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Abstract—The long-range and low energy consumption re-
quirements in Internet of Things (IoT) applications have led
to a new wireless communication technology known as Low
Power Wide Area Network (LPWANs). In recent years, the Long
Range (LoRa) protocol has gained a lot of attention as one of
the most promising technologies in LPWAN. Choosing the right
combination of transmission parameters is a major challenge
in the LoRa networks. In LoRa, an Adaptive Data Rate (ADR)
mechanism is executed to configure each End Device’s (ED) trans-
mission parameters, resulting in improved performance metrics.
In this paper, we propose a link-based ADR approach that aims
to configure the transmission parameters of EDs by making
a decision without taking into account the history of the last
received packets, resulting in a relatively low space complexity
approach. In this study, we present four different scenarios for
assessing performance, including a scenario where mobile EDs
are considered. Our simulation results show that in a mobile
scenario with high channel noise, our proposed algorithm’s
Packet Delivery Ratio (PDR) is 2.8 times outperforming the
original ADR and 1.35 times that of other relevant algorithms.

Index Terms—IoT, LPWAN, LoRa, adaptive data rate (ADR),
mobile devices, energy consumption.

I. INTRODUCTION

A consistent low-cost and low-energy connectivity amongst
all smart devices is required to build an intelligent society [1].
In the Internet of Things (IoT) environment, Low Power Wide
Area Networks (LPWANs) are developed for energy con-
sumption optimization and improved communications range.
The Packet Delivery Ratio (PDR), Energy Consumption (EC),
resilience in the face of faults and challenges, and coverage
area are some measures that may be used to assess a network’s
performance. Environmental conditions such as urban (UR)
and suburban (SU) conditions, the number of transmitting end
devices (EDs), the number and placement of Gateways (GWs),
network topology, and regulatory restrictions are salient factors
that can directly influence network functionality [2]. The LoRa
network is a low-power, long-range communication protocol
that can cover a wide distance. To establish a communication
link, a set of transmission parameters have to be configured.
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Transmission parameters such as the Spreading Factor (SF),
Transmission Power (TP), Carrier Frequency (CF), Bandwidth
(BW), and Coding Rate (CR) can be configured in a LoRa
network to ensure reliable communication.

Combining the transmission parameters provides a state
space from which hundreds of configurations can be chosen,
impacting the network performance [3]. Choosing the right
combination of transmission parameters is a major challenge
facing the LoRa network. In the central decision-making
Network Server (NS), LoRa executes an Adaptive Data Rate
(ADR) mechanism to configure EDs’ transmission parameters,
resulting in improved performance metrics. To increase the ef-
ficiency and scalability of LoRa networks, different techniques
such as proposing a new Media Access Control (MAC) [4],
message retransmission [5], optimization [6], and machine
learning techniques [7] are employed in the relevant literature.
This paper aims to review, implement, and analyze a new
greedy approach while maintaining minimal space complexity.
This approach can improve network performance in terms
of reducing the collision rate and thereby increasing PDR.
Contributions made by this work are as follows:

• We propose an Adaptive Data Rate Low-complexity
scheme, ADR-Lite, to configure the transmission pa-
rameters of the LoRa network by sorting the parameter
values in ascending order and then exerting a binary
search algorithm to find the optimal configuration. Unlike
existing approaches, which are limited to setting SF and
TP only, our suggested algorithm includes adjusting SF,
TP and other transmission parameters such as CF and
CR. Thus, ADR-Lite offers a greater set of configuration
parameters than other ADR schemes. This makes ADR-
Lite more flexible and adaptable to various deployments
and requirements, such as variable channel conditions,
varying number of either mobile or static EDs. This is
achieved while our algorithm’s space complexity remains
less compared to other approaches.

• Our simulation results show that our proposed ADR-Lite
improve the ratio of total consumed energy by all EDs to
the PDR, in different scenarios.

The rest of this paper is structured as follows. The back-



ground and related works are presented in Section II. Section
III describes our suggested greedy algorithm. The simulation
results and conclusion are included in sections IV and V,
respectively.

II. BACKGROUND AND RELATED WORKS

This section reviews the LoRa physical layer and transmis-
sion parameters. Then, it examines the related works.

