. Discussion

We have introduced S-stage hierarchical group testing algorithms for multiple infections, 

simultaneously generalizing Tebbs et al. (2013) and the extensive literature on hierarchical 

algorithms for single infections. Our operating characteristic derivations exploit a novel 

conceptualization of the decoding process by viewing testing results as error-laden 

realizations of a Markov chain. Our analysis of the IPP data from Region X illustrates the 

benefit of using higher-stage algorithms for chlamydia and gonorrhea detection.
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The assumptions we have made in this article regarding the testing outcomes do not affect 

our Markov chain calculations because these calculations refer to the underlying true status 

process. Therefore, relaxing any of these assumptions should be possible by modifying the 

misclassification operators P(s) (Section 3.1),  and  (Section 3.2), and those in Web 

Appendix C. For example, one assumption we made was that testing responses are 

conditionally independent given the true statuses of all pools tested. This is certainly 

reasonable when misclassification is driven primarily by factors related to test 

implementation; however, it may not be reasonable otherwise. We also implicitly assumed 

that  and  for one infection in stage s do not depend on the true status of the other 

infection, an assumption that requires the multiplex assay used to possess adequate 

discriminating power. Future research in group testing could investigate ways to avoid 

making either or both assumptions. McMahan et al. (2013) provide one way to relax the 

conditional independence assumption when additional biomarker information is available for 

each group testing response. Albert and Dodd (2004) provide an excellent summary of this 

issue when individual testing is used.

The merger of group testing for multiple infections and Markov processes brings with it 

exciting opportunities to investigate other case identification algorithms. For example, it 

should be possible to extend the S-stage array procedures in Berger, Mandell, and 

Subrahmanya (2000) and Kim and Hudgens (2009) to allow for multiple infections using the 

framework outlined in this article. This extension would be more difficult because 

individuals are placed in overlapping pools; however, the underlying Markov chain structure 

for the true status decoding process still remains. We also believe that multiple-disease 

algorithms could be developed to incorporate risk factor information (e.g., age, race, number 

of sexual partners, etc.) on each individual. Bilder and Tebbs (2012) provide a review of 

recently proposed \informative" algorithms involving single infections. The approach 

outlined in Section 3 of this article could serve as a starting point towards generalizing their 

work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hierarchical algorithm with S = 4 stages and master pool size n1 = 12. Pools that test 

positively for at least one infection are split into subpools. Pools that test negatively for both 

infections are not split further. The last stage is individual testing where final diagnoses are 

made. The maximum number of pools tested in stage s is n1/ns.
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Figure 2. 

Optimal number of stages S when  and . The maximum allowable 

master pool size is 100. In the lower left corner of each subfigure, we did not show values of 

S larger than 6 to avoid crowding. Values of η1 and η2 in the white regions (barely 

detectable in the ρ = 0.10 subfigure) are not possible because correlations for binary random 

variables are restricted. Note that “S = 1” corresponds to individual testing.
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Figure 3. 

Simulation study for the third case in Table 1 with p00 = 0.97, , and . 

Boxplots of the number of tests per individual are constructed from B = 5000 replications 

under the optimal and halving group configurations shown in Table 1.
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