A. LoRa overview

The LoRa protocol is a proprietary technology for a long-
range, low-power network. This method employs the Chirp
Spread Spectrum (CSS), which is one of the spread spectrum
modulations. LoRa wireless devices have become an important
part of the wireless IoT infrastructure. It has low efficiency in
terms of bits per second, while it can transmit no more than
255 bytes of data per packet, which is sufficient for many
IoT applications [8]. The LoRa architecture employs the star-
of-star topology, which has three types of devices seen in
Figure 1.

LoRa makes use of unlicensed sub-gigahertz radio fre-
quency bands like the 433, 868, or 915 MHz industrial,
scientific, and medical (ISM) bands, as determined by the
region it is deployed in [2]. There are five transmission pa-
rameters that can be configured for appropriate sender-receiver
communication, impacting communication link quality. The
descriptions of these parameters are listed below [2]:

• SF: In the spread spectrum LoRa modulation, each bit
of the payload message represents multiple chips of
information. The symbol rate is the rate at which the
spread information is sent. SF is the ratio of the nominal
symbol rate to the chip rate, which represents the number
of symbols transferred per bit of data. The SF can be
selected from 7 to 12. Note that since different spreading
factors are orthogonal to one another, the SF must be
known in advance on both the transmitting and the
receiving sides of the link.

• TP: The amount of power that an ED should put in to
transfer its messages is known as transmission power. The
LoRa radio TP may vary in steps of 3 dBm from 2 to 14
dBm.

• CF: The central frequency, measured in Hertz, of a carrier
wave that is modulated to transmit signals, is known
as the carrier frequency. CF may be configured in the
frequencies of 433, 868, and 915 MHz with different
step sizes depending on the LoRa chip and the regulation
rules.

• BW: Bandwidth is the frequency range between the low-
est and highest frequencies that can be reached without
causing signal power degradation. Increasing the signal
bandwidth allows for a higher data rate and lower trans-
mission time at the expense of reducing sensitivity. LoRa
employs the bandwidth ranges of 125 kHz, 250 kHz, and
500 kHz.

• CR: To enhance the link’s robustness even further, LoRa
uses cyclic error coding for forward error detection and

Fig. 1. LoRaWAN network architecture.

correction. Such error coding increases the transmission
overhead, reducing the data rate and improving the link’s
reliability in the presence of interference. The CR, and
hence the interference resistance, may be changed accord-
ing to the channel conditions. The values of CR may vary
in the range of { 4

5 ,
4
6 ,

4
7 ,

4
8}.

The combination of these parameters can affect the data
rate, noise resistance, receiver sensitivity, packet transmission
delay, and energy consumption. For example, if ED is con-
figured to transmit with the maximum SF, i.e., SF12, the
most extended coverage area, the highest energy consumption,
the longest transmission delay, and the lowest data rate will
be achieved [3]. Consequently, finding the best combination
of transmitting parameters is one of the main challenges of
optimizing LoRa networks to reduce power consumption and
collision rates while increasing PDR.

B. Related Works

Many relevant works have attempted to improve LoRa
network performance [3], [6], [7], [9], [10]. Examining the full
transmission parameter state space to find the best combination
is an exhaustive approach. A probing approach is described
in [3], with the objective of finding an appropriate combination
with the least amount of state space exploration. Along with
minimizing the size of the space state, the suggested strategy
also considers lowering energy usage.

The approaches available for controlling and managing the
transmission parameters in the LoRa network are divided
into two categories, network-aware [7] and link-based ap-
proaches [6], [9]. The transmission parameters between the
EDs and the GWs are determined by the NS in a centralized
manner (link-based approach), whereas the transmission pa-
rameters are determined in a distributed manner by the EDs,
in the network-aware approach.

The ADR algorithm is a mechanism to adjust the trans-
mission parameters of EDs that not only can reduce the
ED’s energy consumption but also results in better PDR. The
default ADR method, which is a link-based approach known
as ADR-MAX, uses the maximum value of the last 20 packets’



Signal to Interference and Noise Ratio (SINR) as an indicator
to evaluate the quality of the link [10]. ADR-MAX makes
optimistic decisions and sends an acknowledgment to the ED,
regardless of the circumstantial network parameters, i.e., the
ED’s densification and channel saturation.

The authors of [9], which proposes the FLoRa framework,
intend to change the decision-making mechanism from the
maximum SINR to the average SINR by offering a solution
called ADR-AVG to improve network performance. Instead
of optimistic decision-making, a new approach called ADR-
OWA uses the ordered weighted averaging operator in [6],
dynamically configuring SF and TP based on the channel
condition. In addition to the described methods that evaluate
the communication link, there’s also a scheme known as No-
ADR, in which all transmission parameters are determined at
random, meaning no link-based or network-aware approaches
are used.

However, there are several shortcomings to these ap-
proaches. The first disadvantage is that, despite the EDs’
densification in both static and mobile scenarios, the PDR
measure would be deficient if ADR-MAX was adapted. The
second drawback is that employing ADR-AVG would result in
poor PDR where there is a low number of the EDs in the area.
Furthermore, in a mobile scenario, this method’s performance
would be worse compared to the case of a random selection
scheme. The third shortcoming is that when the noise level in
the environment is low, the PDR of ADR-OWA would be less
efficient than when the average SINR of the last 20 packets
is used. Lastly, owing to its randomness and to not taking
into account environmental changes, the No-ADR scheme will
result in the least PDR of all the approaches.

III. OUR PROPOSED ADR-LITE ALGORITHM

As pointed out in the previous section, using the maximum
and average SINR of the last 20 packets to evaluate the link
quality or determining transmission parameters randomly will
cause poor performance in networks with varying channel
conditions. Thus, we propose a link-based ADR algorithm
that attempts to configure the transmission parameters of EDs
without considering the previous packet history, resulting in a
low-space-complexity algorithm.

To illustrate the energy consumption model for LoRa EDs,
in the following, we utilize the energy consumption formulas
presented in [11]. As described in [12], the consumed energy
in the data transmission mode, EToA, is higher than in the
other modes of the LoRa energy consumption model, and is
calculated as follows:

EToA = (PON (fMCU ) + PToA)× TToA , (1)

where PON (fMCU ) is the micro controller’s energy con-
sumption depending on its processor frequency, fMCU , while
PToA and TToA are the dissipated energy in the transmission
mode and its time duration, respectively [11]. TToA is the
required time for transferring both the preamble and the

payload message, i.e., Tpreamble and Tpayload, respectively.
Tpreamble can obtained as follows:

TPreamble = (4.25 +NP )× Tsymbol , (2)

where NP is the number of preamble symbols, while Tpayload

is calculated by multiplying Tsymbol and NPayload, which can be
calculated as follows:

Tsymbol =
2SF

BW
, (3)

and

NPayload = 8 +max

(⌈Θ(PL, SF )

Γ(SF )

⌉
× 1

CR
, 0

)
, (4)

respectively. Here, Θ(PL, SF ) is defined by:

Θ(PL, SF ) = 8× PL− 4× SF + 16 + 28− 20×H , (5)

where PL is packet payload length, and H is equal to zero
when the header is enabled or to one when there is no header
present. Also Γ(SF ) = SF − 2×DE, wherein DE is set to
one when the low data rate optimization is enabled; otherwise,
DE is set to zero.

We assume the LoRa network consists of U EDs forming
a set U = {1, 2, . . . , U}. The transmission parameters SF,
TP, CF, and CR are represented by a configuration array,
such that Ik = {SFk, TPk, CFk, CRk}. Further, there are |K|
configuration arrays, denoted by K = {I1, I2, . . . , I|K|}. In the
NS, for each ED, there is a sorted K in an ascending manner
based on equations (1 - 4). Let ku(t) be the kth (configuration)
set of parameters that has been chosen by the NS for the uth
ED at the tth iteration, and let ru(t) be the configuration of
the last received packet from the uth ED at iteration t. The
very first ku(t) is selected to be equal to |K| to maximize the
probability of successful communication. Lastly, two auxiliary
variables named minu and maxu are used to determine the
future values of ku(t) as follows.

For each ED u, Algorithm 1 describes the proposed solution
that runs on the NS during the simulation. Lines 1–8 describe
the initialisation phase that is run only once for each ED,
through line 10 of the Algorithm, while lines 11–20 describe
the selection of of ku(t) for iteration t. During each iteration
t, the ED configures its transmission parameters based on
ku(t), which has been passed on from the NS. The value
of ku(t) corresponds to the most suitable configuration for
that particular ED on that specific iteration considering the
environmental conditions. In the NS, ku(t) will be determined
as half of its previous value, if the configuration of the last
received packet from the uth ED at iteration t, denoted by
ru(t), is equal to ku(t − 1), the previous value of the index.
Otherwise, ku(t) will be set as the average of ku(t−1) and |K|.
Figure 2 represents the possible early stages of the proposed
ADR-Lite scheme for the uth ED.

IV. NUMERICAL RESULTS

Our algorithm’s performance is evaluated by simulation
results and compared to other approaches, in this section.



Algorithm 1: ADR-Lite on NS
input : ku(t− 1), ru(t)
output: ku(t)

1 Initialization:
2 Set u ∈ U to be the uth ED
3 Set Ik = {SFk, TPk, CFk, CRk}
4 Set |K| to be the total number of configurable

parameters, so that K = {I1, I2, . . . , I|K|}
5 Sort K ascending according to EC
6 Set ku(t) to be the index of the Iku(t) ∈ K that has

been chosen for the uth ED at the tth iteration
7 Set ru(t) to be the index of the configuration

Iru(t) ∈ K used in the last received packet from
the uth ED at iteration t

8 Set ku(0) = |K|
9 for the uth ED do

10 Initialization
11 for t = 1 to T do
12 if ru(t) = ku(t− 1) then
13 minu = 1
14 maxu = ku(t− 1)
15 else
16 minu = ku(t− 1)
17 maxu = |K|
18 end
19 ku(t) = I⌊maxu+minu

2

⌋
20 end
21 end

A. Simulation Setup

To simulate and assess the performance of our proposed
approach, we used FLoRa for our simulations [9]. FLoRa
(Framework for LoRa) is a simulation framework used for
end-to-end simulations of LoRa networks. It uses OMNeT++,
a discrete event network simulator, and is built on the INET
framework. We customized FLoRa to simulate the resource
allocation problem based on a novel low-complexity approach
with low space complexity1.

Our study considers a LoRa network environment compris-
ing a square-shaped cell with a dimension of 9800 m, which
contains one GW in its center. As in [9], in each simulation,
the number of uniformly distributed EDs can vary from 100
to 700. We run the simulations for 12 days while the channel
saturation, i.e., sigma (σ), is equal to 7.08, and the Oulu Lora
Path Loss model [13] is considered for path loss. An interval
time based on an exponential distribution with a mean of 1000
seconds is used between each transmission of a 20-Byte LoRa
packet by each ED. We average over 25 rounds within each
scenario with randomly generated EDs’ locations to obtain our
simulation results.

1The framework is available at https://github.com/reza-serati/ADR-Lite.

Fig. 2. Possible early stages of proposed ADR-Lite scheme for the uth ED.

To evaluate the proposed algorithm performance and com-
pare it with other schemes, we use the following metrics:

1) PDR: This shows how many packets the GW has re-
ceived, divided by how many packets were sent from each
ED.

2) EC: Calculated by dividing the total energy consumption
by the PDR.

In this study, we use the ratio of the total consumed energy
by all EDs (which is calculated according to (1)) to the PDR,
as the performance measure for comparison purpose, that is:

EC =
total consumed energy by all EDs

PDR
. (6)

We also consider the following four scenarios:
• Scenario 1: The number of nodes varies between 100

and 700, while EDs remain static.
• Scenario 2: In addition to the EDs being mobile, the

number of nodes varies between 100 and 700.
• Scenario 3: The channel saturation value for 100

static EDs takes the following values:
{0, 0.89, 1.78, 2.67, 3.56, 4.46, 5.36, 6.24, 7.08}.

• Scenario 4: In contrast to all other ADR algorithms,
ADR-Lite allows not only SF and TP to be changed
using the values: {7, 8, 9, 10, 11, 12} and {2, 5, 8, 11, 14},
respectively, but also CR and CF using the values:
{ 4
5 ,

4
6 ,

4
7 ,

4
8} and {868.1, 868.4, 868.7}, respectively.

B. Simulation Results

Our simulation results compare the performance of our
proposed algorithm with the ADR-MAX, ADR-AVG, and No-
ADR schemes in the aforementioned four scenarios.

1) Scenario 1: In this scenario, we assess the node number
effect while every ED is assumed to be static. Figure 3 shows
the PDR and energy consumption in the ADR-Lite, ADR-
MAX, ADR-AVG, and No-ADR algorithms in scenario 1. Due
to the fact that ADR-Lite only stores the details of the last
received packet, the current status of the link is realistically



Fig. 3. PDR & EC of different algorithms versus number of static EDs in
scenario 1 (σ = 7.08).

Fig. 4. PDR & EC of different algorithms versus number of mobile EDs in
scenario 2.

considered. This greedy manner of decision-making leads to
focusing on the packet reception as the primary objective.
Thus, as seen, a higher level of PDR regardless of network
densification can be achieved.

Despite the fact that our proposed solution does not avoid
using high-TP transmission configurations, aiming for more
packet reception, ADR-Lite does not have the minimum en-
ergy consumption in a dense network deployment, whereas it
does provide the least energy consumption in a less crowded
environment.

2) Scenario 2: The IoT has enabled a wide variety of
applications that demand or apply mobility. We see examples
of mobile use cases in smart vehicles, smart cities, and
smart health-care applications [1]. Thus, this scenario aims
to investigate the effects of mobility on the performance of
EDs while utilizing various ADR mechanisms. In scenario
2, Figure 4 illustrates the PDR and energy consumption of

mobile EDs for the ADR-Lite, ADR-MAX, ADR-AVG, and
No-ADR algorithms. This work used the random waypoint
mobile model, which has been widely used to simulate ad
hoc networks, in order to represent the motion of EDs having
a speed between 0 and 5 m/s that follows an exponential
distribution.

Despite maintaining the highest PDR in any ED densifica-
tion, ADR-Lite experiences a downward trend as more EDs
are added to the network, followed by an increase in energy
consumption. The reason is that, as this method does not avoid
high TP selections, aiming to increase packet reception, EDs
further away from the GW are unable to send packets to
the GW successfully when EDs closer to it are transmitting
with their full TP, resulting in destructive collisions. This
phenomenon is also known as the near-far problem, which
may reduce PDR and increase energy consumption.

3) Scenario 3: The PDR and energy consumption of dif-
ferent algorithms versus σ for the 100 static EDs used in
scenario 3, is illustrated in Figure 5. Due to the fact that ADR-
Lite transmits parameters without considering the history of
recent packets, it achieves a higher PDR than any other
scheme, which even increases slightly as channel saturation
σ increases. The energy consumption of ADR-Lite is almost
steady as σ varies. On the contrary, with σ increasing, the
ADR-MAX’s energy consumption largely increases in the
noisy channel. The reason is that, as σ increases, the ADR-
MAX’s PDR decreases, which causes the EDs to transmit with
more power, leading to an increasing energy consumption.

4) Scenario 4: In comparison to the other approaches,
which only configure SF and TP to find an optimal network
performance, ADR-Lite allows EDs to also accept different
values for other transmission parameters such as CR and
CF. This can increase freedom of choice by enhancing the
state space. In addition, the proposed approach does not add
overhead to the LoRa header packet and makes no changes to
the protocol design. Unlike previous scenarios, the simulation

Fig. 5. PDR & EC of different algorithms versus σ in scenario 3 (100 static
EDs).



Fig. 6. PDR & EC of different configuration versus number of static EDs in
scenario 4.

takes place over 120 days, while the ADR-Lite’s combina-
tions of parameters varies over {30, 90, 120, 360} selections.
For this scenario, we assume four different configurations,
namely config-1, config-2, config-3, and config-4, where the
transmission parameters are: {SF +TP}, {SF +TP +CF},
{SF +TP +CR}, and {SF +TP +CF +CR}, respectively.
However, it is important to note that the CF may not be
adjustable for each ED in real environments, but it can be
modified using the FLoRa simulation framework.

In Figure 6, we can see that a greater degree of freedom of
choice generally leads to better network performance, both in
terms of PDR and energy consumption. As expected, the PDR
and energy consumption results for config-1, which comprises
the default configuration parameters, are the same as for sce-
nario 1. Due to the fact that config-2 adds more channels to the
communication link while adding no overhead to the network,
it can result in the best performance for both PDR and energy
consumption compared to the other configurations. In config-
3, since the default CR is 4

5 , by increasing this parameter’s
selection state space, the total overhead of the network will
grow, which can result in longer transmission delays, thus
increasing the collision rate and energy consumption. Config-
4’s performance is slightly disappointing compared to config-
2, because although more channels can improve efficiency,
a wide range of error coding options can negatively impact
performance.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a low-complexity ADR algorithm
for the NS of LoRa networks that can allow static or mobile

EDs to configure the transmission parameters of SF, TP, CF,
and CR. ADR-Lite uses a binary search algorithm to find
the optimal configuration of transmission parameters for a
LoRa network after sorting the parameter values in ascending
order. The proposed algorithm, without considering the history
of the last received packets, attempts to obtain the optimal
transmission parameter values. Through simulation results,
we showed the effectiveness of the proposed algorithm in a
LoRa network which outperformed others in static or mobile
scenarios with different network densification and channel
conditions. As future work, the packet retransmission method
can be included to increase the PDR further while employing
machine learning approaches to find an optimal EC without
any PDR reduction.
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trono, “Internet of Things (IoT): Opportunities, issues and challenges
towards a smart and sustainable future,” Journal of Cleaner Production,
vol. 274, p. 122877, 2020.

[2] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of LoRa:
Long range & low power networks for the internet of things,” Sensors,
vol. 16, no. 9, p. 1466, 2016.

[3] M. Bor and U. Roedig, “LoRa transmission parameter selection,” in
2017 13th International Conference on Distributed Computing in Sensor
Systems (DCOSS). IEEE, 2017, pp. 27–34.

[4] C. Pham, “Investigating and experimenting CSMA channel access mech-
anisms for LoRa IoT networks,” in 2018 IEEE Wireless Communications
and Networking Conference (WCNC). IEEE, 2018, pp. 1–6.

[5] J. M. de Souza Sant’Ana, A. Hoeller, R. D. Souza, S. Montejo-Sanchez,
H. Alves, and M. de Noronha-Neto, “Hybrid coded replication in LoRa
networks,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8,
pp. 5577–5585, 2020.

[6] J. Babaki, M. Rasti, and R. Aslani, “Dynamic spreading factor and power
allocation of LoRa networks for dense IoT deployments,” in 2020 IEEE
31st annual international symposium on personal, indoor and mobile
radio communications. IEEE, 2020, pp. 1–6.

[7] F. Azizi, B. Teymuri, R. Aslani, M. Rasti, J. Tolvanen, and P. H.
Nardelli, “MIX-MAB: Reinforcement learning-based resource allocation
algorithm for LoRaWAN,” arXiv preprint arXiv:2206.03401, 2022.

[8] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
Segui, and T. Watteyne, “Understanding the limits of LoRaWAN,” IEEE
Communications magazine, vol. 55, no. 9, pp. 34–40, 2017.

[9] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive configura-
tion of LoRa networks for dense IoT deployments,” in NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2018, pp. 1–9.

[10] LoRa Alliance, “LoRaWAN 1.1 specification,” 2017, technical
specification. [Online]. Available: https://lora-alliance.org/resource
hub/lorawan-specification-v1-1/

[11] T. Bouguera, J.-F. Diouris, J.-J. Chaillout, R. Jaouadi, and G. Andrieux,
“Energy consumption model for sensor nodes based on LoRa and
LoRaWAN,” Sensors, vol. 18, no. 7, p. 2104, 2018.

[12] Semtech, “LoRa SX1276/77/78/79 datasheet, rev. 7.” 2020.
[Online]. Available: https://www.semtech.com/products/wireless-rf/
lora-core/sx1276#datasheets

[13] J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pet-
tissalo, “On the coverage of LPWANs: Range evaluation and channel
attenuation model for LoRa technology,” in 2015 14th International
Conference on ITS Telecommunications (ITST). IEEE, 2015, pp. 55–59.


